1
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. Sci Rep 2024; 14:19789. [PMID: 39187542 PMCID: PMC11347619 DOI: 10.1038/s41598-024-69243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In major radiological events, rapid assays to detect ionizing radiation exposure are crucial for effective medical interventions. The purpose of these assays is twofold: to categorize affected individuals into groups for initial treatments, and to provide definitive dose estimates for continued care and epidemiology. However, existing high-throughput cytogenetic biodosimetry assays take about 3 days to yield results, which delays critical interventions. We have developed a multiwell-based variant of the chemical-induced G0-phase Premature Chromosome Condensation Assay that delivers same-day results. Our findings revealed that using a concentration of phosphatase inhibitor lower than recommended significantly increases the yield of cells with highly condensed chromosomes. These chromosomes exhibited increased fragmentation in a dose-dependent manner, enabling to quantify radiation damage using a custom Deep Learning algorithm. This algorithm demonstrated reasonable performance in categorizing doses into distinct treatment groups (84% and 80% accuracy for three and four iso-treatment dose bins, respectively) and showed reliability in determining the actual doses received (correlation coefficient of 0.879). This method is amendable to full automation and has the potential to address the need for same-day, high-throughput cytogenetic test for both dose categorization and dose reconstruction in large-scale radiation emergencies.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
2
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
3
|
Ye Y, Xu L, Zhang L, Zhao P, Cai W, Fu G, Wang T, Tao Z, Shi W, Gu W, Hu J, Yuan G, Wei Y, Xu K, Bao Z, Chao H, Liu N, Zhao L, Tu Y, Ji J. Meningioma achieves malignancy and erastin-induced ferroptosis resistance through FOXM1-AURKA-NRF2 axis. Redox Biol 2024; 72:103137. [PMID: 38642502 PMCID: PMC11047291 DOI: 10.1016/j.redox.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024] Open
Abstract
The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.
Collapse
Affiliation(s)
- Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoqiang Fu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zeqiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wenqian Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guangyao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Gusu School, Nanjing Medical University, Suzhou, China; Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China.
| |
Collapse
|
4
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596074. [PMID: 38854157 PMCID: PMC11160667 DOI: 10.1101/2024.05.27.596074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In cytogenetic biodosimetry, assessing radiation exposure typically requires over 48 hours for cells to reach mitosis, significantly delaying the administration of crucial radiation countermeasures needed within the first 24 hours post-exposure. To improve medical response times, we incorporated the G0-Premature Chromosome Condensation (G0-PCC) technique with the Rapid Automated Biodosimetry Tool-II (RABiT-II), creating a faster alternative for large-scale radiation emergencies. Our findings revealed that using a lower concentration of Calyculin A (Cal A) than recommended effectively increased the yield of highly-condensed G0-PCC cells (hPCC). However, integrating recombinant CDK1/Cyclin B kinase, vital for chromosome condensation, proved challenging due to the properties of these proteins affecting interactions with cellular membranes. Interestingly, Cal A alone was capable of inducing chromosome compaction in some G0 cells even in the absence of mitotic kinases, although these chromosomes displayed atypical morphologies. This suggests that Cal A mechanism for compacting G0 chromatin may differ from condensation driven by mitotic kinases. Additionally, we observed a correlation between radiation dose and extent of hPCC chromosome fragmentation, which allowed us to automate radiation damage quantification using a Convolutional Neural Network (CNN). Our method can address the need for a same-day cytogenetic biodosimetry test in radiation emergency situations.
Collapse
|
5
|
Peng L, He Y, Wang W, Dai J, Li Q, Ju S. PAK1-Dependent Regulation of Microtubule Organization and Spindle Migration Is Essential for the Metaphase I-Metaphase II Transition in Porcine Oocytes. Biomolecules 2024; 14:237. [PMID: 38397472 PMCID: PMC10886677 DOI: 10.3390/biom14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
P21-activated kinase 1 (PAK1) is a critical downstream target that mediates the effect of small Rho GTPase on the regulation of cytoskeletal kinetics, cell proliferation, and cell migration. PAK1 has been identified as a crucial regulator of spindle assembly during the first meiotic division; however, its roles during the metaphase I (MI) to metaphase II (MII) transition in oocytes remain unclear. In the present study, the potential function of PAK1 in regulating microtubule organization and spindle positioning during the MI-MII transition was addressed in porcine oocytes. The results showed that activated PAK1 was co-localized with α-tubulin, and its expression was increased from the MI to MII stage (p < 0.001). However, inhibiting PAK1 activity with an inhibitor targeting PAK1 activation-3 (IPA-3) at the MI stage decreased the first polar body (PB1) extrusion rate (p < 0.05), with most oocytes arrested at the anaphase-telophase (ATI) stage. IPA-3-treated oocytes displayed a decrease in actin distribution in the plasma membrane (p < 0.001) and an increase in the rate of defects in MII spindle reassembly with abnormal spindle positioning (p < 0.001). Nevertheless, these adverse effects of IPA-3 on oocytes were reversed when the disulfide bond between PAK1 and IPA-3 was reduced by dithiothreitol (DTT). Co-immunoprecipitation revealed that PAK1 could recruit activated Aurora A and transform acidic coiled-coil 3 (TACC3) to regulate spindle assembly and interact with LIM kinase 1 (LIMK1) to facilitate actin filament-mediated spindle migration. Together, PAK1 is essential for microtubule organization and spindle migration during the MI-MII transition in porcine oocytes, which is associated with the activity of p-Aurora A, p-TACC3 and p-LIMK1.
Collapse
Affiliation(s)
- Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| |
Collapse
|
6
|
Yuki R, Ikeda Y, Yasutake R, Saito Y, Nakayama Y. SH2D4A promotes centrosome maturation to support spindle microtubule formation and mitotic progression. Sci Rep 2023; 13:2067. [PMID: 36739326 PMCID: PMC9899277 DOI: 10.1038/s41598-023-29362-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/06/2023] Open
Abstract
Mitotic progression requires the precise formation of spindle microtubules based on mature centrosomes. During the G2/M transition, centrosome maturation progresses, and associated microtubules bundle to form mitotic spindle fibers and capture the chromosomes for alignment at the cell equator. Mitotic kinases-induced phosphorylation signaling is necessary for these processes. Here, we identified SH2 domain-containing protein 4A (SH2D4A/PPP1R38) as a new mitotic regulator. SH2D4A knockdown delays mitotic progression. The time-lapse imaging analysis showed that SH2D4A specifically contributes to the alignment of chromosomes. The cold treatment assay and microtubule regrowth assay indicated that SH2D4A promotes microtubule nucleation to support kinetochore-microtubule attachment. This may be due to the centrosome maturation by SH2D4A via centrosomal recruitment of pericentriolar material (PCM) such as cep192, γ-tubulin, and PLK1. SH2D4A was found to be a negative regulator of PP1 phosphatase. Consistently, treatment with a PP1 inhibitor rescues SH2D4A-knockdown-induced phenotypes, including the microtubule nucleation and centrosomal recruitment of active PLK1. These results suggest that SH2D4A is involved in PCM recruitment to centrosomes and centrosome maturation through attenuation of PP1 phosphatases, accelerating the spindle formation and supporting mitotic progression.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
7
|
Lv G, Shi Q, Zhang T, Li J, Kalashova J, Long Y, Sun Y, Li C, Choudhry N, Li H, Yang C, Zhou X, Reddy MC, Anantoju KK, Jupelli R, Zhang S, Zhang J, Allen T, Liu H, Nimishetti N, Yang D. 2-Phenoxy-3, 4′-bipyridine derivatives inhibit AURKB-dependent mitotic processes by disrupting its localization. Eur J Med Chem 2022; 245:114904. [DOI: 10.1016/j.ejmech.2022.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
8
|
Liu F, Wang X, Duan J, Hou Z, Wu Z, Liu L, Lei H, Huang D, Ren Y, Wang Y, Li X, Zhuo J, Zhang Z, He B, Yan M, Yuan H, Zhang L, Yan J, Wen S, Wang Z, Liu Q. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104823. [PMID: 35652200 PMCID: PMC9353462 DOI: 10.1002/advs.202104823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.
Collapse
Affiliation(s)
- Fang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xuan Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Jianli Duan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zhijie Hou
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhouming Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Lingling Liu
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hanqi Lei
- Department of UrologyKidney and Urology CenterPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Dan Huang
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yifei Ren
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yue Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Xinyan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Junxiao Zhuo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zijian Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Bin He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Min Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinsong Yan
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Shijun Wen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zifeng Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Quentin Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
9
|
Sur S, Steele R, Ko BCB, Zhang J, Ray RB. Long noncoding RNA ELDR promotes cell cycle progression in normal oral keratinocytes through induction of a CTCF-FOXM1-AURKA signaling axis. J Biol Chem 2022; 298:101895. [PMID: 35378133 PMCID: PMC9079251 DOI: 10.1016/j.jbc.2022.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.
Collapse
Affiliation(s)
- Subhayan Sur
- Departments of Pathology, Saint Louis University, Missouri, USA
| | - Robert Steele
- Departments of Pathology, Saint Louis University, Missouri, USA
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Jinsong Zhang
- Departments of Pharmacology and Physiology, Saint Louis University, Missouri, USA
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, Missouri, USA.
| |
Collapse
|
10
|
Zhang G, Ren G, Zhao X, Wang H. RNA Interference-Mediated Aurora Kinase A Gene Silencing Inhibits Human Glioma Cells Proliferation and Tumor Growth in Mice. J Cancer 2021; 12:3024-3032. [PMID: 33854602 PMCID: PMC8040878 DOI: 10.7150/jca.55791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: This study aims to explore the roles of Aurora Kinase A (Aurora A) in human glioma progression and relevant molecular mechanisms involved. Methods: RNA interference (RNAi) technology was performed to silence the Aurora A gene in human glioma cell line U251 and U87. Western blot and real-time PCR were used to determine the protein and mRNA expression levels of Aurora A. Flow cytometry was performed to analyze the cell cycle distribution and MTT was used to examine the cell viability. Annexin V/FITC double staining and Hoechst 33258 staining were carried out to examine cell apoptosis. Xenograft tumor model was established to examine the effect of Aurora A siRNA on tumor growth in vivo. Results: RNAi-mediated Aurora A gene silencing with specific short interfering RNA (siRNA) significantly decreased Aurora A protein and mRNA expression levels in human glioma cell line U251 and U87. Aurora A knockdown in glioma cells with siRNA strongly inhibited cell proliferation, along with the accumulation of cells in the G1, G2/M phase and decrease in S phase. Furthermore, the enhancement of cell apoptosis in vitro and the suppression of xenograft tumor growth in vivo were also observed after Aurora A silencing in U251 cell. In addition, Aurora A knockdown resulted in decreased expression of anti-apoptotic protein Bcl-2 and cell cycle protein Cyclin D1, while increased expression of pro-apoptotic factor caspase-3. Conclusion: Aurora A can be used as a candidate targeting gene and inhibition of Aurora A is a potentially promising therapy for glioblastoma.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Neurology, Luoyang Dong Fang Hospital, The Third Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan 471003, PR China
| | - Guanghui Ren
- Department of Neurology, Luoyang Dong Fang Hospital, The Third Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan 471003, PR China
| | - Xin Zhao
- Department of Neurology, Luoyang Dong Fang Hospital, The Third Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan 471003, PR China
| | - Haibo Wang
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
11
|
Mashima E, Sawada Y, Nakamura M. Recent Advancement in Atypical Lipomatous Tumor Research. Int J Mol Sci 2021; 22:994. [PMID: 33498189 PMCID: PMC7863944 DOI: 10.3390/ijms22030994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
After Evans and colleagues identified the lipomatous tumor with a well-differentiated liposarcoma in a subcutaneous location or within a muscle layer, namely, atypical lipomatous tumor (ALT), this malignancy has been investigated to clarify the characteristics of clinical behavior and genomic changes. As one of the important issues for clinicians, it is a hot topic of how to distinguish ALT from benign lipoma in the clinical aspect. Recent studies revealed novel findings to clarify the risk factor for the diagnosis of ALT and molecular targets for the treatment of ALT. Clinical characteristics of superficial-type ALT well reflect the subcutaneous location of the tumor and are slightly different compared to deep-type ALT, such as tumor size. In addition, there has been a recent discovery of novel findings in ALT-related genes, namely, HMG2A (high mobility group protein 2a), YEATS4 (YEATS domain containing 4), and CPM (Carboxypeptidase M). Recent updates on treatment for advanced ALT are well developed including immunotherapy and conducting clinical trials. Finally, this review introduces one of the hot topics of ALT research focused on epigenetic changes: their attention in recent updates on clinical characteristics and the novel discovery of related genes, treatment, and epigenetic modifications in atypical lipomatous tumors.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555, Japan; (E.M.); (M.N.)
| | | |
Collapse
|
12
|
Yu L, Lang Y, Guo J, Cai J, Shang ZF, Chen BPC. DNA-PKcs inhibition impairs HDAC6-mediated HSP90 chaperone function on Aurora A and enhances HDACs inhibitor-induced cell killing by increasing mitotic aberrant spindle assembly. Cell Cycle 2021; 20:211-224. [PMID: 33404279 DOI: 10.1080/15384101.2020.1867790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.
Collapse
Affiliation(s)
- Lan Yu
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Jiaming Guo
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA.,Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
13
|
Ekebergh A, Mårtensson J, Ekebergh CL. Cyclopenta[ b]indole Derivative Inhibits Aurora B in Primary Cells. ACS OMEGA 2020; 5:33455-33460. [PMID: 33403307 PMCID: PMC7774273 DOI: 10.1021/acsomega.0c05491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The Aurora family of kinases is closely involved in regulating cell division. Inhibition of Aurora A and B with small molecules is currently being investigated in clinical trials for the treatment of different cancers. It has also been evaluated as a treatment option against different autoimmune diseases in preclinical studies. Here, we present a cyclopenta[b]indole derivative capable of inhibiting Aurora B selectively in kinase assays. To evaluate the Aurora B inhibition capacity of the compound, we used a kinase IC50 assay as well as a suppression assay of proliferating primary cells. In addition, we examined if the cells had gained a phenotype characteristic for Aurora B inhibition after treatment with the compound. We found that the compound selectively inhibited Aurora B (IC50 = 1.4 μM) over Aurora A (IC50 > 30 μM). Moreover, the compound inhibited proliferating PBMCs with an IC50 = 4.2 μM, and the cells displayed reduced phosphorylation of histone H3 as well as tetraploidy, consistent with Aurora B inhibition.
Collapse
Affiliation(s)
- Andreas Ekebergh
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Jerker Mårtensson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Christine Lingblom Ekebergh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg 413 46, Sweden
| |
Collapse
|
14
|
Lek SM, Li K, Tan QX, Shannon NB, Ng WH, Hendrikson J, Tan JWS, Lim HJ, Chen Y, Koh KKN, Skanthakumar T, Kwang XL, Chong FT, Leong HS, Tay G, Putri NE, Lim TKH, Hwang JSG, Ang MK, Tan DSW, Tan NC, Tan HK, Kon OL, Soo KC, Iyer NG, Ong CAJ. Pairing a prognostic target with potential therapeutic strategy for head and neck cancer. Oral Oncol 2020; 111:105035. [PMID: 33091845 DOI: 10.1016/j.oraloncology.2020.105035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We have previously identified and validated a panel of molecular prognostic markers (ATP13A3, SSR3, and ANO1) for Head and Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the consequence of ATP13A3 dysregulation on signaling pathways, to aid in formulating a therapeutic strategy targeting ATP13A3-overexpressing HNSCC. MATERIALS AND METHODS Gene Set Enrichment Analysis (GSEA) was performed on HNSCC microarray expression data (Internal local dataset [n = 92], TCGA [n = 232], EMBL [n = 81]) to identify pathways associated with high expression of ATP13A3. Validation was performed using immunohistochemistry (IHC) on tissue microarrays (TMAs) of head and neck cancers (n = 333), staining for ATP13A3 and phosphorylated Aurora kinase A (phospho-T288). Short interfering RNA was used to knockdown ATP13A3 expression in patient derived HNSCC cell lines. Protein expression of ATP13A3 and Aurora kinase A was then assessed by immunoblotting. RESULTS GSEA identified Aurora kinase pathway to be associated with high expression of ATP13A3 (p = 0.026). The Aurora kinase pathway was also associated with a trend towards poor prognosis and tumor aggressiveness (p = 0.086, 0.094, respectively). Furthermore, the immunohistochemical staining results revealed a significant association between Aurora kinase activity and high ATP13A3 expression (p < 0.001). Knockdown of ATP13A3 in human head and neck cell lines showed decrease in Aurora kinase A levels. CONCLUSION Tumors with high ATP13A3 are associated with high Aurora kinase activity. This suggests a potential therapeutic role of Aurora kinase inhibitors in a subset of poor prognosis HNSCC patients with overexpression of ATP13A3.
Collapse
Affiliation(s)
- Sze Min Lek
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ke Li
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Nicholas B Shannon
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Joey W S Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Jun Lim
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Yudong Chen
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Kelvin K N Koh
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Thakshayeni Skanthakumar
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Gerald Tay
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Natascha Ekawati Putri
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Jacqueline S G Hwang
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ngian Chye Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Hiang Khoon Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Oi Lian Kon
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Khee Chee Soo
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore.
| | - Chin-Ann J Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
15
|
Iwao Y, Kimoto C, Fujimoto A, Suda A, Hara Y. Physiological polyspermy: Selection of a sperm nucleus for the development of diploid genomes in amphibians. Mol Reprod Dev 2020; 87:358-369. [DOI: 10.1002/mrd.23235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/23/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Yasuhiro Iwao
- Laboratory of Reproductive Developmental Biology, Division of Earth Sciences, Biology, and Chemistry, Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Yamaguchi Japan
| | - Chihiro Kimoto
- Laboratory of Reproductive Developmental Biology, Division of Earth Sciences, Biology, and Chemistry, Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Yamaguchi Japan
| | - Ayaka Fujimoto
- Laboratory of Reproductive Developmental Biology, Division of Earth Sciences, Biology, and Chemistry, Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Yamaguchi Japan
| | - Asuka Suda
- Laboratory of Reproductive Developmental Biology, Division of Earth Sciences, Biology, and Chemistry, Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Yamaguchi Japan
| | - Yuki Hara
- Laboratory of Evolutionary Cell Biology, Department of Biology and Chemistry, Faculty of ScienceYamaguchi University Yamaguchi Yamaguchi Japan
| |
Collapse
|
16
|
Yin Y, Chen F, Li J, Yang J, Li Q, Jin P. AURKA Enhances Autophagy of Adipose Derived Stem Cells to Promote Diabetic Wound Repair via Targeting FOXO3a. J Invest Dermatol 2020; 140:1639-1649.e4. [PMID: 32004564 DOI: 10.1016/j.jid.2019.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
AURKA regulates apoptosis and autophagy in a diverse range of diseases and exhibits promising clinical efficacy; however, the role of AURKA in regulating adipose-derived stem cells (ADSCs) and repairing diabetic wound remains unclear. Here, we showed that ADSCs subjected to high glucose stress displayed an obvious induction of AURKA and FOXO3a, and a significant increase in autophagy and apoptosis. AURKA was confirmed to regulate autophagy through FOXO3a. AURKA-mediated autophagy inhibited high-glucose-induced apoptosis of ADSCs. Furthermore, co-immunoprecipitation and chromatin immunoprecipitation assays were employed to investigate the interaction of AURKA and FOXO3a. FOXO3a bound to its own promoter and transactivated its own expression. AURKA was found to interact with FOXO3a to regulate FOXO3a activity. In diabetic mice, ADSCs overexpressing AURKA led to a decrease of apoptosis of ADSCs and promoted wound healing in the skin. Taken together, our data suggest that transcriptional regulation of FOXO3a by high-glucose-mediated AURKA is necessary for ADSCs autophagy. Our data reveal a potential therapeutic strategy for targeting AURKA involved in high-glucose-induced anti-apoptotic autophagy in ADSCs.
Collapse
Affiliation(s)
- Yating Yin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Cancer Biotherapy Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Jianhua Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Dai X, Ma B, Jiang P, Xu Z, Kong X, Sun X. Tenacigenin B Has Anti-Tumor Effect in Lymphoma by In Vitro and In Vivo Study. Med Sci Monit 2019; 25:6563-6573. [PMID: 31473762 PMCID: PMC6738005 DOI: 10.12659/msm.916461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to examine the effects and mechanisms of tenacigenin B in lymphoma treatment by in vitro and in vivo experiment. Material/Methods Raji cells were treated by difference methods. Measuring the cell proliferation of difference groups was done by MTT assay; cell apoptosis and cell cycle of difference groups were evaluated by flow cytometer; relative mRNA expression was evaluated by real-time polymerase chain reaction (RT-PCR), and relative protein expressions were measured by western blot assay in an in vitro study. In an in vivo study, we used a nude mice model to explore the anti-tumor effects and mechanism of tenacigenin B. Cell apoptosis was measured by TUNEL assay; relative protein expressions were evaluated by immunohistochemistry assay, and relative mRNA expression was evaluated by RT-PCR. In addition, the blood components of difference groups were measured. Results Compared with the Normal control group, the cell proliferation rate was significantly downregulated, with cell apoptosis significantly increasing with G1 phase in the Drug group and the si-Aurora-A group (P<0.05, respectively). The PTEN, PI3K, AKT, P53, and P21 mRNA and protein expressions of the Drug group, the si-Aurora-A group, and the si-Aurora-A+Drug group were significantly different (P<0.01, respectively), The tumor volume and weight of the Drug group, the si-Aurora-A group, and the si-Aurora-A+Drug group were significantly suppressed compared with the Normal group (P<0.01, respectively). The positive apoptosis cell number in the Drug group, the si-Aurora-A group, and si-Aurora-A+Drug group were increased compared with that of Normal group (P<0.01, respectively). Conclusions Tenacigenin B had anti-tumor effects on lymphoma via regulation of Aurora-A in vitro and in vivo.
Collapse
Affiliation(s)
- Xingbin Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Bangyun Ma
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Pengjun Jiang
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zuqiong Xu
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xiangtu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xuemei Sun
- Department of Hematology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
18
|
Aurora-A/ERK1/2/mTOR axis promotes tumor progression in triple-negative breast cancer and dual-targeting Aurora-A/mTOR shows synthetic lethality. Cell Death Dis 2019; 10:606. [PMID: 31406104 PMCID: PMC6690898 DOI: 10.1038/s41419-019-1855-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023]
Abstract
Triple-negative breast cancer (TNBC), defined as a tumor subtype that lacks ER, PR, and HER2, shows a poor prognosis due to its aggressive tumor biology and limited treatment options. Deregulation of Aurora kinase A (Aur-A), a member of the mitotic serine/threonine Aurora kinase family, and overactivation of the mTOR pathway commonly occur in multiple cancer types. We previously found that Aur-A activated the mTOR pathway and inhibited autophagy activity in breast cancer cell models. Whether and how Aur-A regulates mTOR in TNBC are still unclear. Here, we found that Aur-A and p-mTOR are highly expressed and positively associated with each other in TNBC cells and tissues. Inhibition or knockdown of Aur-A decreased p-mTOR and suppressed cell proliferation and migration, whereas overexpression of Aur-A increased p-mTOR levels and promoted cell proliferation and migration, which was significantly abrogated by simultaneous silencing of mTOR. Intriguingly, overexpression of Aur-A enhanced the expression of p-mTOR and p-ERK1/2, and silencing or inhibition of ERK1/2 blocked Aur-A-induced p-mTOR. However, silencing or inhibition of mTOR failed to reverse Aur-A-induced ERK1/2, indicating that Aur-A/ERK1/2/mTOR forms an oncogenic cascade in TNBC. We finally found that double inhibition of Aur-A and mTOR showed significant synergistic effects in TNBC cell lines and a xenograft model, indicating that Aur-A and mTOR are potential therapeutic targets in the TNBC subtype.
Collapse
|
19
|
Shen S, Feng H, Le Y, Ni J, Yu L, Wu J, Bai M. RACK1 affects the progress of G2/M by regulating Aurora-A. Cell Cycle 2019; 18:2228-2238. [PMID: 31357906 DOI: 10.1080/15384101.2019.1642065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aurora-A is a serine/threonine kinase, which is overexpressed in multiple human cancers and plays a key role in tumorigenesis and tumor development. In this study, we found that the receptor of activated C-kinase1 (RACK1), an important regulator of biological functions, interacted with Aurora-A and co-localized with Aurora-A at centrosomes. Moreover, RACK1 induces the auto-phosphorylation of Aurora-A in vitro and in vivo. Depletion of RACK1 impaired the activation of Aurora-A in late G2 phase, then inhibited the mitotic entry and leaded to multi-polarity, severe chromosome alignment defects, or centrosome amplification. Taken together, these results suggest that RACK1 is a new partner of Aurora-A and play a critical role in the regulation of the Aurora-A activity during mitosis, which may provide a basis for future anticancer studies targeting Aurora-A.
Collapse
Affiliation(s)
- Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jun Ni
- Department Oncology, Hutchison Medi Pharma , Shanghai , China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China.,Cardiovascular Research Institute and Department of Physiology, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
20
|
Yang N, Wang C, Wang J, Wang Z, Huang D, Yan M, Kamran M, Liu Q, Xu B. Aurora kinase A stabilizes FOXM1 to enhance paclitaxel resistance in triple-negative breast cancer. J Cell Mol Med 2019; 23:6442-6453. [PMID: 31359594 PMCID: PMC6714217 DOI: 10.1111/jcmm.14538] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a relatively poor outcome. Acquired chemoresistance is a major clinical challenge for TNBC patients. Previously, we reported that kinase-dead Aurora kinase A (Aurora-A) could effectively transactivate the FOXM1 promoter. Here, we demonstrate an additional pathway through which Aurora-A stabilizes FOXM1 by attenuating its ubiquitin in TNBC. Specifically, Aurora-A stabilizes FOXM1 in late M phase and early G1 phase of the cell cycle, which promotes proliferation of TNBC cells. Knock-down of Aurora-A significantly suppresses cell proliferation in TNBC cell lines and can be rescued by FOXM1 overexpression. We observe that paclitaxel-resistant TNBC cells exhibit high expression of Aurora-A and FOXM1. Overexpression of Aurora-A offers TNBC cells an additional growth advantage and protection against paclitaxel. Moreover, Aurora-A and FOXM1 could be simultaneously targeted by thiostrepton. Combination of thiostrepton and paclitaxel treatment reverses paclitaxel resistance and significantly inhibits cell proliferation. In conclusion, our study reveals additional mechanism through which Aurora-A regulates FOXM1 and provides a new therapeutic strategy to treat paclitaxel-resistant triple-negative breast cancer.
Collapse
Affiliation(s)
- Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chang Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Pathology, GanZhou Municipal People's Hospital, NanChang University, GanZhou, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Di Huang
- Department of Breast Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Muhammad Kamran
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Quentin Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - BangLao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
22
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
23
|
Park JW, Cho H, Oh H, Kim JY, Seo SB. AURKA Suppresses Leukemic THP-1 Cell Differentiation through Inhibition of the KDM6B Pathway. Mol Cells 2018; 41:444-453. [PMID: 29477140 PMCID: PMC5974621 DOI: 10.14348/molcells.2018.2311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrations in histone modifications are being studied in mixed-lineage leukemia (MLL)-AF9-driven acute myeloid leukemia (AML). In this study, we focused on the regulation of the differentiation of the MLL-AF9 type AML cell line THP-1. We observed that, upon phorbol 12-myristate 13-acetate (PMA) treatment, THP-1 cells differentiated into monocytes by down-regulating Aurora kinase A (AURKA), resulting in a reduction in H3S10 phosphorylation. We revealed that the AURKA inhibitor alisertib accelerates the expression of the H3K27 demethylase KDM6B, thereby dissociating AURKA and YY1 from the KDM6B promoter region. Using Flow cytometry, we found that alisertib induces THP-1 differentiation into monocytes. Furthermore, we found that treatment with the KDM6B inhibitor GSK-J4 perturbed the PMA-mediated differentiation of THP-1 cells. Thus, we discovered the mechanism of AURKA-KDM6B signaling that controls the differentiation of THP-1 cells, which has implications for biotherapy for leukemia.
Collapse
MESH Headings
- Aurora Kinase A/antagonists & inhibitors
- Aurora Kinase A/physiology
- Azepines/pharmacology
- Benzazepines/pharmacology
- Cell Differentiation/drug effects
- Chromatin Immunoprecipitation
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation, Leukemic
- Genes, Reporter
- HEK293 Cells
- Histones/metabolism
- Humans
- Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors
- Jumonji Domain-Containing Histone Demethylases/physiology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Monocytes/cytology
- Myeloid-Lymphoid Leukemia Protein/physiology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/physiology
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- Protein Processing, Post-Translational/drug effects
- Pyrimidines/pharmacology
- RNA Interference
- RNA, Small Interfering/genetics
- Recombinant Proteins/metabolism
- THP-1 Cells
- Tetradecanoylphorbol Acetate/pharmacology
- YY1 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Hyein Oh
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756,
Korea
| |
Collapse
|
24
|
Biochemical and Biophysical characterization of curcumin binding to human mitotic kinesin Eg5: Insights into the inhibitory mechanism of curcumin on Eg5. Int J Biol Macromol 2018; 109:1189-1208. [DOI: 10.1016/j.ijbiomac.2017.11.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
|
25
|
Nair JS, Schwartz GK. MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2017; 7:12893-903. [PMID: 26887042 PMCID: PMC4914329 DOI: 10.18632/oncotarget.7335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aurora kinases have become an attractive target in cancer therapy due to their deregulated expression in human tumors. Liposarcoma, a type of soft tissue sarcoma in adults, account for approximately 20% of all adult soft tissue sarcomas. There are no effective chemotherapies for majority of these tumors. Efforts made to define the molecular basis of liposarcomas lead to the finding that besides the amplifications of CDK4 and MDM2, Aurora Kinase A, also was shown to be overexpressed. Based on these as well as mathematic modeling, we have carried out a successful preclinical study using CDK4 and IGF1R inhibitors in liposarcoma. MLN8237 has been shown to be a potent and selective inhibitor of Aurora A. MLN-8237, as per our results, induces a differential inhibition of Aurora A and B in a dose dependent manner. At a low nanomolar dose, cellular effects such as induction of phospho-Histone H3 (Ser10) mimicked as that of the inhibition of Aurora kinase A followed by apoptosis. However, micromolar dose of MLN-8237 induced polyploidy, a hallmark effect of Aurora B inhibition. The dose dependent selectivity of inhibition was further confirmed by using siRNA specific inhibition of Aurora A and B. This was further tested by time lapse microscopy of GFP-H2B labelled cells treated with MLN-8237. LS141 xenograft model at a dose of 30 mg/kg also showed efficient growth suppression by selective inhibition of Aurora Kinase A. Based on our data, a dose that can target only Aurora A will be more beneficial in tumor suppression.
Collapse
Affiliation(s)
- Jayasree S Nair
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gary K Schwartz
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
26
|
Ionkina AA, Tentler JJ, Kim J, Capasso A, Pitts TM, Ryall KA, Howison RR, Kabos P, Sartorius CA, Tan AC, Eckhardt SG, Diamond JR. Efficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer. Front Oncol 2017; 7:94. [PMID: 28555173 PMCID: PMC5430301 DOI: 10.3389/fonc.2017.00094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX) models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance to ENMD-2076. Experimental design p53-mutated, TNBC PDX models were treated with ENMD-2076 and evaluated for mechanisms of sensitivity or resistance to treatment. Correlative tissue testing was performed on tumor tissue to assess for markers of proliferation, apoptosis, senescence, and pathways of resistance after treatment and at the time of acquired resistance. Results Sensitivity to ENMD-2076 200 mg/kg daily was associated with induction of apoptosis while models exhibiting intrinsic or acquired resistance to treatment presented with a senescent phenotype. Response to ENMD-2076 was accompanied by an increase in p53 and p73 levels, even within the background of mutant p53. Treatment with ENMD-2076 resulted in a decrease in pAurA and an increase in pHH3. We observed a TNBC subtype switch from the luminal androgen receptor to the basal-like subtype at acquired resistance. Conclusion ENMD-2076 has antitumor activity in preclinical models of p53-mutated TNBC. Increased levels of p53 and p73 correlated with sensitivity whereas senescence was associated with resistance to ENMD-2076. The novel finding of a TNBC subtype switch at time of acquired resistance may provide mechanistic insights into the biologic effects of selective pressure of anticancer treatments on TNBC. ENMD-2076 is currently being evaluated in a Phase 2 clinical trial in patients with metastatic, previously treated TNBC where these biologic correlates can be further explored.
Collapse
Affiliation(s)
- Anastasia A Ionkina
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jihye Kim
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen A Ryall
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebekah R Howison
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Gail Eckhardt
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Kamran M, Long ZJ, Xu D, Lv SS, Liu B, Wang CL, Xu J, Lam EWF, Liu Q. Aurora kinase A regulates Survivin stability through targeting FBXL7 in gastric cancer drug resistance and prognosis. Oncogenesis 2017; 6:e298. [PMID: 28218735 PMCID: PMC5337621 DOI: 10.1038/oncsis.2016.80] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/10/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
Aurora kinase A (AURKA) has been implicated in the regulation of cell cycle progression, mitosis and a key number of oncogenic signaling pathways in various malignancies. However, little is known about its role in gastric cancer prognosis and genotoxic resistance. Here we found that AURKA was highly overexpressed in gastric cancer and inversely correlated with disease prognosis. Overexpression of AURKA exacerbated gastric cancer drug resistance through upregulating the expression of the anti-apoptotic protein Survivin. Conversely, we demonstrated that AURKA depletion caused a decrease in Survivin protein levels by increasing its ubiquitylation and degradation. Mass spectrometric analysis revealed that upon AURKA depletion, Survivin bound to the FBXL7 E3 ubiquitin ligase, which induced ubiquitin-proteasome degradation of Survivin. In addition, we showed that AURKA regulated FBXL7 both at the levels of transcription and translation. Moreover, proteomic analysis of nuclear AURKA-interacting proteins identified Forkhead box protein P1 (FOXP1). We next showed that AURKA was required for FBXL7 transcription and that AURKA negatively regulated FOXP1-mediated FBXL7 expression. The physiological relevance of the regulation of Survivin by AURKA through the FOXP1–FBXL7 axis was further underscored by the significant positive correlations between AURKA and Survivin expression in gastric cancer patient samples. Moreover, the AURKA depletion or kinase inhibition-induced apoptotic cell death could be reversed by Survivin ectopic overexpression, further supporting that AURKA regulated Survivin to enhance drug resistance. In agreement, inhibition of AURKA synergistically enhanced the cytotoxic effect of DNA-damaging agents in cancer cells by suppressing Survivin expression. Taken together, our data suggest that AURKA restricts Survivin ubiquitylation and degradation in gastric cancer to promote drug resistance and hence the AURKA–Survivin axis can be targeted to promote the efficacy of DNA-damaging agents in gastric cancer.
Collapse
Affiliation(s)
- M Kamran
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Z-J Long
- Department of Hematology, The Third Affiliated Hospital; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - D Xu
- State key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine/Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-S Lv
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - B Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - C-L Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - J Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Q Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, The Third Affiliated Hospital; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene 2017; 36:3428-3440. [PMID: 28114286 PMCID: PMC5485180 DOI: 10.1038/onc.2016.490] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/30/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
Substantial evidence suggests that breast cancer initiation, recurrence and drug resistance is supported by breast cancer stem cells (BCSCs). Recently, we reported a novel role of Aurora kinase A (AURKA) in BCSCs, as a transactivating co-factor in the induction of the c-Myc oncoprotein. However, the mode of action and transcriptional network of nuclear AURKA in BCSCs remain unknown. Here, we report that nuclear AURKA can be recruited by Forkhead box subclass M1 (FOXM1) as a co-factor to transactivate FOXM1 target genes in a kinase-independent manner. In addition, we show that AURKA and FOXM1 participate in a tightly coupled positive feedback loop to enhance BCSC phenotype. Indeed, kinase-dead AURKA can effectively transactivate the FOXM1 promoter through a Forkhead response element, whereas FOXM1 can activate AURKA expression at the transcriptional level in a similar manner. Consistently, breast cancer patient samples portrayed a strong and significant correlation between the expression levels of FOXM1 and AURKA. Moreover, both FOXM1 and AURKA were essential for maintaining the BCSC population. Finally, we demonstrated that the AURKA inhibitor AKI603 and FOXM1 inhibitor thiostrepton acted synergistically to inhibit cytoplasmic AURKA activity and disrupt the nuclear AURKA/FOXM1-positive feedback loop, respectively, resulting in a more effective inhibition of the tumorigenicity and self-renewal ability of BCSCs. Collectively, our study uncovers a previously unknown tightly coupled positive feedback signalling loop between AURKA and FOXM1, crucial for BCSC self-renewal. Remarkably, our data reveal a novel potential therapeutic strategy for targeting both the cytoplasmic and nuclear AURKA function to effectively eliminate BCSCs, so as to overcome both breast cancer and drug resistance.
Collapse
|
29
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Kozyreva VK, Kiseleva AA, Ice RJ, Jones BC, Loskutov YV, Matalkah F, Smolkin MB, Marinak K, Livengood RH, Salkeni MA, Wen S, Hazard HW, Layne GP, Walsh CM, Cantrell PS, Kilby GW, Mahavadi S, Shah N, Pugacheva EN. Combination of Eribulin and Aurora A Inhibitor MLN8237 Prevents Metastatic Colonization and Induces Cytotoxic Autophagy in Breast Cancer. Mol Cancer Ther 2016; 15:1809-22. [PMID: 27235164 DOI: 10.1158/1535-7163.mct-15-0688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
Recent findings suggest that the inhibition of Aurora A (AURKA) kinase may offer a novel treatment strategy against metastatic cancers. In the current study, we determined the effects of AURKA inhibition by the small molecule inhibitor MLN8237 both as a monotherapy and in combination with the microtubule-targeting drug eribulin on different stages of metastasis in triple-negative breast cancer (TNBC) and defined the potential mechanism of its action. MLN8237 as a single agent and in combination with eribulin affected multiple steps in the metastatic process, including migration, attachment, and proliferation in distant organs, resulting in suppression of metastatic colonization and recurrence of cancer. Eribulin application induces accumulation of active AURKA in TNBC cells, providing foundation for the combination therapy. Mechanistically, AURKA inhibition induces cytotoxic autophagy via activation of the LC3B/p62 axis and inhibition of pAKT, leading to eradication of metastases, but has no effect on growth of mammary tumor. Combination of MLN8237 with eribulin leads to a synergistic increase in apoptosis in mammary tumors, as well as cytotoxic autophagy in metastases. These preclinical data provide a new understanding of the mechanisms by which MLN8237 mediates its antimetastatic effects and advocates for its combination with eribulin in future clinical trials for metastatic breast cancer and early-stage solid tumors. Mol Cancer Ther; 15(8); 1809-22. ©2016 AACR.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Anna A Kiseleva
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Tatarstan
| | - Ryan J Ice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Yuriy V Loskutov
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Fatimah Matalkah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kristina Marinak
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mohamad A Salkeni
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Sijin Wen
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biostatistics, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Hannah W Hazard
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ginger P Layne
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Radiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | - Greg W Kilby
- Protea Biosciences, Inc., Morgantown, West Virginia
| | - Sricharan Mahavadi
- INBRE Program, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Neal Shah
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Elena N Pugacheva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.
| |
Collapse
|
31
|
2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061), a novel microtubule inhibitor, evokes G2/M cell cycle arrest and apoptosis in human breast cancer cells. Biomed Pharmacother 2016; 78:308-321. [DOI: 10.1016/j.biopha.2016.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
|
32
|
de Groot CO, Hsia JE, Anzola JV, Motamedi A, Yoon M, Wong YL, Jenkins D, Lee HJ, Martinez MB, Davis RL, Gahman TC, Desai A, Shiau AK. A Cell Biologist's Field Guide to Aurora Kinase Inhibitors. Front Oncol 2015; 5:285. [PMID: 26732741 PMCID: PMC4685510 DOI: 10.3389/fonc.2015.00285] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023] Open
Abstract
Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively. However, MK-8745 is not nearly as ideal as AZD1152-HQPA in that it requires high concentrations to achieve full inhibition in a cellular context, indicating a need for more potent Aurora A-selective inhibitors. We conclude with a set of “good practice” guidelines for the use of Aurora inhibitors in cell biology experiments.
Collapse
Affiliation(s)
- Christian O de Groot
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Judy E Hsia
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - John V Anzola
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Amir Motamedi
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Michelle Yoon
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Yao Liang Wong
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Hyun J Lee
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Mallory B Martinez
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Robert L Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Arshad Desai
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| |
Collapse
|
33
|
H3S10 phosphorylation-mediated transcriptional regulation by Aurora kinase A. Biochem Biophys Res Commun 2015; 469:22-28. [PMID: 26607113 DOI: 10.1016/j.bbrc.2015.11.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022]
Abstract
Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.
Collapse
|
34
|
Xu LZ, Long ZJ, Peng F, Liu Y, Xu J, Wang C, Jiang L, Guo T, Kamran M, Li SS, Wang CL, Wang HJ, Zhao YF, Wan XY, Liu Q. Aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells. Oncotarget 2015; 5:7498-511. [PMID: 25115395 PMCID: PMC4202139 DOI: 10.18632/oncotarget.2241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy.
Collapse
Affiliation(s)
- Ling-Zhi Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zi-Jie Long
- Department of Hematology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Lei Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Tao Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Muhammad Kamran
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Si-Si Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chun-Li Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Hong-Jiang Wang
- Department of Breast Surgery, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yong-Fu Zhao
- Department of Thyroid Surgery, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xian-Yao Wan
- Department of Critical Care Medicine, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Department of Hematology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Chung HJ, Park KR, Lee HJ, Lee J, Kim JH, Kim YC, Han SY. Effects of KRC-108 on the Aurora A activity and growth of colorectal cancer cells. Biochem Biophys Res Commun 2015; 461:605-11. [PMID: 25912878 DOI: 10.1016/j.bbrc.2015.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Aurora A is involved in regulating multiple steps of mitosis. Over-expression of Aurora A is related to tumorigenesis and poor prognosis. KRC-108 is a novel multi-kinase inhibitor which has anti-tumor activity in vivo. In this study, we identified the inhibitory effects of KRC-108 on Aurora A kinase and growth-inhibitory characteristics of KRC-108. The in vitro kinase activity assay, immunoblot, and immunofluorescence analyses demonstrated that KRC-108 inhibited Aurora A activity. KRC-108 exhibited cytotoxicity against human colorectal cancer cell line HT-29. Colony formation assays showed that KRC-108 reduced the colony growth of HT-29 cells. KRC-108 also inhibited migration of HT-29 cells. The expression levels of cyclin B1 and CDC2 were decreased by KRC-108 in HT-29 cells. Cell cycle analysis and flow cytometry indicated that the inhibitory effects of KRC-108 on cell growth are due to induction of G2/M arrest and apoptosis by inhibition of Aurora A. KRC-108 induces cell-cycle arrest and apoptosis in colorectal cancer cell line by Aurora A inhibition. The reported in vivo anti-tumor effects of KRC-108 might partly be due to anti-Aurora A effects. This study suggests that KRC-108 has potential for development as an anti-tumor agent, although further studies are needed.
Collapse
Affiliation(s)
- Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
36
|
Yu CC, Liu SP, Hsu JL, Hsu JT, Kudryavtsev KV, Guh JH. KUD773, a phenylthiazole derivative, displays anticancer activity in human hormone-refractory prostate cancers through inhibition of tubulin polymerization and anti-Aurora A activity. J Biomed Sci 2015; 22:2. [PMID: 25563361 PMCID: PMC4304192 DOI: 10.1186/s12929-014-0107-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/17/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded. RESULTS KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr(161) (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr(15) (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades. CONCLUSIONS The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.
Collapse
Affiliation(s)
- Chia-Chun Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| | - Shih-Ping Liu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| | - John Ta Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Konstantin V Kudryavtsev
- Department of Medicinal Chemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation. .,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow region, Russian Federation.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
Aradottir M, Reynisdottir ST, Stefansson OA, Jonasson JG, Sverrisdottir A, Tryggvadottir L, Eyfjord JE, Bodvarsdottir SK. Aurora A is a prognostic marker for breast cancer arising in BRCA2 mutation carriers. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2014; 1:33-40. [PMID: 27499891 PMCID: PMC4858119 DOI: 10.1002/cjp2.6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/07/2014] [Indexed: 12/20/2022]
Abstract
Overexpression of the Aurora A kinase has been shown to have prognostic value in breast cancer. Previously, we showed a significant association between AURKA gene amplification and BRCA2 mutation in breast cancer. The aim of this study was to assess the prognostic impact of Aurora A overexpression on breast cancer arising in BRCA2 mutation carriers. Aurora A expression was evaluated by immunohistochemistry on breast tumour tissue microarrays from 107 BRCA2 999del5 mutation carriers and 284 of sporadic origin. Prognostic value of Aurora A nuclear staining was estimated in relation to clinical markers and adjuvant treatment, using multivariate Cox's proportional hazards ratio regression model. BRCA2 wild‐type allele loss was measured by TaqMan in BRCA2 mutated tumour samples. All statistical tests were two sided. Multivariate analysis of breast cancer‐specific survival, including proliferative markers and treatment, indicated independent prognostic value of Aurora A nuclear staining for BRCA2 mutation carriers (hazards ratio = 7.06; 95% confidence interval = 1.23–40.6; p = 0.028). Poor breast cancer‐specific survival of BRCA2 mutation carriers was found to be significantly associated with combined Aurora A nuclear expression and BRCA2 wild type allele loss in tumours (p < 0.001). Multivariate analysis indicated independent prognostic value of both positive Aurora A nuclear staining (hazards ratio = 10.09; 95% confidence interval = 1.19–85.4, p = 0.034) and BRCA2 wild type allele loss (hazards ratio = 9.63; 95% confidence interval = 1.81–51.0, p = 0.008) for BRCA2 mutation carriers. Aurora A nuclear expression was found to be a significant prognostic marker for BRCA2 mutation carriers, independent of clinical parameters and adjuvant treatment. Our conclusion is that treatment benefits for BRCA2 mutation carriers and sporadic breast cancer patients with Aurora A positive tumours may be enhanced by giving attention to Aurora A targeted treatment.
Collapse
Affiliation(s)
- Margret Aradottir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland Reykjavik Iceland
| | - Sigridur T Reynisdottir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland Reykjavik Iceland
| | - Olafur A Stefansson
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland Reykjavik Iceland
| | - Jon G Jonasson
- Faculty of MedicineSchool of Health Sciences, University of IcelandReykjavikIceland; Icelandic Cancer RegistryIcelandic Cancer SocietyReykjavikIceland; Department of PathologyNational University HospitalReykjavikIceland
| | | | - Laufey Tryggvadottir
- Faculty of MedicineSchool of Health Sciences, University of IcelandReykjavikIceland; Icelandic Cancer RegistryIcelandic Cancer SocietyReykjavikIceland
| | - Jorunn E Eyfjord
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland Reykjavik Iceland
| | - Sigridur K Bodvarsdottir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland Reykjavik Iceland
| |
Collapse
|
38
|
McGinnis LK, Pelech S, Kinsey WH. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev 2014; 81:928-45. [PMID: 25242074 DOI: 10.1002/mrd.22413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
Post-ovulatory aging of oocytes results in the progressive loss of fertilization and developmental competence. This degradation of oocyte quality has been the object of numerous investigations, primarily focused on individual signaling pathways which provide limited insight into the status of global signaling events. The purpose of the present investigation was to comprehensively assess broad patterns of signaling pathway activity during in vitro aging as an initial step in defining control points that can be targeted to prevent the reduction in oocyte quality during prolonged culture. An antibody microarray-based phospho-proteome analysis performed on oocytes before and after eight hours of culture revealed significant changes in the abundance or activation state of 43 proteins that function in a wide variety of protein kinase-mediated signaling pathways. Several of the most significantly affected kinases were studied by Western blot and confocal immunofluorescence to corroborate the array results. Prolonged culture resulted in global changes in the abundance and activity of protein kinases that regulate the response to calcium, stress, and cell-cycle control. Examination of intracellular structures revealed a previously unrecognized increase in the abundance of large autophogagic lysosomes, which correlates with changes in protein kinase pathways. These results provide insight into the stresses experienced by oocytes during culture and the diversity of responses that results from them. The observed increase in autophagy-related activity, together with the disruptions in calcium signaling, cell-cycle, and stress-response pathways, have the potential to negatively impact oocyte quality by interfering with the normal sequence of biochemical changes that constitute egg activation following fertilization.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
39
|
Ding Y, Su S, Tang W, Zhang X, Chen S, Zhu G, Liang J, Wei W, Guo Y, Liu L, Chen YG, Wu W. Enrichment of the β-catenin-TCF complex at the S and G2 phases ensures cell survival and cell cycle progression. J Cell Sci 2014; 127:4833-45. [PMID: 25236602 DOI: 10.1242/jcs.146977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Wnt-β-catenin (β-catenin is also known as CTNNB1 in human) signaling through the β-catenin-TCF complex plays crucial roles in tissue homeostasis. Wnt-stimulated β-catenin-TCF complex accumulation in the nucleus regulates cell survival, proliferation and differentiation through the transcription of target genes. Compared with their levels in G1, activation of the receptor LRP6 and cytosolic β-catenin are both upregulated in G2 cells. However, accumulation of the Wnt pathway negative regulator AXIN2 also occurs in this phase. Therefore, it is unclear whether Wnt signaling is active in G2 phase cells. Here, we established a bimolecular fluorescence complementation (BiFC) biosensor system for the direct visualization of the β-catenin-TCF interaction in living cells. Using the BiFC biosensor and co-immunoprecipitation experiments, we demonstrate that levels of the nucleus-localized β-catenin-TCF complex increase during the S and G2 phases, and declines in the next G1 phase. Accordingly, a subset of Wnt target genes is transcribed by the β-catenin-TCF complex during both the S and G2 phases. By contrast, transient inhibition of this complex disturbs both cell survival and G2/M progression. Our results suggest that in S and G2 phase cells, Wnt-β-catenin signaling is highly active and functions to ensure cell survival and cell cycle progression.
Collapse
Affiliation(s)
- Yajie Ding
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang Su
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weixin Tang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolei Zhang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyao Chen
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Guo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife 2014; 3:e02667. [PMID: 24867643 PMCID: PMC4032492 DOI: 10.7554/elife.02667] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We elucidate the molecular mechanisms of two distinct activation strategies (autophosphorylation and TPX2-mediated activation) in human Aurora A kinase. Classic allosteric activation is in play where either activation loop phosphorylation or TPX2 binding to a conserved hydrophobic groove shifts the equilibrium far towards the active conformation. We resolve the controversy about the mechanism of autophosphorylation by demonstrating intermolecular autophosphorylation in a long-lived dimer by combining X-ray crystallography with functional assays. We then address the allosteric activation by TPX2 through activity assays and the crystal structure of a domain-swapped dimer of dephosphorylated Aurora A and TPX21−25. While autophosphorylation is the key regulatory mechanism in the centrosomes in the early stages of mitosis, allosteric activation by TPX2 of dephosphorylated Aurora A could be at play in the spindle microtubules. The mechanistic insights into autophosphorylation and allosteric activation by TPX2 binding proposed here, may have implications for understanding regulation of other protein kinases. DOI:http://dx.doi.org/10.7554/eLife.02667.001 The kinase, Aurora A, is a human protein that is needed for cells to divide normally. Kinases are enzymes that control other proteins by adding phosphate groups to these proteins; however, like other kinases, Aurora A must first be activated or ‘switched on’ before it can do this. Aurora A kinase can be switched on in two ways: by having a phosphate group added to its ‘activation loop’; or by binding to another protein called TPX2. Also like other kinases, Aurora A can self-activate, but the details of this process are not understood. Does a single Aurora A kinase add a phosphate group to its own activation loop, or does one Aurora A kinase activate a second? Furthermore, it is not clear how binding to TPX2 can activate an Aurora A kinase without adding a phosphate group to the activation loop. Zorba, Buosi et al. now show that Aurora A kinases that have been activated in different ways—via the addition of a phosphate group or binding to TPX2—are equally good at adding phosphate groups to other proteins. Zorba, Buosi et al. also worked out the three-dimensional shapes of the kinases activated in these two ways—since many proteins change shape when they are switched on—and found that they were also the same. Finally, it was shown that self-activation involves two Aurora A kinases binding to each other, and one kinase adding a phosphate group to the other, rather than a single kinase adding a phosphate group to itself. Since other protein kinases can be activated in similar ways to Aurora A, the findings of Zorba, Buosi et al. might also help us to understand how other protein kinases can be switched ‘on’ or ‘off’. And, as mutations in Aurora A have been linked to the development of cancer, uncovering how this kinase is controlled could help efforts to design new drugs to treat this disease. DOI:http://dx.doi.org/10.7554/eLife.02667.002
Collapse
Affiliation(s)
- Adelajda Zorba
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Vanessa Buosi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Steffen Kutter
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Nadja Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Francesco Pontiggia
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Young-Jin Cho
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Dorothee Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| |
Collapse
|
41
|
Kang Q, Srividhya J, Ipe J, Pomerening JR. Evidence toward a dual phosphatase mechanism that restricts Aurora A (Thr-295) phosphorylation during the early embryonic cell cycle. J Biol Chem 2014; 289:17480-96. [PMID: 24825897 DOI: 10.1074/jbc.m113.527622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.
Collapse
Affiliation(s)
- Qing Kang
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Jeyaraman Srividhya
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Joseph Ipe
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| | - Joseph R Pomerening
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405-7003
| |
Collapse
|
42
|
Goldenson B, Crispino JD. The aurora kinases in cell cycle and leukemia. Oncogene 2014; 34:537-45. [PMID: 24632603 PMCID: PMC4167158 DOI: 10.1038/onc.2014.14] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
The Aurora kinases, which include Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) and meiosis (AURKC). Since their discovery nearly 20 years ago, Aurora kinases have been studied extensively in cell and cancer biology. Several early studies found that Aurora kinases are amplified and overexpressed at the transcript and protein level in various malignancies, including several types of leukemia. These discoveries and others provided a rationale for the development of small-molecule inhibitors of Aurora kinases as leukemia therapies. The first generation of Aurora kinase inhibitors did not fare well in clinical trials, owing to poor efficacy and high toxicity. However, the creation of second-generation, highly selective Aurora kinase inhibitors has increased the enthusiasm for targeting these proteins in leukemia. This review will describe the functions of each Aurora kinase, summarize their involvement in leukemia and discuss inhibitor development and efficacy in leukemia clinical trials.
Collapse
Affiliation(s)
- B Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
43
|
Pérez de Castro I, Aguirre-Portolés C, Fernández-Miranda G, Cañamero M, Cowley DO, Van Dyke T, Malumbres M. Requirements for Aurora-A in tissue regeneration and tumor development in adult mammals. Cancer Res 2014; 73:6804-15. [PMID: 24242071 DOI: 10.1158/0008-5472.can-13-0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A is a kinase involved in the formation and maturation of the mitotic spindle and chromosome segregation. This kinase is frequently overexpressed in human cancer, and its activity may confer resistance to antitumoral drugs such as Taxol. Inhibition of Aurora-A results in mitotic defects, and this kinase is considered as an attractive therapeutic target for cancer. Nevertheless, the specific requirements for this kinase in adult mammalian tissues remain unclear. Conditional genetic ablation of Aurora-A in adult tissues results in polyploid cells that display a DNA-damage-like response characterized by the upregulation of p53 and the cell-cycle inhibitor p21(Cip1). This is accompanied by apoptotic, differentiation, or senescence markers in a tissue-specific manner. Therapeutic elimination of Aurora-A prevents the progression of skin and mammary gland tumors. However, this is not due to significant levels of apoptosis or senescence, but because Aurora-A-deficient tumors accumulate polyploid cells with limited proliferative potential. Thus, Aurora-A is required for tumor formation in vivo, and the differential response observed in various tissues might have relevant implications in current therapeutic strategies aimed at inhibiting this kinase in the treatment of human cancer.
Collapse
Affiliation(s)
- Ignacio Pérez de Castro
- Authors' Affiliations: Cell Division and Cancer Group; Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | | | | | | | | | | | | |
Collapse
|
44
|
Preclinical pharmacokinetic/pharmacodynamic/efficacy relationships for alisertib, an investigational small-molecule inhibitor of Aurora A kinase. Cancer Chemother Pharmacol 2013; 72:1255-64. [DOI: 10.1007/s00280-013-2305-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023]
|
45
|
Xie CM, Liu XY, Yu S, Cheng CHK. Cardiac glycosides block cancer growth through HIF-1α- and NF-κB-mediated Plk1. Carcinogenesis 2013; 34:1870-80. [PMID: 23615397 DOI: 10.1093/carcin/bgt136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Cardiac glycosides as inhibitors of the sodium/potassium adenosine triphosphatase (sodium pump) have been reported to block cancer growth by inducing G2/M phase arrest in many cancer cells. However, no detailed studies have been performed to distinguish between these two phases of cardiac glycoside-arrested cells. Furthermore, the underlying mechanisms involved in this cell cycle arrest process are still not known. Here, we report that bufalin and other cardiac glycosides potently induce mitotic arrest by the downregulation of polo-like kinase 1 (Plk1) expression. Live-cell imaging results demonstrate that bufalin-treated cells exhibit a marked delay in entering prophase at an early stage and are then arrested at prometaphase or induced entry into apoptosis. This phenotypic change is attributed to the downregulation of Plk1. We also show that bufalin and the knockdown of sodium pump reduce Plk1, at least in part, through downregulation of the nuclear transcription factors, hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB). These findings suggest that cardiac glycosides induce mitotic arrest and apoptosis through HIF-1α- and NF-κB-mediated downregulation of Plk1 expression, demonstrating that HIF-1α and NF-κB are critical targets of cardiac glycosides in exerting their anticancer action.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
46
|
Kress E, Schwager F, Holtackers R, Seiler J, Prodon F, Zanin E, Eiteneuer A, Toya M, Sugimoto A, Meyer H, Meraldi P, Gotta M. The UBXN-2/p37/p47 adaptors of CDC-48/p97 regulate mitosis by limiting the centrosomal recruitment of Aurora A. ACTA ACUST UNITED AC 2013; 201:559-75. [PMID: 23649807 PMCID: PMC3653362 DOI: 10.1083/jcb.201209107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UBXN-2, a substrate adaptor of the AAA ATPase CDC-48/p97, is required to coordinate centrosome maturation timing with mitosis. Coordination of cell cycle events in space and time is crucial to achieve a successful cell division. Here, we demonstrate that UBXN-2, a substrate adaptor of the AAA ATPase Cdc48/p97, is required to coordinate centrosome maturation timing with mitosis. In UBXN-2–depleted Caenorhabditis elegans embryos, centrosomes recruited more AIR-1 (Aurora A), matured precociously, and alignment of the mitotic spindle with the axis of polarity was impaired. UBXN-2 and CDC-48 coimmunoprecipitated with AIR-1 and the spindle alignment defect was partially rescued by co-depleting AIR-1, indicating that UBXN-2 controls these processes via AIR-1. Similarly, depletion in human cells of the UBXN-2 orthologues p37/p47 resulted in an accumulation of Aurora A at centrosomes and a delay in centrosome separation. The latter defect was also rescued by inhibiting Aurora A. We therefore postulate that the role of this adaptor in cell cycle regulation is conserved.
Collapse
Affiliation(s)
- Elsa Kress
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xu J, Wu X, Zhou WH, Liu AW, Wu JB, Deng JY, Yue CF, Yang SB, Wang J, Yuan ZY, Liu Q. Aurora-A identifies early recurrence and poor prognosis and promises a potential therapeutic target in triple negative breast cancer. PLoS One 2013; 8:e56919. [PMID: 23437271 PMCID: PMC3577665 DOI: 10.1371/journal.pone.0056919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) acquires an unfavorable prognosis, emerging as a major challenge for the treatment of breast cancer. In the present study, 122 TNBC patients were subjected to analysis of Aurora-A (Aur-A) expression and survival prognosis. We found that Aur-A high expression was positively associated with initial clinical stage (P = 0.025), the proliferation marker Ki-67 (P = 0.001), and the recurrence rate of TNBC patients (P<0.001). In TNBC patients with Aur-A high expression, the risk of distant recurrence peaked at the first 3 years and declined rapidly thereafter, whereas patients with Aur-A low expression showed a relatively constant risk of recurrence during the entire follow-up period. Univariate and multivariate analysis showed that overexpression of Aur-A predicted poor overall survival (P = 0.002) and progression-free survival (P = 0.012) in TNBC. Furthermore, overexpression of Aur-A, associated with high Ki-67, predicted an inferior prognosis compared with low expression of both Aur-A and Ki-67. Importantly, we further found that Aur-A was overexpressed in TNBC cells, and inhibition of this kinase inhibited cell proliferation and prevented cell migration in TNBC. Our findings demonstrated that Aur-A was a potential therapeutic target for TNBC and inhibition of Aur-A kinase was a promising regimen for TNBC cancer therapy.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xing Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
- Department of Hematology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-hua Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - An-wen Liu
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jian-bing Wu
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jin-yun Deng
- Department of the Third Internal Medicine, Jiangxi Province Cancer Hospital, Nanchang, China
| | - Cai-feng Yue
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Shao-bing Yang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zhong-yu Yuan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
- Department of Medical Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
- * E-mail: (ZY); (ZYY)
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
- Department of Hematology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- * E-mail: (ZY); (ZYY)
| |
Collapse
|
48
|
Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 2013; 70:661-87. [PMID: 22864622 PMCID: PMC3607959 DOI: 10.1007/s00018-012-1073-7] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
Collapse
Affiliation(s)
- Anna S. Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Igor Astsaturov
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
49
|
Alisertib (MLN8237) an investigational agent suppresses Aurora A and B activity, inhibits proliferation, promotes endo-reduplication and induces apoptosis in T-NHL cell lines supporting its importance in PTCL treatment. Leuk Res 2012; 37:434-9. [PMID: 23153524 DOI: 10.1016/j.leukres.2012.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/15/2012] [Accepted: 10/21/2012] [Indexed: 11/20/2022]
Abstract
Peripheral T-cell lymphomas (PTCL) are a diverse group of rare non-Hodgkin lymphomas (NHL) that carry a poor prognosis and are in need of effective therapies. Alisertib (MLN8237) an investigational agent that inhibits Aurora A Ser/Thr kinase has shown activity in PTCL patients. Here we demonstrate that aurora A and B are highly expressed in T-cell lymphoma cell lines. In PTCL patient samples aurora A was positive in 3 of 24 samples and co-expressed with aurora B. Aurora B was positive in tumor cells in 22 of 32 samples. Of the subtypes of PTCL, aurora B was over-expressed in PTCL (NOS) [73%], T-NHL [100%], ALCL (Alk-Neg) [100%] and AITL [100%]. Treatment with MLN8237 inhibited PTCL cell proliferation in CRL-2396 and TIB-48 cells with an IC50 of 80-100nM. MLN8237 induced endo-reduplication in a dose and time dependent manner in PTCL cell lines leading to apoptosis demonstrated by flow cytometry and PARP-cleavage at concentrations achieved in early phase clinical trials. Moreover, inhibition of HisH3 and aurora A phosphorylation was dose dependent and strongly correlated with endo-reduplication. The data provide a sound rationale for aurora inhibition in PTCL as a therapeutic modality and warrants clinical trial evaluation.
Collapse
|
50
|
Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, Zhu Y, Chen S, Xu J, Yan M, Wang J, Liu Q. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 2012; 8:1798-810. [PMID: 23026799 DOI: 10.4161/auto.22110] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that elevated expression of mitotic kinase aurora kinase A (AURKA) in cancer cells promotes the development of metastatic phenotypes and is associated clinically with adverse prognosis. Here, we first revealed a clinically positive correlation between AURKA and autophagy-associated protein SQSTM1 in breast cancer and further demonstrated that AURKA regulated SQSTM1 through autophagy. Indeed, depletion by siRNA or chemical inhibition of AURKA by the small molecule VX-680 increased both the level of microtubule-associated protein 1 light chain 3-II (LC3-II) and the number of autophagosomes, along with decreased SQSTM1. Conversely, overexpression of AURKA inhibited autophagy, as assessed by decreased LC3-II and increased SQSTM1 either upon nutrient deprivation or normal conditions. In addition, phosphorylated forms of both RPS6KB1 and mechanistic target of rapamycin (MTOR) were elevated by overexpression of AURKA whereas they were suppressed by depletion or inhibition of AURKA. Moreover, inhibition of MTOR by PP242, an inhibitor of MTOR complex1/2, abrogated the changes in both LC3-II and SQSTM1 in AURKA-overexpressing BT-549 cells, suggesting that AURKA-suppressed autophagy might be associated with MTOR activation. Lastly, repression of autophagy by depletion of either LC3 or ATG5, sensitized breast cancer cells to VX-680-induced apoptosis. Similar findings were observed in cells treated with the autophagy inhibitors chloroquine (CQ) and bafilomycin A 1 (BAF). Our data thus revealed a novel role of AURKA as a negative regulator of autophagy, showing that AURKA inhibition induced autophagy, which may represent a novel mechanism of drug resistance in apoptosis-aimed therapy for breast cancer.
Collapse
Affiliation(s)
- Zhengzhi Zou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|