1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Königstein D, Fender H, Plačkić J, Kisko TM, Wöhr M, Kockskämper J. Altered Protein Kinase A-Dependent Phosphorylation of Cav1.2 in Left Ventricular Myocardium from Cacna1c Haploinsufficient Rat Hearts. Int J Mol Sci 2024; 25:13713. [PMID: 39769475 PMCID: PMC11678006 DOI: 10.3390/ijms252413713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
CACNA1C encodes the α1c subunit of the L-type Ca2+ channel, Cav1.2. Ventricular myocytes from haploinsufficient Cacna1c (Cacna1c+/-) rats exhibited reduced expression of Cav1.2 but an apparently normal sarcolemmal Ca2+ influx with an impaired response to sympathetic stress. We tested the hypothesis that the altered phosphorylation of Cav1.2 might underlie the sarcolemmal Ca2+ influx phenotype in Cacna1c+/- myocytes using immunoblotting of the left ventricular (LV) tissue from Cacna1c+/- versus wildtype (WT) hearts. Activation of cAMP-dependent protein kinase A (PKA) increases L-type Ca2+ current and phosphorylates Cav1.2 at serine-1928. Using an antibody directed against this phosphorylation site, we observed elevated phosphorylation of Cav1.2 at serine-1928 in LV myocardium from Cacna1c+/- rats under basal conditions (+110% versus WT). Sympathetic stress was simulated by isoprenaline (100 nM) in Langendorff-perfused hearts. Isoprenaline increased the phosphorylation of serine-1928 in Cacna1c+/- LV myocardium by ≈410%, but the increase was significantly smaller than in WT myocardium (≈650%). In conclusion, our study reveals altered PKA-dependent phosphorylation of Cav1.2 with elevated phosphorylation of serine-1928 under basal conditions and a diminished phosphorylation reserve during β-adrenergic stimulation. These alterations in the phosphorylation of Cav1.2 may explain the apparently normal sarcolemmal Ca2+ influx in Cacna1c+/- myocytes under basal conditions as well as the impaired response to sympathetic stimulation.
Collapse
Affiliation(s)
- David Königstein
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany; (D.K.); (H.F.); (J.P.)
| | - Hauke Fender
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany; (D.K.); (H.F.); (J.P.)
| | - Jelena Plačkić
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany; (D.K.); (H.F.); (J.P.)
| | - Theresa M. Kisko
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany; (T.M.K.); (M.W.)
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
| | - Markus Wöhr
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany; (T.M.K.); (M.W.)
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany; (D.K.); (H.F.); (J.P.)
| |
Collapse
|
3
|
Arancibia F, De Giorgis D, Medina F, Hermosilla T, Simon F, Varela D. Role of the Ca V1.2 distal carboxy terminus in the regulation of L-type current. Channels (Austin) 2024; 18:2338782. [PMID: 38691022 PMCID: PMC11067984 DOI: 10.1080/19336950.2024.2338782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The CaV1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the CaV1.2 pore-forming subunit and auxiliary subunits like CaVα2δ and CaVβ2b. The CaV1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DCtermD) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DCtermD and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and CaV1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DCtermD and replicate the effects of the entire DCtermD on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DCtermD and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DCtermD competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.
Collapse
Affiliation(s)
- Felipe Arancibia
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela De Giorgis
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Franco Medina
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tamara Hermosilla
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Yang B, Wang SQ, Yang HQ. β-adrenergic regulation of Ca 2+ signaling in heart cells. BIOPHYSICS REPORTS 2024; 10:274-282. [PMID: 39539286 PMCID: PMC11554573 DOI: 10.52601/bpr.2024.240906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024] Open
Abstract
β-adrenergic receptors (βARs) play significant roles in regulating Ca2+ signaling in cardiac myocytes, thus holding a key function in modulating heart performance. βARs regulate the influx of extracellular Ca2+ and the release and uptake of Ca2+ from the sarcoplasmic reticulum (SR) by activating key components such as L-type calcium channels (LTCCs), ryanodine receptors (RyRs) and phospholamban (PLN), mediated by the phosphorylation actions by protein kinase A (PKA). In cardiac myocytes, the presence of β2AR provides a protective mechanism against potential overstimulation of β1AR, which may aid in the restoration of cardiac dysfunctions. Understanding the Ca2+ regulatory signaling pathways of βARs in cardiac myocytes and the differences among various βAR subtypes are crucial in cardiology and hold great potential for developing treatments for heart diseases.
Collapse
Affiliation(s)
- Bo Yang
- Cyrus Tang Medical Institute, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Qiang Wang
- State Key Lab of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
6
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
9
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
10
|
Regulation of cardiac function by cAMP nanodomains. Biosci Rep 2023; 43:232544. [PMID: 36749130 PMCID: PMC9970827 DOI: 10.1042/bsr20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.
Collapse
|
11
|
Hovey L, Guo X, Chen Y, Liu Q, Catterall WA. Impairment of β-adrenergic regulation and exacerbation of pressure-induced heart failure in mice with mutations in phosphoregulatory sites in the cardiac Ca V1.2 calcium channel. Front Physiol 2023; 14:1049611. [PMID: 36846334 PMCID: PMC9944942 DOI: 10.3389/fphys.2023.1049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
The cardiac calcium channel CaV1.2 conducts L-type calcium currents that initiate excitation-contraction coupling and serves as a crucial mediator of β-adrenergic regulation of the heart. We evaluated the inotropic response of mice with mutations in C-terminal phosphoregulatory sites under physiological levels of β-adrenergic stimulation in vivo, and we assessed the impact of combining mutations of C-terminal phosphoregulatory sites with chronic pressure-overload stress. Mice with Ser1700Ala (S1700A), Ser1700Ala/Thr1704Ala (STAA), and Ser1928Ala (S1928A) mutations had impaired baseline regulation of ventricular contractility and exhibited decreased inotropic response to low doses of β-adrenergic agonist. In contrast, treatment with supraphysiogical doses of agonist revealed substantial inotropic reserve that compensated for these deficits. Hypertrophy and heart failure in response to transverse aortic constriction (TAC) were exacerbated in S1700A, STAA, and S1928A mice whose β-adrenergic regulation of CaV1.2 channels was blunted. These findings further elucidate the role of phosphorylation of CaV1.2 at regulatory sites in the C-terminal domain for maintaining normal cardiac homeostasis, responding to physiological levels of β-adrenergic stimulation in the fight-or-flight response, and adapting to pressure-overload stress.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, United States
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Yi Chen
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Qinghang Liu
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Catterall
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
13
|
Martín-Aragón Baudel M, Hong J, Hell JW, Nieves-Cintrón M, Navedo MF. Mechanisms of Vascular Ca V1.2 Channel Regulation During Diabetic Hyperglycemia. Handb Exp Pharmacol 2023; 279:41-58. [PMID: 36598607 DOI: 10.1007/164_2022_628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type CaV1.2 channel plays a key role as it is the main Ca2+ entry pathway regulating vascular smooth muscle contractile state. The activity of CaV1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of CaV1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of CaV1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y11/AC5/PKA/CaV1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.
Collapse
Affiliation(s)
| | - Junyoung Hong
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Güran A, Ji Y, Fang P, Pan KT, Urlaub H, Avkiran M, Lenz C. Quantitative Analysis of the Cardiac Phosphoproteome in Response to Acute β-Adrenergic Receptor Stimulation In Vivo. Int J Mol Sci 2021; 22:12584. [PMID: 34830474 PMCID: PMC8618155 DOI: 10.3390/ijms222212584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
β-adrenergic receptor (β-AR) stimulation represents a major mechanism of modulating cardiac output. In spite of its fundamental importance, its molecular basis on the level of cell signalling has not been characterised in detail yet. We employed mass spectrometry-based proteome and phosphoproteome analysis using SuperSILAC (spike-in stable isotope labelling by amino acids in cell culture) standardization to generate a comprehensive map of acute phosphoproteome changes in mice upon administration of isoprenaline (ISO), a synthetic β-AR agonist that targets both β1-AR and β2-AR subtypes. Our data describe 8597 quantitated phosphopeptides corresponding to 10,164 known and novel phospho-events from 2975 proteins. In total, 197 of these phospho-events showed significantly altered phosphorylation, indicating an intricate signalling network activated in response to β-AR stimulation. In addition, we unexpectedly detected significant cardiac expression and ISO-induced fragmentation of junctophilin-1, a junctophilin isoform hitherto only thought to be expressed in skeletal muscle. Data are available via ProteomeXchange with identifier PXD025569.
Collapse
Affiliation(s)
- Alican Güran
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK; (A.G.); (M.A.)
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Pan Fang
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Metin Avkiran
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK; (A.G.); (M.A.)
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
16
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
17
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
19
|
Kushner J, Papa A, Marx SO. Use of Proximity Labeling in Cardiovascular Research. JACC Basic Transl Sci 2021; 6:598-609. [PMID: 34368510 PMCID: PMC8326230 DOI: 10.1016/j.jacbts.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 10/31/2022]
Abstract
Protein-protein interactions are of paramount importance in regulating normal cardiac physiology. Methodologies to elucidate these interactions in vivo have been limited. Recently, proximity-dependent biotinylation, with the use of BioID, TurboID, and ascorbate peroxidase, has been developed to uncover cellular neighborhoods and novel protein-protein interactions. These cutting-edge techniques have enabled the identification of subcellular localizations of specific proteins and the neighbors or interacting proteins within these subcellular regions. In contrast to classic methods such as affinity purification and subcellular fractionation, these techniques add covalently bound tags in living cells, such that spatial relationships and interaction networks are not disrupted. Recently, these methodologies have been used to identify novel protein-protein interactions relevant to the cardiovascular system. In this review, we discuss the development and current use of proximity biotin-labeling for cardiovascular research.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Arianne Papa
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
20
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
21
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
22
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Man KNM, Bartels P, Horne MC, Hell JW. Tissue-specific adrenergic regulation of the L-type Ca 2+ channel Ca V1.2. Sci Signal 2020; 13:13/663/eabc6438. [PMID: 33443233 DOI: 10.1126/scisignal.abc6438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ca2+ influx through the L-type Ca2+ channel Cav1.2 triggers each heartbeat. The fight-or-flight response induces the release of the stress response hormone norepinephrine to stimulate β-adrenergic receptors, cAMP production, and protein kinase A activity to augment Ca2+ influx through Cav1.2 and, consequently, cardiomyocyte contractility. Emerging evidence shows that Cav1.2 is regulated by different mechanisms in cardiomyocytes compared to neurons and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Peter Bartels
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Dolphin AC, Kadurin I. Fight or flight: The culprit is lurking in the neighbourhood. Cell Calcium 2020; 87:102180. [DOI: 10.1016/j.ceca.2020.102180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022]
|
25
|
Li J, Wang S, Zhang J, Liu Y, Zheng X, Ding F, Sun X, Zhao M, Hao L. The CaMKII phosphorylation site Thr1604 in the Ca V1.2 channel is involved in pathological myocardial hypertrophy in rats. Channels (Austin) 2020; 14:151-162. [PMID: 32290730 PMCID: PMC7188351 DOI: 10.1080/19336950.2020.1750189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residue Thr1604 in the CaV1.2 channel is a Ca2+/calmodulin dependent protein kinase II (CaMKII) phosphorylation site, and its phosphorylation status maintains the basic activity of the channel. However, the role of CaV1.2 phosphorylation at Thr1604 in myocardial hypertrophy is incompletely understood. Isoproterenol (ISO) was used to induce cardiomyocyte hypertrophy, and autocamtide-2-related inhibitory peptide (AIP) was added as a treatment. Rats in a myocardial hypertrophy development model were subcutaneously injected with ISO for two or three weeks. The heart and left ventricle weights, each of which were normalized to the body weight and cross-sectional area of the myocardial cells, were used to describe the degree of hypertrophy. Protein expression levels were detected by western blotting. CaMKII-induced CaV1.2 (Thr1604) phosphorylation (p-CaV1.2) was assayed by coimmunoprecipitation. The results showed that CaMKII, HDAC, MEF2 C, and atrial natriuretic peptide (ANP) expression was increased in the ISO group and downregulated by AIP treatment in vitro. There was no difference in the expression of these proteins between the ISO 2-week group and the ISO 3-week group in vivo. CaV1.2 channel expression did not change, but p-CaV1.2 expression was increased after ISO stimulation and decreased by AIP. In the rat model, p-CaV1.2 levels and CaMKII activity were much higher in the ISO 3-week group than in the ISO 2-week group. CaMKII-induced CaV1.2 channel phosphorylation at residue Thr1604 may be one of the key features of myocardial hypertrophy and disease development.Abbreviations: CaMKII: Ca2+/calmodulin dependent protein kinase II; p-CaMKII: autophosphorylated Ca2+/calmodulin dependent protein kinase II; CaM: calmodulin; AIP: autocamtide-2-related inhibitory peptide; ECC: excitation-contraction coupling; ISO: isoproterenol; BW: body weight; HW: heart weight; LVW: left ventricle weight; HDAC: histone deacetylase; p-HDAC: phosphorylated histone deacetylase; MEF2C: myocyte-specific enhancer factor 2C; ANP: atrial natriuretic peptide; PKC: protein kinase C
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xi Zheng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Ding
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
26
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
27
|
Zhu YR, Jiang XX, Zheng Y, Xiong J, Wei D, Zhang DM. Cardiac function modulation depends on the A-kinase anchoring protein complex. J Cell Mol Med 2019; 23:7170-7179. [PMID: 31512389 PMCID: PMC6815827 DOI: 10.1111/jcmm.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The A‐kinase anchoring proteins (AKAPs) are a group of structurally diverse proteins identified in various species and tissues. These proteins are able to anchor protein kinase and other signalling proteins to regulate cardiac function. Acting as a scaffold protein, AKAPs ensure specificity in signal transduction by enzymes close to their appropriate effectors and substrates. Over the decades, more than 70 different AKAPs have been discovered. Accumulative evidence indicates that AKAPs play crucial roles in the functional regulation of cardiac diseases, including cardiac hypertrophy, myofibre contractility dysfunction and arrhythmias. By anchoring different partner proteins (PKA, PKC, PKD and LTCCs), AKAPs take part in different regulatory pathways to function as regulators in the heart, and a damaged structure can influence the activities of these complexes. In this review, we highlight recent advances in AKAP‐associated protein complexes, focusing on local signalling events that are perturbed in cardiac diseases and their roles in interacting with ion channels and their regulatory molecules. These new findings suggest that AKAPs might have potential therapeutic value in patients with cardiac diseases, particularly malignant rhythm.
Collapse
Affiliation(s)
- Yan-Rong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Xin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Dongping Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Morales D, Hermosilla T, Varela D. Calcium-dependent inactivation controls cardiac L-type Ca 2+ currents under β-adrenergic stimulation. J Gen Physiol 2019; 151:786-797. [PMID: 30814137 PMCID: PMC6571991 DOI: 10.1085/jgp.201812236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022] Open
Abstract
During a cardiac action potential, the activity of L-type Ca2+ channels (LTCCs) is modulated by voltage- and calcium-dependent inactivation processes. Morales et al. show that, in the context of β-adrenergic stimulation, calcium-dependent inactivation directs the regulation of LTCC activity, limiting calcium influx during the action potential. The activity of L-type calcium channels is associated with the duration of the plateau phase of the cardiac action potential (AP) and it is controlled by voltage- and calcium-dependent inactivation (VDI and CDI, respectively). During β-adrenergic stimulation, an increase in the L-type current and parallel changes in VDI and CDI are observed during square pulses stimulation; however, how these modifications impact calcium currents during an AP remains controversial. Here, we examined the role of both inactivation processes on the L-type calcium current activity in newborn rat cardiomyocytes in control conditions and after stimulation with the β-adrenergic agonist isoproterenol. Our approach combines a self-AP clamp (sAP-Clamp) with the independent inhibition of VDI or CDI (by overexpressing CaVβ2a or calmodulin mutants, respectively) to directly record the L-type calcium current during the cardiac AP. We find that at room temperature (20–23°C) and in the absence of β-adrenergic stimulation, the L-type current recapitulates the AP kinetics. Furthermore, under our experimental setting, the activity of the sodium–calcium exchanger (NCX) does not affect the shape of the AP. We find that hindering either VDI or CDI prolongs the L-type current and the AP in parallel, suggesting that both inactivation processes modulate the L-type current during the AP. In the presence of isoproterenol, wild-type and VDI-inhibited cardiomyocytes display mismatched L-type calcium current with respect to their AP. In contrast, CDI-impaired cells maintain L-type current with kinetics similar to its AP, demonstrating that calcium-dependent inactivation governs L-type current kinetics during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Danna Morales
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Tamara Hermosilla
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile .,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Fernández-Morales JC, Hua W, Yao Y, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in cardiomyocytes derived from human induced pluripotent stem cells. Cell Calcium 2018; 78:1-14. [PMID: 30579812 DOI: 10.1016/j.ceca.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
AIMS The effects of acute (100 s) hypoxia and/or acidosis on Ca2+ signaling parameters of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are explored here for the first time. METHODS AND RESULTS 1) hiPSC-CMs express two cell populations: rapidly-inactivating ICa myocytes (τi<40 ms, in 4-5 day cultures) and slowly-inactivating ICa (τi ≥ 40 ms, in 6-8 day cultures). 2) Hypoxia suppressed ICa by 10-20% in rapidly- and 40-55% in slowly-inactivating ICa cells. 3) Isoproterenol enhanced ICa in hiPSC-CMs, but either enhanced or did not alter the hypoxic suppression. 4) Hypoxia had no differential suppressive effects in the two cell-types when Ba2+ was the charge carrier through the calcium channels, implicating Ca2+-dependent inactivation in O2 sensing. 5) Acidosis suppressed ICa by ∼35% and ∼25% in rapidly and slowly inactivating ICa cells, respectively. 6) Hypoxia and acidosis suppressive effects on Ca-transients depended on whether global or RyR2-microdomain were measured: with acidosis suppression was ∼25% in global and ∼37% in RyR2 Ca2+-microdomains in either cell type, whereas with hypoxia suppression was ∼20% and ∼25% respectively in global and RyR2-microdomaine in rapidly and ∼35% and ∼45% respectively in global and RyR2-microdomaine in slowly-inactivating cells. CONCLUSIONS Variability in ICa inactivation kinetics rather than cellular ancestry seems to underlie the action potential morphology differences generally attributed to mixed atrial and ventricular cell populations in hiPSC-CMs cultures. The differential hypoxic regulation of Ca2+-signaling in the two-cell types arises from differential Ca2+-dependent inactivation of the Ca2+-channel caused by proximity of Ca2+-release stores to the Ca2+ channels.
Collapse
Affiliation(s)
| | - Wei Hua
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Yuyu Yao
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology,Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
30
|
Conrad R, Stölting G, Hendriks J, Ruello G, Kortzak D, Jordan N, Gensch T, Hidalgo P. Rapid Turnover of the Cardiac L-Type Ca V1.2 Channel by Endocytic Recycling Regulates Its Cell Surface Availability. iScience 2018; 7:1-15. [PMID: 30267672 PMCID: PMC6135870 DOI: 10.1016/j.isci.2018.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium entry through CaV1.2 L-type calcium channels regulates cardiac contractility. Here, we study the impact of exocytic and post-endocytic trafficking on cell surface channel abundance in cardiomyocytes. Single-molecule localization and confocal microscopy reveal an intracellular CaV1.2 pool tightly associated with microtubules from the perinuclear region to the cell periphery, and with actin filaments at the cell cortex. Channels newly inserted into the plasma membrane become internalized with an average time constant of 7.5 min and are sorted out to the Rab11a-recycling compartment. CaV1.2 recycling suffices for maintaining stable L-type current amplitudes over 20 hr independent of de novo channel transport along microtubules. Disruption of the actin cytoskeleton re-routes CaV1.2 from recycling toward lysosomal degradation. We identify endocytic recycling as essential for the homeostatic regulation of voltage-dependent calcium influx into cardiomyocytes. This mechanism provides the basis for a dynamic adjustment of the channel's surface availability and thus, of heart's contraction.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Johnny Hendriks
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanna Ruello
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Kortzak
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
32
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
33
|
Kumari N, Gaur H, Bhargava A. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling. Life Sci 2017; 194:139-149. [PMID: 29288765 DOI: 10.1016/j.lfs.2017.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated.
Collapse
Affiliation(s)
- Neema Kumari
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Himanshu Gaur
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
34
|
Fernández-Morales JC, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in rat neonatal cardiomyocytes. J Mol Cell Cardiol 2017; 114:58-71. [PMID: 29032102 DOI: 10.1016/j.yjmcc.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
Abstract
Ischemic heart disease is an arrhythmogenic condition, accompanied by hypoxia, acidosis, and impaired Ca2+ signaling. Here we report on effects of acute hypoxia and acidification in rat neonatal cardiomyocytes cultures. RESULTS Two populations of neonatal cardiomyocyte were identified based on inactivation kinetics of L-type ICa: rapidly-inactivating ICa (τ~20ms) myocytes (prevalent in 3-4-day cultures), and slow-inactivating ICa (τ≥40ms) myocytes (dominant in 7-day cultures). Acute hypoxia (pO2<5mmHg for 50-100s) suppressed ICa reversibly in both cell-types to different extent and with different kinetics. This disparity disappeared when Ba2+ was the channel charge carrier, or when the intracellular Ca2+ buffering capacity was increased by dialysis of high concentrations of EGTA and BAPTA, suggesting critical role for calcium-dependent inactivation. Suppressive effect of acute acidosis on ICa (~40%, pH6.7), on the other hand, was not cell-type dependent. Isoproterenol enhanced ICa in both cell-types, but protected only against suppressive effects of acidosis and not hypoxia. Hypoxia and acidosis suppressed global Ca2+ transients by ~20%, but suppression was larger, ~35%, at the RyR2 microdomains, using GCaMP6-FKBP targeted probe. Hypoxia and acidosis also suppressed mitochondrial Ca2+ uptake by 40% and 10%, respectively, using mitochondrial targeted Ca2+ biosensor (mito-GCaMP6). CONCLUSION Our studies suggest that acute hypoxia suppresses ICa in rapidly inactivating cell population by a mechanism involving Ca2+-dependent inactivation, while compromised mitochondrial Ca2+ uptake seems also to contribute to ICa suppression in slowly inactivating cell population. Proximity of cellular Ca2+ pools to sarcolemmal Ca2+ channels may contribute to the variability of inactivation kinetics of ICa in the two cell populations, while acidosis suppression of ICa appears mediated by proton-induced block of the calcium channel.
Collapse
Affiliation(s)
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
35
|
Poomvanicha M, Matthes J, Domes K, Patrucco E, Angermeier E, Laugwitz KL, Schneider T, Hofmann F. Beta-adrenergic regulation of the heart expressing the Ser1700A/Thr1704A mutated Cav1.2 channel. J Mol Cell Cardiol 2017; 111:10-16. [PMID: 28778765 DOI: 10.1016/j.yjmcc.2017.07.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Abstract
Beta-adrenergic stimulation of the heart increases ICa. PKA dependent phosphorylation of several amino acids (among them Ser 1700 and Thr 1704 in the carboxy-terminus of the Cav1.2 α1c subunit) has been implicated as decisive for the β-adrenergic up-regulation of cardiac ICa. Mutation of Ser 1700 and Thr 1704 to alanine results in the Cav1.2PKA_P2-/- mice. Cav1.2PKA_P2-/- mice display reduced cardiac L-type current. Fractional shortening and ejection fraction in the intact animal and ICa in isolated cardiomyocytes (CM) are stimulated by isoproterenol. Cardiac specific expression of the mutated Cav1.2PKA_P2-/- gene reduces Cav1.2 α1c protein concentration, ICa, and the β-adrenergic stimulation of L-type ICa in CMs. Single channels were not detected on the CM surface of the cCav1.2PKA_P2-/- hearts. This outcome supports the notion that S1700/1704 is essential for expression of the Cav1.2 channel and that isoproterenol stimulates ICa in Cav1.2PKA_P2-/- CMs.
Collapse
Affiliation(s)
- Montatip Poomvanicha
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | - Jan Matthes
- Institut für Pharmakologie und Toxikologie, University Cologne, Germany
| | - Katrin Domes
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | - Enrico Patrucco
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | - Elisabeth Angermeier
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | - Karl-Ludwig Laugwitz
- I. Medizinische Klinik und Poliklinik (Kardiologie, Angiologie & Pneumologie), Klinikum rechts der Isar-Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Toni Schneider
- Institut für Neurophysiologie, University Cologne, Germany
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany.
| |
Collapse
|
36
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 09/29/2023] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
38
|
Finlay M, Harmer SC, Tinker A. The control of cardiac ventricular excitability by autonomic pathways. Pharmacol Ther 2017; 174:97-111. [PMID: 28223225 DOI: 10.1016/j.pharmthera.2017.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Central to the genesis of ventricular cardiac arrhythmia are variations in determinants of excitability. These involve individual ionic channels and transporters in cardiac myocytes but also tissue factors such as variable conduction of the excitation wave, fibrosis and source-sink mismatch. It is also known that in certain diseases and particularly the channelopathies critical events occur with specific stressors. For example, in hereditary long QT syndrome due to mutations in KCNQ1 arrhythmic episodes are provoked by exercise and in particular swimming. Thus not only is the static substrate important but also how this is modified by dynamic signalling events associated with common physiological responses. In this review, we examine the regulation of ventricular excitability by signalling pathways from a cellular and tissue perspective in an effort to identify key processes, effectors and potential therapeutic approaches. We specifically focus on the autonomic nervous system and related signalling pathways.
Collapse
Affiliation(s)
- Malcolm Finlay
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK.
| |
Collapse
|
39
|
Nystoriak MA, Nieves-Cintrón M, Patriarchi T, Buonarati OR, Prada MP, Morotti S, Grandi E, Fernandes JDS, Forbush K, Hofmann F, Sasse KC, Scott JD, Ward SM, Hell JW, Navedo MF. Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes. Sci Signal 2017; 10:10/463/eaaf9647. [PMID: 28119464 DOI: 10.1126/scisignal.aaf9647] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypercontractility of arterial myocytes and enhanced vascular tone during diabetes are, in part, attributed to the effects of increased glucose (hyperglycemia) on L-type CaV1.2 channels. In murine arterial myocytes, kinase-dependent mechanisms mediate the increase in CaV1.2 activity in response to increased extracellular glucose. We identified a subpopulation of the CaV1.2 channel pore-forming subunit (α1C) within nanometer proximity of protein kinase A (PKA) at the sarcolemma of murine and human arterial myocytes. This arrangement depended upon scaffolding of PKA by an A-kinase anchoring protein 150 (AKAP150) in mice. Glucose-mediated increases in CaV1.2 channel activity were associated with PKA activity, leading to α1C phosphorylation at Ser1928 Compared to arteries from low-fat diet (LFD)-fed mice and nondiabetic patients, arteries from high-fat diet (HFD)-fed mice and from diabetic patients had increased Ser1928 phosphorylation and CaV1.2 activity. Arterial myocytes and arteries from mice lacking AKAP150 or expressing mutant AKAP150 unable to bind PKA did not exhibit increased Ser1928 phosphorylation and CaV1.2 current density in response to increased glucose or to HFD. Consistent with a functional role for Ser1928 phosphorylation, arterial myocytes and arteries from knockin mice expressing a CaV1.2 with Ser1928 mutated to alanine (S1928A) lacked glucose-mediated increases in CaV1.2 activity and vasoconstriction. Furthermore, the HFD-induced increases in CaV1.2 current density and myogenic tone were prevented in S1928A knockin mice. These findings reveal an essential role for α1C phosphorylation at Ser1928 in stimulating CaV1.2 channel activity and vasoconstriction by AKAP-targeted PKA upon exposure to increased glucose and in diabetes.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | - Katherine Forbush
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Franz Hofmann
- Department of Pharmacology and Toxicology, Technical University of Munich, Munich D80802, Germany
| | | | - John D Scott
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
40
|
Qian H, Patriarchi T, Price JL, Matt L, Lee B, Nieves-Cintrón M, Buonarati OR, Chowdhury D, Nanou E, Nystoriak MA, Catterall WA, Poomvanicha M, Hofmann F, Navedo MF, Hell JW. Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons. Sci Signal 2017; 10:10/463/eaaf9659. [PMID: 28119465 DOI: 10.1126/scisignal.aaf9659] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The L-type Ca2+ channel Cav1.2 controls multiple functions throughout the body including heart rate and neuronal excitability. It is a key mediator of fight-or-flight stress responses triggered by a signaling pathway involving β-adrenergic receptors (βARs), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA). PKA readily phosphorylates Ser1928 in Cav1.2 in vitro and in vivo, including in rodents and humans. However, S1928A knock-in (KI) mice have normal PKA-mediated L-type channel regulation in the heart, indicating that Ser1928 is not required for regulation of cardiac Cav1.2 by PKA in this tissue. We report that augmentation of L-type currents by PKA in neurons was absent in S1928A KI mice. Furthermore, S1928A KI mice failed to induce long-term potentiation in response to prolonged theta-tetanus (PTT-LTP), a form of synaptic plasticity that requires Cav1.2 and enhancement of its activity by the β2-adrenergic receptor (β2AR)-cAMP-PKA cascade. Thus, there is an unexpected dichotomy in the control of Cav1.2 by PKA in cardiomyocytes and hippocampal neurons.
Collapse
Affiliation(s)
- Hai Qian
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Jennifer L Price
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Lucas Matt
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | | | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | | | - Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Matthew A Nystoriak
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Montatip Poomvanicha
- Department of Pharmacology and Toxicology, Technical University of Munich, D-80802 Munich, Germany
| | - Franz Hofmann
- Department of Pharmacology and Toxicology, Technical University of Munich, D-80802 Munich, Germany
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA.
| | - Johannes W Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA. .,Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| |
Collapse
|
41
|
Roles of L-type calcium channels (Ca V1.2) and the distal C-terminus (DCT) in differentiation and mineralization of rat dental apical papilla stem cells (rSCAPs). Arch Oral Biol 2016; 74:75-81. [PMID: 27918898 DOI: 10.1016/j.archoralbio.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Voltage-gated inward Ca2+ currents (ICa) are triggered by cell depolarization and commonly produce transient increases in the cytoplasmic free Ca2+ concentration. The CaV1.2 distal C-terminus is susceptible to proteolytic cleavage, which yields a truncated CaV1.2 subunit and a cleaved C-terminal fragment (CCt or DCT). Stem cells from the apical papilla (SCAPs) has a capacity for differentiation into the odontoblastic-like cells in vitro and dentin forming in vivo, which makes SCAPs advantages in tissue engineering and regenerative endodontic. The aim of this study was to investigate the effect of CaV1.2 and its distal C-terminal fragment in the odontoblastic differentiation of rat SCAPs (stem cells from the apical papilla). DESIGN In this study, we generated stable CaV1.2 knockdown and DCT over-expressed rSCAPs using short hairpin RNA and DCT gene containing Lentivirus vectors, respectively. The transfected apical papilla cells were induced to differentiate into the odontoblast-like cells, and the expression of markers for odontoblastic differentiation were analyzed by alizarin red staining, Real-time Polymerase chain reaction (RT-PCR), and Western blot analysis. RESULTS The knockdown of CaV1.2 and excess expression of DCT both suppressed the expression of DSPP, ALP in mRNA level and the formation of calcium nodules. CONCLUSIONS Our results suggest that CaV1.2 and DCT play important roles in the differentiation of rSCAPs, DCT might act as a transcription factor and regulate the differentiation of rSCAPs.
Collapse
|
42
|
Karimova VM, Kuzmin VS, Undrovinas NA, Rozenshtraukh LV. The role of cytoplasmic calcium in the regulation of the resting potential in the pulmonary veins myocardium in rats and mice. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 469:152-155. [PMID: 27595819 DOI: 10.1134/s0012496616040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 06/06/2023]
Abstract
We have demonstrated the phenomenon of Са(2+)-induced hyperpolarization in the myocardium of pulmonary veins (PVs) in rats. An increase in cytoplasmic calcium [Са(2+)] i was shown to shift the resting potential (RP) in the PVs towards more negative values. The compounds inducing an increase in [Са(2+)] i , such as isoproterenol (10 μM), caffeine (5 mM), and ryanodine (0.01 μM), caused hyperpolarization of 10 ± 2, 9 ± 1.3, and 4.1 ± 2 mV, respectively. The inhibition of calcium-dependent potassium currents (IKCa) did not change RP of PVs under the control conditions and did not affect the Са(2+)-induced hyperpolarization.
Collapse
Affiliation(s)
- V M Karimova
- Russian Cardiologic Research and Manufacturing Complex, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - V S Kuzmin
- Russian Cardiologic Research and Manufacturing Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Undrovinas
- Russian Cardiologic Research and Manufacturing Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Rozenshtraukh
- Russian Cardiologic Research and Manufacturing Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
43
|
K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome. Proc Natl Acad Sci U S A 2016; 113:6773-8. [PMID: 27247394 DOI: 10.1073/pnas.1606465113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.
Collapse
|
44
|
Patriarchi T, Qian H, Di Biase V, Malik ZA, Chowdhury D, Price JL, Hammes EA, Buonarati OR, Westenbroek RE, Catterall WA, Hofmann F, Xiang YK, Murphy GG, Chen CY, Navedo MF, Hell JW. Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the β2 adrenergic receptor. EMBO J 2016; 35:1330-45. [PMID: 27103070 DOI: 10.15252/embj.201593409] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/24/2016] [Indexed: 01/07/2023] Open
Abstract
Agonist-triggered downregulation of β-adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of β2AR signaling highly specific for Cav1.2. We find that β2-AR binding to Cav1.2 residues 1923-1942 is required for β-adrenergic regulation of Cav1.2. Despite the prominence of PKA-mediated phosphorylation of Cav1.2 S1928 within the newly identified β2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the β2AR from Cav1.2 upon β-adrenergic stimulation rendering Cav1.2 refractory for several minutes from further β-adrenergic stimulation. This effect is lost in S1928A knock-in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, β2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the β2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized β2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT-LTP) depends on Cav1.2 and its regulation by channel-associated β2AR.
Collapse
Affiliation(s)
| | - Hai Qian
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Zulfiquar A Malik
- Department of Pharmacology, University of California, Davis, CA, USA Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Jennifer L Price
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Erik A Hammes
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | | | | | - Franz Hofmann
- Department of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Geoffrey G Murphy
- Department of Molecular & Integrative Physiology, Molecular & Behavioral Neuroscience Institute University of Michigan, Ann Arbor, MI, USA
| | - Chao-Ye Chen
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7. J Hypertens 2015; 33:2431-42. [DOI: 10.1097/hjh.0000000000000723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
47
|
Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci U S A 2015; 112:13705-10. [PMID: 26483470 DOI: 10.1073/pnas.1511740112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphorylation is a major mechanism regulating the activity of ion channels that remains poorly understood with respect to T-type calcium channels (Cav3). These channels are low voltage-activated calcium channels that play a key role in cellular excitability and various physiological functions. Their dysfunction has been linked to several neurological disorders, including absence epilepsy and neuropathic pain. Recent studies have revealed that T-type channels are modulated by a variety of serine/threonine protein kinase pathways, which indicates the need for a systematic analysis of T-type channel phosphorylation. Here, we immunopurified Cav3.2 channels from rat brain, and we used high-resolution MS to construct the first, to our knowledge, in vivo phosphorylation map of a voltage-gated calcium channel in a mammalian brain. We identified as many as 34 phosphorylation sites, and we show that the vast majority of these sites are also phosphorylated on the human Cav3.2 expressed in HEK293T cells. In patch-clamp studies, treatment of the channel with alkaline phosphatase as well as analysis of dephosphomimetic mutants revealed that phosphorylation regulates important functional properties of Cav3.2 channels, including voltage-dependent activation and inactivation and kinetics. We also identified that the phosphorylation of a locus situated in the loop I-II S442/S445/T446 is crucial for this regulation. Our data show that Cav3.2 channels are highly phosphorylated in the mammalian brain and establish phosphorylation as an important mechanism involved in the dynamic regulation of Cav3.2 channel gating properties.
Collapse
|
48
|
Analysis of AKAP7γ Dimerization. JOURNAL OF SIGNAL TRANSDUCTION 2015; 2015:371626. [PMID: 26417456 PMCID: PMC4568377 DOI: 10.1155/2015/371626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022]
Abstract
A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that contribute to spatiotemporal regulation of PKA-mediated phosphorylation events. In particular, AKAP7 is a family of alternatively spliced proteins that participates in cardiac calcium dynamics. Here, we demonstrate via pull-down from transfected cells and by direct protein-protein association that AKAP7γ self-associates. Self-association appears to be an isoform specific phenomenon, as AKAP7α did not associate with itself or with AKAP7γ. However, AKAP7γ did associate with AKAP7δ, suggesting the long isoforms of the AKAP can form heterodimers. Surface plasmon resonance found that the AKAP7γ self-association occurs via two high affinity binding sites with K D values in the low nanomolar range. Mapping of the binding sites by peptide array reveals that AKAP7γ interacts with itself through multiple regions. Photon counting histogram analysis (PCH) of AKAP7γ-EGFP expressed in HEK-293 cells confirmed that AKAP7γ-EGFP self-associates in a cellular context. Lastly, computational modeling of PKA dynamics within AKAP7γ complexes suggests that oligomerization may augment phosphorylation of scaffolded PKA substrates. In conclusion, our study reveals that AKAP7γ forms both homo- and heterodimers with the long isoforms of the AKAP and that this phenomenon could be an important step in mediating effective substrate phosphorylation in cellular microdomains.
Collapse
|
49
|
Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circ Res 2015; 117:707-19. [PMID: 26243800 DOI: 10.1161/circresaha.114.305892] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
RATIONALE Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.
Collapse
Affiliation(s)
- Anna Zoccarato
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicoletta C Surdo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Jan M Aronsen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Laura A Fields
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Luisa Mancuso
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Giuliano Dodoni
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Alessandra Stangherlin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Craig Livie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - He Jiang
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Yuan Yan Sin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Frank Gesellchen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Anna Terrin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - George S Baillie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Stuart A Nicklin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Delyth Graham
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicolas Szabo-Fresnais
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Judith Krall
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Fabrice Vandeput
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Matthew Movsesian
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Leonardo Furlan
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Veronica Corsetti
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Graham Hamilton
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Konstantinos Lefkimmiatis
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Ivar Sjaastad
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Manuela Zaccolo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.).
| |
Collapse
|
50
|
Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. J Biol Chem 2015; 290:21086-21100. [PMID: 26100638 PMCID: PMC4543666 DOI: 10.1074/jbc.m115.645671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/27/2022] Open
Abstract
L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.
Collapse
Affiliation(s)
- Gurjot Kaur
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexandra Pinggera
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Nadine J Ortner
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Martina J Sinnegger-Brauns
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California 95616
| | - Gerald J Obermair
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jörg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|