1
|
Diep NT, Giang NT, Diu NTT, Nam NM, Khanh LV, Quang HV, Hang NT, Mao CV, Son HV, Hieu NL, Linh PT, Sklan EH, Toan NL, Tong HV. Complement receptor type 1 and 2 (CR1 and CR2) gene polymorphisms and plasma protein levels are associated with the Dengue disease severity. Sci Rep 2023; 13:17377. [PMID: 37833411 PMCID: PMC10575961 DOI: 10.1038/s41598-023-44512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The pathological outcome of dengue disease results from complex interactions between dengue virus (DENV) and host genetics and immune response. Complement receptor types 1 and 2 (CR1 and CR2) mediate complement activation through the alternative pathway. This study investigated the possible association of genetic polymorphisms and plasma levels of CR1 and CR2 with dengue disease. A total of 267 dengue patients and 133 healthy controls were recruited for this study. CR1 and CR2 gene polymorphisms were analyzed by Sanger sequencing, while plasma CR1 and CR2 levels were measured by ELISA. The frequency of the CR1 minor allele rs6691117G was lower in dengue patients and those with severe dengue compared to healthy controls. Plasma CR1 and CR2 levels were decreased in dengue patients compared to healthy controls (P < 0.0001) and were associated with platelet counts. CR1 levels were lower in dengue patients with warning signs (DWS) compared to those without DWS, while CR2 levels were decreased according to the severity of the disease and after 5 days (T1) and 8 days (T2) of follow-up. CR2 levels were decreased in dengue patients positive for anti-DENV IgG and IgM and patients with bleeding and could discriminate DWS and SD from dengue fever patients (AUC = 0.66). In conclusion, this study revealed a reduction in CR2 levels in dengue patients and that the CR1 SNP rs6691117A/G is associated with the dengue severity. The correlation of CR2 levels with platelet counts suggests that CR2 could be an additional biomarker for the prognosis of severe dengue disease.
Collapse
Affiliation(s)
- Nguy Thi Diep
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Hanoi Nephrology Hospital, Hanoi, Vietnam
| | - Ngo Truong Giang
- Department of Biology and Medical Genetics, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thi Thuy Diu
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Nguyen Minh Nam
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Ha Van Quang
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ho Van Son
- 175 Military Hospital, Ho Cho Minh City, Vietnam
| | - Nguyen Lan Hieu
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
2
|
Tang Y, Luo Y. Identification of a novel mutation in complement receptor 2 in Chinese familial systemic lupus erythematosus. Arch Rheumatol 2022; 37:566-573. [PMID: 36879571 PMCID: PMC9985375 DOI: 10.46497/archrheumatol.2022.9167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/23/2021] [Indexed: 03/08/2023] Open
Abstract
Objectives This study aims to analyze the relationship between complement receptor 2 (CR2) gene mutation and the clinical phenotype in Chinese familial systemic lupus erythematosus (SLE). Patients and methods A total of one Chinese familial SLE patients (median age: 30.25 years; range, 22 to 49 years) were included between January 2017 and December 2018. The clinical features and diagnoses of familial SLE patients were analyzed using whole-exome sequencing (WES) of genomic deoxyribonucleic acid (DNA) samples. Sanger sequencing was used to verify candidate mutations detected in the examined family. Results The mother and her three daughters were diagnosed with SLE. The clinical characteristics showed that the patient and her mother were diagnosed with lupus nephritis. The eldest daughter had decreased renal function and lower serum albumin levels. Immunological index analysis showed that all four patients were positive for anti-SSA and antinuclear antibody (ANA), but that only the second daughter was positive for anti-double-stranded DNA (dsDNA). Complement 3 (C3) was significantly decreased in all patients, while evaluation of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) showed that the second and third daughters had mild active SLE. The mother and eldest daughter were treated with prednisolone combined with cyclophosphamide, while the other two daughters were treated with prednisolone alone. The WES and Sanger sequencing analyses revealed an unreported missense T>C mutation c.2804 in the 15th exon of the CR gene in all four patients. Conclusion We identified a novel c.2804 (exon 15) T>C mutation in the CR gene of Chinese familial SLE. This mutation was previously reported, suggesting that the CR gene c.2804 (exon 15) T>C mutation is the probable cause of SLE in this family.
Collapse
Affiliation(s)
- Yuewu Tang
- Department of Nephrology, Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Luo
- Department of Blood Transfusion, Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Gao M, Liu S, Chatham WW, Mountz JD, Hsu HC. IL-4-Induced Quiescence of Resting Naive B Cells Is Disrupted in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1513-1522. [PMID: 36165181 PMCID: PMC9741951 DOI: 10.4049/jimmunol.2200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-β in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.
Collapse
Affiliation(s)
- Min Gao
- University of Alabama at Birmingham, Birmingham, AL; and
| | - Shanrun Liu
- University of Alabama at Birmingham, Birmingham, AL; and
| | - W Winn Chatham
- University of Alabama at Birmingham, Birmingham, AL; and
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
4
|
Cheng J, Clayton JS, Acemel RD, Zheng Y, Taylor RL, Keleş S, Franke M, Boackle SA, Harley JB, Quail E, Gómez-Skarmeta JL, Ulgiati D. Regulatory Architecture of the RCA Gene Cluster Captures an Intragenic TAD Boundary, CTCF-Mediated Chromatin Looping and a Long-Range Intergenic Enhancer. Front Immunol 2022; 13:901747. [PMID: 35769482 PMCID: PMC9235356 DOI: 10.3389/fimmu.2022.901747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.
Collapse
Affiliation(s)
- Jessica Cheng
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Rafael D. Acemel
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Martin Franke
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Susan A. Boackle
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,US Department of Veterans Affairs Medical Centre, US Department of Veterans Affairs, Cincinnati, OH, United States
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia,*Correspondence: Daniela Ulgiati,
| |
Collapse
|
5
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
6
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
7
|
Desikan R, Antia R, Dixit NM. Physical 'strength' of the multi-protein chain connecting immune cells: Does the weakest link limit antibody affinity maturation?: The weakest link in the multi-protein chain facilitating antigen acquisition by B cells in germinal centres limits antibody affinity maturation. Bioessays 2021; 43:e2000159. [PMID: 33448042 DOI: 10.1002/bies.202000159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The affinities of antibodies (Abs) for their target antigens (Ags) gradually increase in vivo following an infection or vaccination, but reach saturation at values well below those realisable in vitro. This 'affinity ceiling' could in many cases restrict our ability to fight infections and compromise vaccines. What determines the affinity ceiling has been an unresolved question for decades. Here, we argue that it arises from the strength of the chain of protein complexes that is pulled by B cells during the process of Ag acquisition. The affinity ceiling is determined by the strength of the weakest link in the chain. We identify the weakest link and show that the resulting affinity ceiling can explain the Ab affinities realized in vivo, providing a conceptual understanding of Ab affinity maturation. We explore plausible evolutionary underpinnings of the affinity ceiling, examine supporting evidence and alternative hypotheses and discuss implications for vaccination strategies.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
8
|
Jackson HM, Foley KE, O'Rourke R, Stearns TM, Fathalla D, Morgan BP, Howell GR. A novel mouse model expressing human forms for complement receptors CR1 and CR2. BMC Genet 2020; 21:101. [PMID: 32907542 PMCID: PMC7487969 DOI: 10.1186/s12863-020-00893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.
Collapse
Affiliation(s)
- Harriet M Jackson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kate E Foley
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Rita O'Rourke
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | - Dina Fathalla
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - B Paul Morgan
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
9
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
10
|
Strunz T, Lauwen S, Kiel C, Hollander AD, Weber BHF. A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration. Sci Rep 2020; 10:1584. [PMID: 32005911 PMCID: PMC6994629 DOI: 10.1038/s41598-020-58510-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/16/2020] [Indexed: 01/06/2023] Open
Abstract
Genome-wide association studies (GWAS) for late stage age-related macular degeneration (AMD) have identified 52 independent genetic variants with genome-wide significance at 34 genomic loci. Typically, such an approach rarely results in the identification of functional variants implicating a defined gene in the disease process. We now performed a transcriptome-wide association study (TWAS) allowing the prediction of effects of AMD-associated genetic variants on gene expression. The TWAS was based on the genotypes of 16,144 late-stage AMD cases and 17,832 healthy controls, and gene expression was imputed for 27 different human tissues which were obtained from 134 to 421 individuals. A linear regression model including each individuals imputed gene expression data and the respective AMD status identified 106 genes significantly associated to AMD variants in at least one tissue (Q-value < 0.001). Gene enrichment analysis highlighted rather systemic than tissue- or cell-specific processes. Remarkably, 31 of the 106 genes overlapped with significant GWAS signals of other complex traits and diseases, such as neurological or autoimmune conditions. Taken together, our study highlights the fact that expression of genes associated with AMD is not restricted to retinal tissue as could be expected for an eye disease of the posterior pole, but instead is rather ubiquitous suggesting processes underlying AMD pathology to be of systemic nature.
Collapse
Affiliation(s)
- Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Susette Lauwen
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Anneke den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Association of complement C3d receptor 2 genotypes with the acquisition of HIV infection in a trial of recombinant glycoprotein 120 vaccine. AIDS 2020; 34:25-32. [PMID: 31634193 DOI: 10.1097/qad.0000000000002401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Complement C3d receptor 2 (CR2) is the main receptor for complement protein C3d and plays an important role in adaptive immune responses. CR2 genetic variants are associated with susceptibility to systemic lupus erythematosus as well as to HIV-1 infection. In addition, CR2 function can be subverted by HIV-1 for an efficient entry into target cells; in a process known as antibody-dependent enhancement of viral infection. We sought to determine the association between CR2 gene variants with HIV-1 acquisition after vaccination with recombinant gp120 protein (Vax004 clinical trial). DESIGN AND METHODS This is a retrospective cross-sectional study, comprising male volunteers of European ancestry including infected (n = 273) and uninfected (n = 402) vaccinees and placebo, who were genotyped for three single nucleotide polymorphisms (SNPs) in the CR2 gene region. RESULTS An interaction was observed between the baseline sexual behavior and the SNP rs3813946 for higher risk of infection in vacinees (interaction term P = 0.02). This SNP was associated with increased susceptibility to HIV-1 infection after vaccination in volunteers with low behavioral risk odds ratio (95% confidence interval): 5.5 (1.4-21.7) P = 0.006 but not vaccinees with high behavioral risk or volunteers given placebo (P = 0.7). Moreover, CR2 genotype was strongly associated with the rate of HIV-1 acquisition after vaccination in low-risk volunteers [hazard odds ratio (95% confidence interval): 3.3 (1.6-7.0), P = 0.001]. CONCLUSION The current study suggests that CR2 may play a role in HIV-1 acquisition after vaccination with rgp120 proteins.
Collapse
|
12
|
Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, Kamen DL, Gilkeson GS, Weisman MH, Karp DR, Gaffney PM, Harley JB, Wallace DJ, Norris JM, James JA. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann Rheum Dis 2019; 78:1235-1241. [PMID: 31217170 PMCID: PMC6692217 DOI: 10.1136/annrheumdis-2019-215361] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with unknown aetiology. Epstein-Barr virus (EBV) is an environmental factor associated with SLE. EBV maintains latency in B cells with frequent reactivation measured by antibodies against viral capsid antigen (VCA) and early antigen (EA). In this study, we determined whether EBV reactivation and single nucleotide polymorphisms (SNPs) in EBV-associated host genes are associated with SLE transition. METHODS SLE patient relatives (n=436) who did not have SLE at baseline were recontacted after 6.3 (±3.9) years and evaluated for interim transitioning to SLE (≥4 cumulative American College of Rheumatology criteria); 56 (13%) transitioned to SLE prior to the follow-up visit. At both visits, detailed demographic, environmental, clinical information and blood samples were obtained. Antibodies against viral antigens were measured by ELISA. SNPs in IL10, CR2, TNFAIP3 and CD40 genes were typed by ImmunoChip. Generalised estimating equations were used to test associations between viral antibody levels and transitioning to SLE. RESULTS Mean baseline VCA IgG (4.879±1.797 vs 3.866±1.795, p=0.0003) and EA IgG (1.192±1.113 vs 0.7774±0.8484, p=0.0236) levels were higher in transitioned compared with autoantibody negative non-transitioned relatives. Increased VCA IgG and EA IgG were associated with transitioning to SLE (OR 1.28 95% CI 1.07 to 1.53, p=0.007, OR 1.43 95% CI 1.06 to 1.93, p=0.02, respectively). Significant interactions were observed between CD40 variant rs48100485 and VCA IgG levels and IL10 variant rs3024493 and VCA IgA levels in transitioning to SLE. CONCLUSION Heightened serologic reactivation of EBV increases the probability of transitioning to SLE in unaffected SLE relatives.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa E Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Michael T Harmon
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Diane L Kamen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Karp
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Interaction between IL-33 Gene Polymorphisms and Current Smoking with Susceptibility to Systemic Lupus Erythematosus. J Immunol Res 2019; 2019:1547578. [PMID: 30984790 PMCID: PMC6432724 DOI: 10.1155/2019/1547578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023] Open
Abstract
Aims This study is aimed at exploring the relation between IL-33 single-nucleotide polymorphisms (SNPs) and the risk of systemic lupus erythematosus (SLE). Methods SNPStats (online software) was used to test the Hardy-Weinberg equilibrium in controls. Generalized multifactor dimensionality reduction (GMDR) was adopted to screen the preferable interaction between IL-33 SNPs and current smoking. Results Logistic regression analysis based on the fundamental data of age, gender, BMI, current smoking, and alcohol drinking showed that both rs1929992-G and rs1891385-C alleles were correlated with an increasing risk of SLE, the ORs (95% CI) of which were 1.62 (1.21-2.05) and 1.64 (1.22-2.10), respectively. One two-locus model (rs1929992×current smoking) had a testing accuracy of 60.11% (P = 0.0010). Through an overall multidimensional model, optimum cross-validation consistency was obtained. The analysis indicated that current smoking status influenced the SLE risk depending on the genotypes at rs1929992. Pairwise LD analysis indicated that haplotype rs1929992G-rs7044343T was statistically related to the elevating risk of SLE (P < 0.05). Those subjects with the G-T haplotype had a higher SLE risk than those with other haplotypes, after correction with factors, including gender, alcohol drinking, age, BMI, and current smoking. Conclusions The rs1929992-G and rs1891385-C allele, interaction between the rs1929992 gene and current smoking, and haplotype rs1929992G-rs7044343T were all risk factors of SLE.
Collapse
|
14
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Gurjar BS, Manikanta Sriharsha T, Bhasym A, Prabhu S, Puraswani M, Khandelwal P, Saini H, Saini S, Verma AK, Chatterjee P, Guchhait P, Bal V, George A, Rath S, Sahu A, Sharma A, Hari P, Sinha A, Bagga A. Characterization of genetic predisposition and autoantibody profile in atypical haemolytic-uraemic syndrome. Immunology 2018; 154:663-672. [PMID: 29485195 PMCID: PMC6050217 DOI: 10.1111/imm.12916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
We previously reported that Indian paediatric patients with atypical haemolytic-uraemic syndrome (aHUS) showed high frequencies of anti-complement factor H (FH) autoantibodies that are correlated with homozygous deletion of the genes for FH-related proteins 1 and 3 (FHR1 and FHR3) (FHR1/3-/- ). We now report that Indian paediatric aHUS patients without anti-FH autoantibodies also showed modestly higher frequencies of the FHR1/3-/- genotype. Further, when we characterized epitope specificities and binding avidities of anti-FH autoantibodies in aHUS patients, most anti-FH autoantibodies were directed towards the FH cell-surface anchoring polyanionic binding site-containing C-terminal short conservative regions (SCRs) 17-20 with higher binding avidities than for native FH. FH SCR17-20-binding anti-FH autoantibodies also bound the other cell-surface anchoring polyanionic binding site-containing region FH SCR5-8, at lower binding avidities. Anti-FH autoantibody avidities correlated with antibody titres. These anti-FH autoantibody characteristics did not differ between aHUS patients with or without the FHR1/3-/- genotype. Our data suggest a complex matrix of interactions between FHR1-FHR3 deletion, immunomodulation and anti-FH autoantibodies in the aetiopathogenesis of aHUS.
Collapse
Affiliation(s)
| | | | - Angika Bhasym
- Regional Centre for BiotechnologyFaridabadIndia
- Department of BiotechnologyManipal Academy of Higher EducationManipalIndia
| | - Savit Prabhu
- Paediatric Biology CentreTranslational Health Science and Technology InstituteFaridabadIndia
| | - Mamta Puraswani
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Priyanka Khandelwal
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Himanshi Saini
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Savita Saini
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | | | | | | | - Vineeta Bal
- National Institute of ImmunologyNew DelhiIndia
- Paediatric Biology CentreTranslational Health Science and Technology InstituteFaridabadIndia
| | - Anna George
- National Institute of ImmunologyNew DelhiIndia
| | - Satyajit Rath
- National Institute of ImmunologyNew DelhiIndia
- Paediatric Biology CentreTranslational Health Science and Technology InstituteFaridabadIndia
- Agharkar Research InstitutePuneIndia
| | - Arvind Sahu
- National Centre for Cell ScienceS. P. Pune University CampusPuneIndia
| | - Amita Sharma
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Pankaj Hari
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Aditi Sinha
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| | - Arvind Bagga
- Department of PaediatricsAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
16
|
Lv TT, Wu J, Li J, Zhang TP, Yang XK, Xiang N, Fan YG, Pan HF, Wang B. Association of interleukin-10 gene single nucleotide polymorphisms with susceptibility to systemic lupus erythematosus in a Chinese population. Gene 2017; 642:549-554. [PMID: 29199038 DOI: 10.1016/j.gene.2017.11.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the association of interleukin (IL)-10 gene single nucleotide polymorphisms (SNPs) with susceptibility to systemic lupus erythematosus (SLE) in a Chinese population. 848 SLE patients and 461 normal controls were recruited in this study. Nine SNPs in IL-10 gene (rs1518110, rs1518111, rs1554286, rs1800890, rs1800893, rs3024493, rs3024495, rs3024498 and rs6667202) were genotyped using TaqMan genotyping assays on Fluidigm 192.24 system. The frequency of IL-10 rs3024498-C allele was significantly higher in patient group compared with control subjects (OR=5.118, 95% CI=1.819-14.405, P=0.002). No significant differences were detected for the distribution of allele and genotype frequencies of other eight SNPs between patients with SLE and controls after Bonferroni correction (all P>0.0056). Interestingly, significant differences were detected both in the allele and genotype frequencies of rs3024498 between SLE patients with and without arthritis (P=0.002, P=0.022, respectively).There was significant difference in genotype frequency at rs3024498 between SLE patients with and without malar rash (P=0.040). And, there was significant difference in allele frequency at rs3024498 between SLE patients with and without anti-double-stranded DNA (P=0.032). Meanwhile, significant difference in genotype frequency at rs1518110 and rs1518111 were found in patients with and without lupus headache (P=0.025, P=0.038, respectively). There were significant difference in allele and genotype frequency at rs1800890 and rs6667202 between SLE patients with and without thrombocytopenia (rs1800890: P=0.016, P=0.026, respectively; rs6667202: P=0.007, P=0.007, respectively). Further, significant difference were observed both in allele frequency and in genotype distribution of rs1800893 between patients with and without tubular urine and proteinuria (tubular urine: P<0.001, P=0.003, respectively; proteinuria: P=0.001, P=0.018, respectively). In summary, IL-10 rs3024498 polymorphism might contribute to SLE susceptibility and several clinical phenotypes.
Collapse
Affiliation(s)
- Tian-Tian Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Jun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Nan Xiang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital affiliated with Anhui Medical University, 17 Lujiang Road, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
17
|
|
18
|
Ferluga J, Kouser L, Murugaiah V, Sim RB, Kishore U. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders. Mol Immunol 2017; 84:84-106. [PMID: 28216098 DOI: 10.1016/j.molimm.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
19
|
Segal Y, Dahan S, Calabrò M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res 2017; 65:564-571. [DOI: 10.1007/s12026-016-8890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun 2016; 74:161-175. [PMID: 27522116 DOI: 10.1016/j.jaut.2016.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
The genome-wide association study is a free-hypothesis approach based on screening of thousands or even millions of genetic variants distributed throughout the whole human genome in relation to a phenotype. The relevant role of the genome-wide association studies in the last decade is undisputed because it has permitted to elucidate multiple risk genetic factors associated with the susceptibility to several human complex diseases. Regarding systemic lupus erythematosus (SLE) this approach has allowed to identify more than 60 risk loci for SLE susceptibility across populations to date, increasing our understanding on the pathogenesis of this disease. We present the latest findings in the genetic of SLE across populations using genome-wide approaches. These studies revealed that most of the genetic risk is shared across borders and ethnicities. Finally, we focus on describing the most important risk loci for SLE attempting to cover the genetic findings in relation to functional polymorphisms, such as missense single nucleotide polymorphisms (SNPs) or regulatory variants involved in the development of the disease. The functional studies try to identify the causality of some GWAS-associated variants, many of which fall in non-coding regions of the genome, suggesting a regulatory role. Many loci show an environmental interaction, another aspect revealed by the studies of epigenetic modifications and those associated with genetic variants. Finally, new-generation sequencing technologies can open other paths in the research on SLE genetics, the role of rare variants and the detailed identification of causal regulatory variation. The clinical relevance of the genetic factors will be shown when we are able to use them or in combination with other molecular measurements to re-classify a heterogeneous disease such as SLE.
Collapse
Affiliation(s)
- Maria Teruel
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain.
| | - Marta E Alarcón-Riquelme
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain; Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 67, Sweden.
| |
Collapse
|
21
|
Association of Complement Receptor 2 Gene Polymorphisms with Susceptibility to Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9208035. [PMID: 27446959 PMCID: PMC4944048 DOI: 10.1155/2016/9208035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a complex and multifactorial disease that is influenced by a number of genetic factors in addition to environmental factors. Some autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are associated with the development of ONFH. Complement receptor type 2 (CR2) is membrane glycoprotein which binds C3 degradation products generated during complement activation. CR2 has many important functions in normal immunity and is assumed to play a role in the development of autoimmune disease. We investigated whether CR2 gene polymorphisms are associated with risk of ONFH in SLE patients. Eight polymorphisms in the CR2 gene were genotyped using TaqMan™ assays in 150 SLE patients and 50 ONFH in SLE patients (SLE_ONFH). The association analysis of genotyped SNPs and haplotypes was performed with ONFH. It was found that three SNPs, rs3813946 in 5′-UTR (untranslated region), rs311306 in intron 1, and rs17615 in exon 10 (nonsynonymous SNP; G/A, Ser639Asn) of the CR2 gene, were associated with an increased risk of ONFH under recessive model (P values; 0.004~0.016). Haplotypes were also associated with an increased risk (OR; 3.73~) of ONFH in SLE patients. These findings may provide evidences that CR2 contributes to human ONFH susceptibility in Korean SLE patients.
Collapse
|
22
|
Zhao J, Giles BM, Taylor RL, Yette GA, Lough KM, Ng HL, Abraham LJ, Wu H, Kelly JA, Glenn SB, Adler AJ, Williams AH, Comeau ME, Ziegler JT, Marion M, Alarcón-Riquelme ME, Alarcón GS, Anaya JM, Bae SC, Kim D, Lee HS, Criswell LA, Freedman BI, Gilkeson GS, Guthridge JM, Jacob CO, James JA, Kamen DL, Merrill JT, Sivils KM, Niewold TB, Petri MA, Ramsey-Goldman R, Reveille JD, Scofield RH, Stevens AM, Vilá LM, Vyse TJ, Kaufman KM, Harley JB, Langefeld CD, Gaffney PM, Brown EE, Edberg JC, Kimberly RP, Ulgiati D, Tsao BP, Boackle SA. Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Ann Rheum Dis 2016; 75:242-52. [PMID: 25180293 PMCID: PMC4717392 DOI: 10.1136/annrheumdis-2014-205584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association. METHODS Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR. RESULTS The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10(-4), OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10(-7), OR 0.71; case-only pmeta=1.9×10(-4), OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR. CONCLUSIONS These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
Collapse
Affiliation(s)
- Jian Zhao
- Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Brendan M Giles
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rhonda L Taylor
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gabriel A Yette
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kara M Lough
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Han Leng Ng
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lawrence J Abraham
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia
| | - Hui Wu
- Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Adam J Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Adrienne H Williams
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mary E Comeau
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Julie T Ziegler
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Miranda Marion
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Marta E Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Pfizer-Universidad de Granada-Junta de Andalucía Center for Genomics and Oncological Research, Granada, Spain
| | | | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Dam Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Lindsey A Criswell
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gary S Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Diane L Kamen
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joan T Merrill
- Department of Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kathy Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle A Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John D Reveille
- Department of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Anne M Stevens
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine and Immunology, King's College London, London, UK
| | - Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Elizabeth E Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniela Ulgiati
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, Western Australia, Australia
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| |
Collapse
|
23
|
Zhang J, Zhang L, Zhang Y, Yang J, Guo M, Sun L, Pan HF, Hirankarn N, Ying D, Zeng S, Lee TL, Lau CS, Chan TM, Leung AMH, Mok CC, Wong SN, Lee KW, Ho MHK, Lee PPW, Chung BHY, Chong CY, Wong RWS, Mok MY, Wong WHS, Tong KL, Tse NKC, Li XP, Avihingsanon Y, Rianthavorn P, Deekajorndej T, Suphapeetiporn K, Shotelersuk V, Ying SKY, Fung SKS, Lai WM, Garcia-Barceló MM, Cherny SS, Sham PC, Cui Y, Yang S, Ye DQ, Zhang XJ, Lau YL, Yang W. Gene-Based Meta-Analysis of Genome-Wide Association Study Data Identifies Independent Single-Nucleotide Polymorphisms inANXA6as Being Associated With Systemic Lupus Erythematosus in Asian Populations. Arthritis Rheumatol 2015. [PMID: 26202167 DOI: 10.1002/art.39275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Zhang
- Queen Mary Hospital and The University of Hong Kong, Hong Kong, China, and Eye and ENT Hospital of Fudan University; Shanghai China
| | - Lu Zhang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Yan Zhang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Jing Yang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Mengbiao Guo
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | | | - Dingge Ying
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Shuai Zeng
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Tsz Leung Lee
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Chak Sing Lau
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Tak Mao Chan
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | - Chi Chiu Mok
- Tuen Mun Hospital, Tuen Mun, New Territories; Hong Kong China
| | - Sik Nin Wong
- Tuen Mun Hospital, Tuen Mun, New Territories; Hong Kong China
| | - Ka Wing Lee
- Pamela Youde Nethersole Eastern Hospital; Hong Kong China
| | - Marco Hok Kung Ho
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | - Chun Yin Chong
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | - Mo Yin Mok
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stacey S. Cherny
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Pak Chung Sham
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| | - Yong Cui
- Anhui Medical University; China Hefei China
| | - Sen Yang
- Anhui Medical University; China Hefei China
| | | | | | - Yu Lung Lau
- Queen Mary Hospital and The University of Hong Kong, Hong Kong, China, and The University of Hong Kong-Shenzhen Hospital; Shenzhen China
| | - Wanling Yang
- Queen Mary Hospital and The University of Hong Kong; Hong Kong China
| |
Collapse
|
24
|
Nichols EM, Jones R, Watson R, Pepper CJ, Fegan C, Marchbank KJ. A CD21 low phenotype, with no evidence of autoantibodies to complement proteins, is consistent with a poor prognosis in CLL. Oncotarget 2015; 6:32669-80. [PMID: 26452134 PMCID: PMC4741721 DOI: 10.18632/oncotarget.5404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is characterized by differential BCR signaling and autoimmune complications. Complement modulates B-cell function via C3d and CD21 cross-linked to the B-cell receptor (BCR). We hypothesized that CD21 contributes to BCR signaling and participates in the autoimmunity associated with CLL. We analyzed CD21 expression on 106 CLL patient samples and matched serum from 50 patients for the presence of soluble CD21 and autoantibodies to CR2, CR1, MCP and FH. CD21 expression on CLL B-cells was significantly lower than that expressed on B-cells from age-matched controls (P < 0.0001) and was inversely correlated with soluble CD21 (r2 = −0.41). We found no evidence of autoantibody to any complement regulator. Low CD21 expression correlated to prognostic subsets of CLL patients, i.e. cases with unmutated IGHV genes (P = 0.0006), high CD38 (P = 0.02) and high ZAP70 expression (P = 0.0017). Low CD21 expression was inversely correlated to the levels of phosphotyrosine induced in CLL cells following BCR ligation with αIgM (r2=–0.21). Importantly, lower CD21 expression was also predictive for reduced overall survival (P = 0.005; HR = 2.7). In conclusion, we showed that reduced expression of CD21 on CLL B-cells appears functionally relevant and was associated with poor clinical outcomes.
Collapse
Affiliation(s)
- Eva-Maria Nichols
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachael Watson
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Chris J Pepper
- Institute of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Chris Fegan
- Institute of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
25
|
Herrero R, Real LM, Rivero-Juárez A, Pineda JA, Camacho Á, Macías J, Laplana M, Konieczny P, Márquez FJ, Souto JC, Soria JM, Saulle I, Lo Caputo S, Biasin M, Rivero A, Fibla J, Caruz A. Association of complement receptor 2 polymorphisms with innate resistance to HIV-1 infection. Genes Immun 2015; 16:134-41. [PMID: 25569262 DOI: 10.1038/gene.2014.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022]
Abstract
HIV-1 induces activation of complement through the classical and lectin pathways. However, the virus incorporates several membrane-bound or soluble regulators of complement activation (RCA) that inactivate complement. HIV-1 can also use the complement receptors (CRs) for complement-mediated antibody-dependent enhancement of infection (Ć-ADE). We hypothesize that hypofunctional polymorphisms in RCA or CRs may protect from HIV-1 infection. For this purpose, 139 SNPs located in 19 RCA and CRs genes were genotyped in a population of 201 Spanish HIV-1-exposed seronegative individuals (HESN) and 250 HIV-1-infected patients. Two SNPs were associated with infection susceptibility, rs1567190 in CR2 (odds ratio (OR) = 2.27, P = 1 × 10(-4)) and rs2842704 in C4BPA (OR = 2.11, P = 2 × 10(-4)). To replicate this finding, we analyzed a cohort of Italian, sexually HESN individuals. Although not significant (P = 0.25, OR = 1.57), similar genotypic proportions were obtained for the CR2 marker rs1567190. The results of the two association analyses were combined through a random effect meta-analysis, with a significant P-value of 2.6 x 10(-5) (OR = 2.07). Furthermore, we found that the protective CR2 genotype is correlated with lower levels CR2 mRNA as well as differences in the ratio of the long and short CR2 isoforms.
Collapse
Affiliation(s)
- R Herrero
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - L M Real
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - A Rivero-Juárez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J A Pineda
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - Á Camacho
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J Macías
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - M Laplana
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, Lleida, Catalonia, Spain
| | - P Konieczny
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - F J Márquez
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - J C Souto
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i de Sant Pau, Barcelone, Spain
| | - J M Soria
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i de Sant Pau, Barcelone, Spain
| | - I Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - M Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - A Rivero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J Fibla
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, Lleida, Catalonia, Spain
| | - A Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
26
|
Li Q, Ge X, Xu X, Zhong Y, Qie Z. Comparison of the gene expression profiles between gallstones and gallbladder polyps. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8016-8023. [PMID: 25550845 PMCID: PMC4270579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Gallstones and gallbladder polyps (GPs) are two major types of gallbladder diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify gallstones and GPs related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS We enrolled 7 patients with gallstones and 2 patients with GP for RNA-Seq and we conducted functional enrichment analysis and protein-protein interaction (PPI) networks analysis for identified differentially expressed genes (DEGs). RESULTS RNA-Seq produced 41.7 million in gallstones and 32.1 million pairs in GPs. A total of 147 DEGs was identified between gallstones and GPs. We found GO terms for molecular functions significantly enriched in antigen binding (GO:0003823, P=5.9E-11), while for biological processes, the enriched GO terms were immune response (GO:0006955, P=2.6E-15), and for cellular component, the enriched GO terms were extracellular region (GO:0005576, P=2.7E-15). To further evaluate the biological significance for the DEGs, we also performed the KEGG pathway enrichment analysis. The most significant pathway in our KEGG analysis was Cytokine-cytokine receptor interaction (P=7.5E-06). PPI network analysis indicated that the significant hub proteins containing S100A9 (S100 calcium binding protein A9, Degree=94) and CR2 (complement component receptor 2, Degree=8). CONCLUSION This present study suggests some promising genes and may provide a clue to the role of these genes playing in the development of gallstones and GPs.
Collapse
Affiliation(s)
- Quanfu Li
- Department of Hepatobiliary Surgery, The Second Hospital of BaodingBaoding 071051, China
| | - Xin Ge
- National Hepatobiliary and Enteric Surgery, Central South UniversityChangsha 410008, China
| | - Xu Xu
- Department of Hepatobiliary Surgery, The Second Hospital of BaodingBaoding 071051, China
| | - Yonggang Zhong
- Department of Hepatobiliary Surgery, The Second Hospital of BaodingBaoding 071051, China
| | - Zengwang Qie
- Department of Hepatobiliary Surgery, The Second Hospital of BaodingBaoding 071051, China
| |
Collapse
|
27
|
Abstract
Genetics unquestionably contributes to systemic lupus erythematosus (SLE) predisposition, progression and outcome. Nevertheless, single-gene defects causing lupus-like phenotypes have been infrequently documented. The majority of the identified genetic SLE risk factors are, therefore, common variants, responsible for a small effect on the global risk. Recently, genome wide association studies led to the identification of a growing number of gene variants associated with SLE susceptibility, particular disease phenotypes, and antibody profiles. Further studies addressed the biological effects of these variants. In addition, the role of epigenetics has recently been revealed. These combined efforts contributed to a better understanding of SLE pathogenesis and to the characterization of clinically relevant pathways. In this review, we describe SLE-associated single-gene defects, common variants, and epigenetic changes. We also discuss the limitations of current methods and the challenges that we still have to face in order to incorporate genomic and epigenomic data into clinical practice.
Collapse
|
28
|
Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression. PLoS Genet 2013; 9:e1003870. [PMID: 24130510 PMCID: PMC3794920 DOI: 10.1371/journal.pgen.1003870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/20/2013] [Indexed: 01/08/2023] Open
Abstract
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10⁻⁸, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Collapse
|
29
|
Giles BM, Boackle SA. Linking complement and anti-dsDNA antibodies in the pathogenesis of systemic lupus erythematosus. Immunol Res 2013; 55:10-21. [PMID: 22941560 DOI: 10.1007/s12026-012-8345-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus is a severe autoimmune disease that affects multiple organ systems resulting in diverse symptoms and outcomes. It is characterized by antibody production to a variety of self-antigens, but it is specifically associated with those against anti-dsDNA. Anti-dsDNA antibodies are present before the onset of clinical disease and are associated with severe manifestations of lupus such as glomerulonephritis. Their levels fluctuate with changes in disease activity and, in combination with the levels of complement proteins C3 and C4, are strong indicators of disease flare and treatment response in patients with lupus. The decreased complement levels that are noted during flares of lupus activity are believed to be secondary to increased autoantibody production and immune complex formation that results in tissue damage; however, recent data suggest that complement activation can also drive development of these pathogenic autoantibodies. This review will explore the various roles of complement in the development and pathogenesis of anti-dsDNA antibodies.
Collapse
Affiliation(s)
- Brendan M Giles
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
30
|
Fan Q, He JF, Wang QR, Cai HB, Sun XG, Zhou XX, Qin HD, Shugart YY, Jia WH. Functional polymorphism in the 5'-UTR of CR2 is associated with susceptibility to nasopharyngeal carcinoma. Oncol Rep 2013; 30:11-6. [PMID: 23612877 PMCID: PMC3729234 DOI: 10.3892/or.2013.2421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is a squamous cell cancer endemic in Southern China and Southeast Asia. It has been shown that inflammatory and immune responses during EBV infection contribute to the development of NPC. The complement receptor 2 (CR2) gene plays central roles during inflammatory and immune responses and, therefore, is a good candidate susceptibility gene for NPC. We performed PCR-based sequencing to identify multiple single-nucleotide polymorphisms (SNPs) within the exon regions of the CR2 gene in a Cantonese population. Two SNPs were screened in 528 NPC patients and 408 normal individuals to perform a case-control study matched according to age, gender and residence. Furthermore, we cloned the entire 5′-UTR and entire CR2 promoter into a luciferase report system and compared the luciferase activities between the different allelic constructs. A SNP in the 5′-UTR of CR2 (24 T/C, rs3813946) showed a significant association (P<0.01) with NPC in the Cantonese population studied. The subjects were categorized into 2 age groups: group 1, age ≤45 years and group 2, age >45 years. In group 1, the allelic frequencies of 24 T/C in the patients were significantly different from those of the controls (P=0.0034). The odds ratio (OR=1.81) also indicated a higher risk of NPC in individuals who carried the minor allele C. All constructs exerted allelic differences on luciferase activities, but only the susceptible allele +24C construct showed increased activity. Our findings implicate CR2 as a susceptibility gene for NPC and suggest that enhanced CR2 expression may be involved in the oncogenesis and development of NPC.
Collapse
Affiliation(s)
- Qin Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover. Arch Virol 2012; 158:325-39. [DOI: 10.1007/s00705-012-1491-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/17/2012] [Indexed: 01/25/2023]
|
32
|
Perry DJ, Yin Y, Telarico T, Baker HV, Dozmorov I, Perl A, Morel L. Murine lupus susceptibility locus Sle1c2 mediates CD4+ T cell activation and maps to estrogen-related receptor γ. THE JOURNAL OF IMMUNOLOGY 2012; 189:793-803. [PMID: 22711888 DOI: 10.4049/jimmunol.1200411] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Cruickshank MN, Karimi M, Mason RL, Fenwick E, Mercer T, Tsao BP, Boackle SA, Ulgiati D. Transcriptional effects of a lupus-associated polymorphism in the 5' untranslated region (UTR) of human complement receptor 2 (CR2/CD21). Mol Immunol 2012; 52:165-73. [PMID: 22673213 DOI: 10.1016/j.molimm.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/24/2012] [Accepted: 04/29/2012] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic component that determines risk. A common three single-nucleotide polymorphism (SNP) haplotype of the complement receptor 2 (CR2) gene has been associated with increased risk of SLE (Wu et al., 2007; Douglas et al., 2009), and a less common haplotype consisting of the major allele at SNP1 and minor alleles at SNP2 and 3 confers protection (Douglas et al., 2009). SNP1 (rs3813946), which is located in the 5' untranslated region (UTR) of the CR2 gene, altered transcriptional activity of a CR2 promoter-luciferase reporter gene construct transiently transfected into a B cell line (Wu et al., 2007) and had an independent effect in the protective haplotype (Douglas et al., 2009). In this study, we show that this SNP alters transcriptional activity in a transiently transfected non B-cell line as well as in stably transfected cell lines, supporting its relevance in vivo. Furthermore, the allele at this SNP affects chromatin accessibility of the surrounding sequence and transcription factor binding. These data confirm the effects of rs3813946 on CR2 transcription, identifying the 5' UTR to be a novel regulatory element for the CR2 gene in which variation may alter gene function and modify the development of lupus.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Zhao J, Wu H, Khosravi M, Cui H, Qian X, Kelly JA, Kaufman KM, Langefeld CD, Williams AH, Comeau ME, Ziegler JT, Marion MC, Adler A, Glenn SB, Alarcón-Riquelme ME, Pons-Estel BA, Harley JB, Bae SC, Bang SY, Cho SK, Jacob CO, Vyse TJ, Niewold TB, Gaffney PM, Moser KL, Kimberly RP, Edberg JC, Brown EE, Alarcon GS, Petri MA, Ramsey-Goldman R, Vilá LM, Reveille JD, James JA, Gilkeson GS, Kamen DL, Freedman BI, Anaya JM, Merrill JT, Criswell LA, Scofield RH, Stevens AM, Guthridge JM, Chang DM, Song YW, Park JA, Lee EY, Boackle SA, Grossman JM, Hahn BH, Goodship THJ, Cantor RM, Yu CY, Shen N, Tsao BP. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet 2011; 7:e1002079. [PMID: 21637784 PMCID: PMC3102741 DOI: 10.1371/journal.pgen.1002079] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/28/2011] [Indexed: 01/24/2023] Open
Abstract
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE. Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Jian Zhao
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Wu
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melanie Khosravi
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Huijuan Cui
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxia Qian
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenneth M. Kaufman
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- United States Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Adrienne H. Williams
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Mary E. Comeau
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Julie T. Ziegler
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Miranda C. Marion
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Stuart B. Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia, Granada, Spain
| | | | | | | | - John B. Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- United States Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Soo-Kyung Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Chaim O. Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Timothy J. Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London, London, United Kingdom
| | - Timothy B. Niewold
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kathy L. Moser
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey C. Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth E. Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Graciela S. Alarcon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle A. Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Luis M. Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - John D. Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Gary S. Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Diane L. Kamen
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Juan-Manuel Anaya
- Center for Autoimmune Disease Research, Universidad del Rosario, Bogota, Colombia
| | - Joan T. Merrill
- Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Lindsey A. Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- United States Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Anne M. Stevens
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | | | - Yeong Wook Song
- Division of Rheumatology, Seoul National University, Seoul, Korea
| | - Ji Ah Park
- Division of Rheumatology, Seoul National University, Seoul, Korea
| | - Eun Young Lee
- Division of Rheumatology, Seoul National University, Seoul, Korea
| | - Susan A. Boackle
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jennifer M. Grossman
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bevra H. Hahn
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Rita M. Cantor
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chack-Yung Yu
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Nan Shen
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China
| | - Betty P. Tsao
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
The genetic components in systemic lupus erythematosus (SLE) have long been established, however, it has been unclear for many years whether the same genetic risk factors for SLE are shared across different ethnic groups. Over the past few years, a number of genetic and genomic studies have been conducted in Asian populations to address this question. These studies have demonstrated that genetic heterogeneity does exist in SLE across different ethnic groups. With these studies, it has been established that a number of genes associated with SLE in Caucasians are also risk factors in Asians: HLA class II genes, STAT4, BANK1, BLK, IRF5, TNFSF4, ITGAM, etc., while there are also novel genetic risk factors identified by these studies in Asians, for instance, the ETS1 and WDFY4 in Chinese. For the genomic studies, the interferon signature has been confirmed as a major lupus molecular phenotype in Asians the same as in Caucasians; microRNA expression profiling and its novel role in regulating the interferon pathway has been first revealed in Asians. Further understanding of the function of lupus disease genes and delineating the key molecular pathway(s) will enhance the development of novel therapeutic targets and biomarkers for individualized clinical management for lupus patients.
Collapse
Affiliation(s)
- Y J Yuan
- Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
37
|
Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:271694. [PMID: 21403825 PMCID: PMC3042628 DOI: 10.1155/2011/271694] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/19/2010] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
Collapse
|
38
|
Birmingham DJ, Irshaid F, Nagaraja HN, Zou X, Tsao BP, Wu H, Yu CY, Hebert LA, Rovin BH. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 2010; 19:1272-80. [PMID: 20605879 DOI: 10.1177/0961203310371154] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To assess the relationship between serum C3 or C4 levels and lupus renal flare, C3 and C4 levels were measured bimonthly in 71 lupus nephritis patients for a mean of 35 months, during which time 70 renal flares were identified. Comparing baseline, pre-flare, and at-flare values indicated that neither C3 nor C4 levels decreased pre-flare, but both decreased on average significantly at flare. However, sensitivity/specificity for C3 (75%/71%) and C4 (48%/71%) were low. To account for other influencing factors, multiple regression was performed that included bimonthly values of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and genotype data on C3 (S/F), CRP (1846G > A), and the complement regulator factor H (Y402H). This analysis revealed that reduced levels of C4, but not C3, were independently associated with the two-month pre-flare period. Conversely, reduced levels of C3, but not C4, were independently associated with the flare visit. Significant pro-flare interactions included low C3 levels with the factor H 402HH-encoding genotype, and low CRP levels with the C3 F allele. Together these data suggest that C4 activation is critical for initiating renal flare while C3 activation is involved in the actual tissue damage, and that these effects are influenced by genetic variability in complement activation and regulation.
Collapse
|
39
|
Murine lupus susceptibility locus Sle1a requires the expression of two sub-loci to induce inflammatory T cells. Genes Immun 2010; 11:542-53. [PMID: 20445563 PMCID: PMC2958247 DOI: 10.1038/gene.2010.23] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The NZM2410-derived Sle1a lupus susceptibility locus induces activated autoreactive CD4+ T cells and reduces the number and function of Foxp3+ regulatory T cells. In this study, we first showed that Sle1a contributes to autoimmunity by increasing anti-nuclear antibody production when expressed on either NZB or NZW heterozygous genomes, and by enhancing the chronic graft vs. host disease response indicating an expansion of the autoreactive B cell pool. Screening two non-overlapping recombinants, the Sle1a.1 and Sle1a.2 intervals that cover the entire Sle1a locus, revealed that both Sle1a.1 and Sle1a.2 were necessary for the full Sle1a phenotype. Sle1a.1, and to a lesser extent Sle1a.2, significantly affected CD4+ T cell activation as well as Treg differentiation and function. Sle1a.2 also increased the production of autoreactive B cells. Since the Sle1a.1 and Sle1a.2 intervals contain only one and 15 known genes, respectively, this study considerably reduces the number of candidate genes responsible for the production of autoreactive T cells. These results also demonstrate that the Sle1 locus is an excellent model for the genetic architecture of lupus, in which a major obligate phenotype results from the co-expression of multiple genetic variants with individual weak effects.
Collapse
|
40
|
|
41
|
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder marked by an inappropriate immune response to nuclear antigens. Recent whole genome association and more focused studies have revealed numerous genes implicated in this disease process, including ITGAM, Fc gamma receptors, complement components, C-reactive protein, and others. One common feature of these molecules is their involvement in the immune opsonin pathway and in phagocytic clearing of nuclear antigens and apoptotic debris, which provide excessive exposure of lupus-related antigens to immune cells. Analysis of gene-gene interactions in the opsonin pathway and its relationship to SLE may provide a system-based approach to identify additional candidate genes associated with disease able to account for a larger part of lupus susceptibility.
Collapse
Affiliation(s)
- James M Kelley
- Comprehensive Arthritis, Musculoskeletal, and Autoimmunity Center, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
42
|
Chung SA, Tian C, Taylor KE, Lee AT, Ortmann WA, Hom G, Graham RR, Nititham J, Kelly JA, Morrisey J, Wu H, Yin H, Alarcón-Riquelme ME, Tsao BP, Harley JB, Gaffney PM, Moser KL, Manzi S, Petri M, Gregersen PK, Langefeld CD, Behrens TW, Seldin MF, Criswell LA. European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus. ACTA ACUST UNITED AC 2009; 60:2448-56. [PMID: 19644962 DOI: 10.1002/art.24707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease. METHODS SLE patients of European descent (n=1,754) from 8 case collections were genotyped for >1,400 ancestry informative markers that define a north-south gradient of European substructure. Using the Structure program, each SLE patient was characterized in terms of percent Northern (versus percent Southern) European ancestry based on these genetic markers. Nonparametric methods, including tests for trend, were used to identify associations between Northern European ancestry and specific SLE manifestations. RESULTS In multivariate analyses, increasing levels of Northern European ancestry were significantly associated with photosensitivity (Ptrend=0.0021, odds ratio for highest quartile of Northern European ancestry versus lowest quartile [ORhigh-low] 1.64, 95% confidence interval [95% CI] 1.13-2.35) and discoid rash (Ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98-3.83). In contrast, increasing levels of Northern European ancestry had a protective effect against the production of anticardiolipin autoantibodies (Ptrend=1.6x10(-4), ORhigh-low 0.46, 95% CI 0.30-0.69) and anti-double-stranded DNA autoantibodies (Ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46-0.96). CONCLUSION This study demonstrates that specific SLE manifestations vary according to Northern versus Southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure based on genetic ancestry.
Collapse
Affiliation(s)
- Sharon A Chung
- Division of Rheumatology, University of California, San Francisco, CA 94143-0500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Douglas KB, Windels DC, Zhao J, Gadeliya AV, Wu H, Kaufman KM, Harley JB, Merrill J, Kimberly RP, Alarcón GS, Brown EE, Edberg JC, Ramsey-Goldman R, Petri M, Reveille JD, Vilá LM, Gaffney PM, James JA, Moser KL, Alarcón-Riquelme ME, Vyse TJ, Gilkeson GS, Jacob CO, Ziegler JT, Langefeld CD, Ulgiati D, Tsao BP, Boackle SA. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun 2009; 10:457-69. [PMID: 19387458 PMCID: PMC2714407 DOI: 10.1038/gene.2009.27] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 02/05/2023]
Abstract
Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971, rs17615, rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs 32.6% in controls, P=0.016, OR=0.90 (0.82-0.98)). Two of these SNPs are in exon 10, directly 5' of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC), and the third is in the alternatively spliced exon. Effects of these SNPs and a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
Collapse
Affiliation(s)
- K B Douglas
- University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Orrú V, Tsai SJ, Rueda B, Fiorillo E, Stanford SM, Dasgupta J, Hartiala J, Zhao L, Ortego-Centeno N, D’Alfonso S, Arnett FC, Wu H, Gonzalez-Gay MA, Tsao BP, Pons-Estel B, Alarcon-Riquelme ME, He Y, Zhang ZY, Allayee H, Chen XS, Martin J, Bottini N. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 2009; 18:569-79. [PMID: 18981062 PMCID: PMC2722189 DOI: 10.1093/hmg/ddn363] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/30/2008] [Indexed: 11/13/2022] Open
Abstract
A gain-of-function R620W polymorphism in the PTPN22 gene, encoding the lymphoid tyrosine phosphatase LYP, has recently emerged as an important risk factor for human autoimmunity. Here we report that another missense substitution (R263Q) within the catalytic domain of LYP leads to reduced phosphatase activity. High-resolution structural analysis revealed the molecular basis for this loss of function. Furthermore, the Q263 variant conferred protection against human systemic lupus erythematosus, reinforcing the proposal that inhibition of LYP activity could be beneficial in human autoimmunity.
Collapse
Affiliation(s)
- Valeria Orrú
- Institute for Genetic Medicine, Keck School of Medicine
| | - Sophia J. Tsai
- Molecular and Computational Biology andUniversity of Southern California, Los Angeles, CA, USA
| | - Blanca Rueda
- Instituto de Parasitologia y Biomedicina ‘Lopez-Neyra’, CSIC, Granada, Spain
| | | | | | - Jhimli Dasgupta
- Molecular and Computational Biology andUniversity of Southern California, Los Angeles, CA, USA
| | - Jaana Hartiala
- Institute for Genetic Medicine, Keck School of Medicine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 9033
| | - Lei Zhao
- Institute for Genetic Medicine, Keck School of Medicine
| | | | - Sandra D’Alfonso
- Department of Medical Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy
| | - Frank C. Arnett
- Department of Rheumatology, University of Texas Medical School, Houston, TX, USA
| | - Hui Wu
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Betty P. Tsao
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hooman Allayee
- Institute for Genetic Medicine, Keck School of Medicine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 9033
| | - Xiaojiang S. Chen
- Molecular and Computational Biology andUniversity of Southern California, Los Angeles, CA, USA
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina ‘Lopez-Neyra’, CSIC, Granada, Spain
| | | |
Collapse
|
45
|
Pappworth IY, Kulik L, Haluszczak C, Reuter JW, Holers VM, Marchbank KJ. Increased B cell deletion and significantly reduced auto-antibody titre due to premature expression of human complement receptor 2 (CR2, CD21). Mol Immunol 2009; 46:1042-9. [PMID: 19187965 PMCID: PMC2657831 DOI: 10.1016/j.molimm.2008.08.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 02/06/2023]
Abstract
The involvement of complement receptor 2 (CR2) in B cell tolerance and autoimmune disease has been revealed over the past decade or so. Our previous studies have established that mice prematurely expressing human CR2 under the control of a lambda light chain promoter (in particular the hCR2high line) have a marked deficit in their immune response to various antigens and fail to develop collagen-induced arthritis. This phenotype appears to be the result of irreversible changes in B cell signalling pathways and suggested that hCR2 expressing mice are protected from developing autoimmune disease. To test this hypothesis, we examined the ability of the hCR2 to block the development of spontaneous autoimmune disease on the C57BL/6j-Faslpr/Faslpr (B6lpr) background. We found that expression of hCR2 on the B6lpr background resulted in a significant reduction in levels of anti-nuclear antibodies (ANA) generated as mice aged but the levels of ANA were still higher than those found in age matched C57BL/6j (B6) mice. B cells from hCR2high mice were found to display a higher baseline level of apoptosis, whether analysed ex vivo or after in vitro culture, than their B6 counterparts and this was apparently linked to both surface IgM expression by the B cells and C3 levels in the mice. Our data also provides evidence that B cell survival in the presence of hCR2 is heavily modified by the background strain of the mouse. Overall, we have demonstrated that mice expressing hCR2 on their B cells during bone marrow development display a higher degree of apoptosis which may lead to a deletion of autoreactive B cells and be protective against the development of autoimmune disease.
Collapse
Affiliation(s)
- Isabel Y. Pappworth
- Institute of Human Genetics, Newcastle University, Central Parkway, Center for Life, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Liudmila Kulik
- Department Medicine and Immunology, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Catherine Haluszczak
- Department Medicine and Immunology, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jason W. Reuter
- Department Medicine and Immunology, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - V. Michael Holers
- Department Medicine and Immunology, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kevin J. Marchbank
- Institute of Human Genetics, Newcastle University, Central Parkway, Center for Life, Newcastle-upon-Tyne NE1 3BZ, UK
- Corresponding author.
| |
Collapse
|
46
|
Abstract
Systemic lupus erythematosus (SLE) has long been recognized to be characterized by dysregulated signaling pathways in T and B lymphocytes, beginning with observations of cellular hyperactivity and hyperresponsiveness, and evolving to recent studies focused upon the genetic and molecular bases of such phenomena. This review focuses on recently elucidated signaling abnormalities currently thought to be intrinsic to T and/or B cells in human SLE.
Collapse
MESH Headings
- Alternative Splicing/immunology
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD3 Complex/immunology
- CD3 Complex/metabolism
- DNA Methylation/genetics
- DNA Methylation/immunology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/immunology
- Guanine Nucleotide Exchange Factors/metabolism
- Homeostasis
- Humans
- Interleukin-2/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Membrane Microdomains/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Stanford L Peng
- Clinical Research and Exploratory Development, 3431 Hillview Ave., M/S A2-259, Palo Alto, CA 94304, USA.
| |
Collapse
|
47
|
Lester S, McLure C, Williamson J, Bardy P, Rischmueller M, Dawkins RL. Epistasis between the MHC and the RCA alpha block in primary Sjögren syndrome. Ann Rheum Dis 2008; 67:849-54. [PMID: 17878210 PMCID: PMC2565577 DOI: 10.1136/ard.2007.075044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The RCA alpha block (Regulators of Complement Activation, 1q32) contains critical complement regulatory genes such as CR1 and MCP. This study examined RCA alpha block haplotype associations with both disease susceptibility and diversification of the anti-Ro/La autoantibody response in primary Sjögren syndrome (pSS). METHODS 115 patients with pSS and 98 controls were included in the study. 93 of 109 (85%) of the patients with pSS were seropositive for Ro/La autoantibodies. The Genomic Matching Technique (GMT) was used to define RCA alpha block ancestral haplotypes (AH). RESULTS RCA alpha block haplotypes, AH1 and AH3, were both associated with autoantibody-positive pSS (p = 0.0003). Autoantibody associations with both HLA DR3 and DR15 have been previously defined. There was an epistatic interaction (p = 0.023) between RCA alpha AH1 and HLA DR3, and this genotypic combination was present in 48% of autoantibody-positive patients with pSS compared with 8% of controls. This epistasis is most simply attributable to an interaction between C4 and its receptor, CR1, encoded within the RCA alpha block. Both DR3 and a relative C4 deficiency are carried on the major histocompatibility complex 8.1 ancestral haplotype. Only four of 92 (4%) autoantibody-positive patients with pSS did not carry any risk RCA alpha or HLA haplotype, compared with 36 of 96 (38%) controls, and there were differences in haplotype frequencies within autoantibody subsets of pSS. CONCLUSIONS Normal population variation in the RCA alpha block, in addition to the major histocompatibility complex, contributes genetic susceptibility to systemic autoimmune disease and the autoantibody response. This finding provides evidence for the role of regulation of complement activation in disease pathogenesis.
Collapse
Affiliation(s)
- S Lester
- C Y O'Connor ERADE Village, Canning Vale, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Edberg JC, Wu J, Langefeld CD, Brown EE, Marion MC, McGwin G, Petri M, Ramsey-Goldman R, Reveille JD, Frank SG, Kaufman KM, Harley JB, Alarcón GS, Kimberly RP. Genetic variation in the CRP promoter: association with systemic lupus erythematosus. Hum Mol Genet 2008; 17:1147-55. [DOI: 10.1093/hmg/ddn004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
50
|
Kyogoku C, Tsuchiya N. A compass that points to lupus: genetic studies on type I interferon pathway. Genes Immun 2007; 8:445-55. [PMID: 17581625 DOI: 10.1038/sj.gene.6364409] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was more than 20 years ago that patients with systemic lupus erythematosus (SLE) were first reported to display elevated serum levels of type I interferon (IFN). Since then, extensive studies revealed a crucial role for type I IFN in SLE pathogenesis. The current model proposes that small increase of type I IFN production by plasmacytoid dendritic cells (pDCs) is sufficient to induce unabated activation of immature peripheral DCs. IFN-matured DCs select and activate autoreactive T cells and B cells, rather than deleting them, resulting in peripheral tolerance breakdown, a characteristic feature of SLE. Furthermore, immune complexes provide an amplification loop to pDCs for further IFN production. In the past 5 years, high-throughput technologies such as expression profiling and single-nucleotide polymorphism (SNP) typing established the role of altered type I IFN system in SLE, and a detailed picture of its molecular mechanisms is beginning to emerge. In this review, we discuss two major lines of genetics studies on type I IFN pathway related to human SLE: (1) expression profiling of IFN-responsive genes and (2) disease-associated SNPs of IFN-related genes, especially IRF5 (IFN-regulatory factor 5). Lastly, we discuss how such genetic alterations in type I IFN pathway fit in the current model of SLE pathogenesis.
Collapse
Affiliation(s)
- C Kyogoku
- Department of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|