1
|
Zhang X, Ma C, Lu Y, Wang J, Yun H, Jiang H, Wu M, Feng X, Gai W, Xu G, Deng H, Feng J, Liu W, Shi T, Cheng Q, Zhang J. Rack1 regulates B-cell development and function by binding to and stabilizing the transcription factor Pax5. Cell Mol Immunol 2024; 21:1282-1295. [PMID: 39256480 PMCID: PMC11528059 DOI: 10.1038/s41423-024-01213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
The transcription factor Pax5 activates genes essential for B-cell development and function. However, the regulation of Pax5 expression remains elusive. The adaptor Rack1 can interact with multiple transcription factors and modulate their activation and/or stability. However, its role in the transcriptional control of B-cell fates is largely unknown. Here, we show that CD19-driven Rack1 deficiency leads to pro-B accumulation and a simultaneous reduction in B cells at later developmental stages. The generation of bone marrow chimeras indicates a cell-intrinsic role of Rack1 in B-cell homeostasis. Moreover, Rack1 augments BCR and TLR signaling in mature B cells. On the basis of the aberrant expression of Pax5-regulated genes, including CD19, upon Rack1 deficiency, further exploration revealed that Rack1 maintains the protein level of Pax5 through direct interaction and consequently prevents Pax5 ubiquitination. Accordingly, Mb1-driven Rack1 deficiency almost completely blocks B-cell development at the pro-B-cell stage. Ectopic expression of Pax5 in Rack1-deficient pro-B cells partially rescues B-cell development. Thus, Rack1 regulates B-cell development and function through, at least partially, binding to and stabilizing Pax5.
Collapse
Affiliation(s)
- Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chenke Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongfang Yun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- University of South China, Hengyang Medical School, Hengyang, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
| | - Xiaoyao Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guanglei Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiannan Feng
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
- National Engineering Research Center for Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wanli Liu
- Institute of Life Sciences, Tsinghua University, Beijing, China
| | - Taoxing Shi
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
- University of South China, Hengyang Medical School, Hengyang, China.
- Anhui Medical University, Hefei, China.
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
2
|
MacKenzie ACE, Sams MP, Lin J, Batista CR, Lim M, Riarh CK, DeKoter RP. Negative regulation of activation-induced cytidine deaminase gene transcription in developing B cells by a PU.1-interacting intronic region. Mol Immunol 2024; 175:103-111. [PMID: 39332244 DOI: 10.1016/j.molimm.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Activation-induced cytidine deaminase (AID, encoded by Aicda) plays a key role in somatic hypermutation and class switch recombination in germinal center B cells. However, off-target effects of AID are implicated in human leukemia and lymphoma. A mouse model of precursor B cell acute lymphoblastic leukemia driven by deletion of the related transcription factors PU.1 and Spi-B revealed C->T transition mutations compatible with being induced by AID. Therefore, we hypothesized that PU.1 negatively regulates Aicda during B cell development. Aicda mRNA transcript levels were increased in leukemia cells and bone marrow pre-B cells lacking PU.1 and/or Spi-B, relative to wild type cells. Using chromatin immunoprecipitation, PU.1 was found to interact with a negative regulatory region (R2-1) within the first intron of Aicda. CRISPR-Cas9-induced mutagenesis of R2-1 in cultured pre-B cells resulted in upregulation of Aicda in response to lipopolysaccharide stimulation. Mutation of the PU.1 interaction site and neighboring sequences resulted in reduced repressive ability of R2-1 in transient transfection analysis followed by luciferase assays. These results show that a PU.1-interacting intronic region negatively regulates Aicda transcription in developing B cells.
Collapse
Affiliation(s)
- Allanna C E MacKenzie
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mia P Sams
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jane Lin
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Carolina Reyes Batista
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michelle Lim
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Chanpreet K Riarh
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
3
|
Xiao Z, He R, Zhao Z, Chen T, Ying Z. Dysregulation of epigenetic modifications in inborn errors of immunity. Epigenomics 2024; 16:1301-1313. [PMID: 39404224 PMCID: PMC11534118 DOI: 10.1080/17501911.2024.2410695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Inborn errors of immunity (IEIs) are a group of typically monogenic disorders characterized by dysfunction in the immune system. Individuals with these disorders experience increased susceptibility to infections, autoimmunity and malignancies due to abnormal immune responses. Epigenetic modifications, including DNA methylation, histone modifications and chromatin remodeling, have been well explored in the regulation of immune cell development and effector function. Aberrant epigenetic modifications can disrupt gene expression profiles crucial for immune responses, resulting in impaired immune cell differentiation and function. Dysregulation of these processes caused by mutations in genes involving in epigenetic modifications has been associated with various IEIs. In this review article, we focus on IEIs that are caused by mutations in 13 genes involved in the regulation of DNA methylation, histone modification and chromatin remodeling.
Collapse
Affiliation(s)
- Zhongyao Xiao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rongjing He
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihan Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taiping Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zhengzhou Ying
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Araujo AM, Dekker JD, Garrison K, Su Z, Rhee C, Hu Z, Lee BK, Osorio D, Lee J, Iyer VR, Ehrlich LIR, Georgiou G, Ippolito G, Yi S, Tucker HO. Lymphoid origin of intrinsically activated plasmacytoid dendritic cells in mice. eLife 2024; 13:RP96394. [PMID: 39269281 PMCID: PMC11398865 DOI: 10.7554/elife.96394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as 'B-pDCs', have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.
Collapse
Affiliation(s)
| | - Joseph D Dekker
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Kendra Garrison
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Zhe Su
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Zicheng Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Daniel Osorio
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Gregory Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Stephen Yi
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
5
|
King A, Reichl PI, Metson JS, Parker R, Munro D, Oliveira C, Sommerova L, Becker JR, Biggs D, Preece C, Davies B, Chapman JR. Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice. Nat Struct Mol Biol 2024:10.1038/s41594-024-01381-9. [PMID: 39227718 DOI: 10.1038/s41594-024-01381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Tumor suppressor p53-binding protein 1 (53BP1) regulates DNA end joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting Rap1-interacting factor 1 homolog (RIF1) and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate nonhomologous end joining (NHEJ). However, how this axis regulates DNA end joining and HR suppression remains unresolved. We investigated shieldin and its interplay with the Ctc1-Stn1-Ten1 (CST) complex, which was recently implicated downstream of 53BP1. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination coreliant on both complexes. Ataxia-telangiectasia mutated kinase-dependent DNA damage signaling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, we demonstrate that 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the versatility of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.
Collapse
Affiliation(s)
- Ashleigh King
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Pia I Reichl
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jean S Metson
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniella Munro
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucia Sommerova
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jordan R Becker
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, London, UK
| | - J Ross Chapman
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Tsai PJ, Chen MY, Hsu WC, Lin SF, Chan PC, Chen HH, Kao CY, Lin WJ, Chuang TH, Yu GY, Su YW. PTEN acts as a crucial inflammatory checkpoint controlling TLR9/IL-6 axis in B cells. iScience 2024; 27:110388. [PMID: 39092178 PMCID: PMC11292540 DOI: 10.1016/j.isci.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is vital for B cell development, acting as a key negative regulator in the PI3K signaling pathway. We used CD23-cre to generate PTEN-conditional knockout mice (CD23-cKO) to examine the impact of PTEN mutation on peripheral B cells. Unlike mb1-cre-mediated PTEN deletion in early B cells, CD23-cKO mutants exhibited systemic inflammation with increased IL-6 production in mature B cells upon CpG stimulation. Inflammatory B cells in CD23-cKO mice showed elevated phosphatidylinositol 3-phosphate [PI(3)P] levels and increased TLR9 endosomal localization. Pharmacological inhibition of PI(3)P synthesis markedly reduced TLR9-mediated IL-6. Single-cell RNA-sequencing (RNA-seq) revealed altered endocytosis, BANK1, and NF-κB1 expression in PTEN-deficient B cells. Ectopic B cell receptor (BCR) expression on non-inflammatory mb1-cKO B cells restored BANK1 and NF-κB1 expression, enhancing TLR9-mediated IL-6 production. Our study highlights PTEN as a crucial inflammatory checkpoint, regulating TLR9/IL-6 axis by fine-tuning PI(3)P homeostasis. Additionally, BCR downregulation prevents the differentiation of inflammatory B cells in PTEN deficiency.
Collapse
Affiliation(s)
- Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wei-Chan Hsu
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Po-Chiang Chan
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Hsin-Hsin Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| |
Collapse
|
7
|
Iwai N, Akaki K, Hia F, Li W, Yoshinaga M, Mino T, Takeuchi O. UPF1 plays critical roles in early B cell development. Nat Commun 2024; 15:5765. [PMID: 38982067 PMCID: PMC11233602 DOI: 10.1038/s41467-024-50032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The ATP-dependent RNA helicase UPF1 plays a crucial role in various mRNA degradation pathways, most importantly in nonsense-mediated mRNA decay (NMD). Here, we show that UPF1 is upregulated during the early stages of B cell development and is important for early B cell development in the bone marrow. B-cell-specific Upf1 deletion in mice severely impedes the early to late LPre-B cell transition, in which VH-DHJH recombination occurs at the Igh gene. Furthermore, UPF1 is indispensable for VH-DHJH recombination, without affecting DH-JH recombination. Intriguingly, the genetic pre-arrangement of the Igh gene rescues the differentiation defect in early LPre-B cells under Upf1 deficient conditions. However, differentiation is blocked again following Ig light chain recombination, leading to a failure in development into immature B cells. Notably, UPF1 interacts with and regulates the expression of genes involved in immune responses, cell cycle control, NMD, and the unfolded protein response in B cells. Collectively, our findings underscore the critical roles of UPF1 during the early LPre-B cell stage and beyond, thus orchestrating B cell development.
Collapse
Affiliation(s)
- Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wei Li
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
9
|
McCaleb MR, Miranda AM, Khammash HA, Torres RM, Pelanda R. Regulation of Foxo1 expression is critical for central B cell tolerance and allelic exclusion. Cell Rep 2024; 43:114283. [PMID: 38796853 PMCID: PMC11246624 DOI: 10.1016/j.celrep.2024.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Resolving the molecular mechanisms of central B cell tolerance might unveil strategies that prevent autoimmunity. Here, using a mouse model of central B cell tolerance in which Forkhead box protein O1 (Foxo1) is either deleted or over-expressed in B cells, we show that deleting Foxo1 blocks receptor editing, curtails clonal deletion, and decreases CXCR4 expression, allowing high-avidity autoreactive B cells to emigrate to the periphery whereby they mature but remain anergic and short lived. Conversely, expression of degradation-resistant Foxo1 promotes receptor editing in the absence of self-antigen but leads to allelic inclusion. Foxo1 over-expression also restores tolerance in autoreactive B cells harboring active PI3K, revealing opposing roles of Foxo1 and PI3K in B cell selection. Overall, we show that the transcription factor Foxo1 is a major gatekeeper of central B cell tolerance and that PI3K drives positive selection of immature B cells and establishes allelic exclusion by suppressing Foxo1.
Collapse
Affiliation(s)
- Megan R McCaleb
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anjelica M Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hadeel A Khammash
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Mandlbauer A, Sun Q, Popitsch N, Schwickert T, Spanova M, Wang J, Ameres SL, Busslinger M, Cochella L. Mime-seq 2.0: a method to sequence microRNAs from specific mouse cell types. EMBO J 2024; 43:2506-2525. [PMID: 38689024 PMCID: PMC11183118 DOI: 10.1038/s44318-024-00102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Many microRNAs (miRNAs) are expressed with high spatiotemporal specificity during organismal development, with some being limited to rare cell types, often embedded in complex tissues. Yet, most miRNA profiling efforts remain at the tissue and organ levels. To overcome challenges in accessing the microRNomes from tissue-embedded cells, we had previously developed mime-seq (miRNome by methylation-dependent sequencing), a technique in which cell-specific miRNA methylation in C. elegans and Drosophila enabled chemo-selective sequencing without the need for cell sorting or biochemical purification. Here, we present mime-seq 2.0 for profiling miRNAs from specific mouse cell types. We engineered a chimeric RNA methyltransferase that is tethered to Argonaute protein and efficiently methylates miRNAs at their 3'-terminal 2'-OH in mouse and human cell lines. We also generated a transgenic mouse for conditional expression of this methyltransferase, which can be used to direct methylation of miRNAs in a cell type of choice. We validated the use of this mouse model by profiling miRNAs from B cells and bone marrow plasma cells.
Collapse
Affiliation(s)
- Ariane Mandlbauer
- School of Medicine, John Hopkins University, Baltimore, MD, USA
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Niko Popitsch
- Max Perutz Labs (MPL), Vienna BioCenter (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Tanja Schwickert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Miroslava Spanova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Stefan L Ameres
- Max Perutz Labs (MPL), Vienna BioCenter (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Luisa Cochella
- School of Medicine, John Hopkins University, Baltimore, MD, USA.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
11
|
Fiske BE, Wemlinger SM, Crute BW, Getahun A. The Src-family kinase Lyn plays a critical role in establishing and maintaining B cell anergy by suppressing PI3K-dependent signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595208. [PMID: 38826354 PMCID: PMC11142063 DOI: 10.1101/2024.05.21.595208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.
Collapse
|
12
|
Lovell CD, Jiwrajka N, Amerman HK, Cancro MP, Anguera MC. Xist Deletion in B Cells Results in Systemic Lupus Erythematosus Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594175. [PMID: 38798403 PMCID: PMC11118349 DOI: 10.1101/2024.05.15.594175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease preferentially observed in females. X-linked gene expression in XX females is normalized to that of XY males by X-Chromosome Inactivation (XCI). However, B cells from female SLE patients and mouse models of SLE exhibit mislocalization of Xist RNA, a critical regulator of XCI, and aberrant expression of X-linked genes, suggesting that impairment of XCI may contribute to disease. Here, we find that a subset of female mice harboring a conditional deletion of Xis t in B cells ("Xist cKO") spontaneously develop SLE phenotypes, including expanded activated B cell subsets, disease-specific autoantibodies, and glomerulonephritis. Moreover, pristane-induced SLE-like disease is more severe in Xist cKO mice. Activated B cells from Xist cKO mice with SLE phenotypes have increased expression of proinflammatory X-linked genes implicated in SLE. Together, this work indicates that impaired XCI maintenance in B cells directly contributes to the female-bias of SLE.
Collapse
|
13
|
Ochiai K, Shima H, Tamahara T, Sugie N, Funayama R, Nakayama K, Kurosaki T, Igarashi K. Accelerated plasma-cell differentiation in Bach2-deficient mouse B cells is caused by altered IRF4 functions. EMBO J 2024; 43:1947-1964. [PMID: 38605225 PMCID: PMC11099079 DOI: 10.1038/s44318-024-00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Toru Tamahara
- Division of Community Oral Health Science, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Sendai, 980-8573, Japan
| | - Nao Sugie
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory for Lymhocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| |
Collapse
|
14
|
Liu S, Lagos J, Shumlak NM, Largent AD, Lewis ST, Holder U, Du SW, Liu Y, Hou B, Acharya M, Jackson SW. NADPH oxidase exerts a B cell-intrinsic contribution to lupus risk by modulating endosomal TLR signals. J Exp Med 2024; 221:e20230774. [PMID: 38442270 PMCID: PMC10913815 DOI: 10.1084/jem.20230774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/11/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.
Collapse
Affiliation(s)
- Shuozhi Liu
- Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | - Ursula Holder
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Samuel W. Du
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Shaun W. Jackson
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
15
|
Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, Estrada BS, Bovolenta ER, Cifuentes C, Prieto Carro C, González Martínez T, García-Consuegra J, Rey-Stolle MF, Rupérez FJ, Guerra Rodriguez M, Argüello RJ, Cogliati S, Martín-Belmonte F, Martínez-Martín N. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat Commun 2024; 15:2569. [PMID: 38519473 PMCID: PMC10960012 DOI: 10.1038/s41467-024-46763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.
Collapse
Affiliation(s)
- Marta Iborra-Pernichi
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jonathan Ruiz García
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Velasco de la Esperanza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Belén S Estrada
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena R Bovolenta
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia Cifuentes
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Prieto Carro
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamara González Martínez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José García-Consuegra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Javier Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milagros Guerra Rodriguez
- Electron Microscopy Facility, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sara Cogliati
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Nuria Martínez-Martín
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
16
|
Harrison J, Newland SA, Jiang W, Giakomidi D, Zhao X, Clement M, Masters L, Corovic A, Zhang X, Drago F, Ma M, Ozsvar Kozma M, Yasin F, Saady Y, Kothari H, Zhao TX, Shi GP, McNamara CA, Binder CJ, Sage AP, Tarkin JM, Mallat Z, Nus M. Marginal zone B cells produce 'natural' atheroprotective IgM antibodies in a T cell-dependent manner. Cardiovasc Res 2024; 120:318-328. [PMID: 38381113 PMCID: PMC10939463 DOI: 10.1093/cvr/cvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- James Harrison
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen A Newland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Wei Jiang
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Despoina Giakomidi
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Xiaohui Zhao
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Clement
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Laboratory for Vascular Translational Sciences (LVTS), Université de Paris, INSERM U1148, Paris, France
| | - Leanne Masters
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrej Corovic
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Xian Zhang
- Department of Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabrizio Drago
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marcella Ma
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, UK
| | - Maria Ozsvar Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Froher Yasin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Yuta Saady
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hema Kothari
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tian X Zhao
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Coleen A McNamara
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrew P Sage
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason M Tarkin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- PARCC Inserm U970, Universite de Paris, Paris, France
| | - Meritxell Nus
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
17
|
Liang Y, Wang H, Seija N, Lin YH, Tung LT, Di Noia JM, Langlais D, Nijnik A. B-cell intrinsic regulation of antibody mediated immunity by histone H2A deubiquitinase BAP1. Front Immunol 2024; 15:1353138. [PMID: 38529289 PMCID: PMC10961346 DOI: 10.3389/fimmu.2024.1353138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.
Collapse
Affiliation(s)
- Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Li C, Zhao M, Liu X, Li Y, Xu B, Zhou L, Sun X, Sun W, Kang N, Ji Z, Li T, An H, Wang F, Wu C, Ye JY, Zhang JR, Wang Q, Zhao X, Li Z, Liu W. Ion channel TRPV2 is critical in enhancing B cell activation and function. J Exp Med 2024; 221:e20221042. [PMID: 38353705 PMCID: PMC10866685 DOI: 10.1084/jem.20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.
Collapse
Affiliation(s)
- Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meng Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xiaohang Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing-Ying Ye
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhanguo Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
19
|
Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T, Federle C, Petrozziello E, Kalluri SR, Chen HH, Tyystjärvi S, Muschaweckh A, Lammens K, Delbridge C, Büttner A, Steiger K, Seyhan G, Ottersen OP, Öllinger R, Rad R, Jarosch S, Straub A, Mühlbauer A, Grassmann S, Hemmer B, Böttcher JP, Wagner I, Kreutzfeldt M, Merkler D, Pardàs IB, Schmidt Supprian M, Buchholz VR, Heink S, Busch DH, Klein L, Korn T. B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 2024; 627:407-415. [PMID: 38383779 PMCID: PMC10937377 DOI: 10.1038/s41586-024-07079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Tobias Hassler
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christine Federle
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Hsin Hsiang Chen
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Gönül Seyhan
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ole Petter Ottersen
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Marc Schmidt Supprian
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ludger Klein
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
20
|
Ishikawa M, Hasanali ZS, Zhao Y, Das A, Lavaert M, Roman CJ, Londregan J, Allman D, Bhandoola A. Bone marrow plasma cells require P2RX4 to sense extracellular ATP. Nature 2024; 626:1102-1107. [PMID: 38355795 PMCID: PMC11025016 DOI: 10.1038/s41586-024-07047-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4254, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Zainul S. Hasanali
- Address correspondence to: Masaki Ishikawa () David Allman (), or Avinash Bhandoola ()
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4254, USA
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4254, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4254, USA
| | | | | | - David Allman
- Address correspondence to: Masaki Ishikawa () David Allman (), or Avinash Bhandoola ()
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4254, USA
| |
Collapse
|
21
|
Screen M, Matheson LS, Howden AJ, Strathdee D, Willis AE, Bushell M, Sansom O, Turner M. RNA helicase EIF4A1-mediated translation is essential for the GC response. Life Sci Alliance 2024; 7:e202302301. [PMID: 38011999 PMCID: PMC10681908 DOI: 10.26508/lsa.202302301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.
Collapse
Affiliation(s)
- Michael Screen
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Louise S Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew Jm Howden
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
22
|
Giguère S, Wang X, Huber S, Xu L, Warner J, Weldon SR, Hu J, Phan QA, Tumang K, Prum T, Ma D, Kirsch KH, Nair U, Dedon P, Batista FD. Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand. Science 2024; 383:205-211. [PMID: 38207021 PMCID: PMC10954030 DOI: 10.1126/science.adi1763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Antibodies are produced at high rates to provide immunoprotection, which puts pressure on the B cell translational machinery. Here, we identified a pattern of codon usage conserved across antibody genes. One feature thereof is the hyperutilization of codons that lack genome-encoded Watson-Crick transfer RNAs (tRNAs), instead relying on the posttranscriptional tRNA modification inosine (I34), which expands the decoding capacity of specific tRNAs through wobbling. Antibody-secreting cells had increased I34 levels and were more reliant on I34 for protein production than naïve B cells. Furthermore, antibody I34-dependent codon usage may influence B cell passage through regulatory checkpoints. Our work elucidates the interface between the tRNA pool and protein production in the immune system and has implications for the design and selection of antibodies for vaccines and therapeutics.
Collapse
Affiliation(s)
- Sophie Giguère
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabrina Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liling Xu
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jennifer Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Quynh Anh Phan
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Katie Tumang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Duanduan Ma
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
24
|
Luo VM, Shen C, Worme S, Bhagrath A, Simo-Cheyou E, Findlay S, Hébert S, Wai Lam Poon W, Aryanpour Z, Zhang T, Zahedi RP, Boulais J, Buchwald ZS, Borchers CH, Côté JF, Kleinman CL, Mandl JN, Orthwein A. The Deubiquitylase Otub1 Regulates the Chemotactic Response of Splenic B Cells by Modulating the Stability of the γ-Subunit Gng2. Mol Cell Biol 2024; 44:1-16. [PMID: 38270191 PMCID: PMC10829841 DOI: 10.1080/10985549.2023.2290434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.
Collapse
Affiliation(s)
- Vincent M. Luo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Connie Shen
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
| | - Samantha Worme
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Aanya Bhagrath
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Estelle Simo-Cheyou
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - William Wai Lam Poon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Thomas Zhang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - René P. Zahedi
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Jonathan Boulais
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - Zachary S. Buchwald
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Pathology, McGill University, Montreal, Québec, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Québec, Canada
- Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, Québec, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Judith N. Mandl
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill Research Centre for Complex Traits, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Alexandre Orthwein
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
25
|
Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, Yanagisawa M, Kitamura D, Ohga S, Kurosaki T, Baba Y. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med 2024; 221:e20222178. [PMID: 37902601 PMCID: PMC10615893 DOI: 10.1084/jem.20222178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/02/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Positive selection of high-affinity germinal center (GC) B cells is driven by antigen internalization through their B cell receptor (BCR) and presentation to follicular helper T cells. However, the requirements of BCR signaling in GC B cells remain poorly understood. Store-operated Ca2+ entry, mediated by stromal interacting molecule 1 (STIM1) and STIM2, is the main Ca2+ influx pathway triggered by BCR engagement. Here, we showed that STIM-deficient B cells have reduced B cell competitiveness compared with wild-type B cells during GC responses. B cell-specific deletion of STIM proteins decreased the number of high-affinity B cells in the late phase of GC formation. STIM deficiency did not affect GC B cell proliferation and antigen presentation but led to the enhancement of apoptosis due to the impaired upregulation of anti-apoptotic Bcl2a1. STIM-mediated activation of NFAT was required for the expression of Bcl2a1 after BCR stimulation. These findings suggest that STIM-mediated survival signals after antigen capture regulate the optimal selection and maintenance of GC B cells.
Collapse
Affiliation(s)
- Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
King A, Reichl P, Metson JS, Parker R, Munro D, Oliveira C, Becker JR, Biggs D, Preece C, Davies B, Chapman JR. Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572534. [PMID: 38187711 PMCID: PMC10769304 DOI: 10.1101/2023.12.20.572534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
53BP1 regulates DNA end-joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting RIF1 and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate non-homologous end-joining (NHEJ). However, how this axis regulates DNA end-joining and HR suppression remains unresolved. We investigated shieldin and its interplay with CST, a complex recently implicated in 53BP1-dependent activities. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination co-reliant on both complexes. ATM-dependent DNA damage signalling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the resilience of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.
Collapse
Affiliation(s)
- Ashleigh King
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Pia Reichl
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Jean S. Metson
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for ImmunoOncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniella Munro
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Jordan R. Becker
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, 1 Midland Rd, London, UK
| | - J. Ross Chapman
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Wang Y, Manzi M, Feswick A, Renshaw L, Oliver PM, Tibbetts SA, Moser EK. B cell expression of E3 ubiquitin ligase Cul4b promotes chronic gammaherpesvirus infection in vivo. J Virol 2023; 97:e0100823. [PMID: 37962378 PMCID: PMC10734415 DOI: 10.1128/jvi.01008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE The human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are etiologic agents of numerous B cell lymphomas. A hallmark of gammaherpesvirus infection is their ability to establish lifelong latency in B cells. However, the specific mechanisms that mediate chronic infection in B cells in vivo remain elusive. Cellular E3 ubiquitin ligases regulate numerous biological processes by catalyzing ubiquitylation and modifying protein location, function, or half-life. Many viruses hijack host ubiquitin ligases to evade antiviral host defense and promote viral fitness. Here, we used the murine gammaherpesvirus 68 in vivo system to demonstrate that the E3 ligase Cul4b is essential for this virus to establish latency in germinal center B cells. These findings highlight an essential role for this E3 ligase in promoting chronic gammaherpesvirus infection in vivo and suggest that targeted inhibition of E3 ligases may provide a novel and effective intervention strategy against gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mikayla Manzi
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Lindsay Renshaw
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paula M. Oliver
- Cell Pathology Division, The Children’s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Emily K. Moser
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Hortal AM, Villanueva A, Arellano I, Prieto C, Mendoza P, Bustelo XR, Alarcón B. Mice Overexpressing Wild-Type RRAS2 Are a Novel Model for Preclinical Testing of Anti-Chronic Lymphocytic Leukemia Therapies. Cancers (Basel) 2023; 15:5817. [PMID: 38136362 PMCID: PMC10742337 DOI: 10.3390/cancers15245817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the most common type of leukemia in the Western world. Mutation in different genes, such as TP53 and ATM, and deletions at specific chromosomic regions, among which are 11q or 17p, have been described to be associated to worse disease prognosis. Recent research from our group has demonstrated that, contrary to what is the usual cancer development process through missense mutations, B-CLL is driven by the overexpression of the small GTPase RRAS2 in its wild-type form without activating mutations. Some mouse models of this disease have been developed to date and are commonly used in B-CLL research, but they present different disadvantages such as the long waiting period until the leukemia fully develops, the need to do cell engraftment or, in some cases, the fact that the model does not recapitulate the alterations found in human patients. We have recently described Rosa26-RRAS2fl/flxmb1-Cre as a new mouse model of B-CLL with a full penetrance of the disease. In this work, we have validated this mouse model as a novel tool for the development of new therapies for B-CLL, by testing two of the most broadly applied targeted agents: ibrutinib and venetoclax. This also opens the door to new targeted agents against R-RAS2 itself, an approach not yet explored in the clinic.
Collapse
Affiliation(s)
- Alejandro M. Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Ana Villanueva
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Irene Arellano
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Cristina Prieto
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Pilar Mendoza
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.V.); (I.A.); (C.P.); (P.M.)
| |
Collapse
|
29
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Malik N, Hay J, Almuhanna HNB, Dunn KM, Lees J, Cassels J, Li J, Nakagawa R, Sansom OJ, Michie AM. mTORC1-selective activation of translation elongation promotes disease progression in chronic lymphocytic leukemia. Leukemia 2023; 37:2414-2425. [PMID: 37775560 PMCID: PMC10681897 DOI: 10.1038/s41375-023-02043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Targeted deletion of Raptor, a component of mechanistic target of rapamycin complex 1 (mTORC1), reveals an essential role for mTORC1 in initiation/maintenance of leukemia in a CLL model, resulting from a failure for haemopoietic stem/progenitor cells (HSPCs) to commit to the B cell lineage. Induction of Raptor-deficiency in NSG mice transplanted with Mx1-Raptor CLL progenitor cells (PKCα-KR-transduced HSPCs) after disease establishment revealed a reduction in CLL-like disease load and a significant increase in survival in the mice. Interestingly in an aggressive CLL-like disease model, rapamycin treatment reduced disease burden more effectively than AZD2014 (dual mTORC1/2 inhibitor), indicating a skew towards mTORC1 sensitivity with more aggressive disease. Rapamycin, but not ibrutinib, efficiently targeted the eEF2/eEF2K translation elongation regulatory axis, downstream of mTORC1, resulting in eEF2 inactivation through induction of eEF2T56 phosphorylation. mTOR inhibitor treatment of primary patient CLL cells halted proliferation, at least in part through modulation of eEF2K/eEF2 phosphorylation and expression, reduced protein synthesis and inhibited expression of MCL1, Cyclin A and Cyclin D2. Our studies highlight the importance of translation elongation as a driver of disease progression and identify inactivation of eEF2 activity as a novel therapeutic target for blocking CLL progression.
Collapse
Affiliation(s)
- Natasha Malik
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hassan N B Almuhanna
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen M Dunn
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jamie Lees
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jiatian Li
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rinako Nakagawa
- Immunity and Cancer Laboratory, The Francis Crick Institute, London, UK
| | - Owen J Sansom
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute; Garscube Estate, Glasgow, UK
| | - Alison M Michie
- University of Glasgow; Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Qian G, Jiang W, Sun D, Sun Z, Chen A, Fang H, Wang J, Liu Y, Yin Z, Wei H, Fang H, Zhang X. B-cell-derived IL-10 promotes allergic sensitization in asthma regulated by Bcl-3. Cell Mol Immunol 2023; 20:1313-1327. [PMID: 37653127 PMCID: PMC10616210 DOI: 10.1038/s41423-023-01079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.
Collapse
Affiliation(s)
- Guojun Qian
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, 200001, Shanghai, China.
| | - Wenxia Jiang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Anning Chen
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingyao Wang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Yongzhong Liu
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Zhinan Yin
- Zhuhai People's Hospital, Biomedical Translational Research Institute, Jinan University, 510632, Guangzhou, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, 230000, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Department of Anesthesiology, Minhang Hospital, Fudan University, 201100, Shanghai, China.
| | - Xiaoren Zhang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
32
|
Thomas M, Bruzeau C, Martin OA, Pollet J, Bender S, Carrion C, Le Noir S, Pinaud E. A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells. Cell Mol Immunol 2023; 20:1114-1126. [PMID: 37544964 PMCID: PMC10541883 DOI: 10.1038/s41423-023-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
SATB1 (Special A-T rich Binding protein 1) is a cell type-specific factor that regulates the genetic network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, VDJ recombination, development and maturation. Considering that its expression varies during B-cell differentiation, the involvement of SATB1 needs to be clarified in this lineage. Using a KO mouse model in which SATB1 was deleted from the pro-B-cell stage, we examined the consequences of SATB1 deletion in naive and activated B-cell subsets. Our model indicates first, unlike its essential function in T cells, that SATB1 is dispensable for B-cell development and the establishment of a broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and activated cells, respectively. Third, our study indicates that the negative regulatory function of SATB1 in B cells extends to the germinal center response, in which this factor limits somatic hypermutation of Ig genes.
Collapse
Affiliation(s)
- Morgane Thomas
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
- Laboratoire Suivi des Thérapies Innovantes, Institut de Génétique Humaine, UMR 9002 CNRS-UM, Montpellier, France
| | - Charlotte Bruzeau
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Ophélie Alyssa Martin
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Justine Pollet
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sébastien Bender
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
- Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France
- Centre Hospitalier Universitaire de Limoges, Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Limoges, France
| | - Claire Carrion
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sandrine Le Noir
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.
| | - Eric Pinaud
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.
| |
Collapse
|
33
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
34
|
Xie J, Du Y, Liu D, Wu J, Yang K, He X, Zhao J, Hong P, Liao K, Zhang H, Hong Y, Teijaro JR, Kang SG, Xiao C, Liu WH. The miR-17∼92 miRNAs promote plasma cell differentiation by suppressing SOCS3-mediated NIK degradation. Cell Rep 2023; 42:112968. [PMID: 37578862 DOI: 10.1016/j.celrep.2023.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
The miR-17∼92 family microRNAs (miRNAs) play a key role in germinal center (GC) reaction through promoting T follicular helper (TFH) cell differentiation. It remains unclear whether they also have intrinsic functions in B cell differentiation and function. Here we show that mice with B cell-specific deletion of the miR-17∼92 family exhibit impaired GC reaction, plasma cell differentiation, and antibody production in response to protein antigen immunization and chronic viral infection. Employing CRISPR-mediated functional screening, we identify Socs3 as a key functional target of miR-17∼92 in regulating plasma cell differentiation. Mechanistically, SOCS3, whose expression is elevated in miR-17∼92 family-deficient B cells, interacts with NIK and promotes its ubiquitination and degradation, thereby impairing NF-κB signaling and plasma cell differentiation. This moderate increase in SOCS3 expression has little effect on IL-21-STAT3 signaling. Our study demonstrates differential sensitivity of two key signaling pathways to alterations in the protein level of an miRNA target gene.
Collapse
Affiliation(s)
- Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dewang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huanrong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Seung Goo Kang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Division of Biomedical Convergence/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
35
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
36
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Ouyang Y, Zhu Z, Meng L, Wang R, Huo J, Xu S, Ou X. The histone H2B ubiquitination regulator Wac is essential for plasma cell differentiation. FEBS Lett 2023; 597:1748-1760. [PMID: 37171241 DOI: 10.1002/1873-3468.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Naïve B cells become activated and differentiate into antibody-secreting plasma cells (PCs) when encountering antigens. Here, we reveal that the WW domain-containing adapter protein with coiled-coil (Wac), which is important for histone H2B ubiquitination (ubH2B), is essential for PC differentiation. We demonstrate that B cell-specific Wac knockout mice have severely compromised T cell-dependent and -independent antibody responses. PC differentiation is drastically compromised despite undisturbed germinal center B cell response in the mutant mice. We also observe a significant reduction in global ubH2B in Wac-deficient B cells, which is correlated with downregulated expression of some genes critical for cell metabolism. Thus, our findings demonstrate an essential role of Wac-mediated ubH2B in PC differentiation and shed light on the epigenetic mechanisms underlying this process.
Collapse
Affiliation(s)
- Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Zhejiang, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Limin Meng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruisi Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
37
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. Nat Commun 2023; 14:3618. [PMID: 37336885 DOI: 10.1038/s41467-023-39332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Antony Holmes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
| |
Collapse
|
38
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Yazicioglu YF, Marin E, Sandhu C, Galiani S, Raza IGA, Ali M, Kronsteiner B, Compeer EB, Attar M, Dunachie SJ, Dustin ML, Clarke AJ. Dynamic mitochondrial transcription and translation in B cells control germinal center entry and lymphomagenesis. Nat Immunol 2023; 24:991-1006. [PMID: 37095377 PMCID: PMC10232359 DOI: 10.1038/s41590-023-01484-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023]
Abstract
Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.
Collapse
Affiliation(s)
| | - Eros Marin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ciaran Sandhu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Silvia Galiani
- Medical Research Centre Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
40
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542515. [PMID: 37292881 PMCID: PMC10246007 DOI: 10.1101/2023.05.26.542515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.
Collapse
|
41
|
Shirai T, Nakai A, Ando E, Fujimoto J, Leach S, Arimori T, Higo D, van Eerden FJ, Tulyeu J, Liu YC, Okuzaki D, Murayama MA, Miyata H, Nunomura K, Lin B, Tani A, Kumanogoh A, Ikawa M, Wing JB, Standley DM, Takagi J, Suzuki K. Celastrol suppresses humoral immune responses and autoimmunity by targeting the COMMD3/8 complex. Sci Immunol 2023; 8:eadc9324. [PMID: 37000855 DOI: 10.1126/sciimmunol.adc9324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Celastrol, a bioactive molecule extracted from the
Tripterygium wilfordii
plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.
Collapse
Affiliation(s)
- Taiichiro Shirai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emiko Ando
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Floris J. van Eerden
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Janyerkye Tulyeu
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masanori A. Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Tani
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - James B. Wing
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Daron M. Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
42
|
Pioli KT, Lau KH, Pioli PD. Thymus antibody-secreting cells possess an interferon gene signature and are preferentially expanded in young female mice. iScience 2023; 26:106223. [PMID: 36890795 PMCID: PMC9986522 DOI: 10.1016/j.isci.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Antibody-secreting cells (ASCs) are key contributors to humoral immunity through immunoglobulin production and the potential to be long-lived. ASC persistence has been recognized in the autoimmune thymus (THY); however, only recently has this population been appreciated in healthy THY tissue. We showed that the young female THY was skewed toward higher production of ASCs relative to males. However, these differences disappeared with age. In both sexes, THY ASCs included Ki-67+ plasmablasts which required CD154(CD40L) signals for their propagation. Single cell RNA-sequencing revealed that THY ASCs were enriched for an interferon responsive transcriptional signature relative to those from bone marrow and spleen. Flow cytometry confirmed that THY ASCs had increased levels of Toll-like receptor 7 as well as CD69 and major histocompatibility complex class II. Overall, we identified fundamental aspects of THY ASC biology which may be leveraged for future in depth studies of this population in both health and disease.
Collapse
Affiliation(s)
- KimAnh T. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter D. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
43
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
44
|
Schiepers A, van 't Wout MFL, Greaney AJ, Zang T, Muramatsu H, Lin PJC, Tam YK, Mesin L, Starr TN, Bieniasz PD, Pardi N, Bloom JD, Victora GD. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 2023; 615:482-489. [PMID: 36646114 PMCID: PMC10023323 DOI: 10.1038/s41586-023-05715-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The protective efficacy of serum antibodies results from the interplay of antigen-specific B cell clones of different affinities and specificities. These cellular dynamics underlie serum-level phenomena such as original antigenic sin (OAS)-a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells engaged by an antigenic stimulus when encountering related antigens, in detriment to the induction of de novo responses1-5. OAS-type suppression of new, variant-specific antibodies may pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-26,7. Precise measurement of OAS-type suppression is challenging because cellular and temporal origins cannot readily be ascribed to antibodies in circulation; its effect on subsequent antibody responses therefore remains unclear5,8. Here we introduce a molecular fate-mapping approach with which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that serum responses to sequential homologous boosting derive overwhelmingly from primary cohort B cells, while later induction of new antibody responses from naive B cells is strongly suppressed. Such 'primary addiction' decreases sharply as a function of antigenic distance, allowing reimmunization with divergent viral glycoproteins to produce de novo antibody responses targeting epitopes that are absent from the priming variant. Our findings have implications for the understanding of OAS and for the design and testing of vaccines against evolving pathogens.
Collapse
Affiliation(s)
- Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | | | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
45
|
He X, Zhao J, Adilijiang A, Hong P, Chen P, Lin X, Xie J, Du Y, Liu Y, Lin L, Jin HY, Hong Y, Liu WH, Xiao C. Dhx33 promotes B-cell growth and proliferation by controlling activation-induced rRNA upregulation. Cell Mol Immunol 2023; 20:277-291. [PMID: 36631557 PMCID: PMC9970960 DOI: 10.1038/s41423-022-00972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Upon recognition of foreign antigens, naïve B cells undergo rapid activation, growth, and proliferation. How B-cell growth and proliferation are coupled with activation remains poorly understood. Combining CRISPR/Cas9-mediated functional analysis and mouse genetics approaches, we found that Dhx33, an activation-induced RNA helicase, plays a critical role in coupling B-cell activation with growth and proliferation. Mutant mice with B-cell-specific deletion of Dhx33 exhibited impaired B-cell development, germinal center reactions, plasma cell differentiation, and antibody production. Dhx33-deficient B cells appeared normal in the steady state and early stage of activation but were retarded in growth and proliferation. Mechanistically, Dhx33 played an indispensable role in activation-induced upregulation of ribosomal DNA (rDNA) transcription. In the absence of Dhx33, activated B cells were compromised in their ability to ramp up 47S ribosomal RNA (rRNA) production and ribosome biogenesis, resulting in nucleolar stress, p53 accumulation, and cellular death. Our findings demonstrate an essential role for Dhx33 in coupling B-cell activation with growth and proliferation and suggest that Dhx33 inhibition is a potential therapy for lymphoma and antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abidan Adilijiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hyun Yong Jin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
46
|
Larrayoz M, Garcia-Barchino MJ, Celay J, Etxebeste A, Jimenez M, Perez C, Ordoñez R, Cobaleda C, Botta C, Fresquet V, Roa S, Goicoechea I, Maia C, Lasaga M, Chesi M, Bergsagel PL, Larrayoz MJ, Calasanz MJ, Campos-Sanchez E, Martinez-Cano J, Panizo C, Rodriguez-Otero P, Vicent S, Roncador G, Gonzalez P, Takahashi S, Katz SG, Walensky LD, Ruppert SM, Lasater EA, Amann M, Lozano T, Llopiz D, Sarobe P, Lasarte JJ, Planell N, Gomez-Cabrero D, Kudryashova O, Kurilovich A, Revuelta MV, Cerchietti L, Agirre X, San Miguel J, Paiva B, Prosper F, Martinez-Climent JA. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat Med 2023; 29:632-645. [PMID: 36928817 PMCID: PMC10033443 DOI: 10.1038/s41591-022-02178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
Collapse
Affiliation(s)
- Marta Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Garcia-Barchino
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Amaia Etxebeste
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maddalen Jimenez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cristina Perez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Raquel Ordoñez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Cirino Botta
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vicente Fresquet
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Sergio Roa
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Ibai Goicoechea
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Catarina Maia
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Miren Lasaga
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Maria J Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Calasanz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Elena Campos-Sanchez
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Jorge Martinez-Cano
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Carlos Panizo
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBERONC, Pamplona, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Patricia Gonzalez
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shannon M Ruppert
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Nuria Planell
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | - Maria V Revuelta
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jesus San Miguel
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Bruno Paiva
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Jose A Martinez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain.
| |
Collapse
|
47
|
Emrich SM, Yoast RE, Zhang X, Fike AJ, Wang YH, Bricker KN, Tao AY, Xin P, Walter V, Johnson MT, Pathak T, Straub AC, Feske S, Rahman ZSM, Trebak M. Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells. eLife 2023; 12:e84708. [PMID: 36803766 PMCID: PMC9998091 DOI: 10.7554/elife.84708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Yin-Hu Wang
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Anthony Y Tao
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Stefan Feske
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ziaur SM Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
48
|
Low-affinity CTCF binding drives transcriptional regulation whereas high-affinity binding encompasses architectural functions. iScience 2023; 26:106106. [PMID: 36852270 PMCID: PMC9958374 DOI: 10.1016/j.isci.2023.106106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
CTCF is a DNA-binding protein which plays critical roles in chromatin structure organization and transcriptional regulation; however, little is known about the functional determinants of different CTCF-binding sites (CBS). Using a conditional mouse model, we have identified one set of CBSs that are lost upon CTCF depletion (lost CBSs) and another set that persists (retained CBSs). Retained CBSs are more similar to the consensus CTCF-binding sequence and usually span tandem CTCF peaks. Lost CBSs are enriched at enhancers and promoters and associate with active chromatin marks and higher transcriptional activity. In contrast, retained CBSs are enriched at TAD and loop boundaries. Integration of ChIP-seq and RNA-seq data has revealed that retained CBSs are located at the boundaries between distinct chromatin states, acting as chromatin barriers. Our results provide evidence that transient, lost CBSs are involved in transcriptional regulation, whereas retained CBSs are critical for establishing higher-order chromatin architecture.
Collapse
|
49
|
Sec22b is a critical and nonredundant regulator of plasma cell maintenance. Proc Natl Acad Sci U S A 2023; 120:e2213056120. [PMID: 36595686 PMCID: PMC9926242 DOI: 10.1073/pnas.2213056120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.
Collapse
|
50
|
Mechanism of cystogenesis by Cd79a-driven, conditional mTOR activation in developing mouse nephrons. Sci Rep 2023; 13:508. [PMID: 36627370 PMCID: PMC9832032 DOI: 10.1038/s41598-023-27766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder arising from developmental and postnatal processes. Defects in primary cilia and their signaling (eg, mTOR) underlie the pathogenesis. However, how mTOR regulates tubular integrity remains unclear. The paucity of faithful models has limited our understanding of pathogenesis and, therefore, the refinement of therapeutic targets. To understand the role of mTOR in early cystogenesis, we studied an in-house mouse model, Cd79a-Cre;Tsc1ff. (Cd79a-Tsc1 KO hereafter), recapitulating human autosomal-dominant PKD histology. Cre-mediated Tsc1 depletion driven by the promoter for Cd79a, a known B-cell receptor, activated mTORC1 exclusively along the distal nephron from embryonic day 16 onward. Cysts appeared in the distal nephron at 1 weeks of age and mice developed definite PKD by 4 weeks. Cd79a-Tsc1 KO tubule cells proliferated at a rate comparable to controls after birth but continued to divide even after postnatal day 14 when tubulogenesis is normally completed. Apoptosis occurred only after 9 weeks. During postnatal days 7-11, pre-cystic Cd79a-Tsc1 KO tubule cells showed cilia elongation, aberrant cell intercalation, and mitotic division, suggesting that defective cell planar polarity (PCP) may underlie cystogenesis. mTORC1 was activated in a portion of cyst-lining cells and occasionally even when Tsc1 was not depleted, implying a non-autonomous mechanism. Our results indicate that mTORC1 overactivation in developing distal tubules impairs their postnatal narrowing by disrupting morphogenesis, which orients an actively proliferating cell toward the elongating axis. The interplay between mTOR and cilium signaling, which coordinate cell proliferation with PCP, may be essential for cystogenesis.
Collapse
|