1
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
2
|
Wang X, Yin J, Mao W, Wang Z, Wu S, You Y. Cs 2CO 3 Promoted [4 + 2] Cycloaddition of 1,6-Enynes: An Approach to Tetrahydro-1 H-benzo- f-isoindole Isomers. Org Lett 2024; 26:7757-7762. [PMID: 39267494 DOI: 10.1021/acs.orglett.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
A Cs2CO3-promoted [4 + 2] cycloaddition of 1,6-enynes under mild reaction conditions has been developed. This protocol provides a facile approach to a series of tetrahydro-1H-benzo[f]isoindole isomerized products promoted by Cs2CO3 with moderate to high yields. By simply switching the reaction solvent and controlling the reaction time, two isomerization products could be obtained, both with good selectivity.
Collapse
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Junhao Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Wangqin Mao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Zhenyu Wang
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| |
Collapse
|
3
|
Kashyap D, Koirala S, Saini V, Bagde PH, Samanta S, Kar P, Jha HC. Prediction of Rab5B inhibitors through integrative in silico techniques. Mol Divers 2024; 28:2547-2562. [PMID: 37505376 DOI: 10.1007/s11030-023-10693-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Rab5B is a small monomeric G protein that regulates early endocytosis and controls signaling pathways related to cell growth, survival, and apoptosis. Dysregulation of Rab5B protein expression has been linked to the development of several cancers such as leukemia, lymphoma, kidney, prostate, ovarian, breast cancer, etc. Our research shows the first attempt to identify inhibitors that can target Rab5B GTPase. In this study, we performed molecular docking using Autodock Vina 1.5.6 and identified eight molecules with docking scores ranging from -9.8 to -10.6 kcal/mol. Thereafter, we examined the pharmacological characteristics of these compounds, and selected compounds were further analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)-based free energy calculations. Notably, our findings revealed that strychnine had the highest binding affinity to Rab5B followed by anonaine, helioxanthin, and taiwanin E, with a ΔGbind value of -21.43, -17.11, -15.11, and -14.09 kcal/mol respectively. The binding free energy calculations showed that Van der Waals interactions are the primary contributor to the binding between Rab5B and the inhibitor. The interaction between the inhibitor and Rab5B was shown to be controlled by certain hot spot residues, including Phe45, Tyr48, Ala64, and Ala30. Overall, we believe that these findings could facilitate the exploration and development of potential hits against Rab5B, subject to optimization and further research.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Pranit Hemant Bagde
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
- Lab No. POD 1B 502, Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
4
|
Bi X, Lin M, Zhou Y, Li D, Xu Z, Zhou L, Huang J. Insecticidal Activity and Molecular Target by Morphological Analysis, RNAseq, and Molecular Docking of the Aryltetralin Lignan Lactone Helioxanthin, Isolated from Taiwania flousiana Gaussen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5133-5144. [PMID: 38427577 DOI: 10.1021/acs.jafc.3c06384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Botanical insecticides are considered an environmentally friendly approach to insect control because they are easily biodegraded and cause less environmental pollution compared to traditional chemical pesticides. In this study, we reported the insecticidal activities of the ingredients from Taiwania flousiana Gaussen (T. flousiana). Five compounds, namely helioxanthin (C1), taiwanin E (C2), taiwanin H (C3), 7,4'-dimethylamentoflavone (C4), and 7,7″-di-O-methylamentoflavone (C5), were isolated and tested against the second, third, and fourth instar larvae of Aedes aegypti. Our results indicated that all five compounds showed insecticidal activities, and helioxanthin, which is an aryltetralin lignan lactone, was the most effective with LC50 values of 0.60, 2.82, and 3.12 mg/L, respectively, 48 h after application, with its activity against the second instar larvae similar to that of pyrethrin and better than that of rotenone. Further studies found that helioxanthin accumulated in the gastric cecum and the midgut and caused swelling of mitochondria with shallow matrices and fewer or disappeared crista. Additionally, our molecular mechanisms studies indicated that the significantly differentially expressed genes (DEGs) were mainly associated with mitochondria and the cuticle, among which the voltage-dependent anion-selective channel (VDAC) gene was the most down-regulated by helioxanthin, and VDAC is the potential target of helioxanthin by binding to specific amino acid residues (His 122 and Glu 147) via hydrogen bonds. We conclude that aryltetralin lignan lactone is a potential class of novel insecticides by targeting VDAC.
Collapse
Affiliation(s)
- Xiaoyang Bi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Meihong Lin
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yifeng Zhou
- College of Life Sciences, Hubei Minzu University, Enshi 445000, China
| | - Dandan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zuowei Xu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Lijuan Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jiguang Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Mei MS, Zhang Y. Synthesis of Naphthalimides through Tandem Pd(II)-Catalyzed C(sp 3)-H Oxidation and Diels-Alder Reaction Using a Transient Directing Group Strategy. Org Lett 2023. [PMID: 37399131 DOI: 10.1021/acs.orglett.3c01590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Naphthalimides have found extensive applications in materials science and pharmaceuticals. It is still highly desirable to develop efficient methods for the synthesis of naphthalimides with structural diversity. In this work, we developed a new approach for the synthesis of naphthalimides via a tandem reaction of o-methylbenzaldehydes and maleimides. The tandem reaction involves Pd(II)-catalyzed benzylic C(sp3)-H oxidation using an amino acid as the transient directing group and Diels-Alder reaction. The subsequent dehydration forms naphthalimides. The reaction introduces the imide moiety and constructs a benzene ring simultaneously, allowing for easy access to a range of naphthalimides with a variety of substituents.
Collapse
Affiliation(s)
- Ming-Shun Mei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Yang H, Yao W, Yang J. Overview of the development of HBV small molecule inhibitors. Eur J Med Chem 2023; 249:115128. [PMID: 36709647 DOI: 10.1016/j.ejmech.2023.115128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.
Collapse
Affiliation(s)
- Huihui Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Weiwei Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| |
Collapse
|
7
|
A road to contemporary era of hepatitis B virus regimen replacing existing therapeutics exploiting plant secondary metabolites as emerging heroes in exploring drugs: An expedition for a functional cure. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Zuo D, Chen Y, Cai JP, Yuan HY, Wu JQ, Yin Y, Xie JW, Lin JM, Luo J, Feng Y, Ge LJ, Zhou J, Quinn RJ, Zhao SJ, Tong X, Jin DY, Yuan S, Dai SX, Xu M. A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo. Protein Cell 2022; 14:37-50. [PMID: 36726760 PMCID: PMC9871967 DOI: 10.1093/procel/pwac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.
Collapse
Affiliation(s)
| | | | | | - Hao-Yang Yuan
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Qi Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Yin
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jing-Wen Xie
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jing-Min Lin
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia Luo
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Long-Jiao Ge
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - San-Jun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Xing Tong
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | | | | | | |
Collapse
|
9
|
Structure-Based Molecular Networking for the Discovery of Anti-HBV Compounds from Saussurea lappa (Decne.) C.B Clarke. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062023. [PMID: 35335386 PMCID: PMC8955460 DOI: 10.3390/molecules27062023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
It is a crucial to find target compounds in natural product research. This study presents a concept of structure-guided isolation to find candidate active molecules from herbs. We establish a process of anti-viral sesquiterpene networking. An analysis of the networking suggested that new anti-HBV sesquiterpene may be attributable to eudesmane-, guaiane-, cadinane-, germacane- and bisabolane-type sesquiterpenes. In order to evaluate the efficiency of the structure-based molecular networking, ethanol extract of Saussurea lappa (Decne.) C.B Clarke was investigated, which led to the isolation of two guaiane-type (1 and 14), ten eudesmane-type (2–5 and 8–13), two chain (6 and 7) and one germacrane-type (15) sesquiterpenes, including seven new ones, lappaterpenes A–G (1–7), which are reported on herein. The absolute configurations of the new compounds were established by coupling constants, calculated ECD and ROESY correlations, as well as comparisons of optical rotation values with those of known compounds. The absolute configuration of compound 2 was further confirmed by X-ray diffraction. Compounds 1–15 were evaluated for their potency against hepatitis B virus. Compounds 4, 6, 7 and 9 showed effect on HBsAg with inhibition ratios of more than 40% at 30 μM concentrations. Compounds 14 and 15 inhibited HBsAg secretion with the values of IC50 0.73 ± 0.18 and 1.43 ± 0.54 μM, respectively. Structure-based molecular networking inspired the discovery of target compounds.
Collapse
|
10
|
Xu XY, Wang DY, Li YP, Deyrup ST, Zhang HJ. Plant-derived lignans as potential antiviral agents: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:239-289. [PMID: 34093097 PMCID: PMC8165688 DOI: 10.1007/s11101-021-09758-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/20/2021] [Indexed: 05/04/2023]
Abstract
Medicinal plants are one of the most important sources of antiviral agents and lead compounds. Lignans are a large class of natural compounds comprising two phenyl propane units. Many of them have demonstrated biological activities, and some of them have even been developed as therapeutic drugs. In this review, 630 lignans, including those obtained from medicinal plants and their chemical derivatives, were systematically reviewed for their antiviral activity and mechanism of action. The compounds discussed herein were published in articles between 1998 and 2020. The articles were identified using both database searches (e.g., Web of Science, Pub Med and Scifinder) using key words such as: antiviral activity, antiviral effects, lignans, HBV, HCV, HIV, HPV, HSV, JEV, SARS-CoV, RSV and influenza A virus, and directed searches of scholarly publisher's websites including ACS, Elsevier, Springer, Thieme, and Wiley. The compounds were classified on their structural characteristics as 1) arylnaphthalene lignans, 2) aryltetralin lignans, 3) dibenzylbutyrolactone lignans, 4) dibenzylbutane lignans, 5) tetrahydrofuranoid and tetrahydrofurofuranoid lignans, 6) benzofuran lignans, 7) neolignans, 8) dibenzocyclooctadiene lignans and homolignans, and 9) norlignans and other lignoids. Details on isolation and antiviral activities of the most active compounds within each class of lignan are discussed in detail, as are studies of synthetic lignans that provide structure-activity relationship information.
Collapse
Affiliation(s)
- Xin-Ya Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200 P. R. China
| | - Dong-Ying Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 P. R. China
| | - Yi-Ping Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 P. R. China
| | - Stephen T. Deyrup
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211 USA
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
11
|
Junaid M, Akter Y, Siddika A, Nayeem SMA, Nahrin A, Afrose SS, Ezaj MMA, Alam MS. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key target proteins of Coronaviruses. Mini Rev Med Chem 2021; 22:498-549. [PMID: 34353257 DOI: 10.2174/1389557521666210805113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. AIM OF THE STUDY In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. METHODS A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. RESULTS Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. CONCLUSIONS In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Aysha Siddika
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - S M Abdul Nayeem
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong. Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Md Muzahid Ahmed Ezaj
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | | |
Collapse
|
12
|
Zhang BY, Chai DP, Wu YH, Qiu LP, Zhang YY, Ye ZH, Yu XP. Potential Drug Targets Against Hepatitis B Virus Based on Both Virus and Host Factors. Curr Drug Targets 2020; 20:1636-1651. [PMID: 31362671 DOI: 10.2174/1389450120666190729115646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis B is a very harmful and epidemic disease caused by hepatitis B virus (HBV). Although an effective anti-HBV vaccine is available, chronic infection poses still a huge health burden in the whole world. The present anti-HBV drugs including nucleoside analogues and interferonalpha have their limitations without exception. There is no effective drug and therapeutic method that can really and truly cure hepatitis B so far. The variability of HBV genome results in that a significant number of patients develop drug resistance during the long-term use of anti-HBV drugs. Hence, it is urgently needed to discover novel targets and develop new drugs against hepatitis B. OBJECTIVE The review aims to provide the theory support for designing of the anti-HBV innovative drugs by offering a summary of the current situation of antiviral potential targets. RESULTS AND CONCLUSION Since HBV is obligate intracellular parasite, and as such it depends on host cellular components and functions to replicate itself. The targeting both virus and host might be a novel therapeutic option for hepatitis B. Accordingly, we analyse the advances in the study of the potential drug targets for anti-HBV infection, focusing on targeting virus genome, on targeting host cellular functions and on targeting virus-host proteins interactions, respectively. Meanwhile, the immune targets against chronic hepatitis B are also emphasized. In short, the review provides a summary of antiviral therapeutic strategies to target virus factors, host factors and immune factors for future designing of the innovative drug against HBV infection.
Collapse
Affiliation(s)
- Bing-Yi Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Ping Chai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yi-Hang Wu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yong-Yong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zi-Hong Ye
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
13
|
INDRASETIAWAN PUGUH, AOKI-UTSUBO CHIE, HANAFI MUHAMMAD, HARTATI SRI, WAHYUNI TUTIKSRI, KAMEOKA MASANORI, YANO YOSHIHIKO, HOTTA HAK, HAYASHI YOSHITAKE. Antiviral Activity of Cananga odorata Against Hepatitis B Virus. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 65:E71-E79. [PMID: 31956259 PMCID: PMC7012192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. Current therapeutic drugs for chronic hepatitis B using pegylated interferons and nucleos(t)ide analogs have limited efficacy. Therefore, the development of novel and safe antivirals is required. Natural products including medicinal plants produce complex and structurally diverse compounds, some of which offer suitable targets for antiviral screening studies. In the present study, we screened various crude extracts from Indonesian plants for anti-HBV activity by determining their effects on the production of extracellular HBV DNA in Hep38.7-Tet cells and HBV entry onto a HBV-susceptible cell line, HepG2-NTCP, with the following results: (1) In Hep38.7-Tet cells, Cananga odorata exhibited the highest anti-HBV activity with a 50% inhibitory concentration (IC50) of 56.5 µg/ml and 50% cytotoxic concentration (CC50) of 540.2 µg/ml (Selectivity Index: 9.6). (2) The treatment of HepG2-NTCP cells with Cassia fistula, C. odorata, and Melastoma malabathricum at concentrations of 100 µg/ml lowered the levels of HBsAg production to 51.2%, 58.0%, and 40.1%, respectively, compared to untreated controls, and IC50 and CC50 values of C. odorata were 142.9 µg/ml and >400 µg/ml. In conclusion, the C. odorata extract could be a good candidate for the development of anti-HBV drugs.
Collapse
Affiliation(s)
- PUGUH INDRASETIAWAN
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - CHIE AOKI-UTSUBO
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - MUHAMMAD HANAFI
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong 15314, Indonesia
| | - SRI HARTATI
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong 15314, Indonesia
| | - TUTIK SRI WAHYUNI
- Institute of Tropical Disease, Airlangga University, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia
| | - MASANORI KAMEOKA
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - YOSHIHIKO YANO
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - HAK HOTTA
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan
| | - YOSHITAKE HAYASHI
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
- Division of Infectious Disease Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
14
|
Gu C, Yin AP, Yuan HY, Yang K, Luo J, Zhan YJ, Yang CR, Zuo DM, Li HZ, Xu M. New anti-HBV norbisabolane sesquiterpenes from Phyllantus acidus. Fitoterapia 2019; 137:104151. [DOI: 10.1016/j.fitote.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
|
15
|
Pei Y, Wang C, Ben H, Wang L, Ma Y, Ma Q, Xiang Y, Zhang L, Liu G. Discovery of New Hepatitis B Virus Capsid Assembly Modulators by an Optimal High-Throughput Cell-Based Assay. ACS Infect Dis 2019; 5:778-787. [PMID: 30761887 DOI: 10.1021/acsinfecdis.9b00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this article, a simple and effective high-throughput screening (HTS) assay was developed to identify anti-HBV compounds by using a HepAD38 luciferase reporter (HepAD38-luc) cell line that can effectively exclude the false positive hit compounds targeted on the tetracycline off (tet-off) regulation system. Through screening in-house chemical libraries, N-phenylpiperidine-3-carboxamide derivatives, represented by 1 and 2, were identified, while the other false positive hits (i.e., quinoxaline (3) and benzothiazin (4) derivatives) were simultaneously excluded. Compounds 1 and 2 exhibit strong inhibitory activity against HBV replication in both HepAD38 and HepG2.2.15 cells. Further studies revealed that 1 and 2 reduced extracellular HBV DNA, HBeAg, and intracellular HBV intermediates, including total DNA, RNA, and precore RNA of HBV. Size-exclusion chromatography (SEC) and electron microscopy (EM) investigations demonstrated that 1 and 2 remarkably induced the formation of morphologically intact capsids and accelerated the dynamics of capsid assembly, suggesting that both 1 and 2 were type I capsid assembly modulators (CAMs).
Collapse
Affiliation(s)
- Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Room 311, Beijing 100084, China
| | - Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Room 311, Beijing 100084, China
| | - Haijing Ben
- School of Medicine, Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University,Medical Sciences Building, Suite A209, Beijing 100084, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Medical Sciences Building, Suite A207, Beijing 100084, China
| | - Yao Ma
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Room 311, Beijing 100084, China
| | - Qingyan Ma
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Room 311, Beijing 100084, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Medical Sciences Building, Suite A207, Beijing 100084, China
| | - Linqi Zhang
- School of Medicine, Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University,Medical Sciences Building, Suite A209, Beijing 100084, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Renhuan Building, Room 311, Beijing 100084, China
| |
Collapse
|
16
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| |
Collapse
|
17
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
18
|
Liu Y, Yao W, Si L, Hou J, Wang J, Xu Z, Li W, Chen J, Li R, Li P, Bo L, Xiao X, Lan J, Xu D. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model. Antiviral Res 2018; 155:39-47. [PMID: 29702120 DOI: 10.1016/j.antiviral.2018.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/09/2023]
Abstract
This study aimed to investigate anti-HBV effect and major active compounds of Su-duxing, a medicine extracted from Chinese herbs. HBV-replicating cell lines HepG2.2.15 (wild-type) and HepG2.A64 (entecavir-resistant) were used for in vitro test. C57BL/6 mice infected by adeno-associated virus carrying 1.3 mer wild-type HBV genome were used for in vivo test. Inhibitory rates of Su-duxing (10 μg/mL) on HBV replicative intermediate and HBsAg levels were 75.1%, 51.0% in HepG2.2.15 cells and 65.2%, 42.9% in HepG2.A64 cells. The 50% inhibitory concentration of Su-duxing and entecavir on HBV replicative intermediates had 0.2-fold and 712.5-fold increase respectively for entecavir-resistant HBV compared to wild-type HBV. Su-duxing and entecavir combination showed a better anti-HBV effect than each single of agents. Mice treated with Su-duxing (45.0 mg kg-1 d-1 for 2 weeks) had 1.39 log10 IU/mL decrease of serum HBV DNA, and 48.9% and 51.7% decrease of serum HBsAg and HBeAg levels. GeneChip and KEGG analysis proposed that anti-HBV mechanisms included relief of HBx stability and viral replication, deregulation of early cell cycle checkpoints, and induction of type I interferon. Quantitative RT-PCR verified that CCNA2, ATF4, FAS and CDKN1A expression levels had significant difference between Su-duxing-treated and control groups. Six active compounds (Matrine, Oxymatrine, Chlorogenic acid, Sophocarpine, Baicalein, and Wogonin) against HBV were identified in Su-duxing. Greater anti-HBV effects were observed in some compound pairs compared to each single compound. In conclusion, Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant HBV. Its effects were associated with coordinated roles of active compounds in its composition.
Collapse
Affiliation(s)
- Yan Liu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Weiming Yao
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Lanlan Si
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jun Hou
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jiabo Wang
- Institute of Chinese Medicine, Beijing 302 Hospital, Beijing, China
| | - Zhihui Xu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Weijie Li
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jianhong Chen
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Penggao Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lvping Bo
- Beijing Jin Ming Kang Biotechnology Co., Ltd., Beijing 100054, China
| | - Xiaohe Xiao
- Institute of Chinese Medicine, Beijing 302 Hospital, Beijing, China.
| | - Jinchu Lan
- Beijing Gulou Hospital of Chinese Medicine, Beijing 100009, China.
| | - Dongping Xu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China.
| |
Collapse
|
19
|
Feng S, Gao L, Han X, Hu T, Hu Y, Liu H, Thomas AW, Yan Z, Yang S, Young JAT, Yun H, Zhu W, Shen HC. Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection. ACS Infect Dis 2018; 4:257-277. [PMID: 29369612 DOI: 10.1021/acsinfecdis.7b00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chronic infection of hepatitis B virus (HBV) inflicts 250 million people worldwide representing a major public health threat. A significant subpopulation of patients eventually develop cirrhosis and hepatocellular carcinoma (HCC). Unfortunately, none of the current standard therapies for chronic hepatitis B (CHB) result in a satisfactory clinical cure rate. Driven by a highly unmet medical need, multiple pharmaceutical companies and research institutions have been engaged in drug discovery and development to improve the CHB functional cure rate, defined by sustainable viral suppression and HBsAg clearance after a finite treatment. This Review summarizes the recent advances in the discovery and development of novel anti-HBV small molecules. It is believed that an improved CHB functional cure rate may be accomplished via the combination of molecules with distinct MoAs. Thus, certain molecules may evolve into key components of a suitable combination therapy leading to superior outcome of clinical efficacy in the future.
Collapse
Affiliation(s)
- Song Feng
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Xingchun Han
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Taishan Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Yimin Hu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Haixia Liu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Andrew W. Thomas
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Zhipeng Yan
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Song Yang
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - John A. T. Young
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hongying Yun
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Wei Zhu
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| | - Hong C. Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, 720 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
20
|
Wang Y, Chen SR, Yang X, Lee KH, Cheng YC. Structure-activity relationships of cryptopleurine analogs with E-ring modifications as anti-hepatitis C virus agents. Bioorg Med Chem 2017; 26:630-636. [PMID: 29317151 PMCID: PMC7172637 DOI: 10.1016/j.bmc.2017.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
The tylophorine analog rac-cryptopleurine exhibited potent anti-hepatitis C virus (HCV) activity through allosteric regulation of ATPase activity of heat shock cognate protein 70 (Hsc70). We evaluated the impact of modifications on the E-ring of rac-cryptopleurine to the inhibitory activity against HCV replication and regulation of ATPase activity of Hsc70. Cryptopleurine analog YXM-110 with a 13α-hydroxyl group maintained activity against HCV and promoted ATP/ADP turnover of Hsc70; however, compounds with hydroxyl groups at other positions or with other orientations (YXM-109, YXM-139, and YXM-140) did not exhibit similar activities. Size modification or heteroatom incorporation of the E-ring led to loss of anti-HCV activity. Promotion of the chaperone activity of Hsc70 with carboxyl terminus Hsc70 interacting protein (CHIP) further enhanced the anti-HCV activity of rac-cryptopleurine and XYM-110. This structure-activity relationship (SAR) study refined structural design and optimization for developing rac-crytopleurine analogs as potent anti-HCV agents targeted against the host factor involved in HCV replication.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States; Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Shao-Ru Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Xiaoming Yang
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
21
|
Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Res 2017; 145:136-145. [PMID: 28827084 DOI: 10.1016/j.antiviral.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
The currently available antiviral agents for chronic infection with hepatitis B virus (HBV) are pegylated interferon-α and nucleoside/nucleotide analogues, although it has been difficult to completely eliminate covalently closed circular DNA (cccDNA) from patients. To identify an antiviral compound targeting HBV core promoter, 15 terpenes originating from marine organisms were screened using a cell line expressing firefly luciferase under the control of the HBV core promoter. Metachromin A, which is a merosesquiterpene isolated from the marine sponge Dactylospongia metachromia, inhibited the viral promoter activity at the highest level among the tested compounds, and suppressed HBV production with an EC50 value of 0.8 μM regardless of interferon signaling and cytotoxicity. The analysis on the structure-activity relationship revealed that the hydroquinone moiety, and the double bonds at carbon numbers-5 and -9 in metachromin A are crucial for anti-HBV activity. Furthermore, metachromin A reduced the protein level but not the RNA level of hepatic nuclear factor 4α, which mainly upregulates the activities of enhancer I/X promoter and enhancer II/core promoter. These results suggest that metachromin A can inhibit HBV production via impairment of the viral promoter activity. Antiviral agents targeting the viral promoter may ameliorate HBV-related disorders regardless of remaining cccDNA.
Collapse
|
22
|
Pei Y, Wang C, Yan SF, Liu G. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection. J Med Chem 2017; 60:6461-6479. [PMID: 28383274 DOI: 10.1021/acs.jmedchem.6b01442] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.
Collapse
Affiliation(s)
- Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| | - S Frank Yan
- Molecular Design and Chemical Biology, Roche Pharma Research and Early Development, Roche Innovation Center Shanghai , Shanghai 201203, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
23
|
Huang H, Zhou W, Zhu H, Zhou P, Shi X. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs. Toxicol Appl Pharmacol 2017; 323:36-43. [PMID: 28322895 DOI: 10.1016/j.taap.2017.03.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although current antiviral treatments (nucleoside analogs, NAs) for chronic hepatitis B virus (HBV) infection are effective in suppressing HBV-DNA replication, their clinical outcomes can be compromised by the increasing drug resistance and the inefficiency in promoting HBsAg/HBeAg seroconversion. OBJECTIVES In this study, we will explore possible effects and mechanism of a natural product baicalin (BA) with the anti-HBV efficacy of entecavir (ETV), a first-line anti-HBV drug, in HBV-DNA, HBsAg/HBeAg seroconversion and drug-resistance. METHODS The co-effects of BA and ETV were conducted in wild-type/NA-resistance mutant HBV cell lines and DHBV-infected duckling models. HBV-DNA/RNAs, HBsAg/HBeAg, host factors (hepatocyte nuclear factors) were explored for possible anti-HBV mechanism. RESULTS AND DISCUSSION BA could significantly enhance and reduced HBsAg and HBeAg in hepG2.2.15, a wild-type HBV cell line. Co-treatment of BA and ETV had a more dramatic effect in NA-resistant HBVrtM204V/rtLl80M transfected hepG2 cells. Our study further revealed that BA mainly inhibited the production of HBV RNAs (3.5, 2.4, 2.1kb), the templates for viral proteins and HBV-DNA synthesis. BA blocked HBV RNAs transcription possibly by down-regulating transcription and expression of HBV replication dependent hepatocyte nuclear factors (HNF1α and HNF4α). Thus, BA may benefit the anti-HBV therapy via inhibiting HBV viral RNAs.
Collapse
Affiliation(s)
- Hai Huang
- Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, China.
| | - Haiyan Zhu
- Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Pei Zhou
- Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xunlong Shi
- Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
24
|
Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J Nat Med 2016; 70:584-91. [PMID: 26968537 DOI: 10.1007/s11418-016-0980-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Plants possess various natural antiviral properties. Epigallocatechin-3-gallate (EGCG), a major component of green tea, inhibits a variety of viruses. However, the clinical application of EGCG is currently hindered by a scarcity of information on its molecular mechanism of action. In the present study, we examined the anti-HBV (hepatitis B virus) effects of catechins from green tea at the transcriptional and antigen-expression levels, as well as the associated molecular mechanisms, because HBV-associated liver diseases have become a key public health issue due to their serious impact on human physical and mental health. By using fluorescence quenching and affinity binding, we demonstrated that EGCG is an important transcriptional regulator of the HBV genome, which it achieves by interacting with farnesoid X receptor alpha (FXRα). Luciferase assay showed that EGCG effectively inhibited the transcription of the HBV promoter dose-dependently when expression plasmids of FXRα and retinoid X receptor α (RXRα) were co-transfected into HEK293 cells. These results indicate that the downregulation of the HBV antigen and the decrease in the transcriptional activation of the HBV EnhII/core promoter by FXRα/RXRα are mainly due to the interaction between EGCG and FXRα. Therefore, EGCG, an antagonist of FXRα in liver cells, has the potential to be employed as an effective anti-HBV agent.
Collapse
|
25
|
Karamese M, Aydogdu S, Karamese SA, Altoparlak U, Gundogdu C. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac J Cancer Prev 2016; 16:4199-202. [PMID: 26028072 DOI: 10.7314/apjcp.2015.16.10.4199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti- tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. MATERIALS AND METHODS HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. RESULTS Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than 100 μM. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. CONCLUSIONS The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Microbiology, Medical Faculty, Kafkas University, Kars, Turkey E-mail :
| | | | | | | | | |
Collapse
|
26
|
Yang L, Wang YJ, Chen HJ, Shi LP, Tong XK, Zhang YM, Wang GF, Wang WL, Feng CL, He PL, Xu YB, Lu MJ, Tang W, Nan FJ, Zuo JP. Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation. Antiviral Res 2016; 125:25-33. [DOI: 10.1016/j.antiviral.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
|
27
|
Wang H, Liu K, Fang BAM, Wu H, Li F, Xiang X, Tang W, Zhao G, Lin L, Bao S, Xie Q. Identification of acetyltransferase genes (HAT1 and KAT8) regulating HBV replication by RNAi screening. Cell Biosci 2015; 5:66. [PMID: 26640654 PMCID: PMC4669656 DOI: 10.1186/s13578-015-0059-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Background The initiation of hepatitis B virus (HBV) replication involves the formation of covalently closed circular DNA (cccDNA) and its transcription into pregenomic RNA (pgRNA) in hepatocyte nuclei. The regulatory mechanism of HBV replication by acetyltransferase is thus far not well understood, but human acetyltransferase has been reported as being involved in the regulation of HBV replication. Results Depletion of KAT8 or HAT1 via RNA interference (RNAi) markedly down-regulated HBV-DNA and pgRNA levels in HepG2.2.15 cells, with KAT8 knockdown reducing both HBsAg and HBeAg more than HAT1 knockdown. Consistent with these observations, HBV replication regulators hepatocyte nuclear factor-4-α (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator- (PPARGC-) 1-α were decreased following knockdown of HAT1 or KAT8. Conclusions These data suggest that KAT8 or HAT1 regulate HBV replication and may be potential drug targets of anti-HBV therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0059-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - KeHui Liu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bernard A M Fang
- Discipline of Pathology, School of Medical Sciences and The Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia.,Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - HaiQing Wu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - FengDi Li
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - XiaoGang Xiang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - WeiLiang Tang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - GangDe Zhao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - LanYi Lin
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shisan Bao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and The Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Ryu DK, Ahn Y, Ryu WS, Windisch MP. Development of a novel hepatitis B virus encapsidation detection assay by viral nucleocapsid-captured quantitative RT-PCR. Biotechniques 2015; 59:287-93. [DOI: 10.2144/000114354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/26/2015] [Indexed: 11/23/2022] Open
Abstract
After encapsidation, where pregenomic RNA (pgRNA) is packaged into viral nucleocapsids, hepatitis B virus (HBV) uses the pgRNA as a template to replicate its DNA genome by reverse transcription. To date, there are only two encapsidation detection methods for evaluating the amount of pgRNA packaged into nucleocapsids: (i) the RNase protection assay and (ii) the native agarose gel electrophoresis assay. However, these methods are complex and laborious because they require multiple pgRNA purification steps followed by detection via an isotope-labeled probe. Moreover, both assays are unsuitable for evaluating a large number of antiviral agents in a dose-dependent manner. To overcome these limitations, we devised a novel HBV encapsidation assay in a 96-well plate format using nucleocapsid capture plates coated with an anti-HBV core (HBc) antibody, usually employed in enzyme-linked immunosorbent assays, to immobilize viral nucleocapsids. Viral pgRNA is then detected by quantitative RT-PCR (RT-qPCR). This strategy allows fast, convenient, and quantitative analysis of multiple viral RNA samples to evaluate encapsidation inhibitors. Furthermore, our protocol is potentially suitable for high-throughput screening (HTS) of compounds targeting HBV pgRNA encapsidation.
Collapse
Affiliation(s)
- Dong-Kyun Ryu
- Hepatitis Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South-Korea
| | - Yeji Ahn
- Department of Biochemistry, Yonsei University, Seoul, South-Korea
| | - Wang-Shick Ryu
- Department of Biochemistry, Yonsei University, Seoul, South-Korea
| | - Marc P. Windisch
- Hepatitis Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South-Korea
| |
Collapse
|
29
|
Kang L, Pan J, Wu J, Hu J, Sun Q, Tang J. Anti-HBV Drugs: Progress, Unmet Needs, and New Hope. Viruses 2015; 7:4960-77. [PMID: 26389937 PMCID: PMC4584298 DOI: 10.3390/v7092854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Approximately 240 million people worldwide are chronically infected with hepatitis B virus (HBV), which represents a significant challenge to public health. The current goal in treating chronic HBV infection is to block progression of HBV-related liver injury and inflammation to end-stage liver diseases, including cirrhosis and hepatocellular carcinoma, because we are unable to eliminate chronic HBV infection. Available therapies for chronic HBV infection mainly include nucleos/tide analogues (NAs), non-NAs, and immunomodulatory agents. However, none of them is able to clear chronic HBV infection. Thus, a new generation of anti-HBV drugs is urgently needed. Progress has been made in the development and testing of new therapeutics against chronic HBV infection. This review aims to summarize the state of the art in new HBV drug research and development and to forecast research and development trends and directions in the near future.
Collapse
Affiliation(s)
- Lei Kang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaqian Pan
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jiaofen Wu
- Department of Pharmacy, Ningbo Medical Treatment Center Lihuili Hospital, 57 Xingning Road, Ningbo 315040, China.
| | - Jiali Hu
- Department of Pharmacy, The Third Staff Hospital of Baogang Group, 15 Qingnian Road, Baotou 014010, China.
| | - Qian Sun
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| | - Jing Tang
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, 650 New Songjiang Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
30
|
A novel pyridazinone derivative inhibits hepatitis B virus replication by inducing genome-free capsid formation. Antimicrob Agents Chemother 2015; 59:7061-72. [PMID: 26349829 DOI: 10.1128/aac.01558-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Here we first identified a novel pyridazinone derivative, compound 3711, as a nonnucleosidic hepatitis B virus (HBV) inhibitor in a cell model system. 3711 decreased extracellular HBV DNA levels by 50% (50% inhibitory concentration [IC50]) at 1.5 ± 0.2 μM and intracellular DNA levels at 1.9 ± 0.1 μM, which demonstrated antiviral activity at levels far below those associated with toxicity. Both the 3TC/ETV dually resistant L180M/M204I mutant and the adefovir (ADV)-resistant A181T/N236T mutant were as susceptible to 3711 as wild-type HBV. 3711 treatment induced the formation of genome-free capsids, a portion of which migrated faster on 1.8% native agarose gel. The induced genome-free capsids sedimented more slowly in isopycnic CsCl gradient centrifugation without significant morphological changes. 3711 treatment decreased levels of HBV DNA contained in both secreted enveloped virion and naked virus particles in supernatant. 3711 could interfere with capsid formation of the core protein (Cp) assembly domain. A Cp V124W mutant, which strengthens capsid interdimer interactions, recapitulated the effect of 3711 on capsid assembly. Pyridazinone derivative 3711, a novel chemical entity and HBV inhibitor, may provide a new opportunity to combat chronic HBV infection.
Collapse
|
31
|
Chingwaru W, Vidmar J, Kapewangolo PT. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review. Phytother Res 2015; 29:1452-87. [PMID: 26337608 DOI: 10.1002/ptr.5433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022]
Abstract
Acquired immunodeficiency syndrome, caused by human immunodeficiency virus (HIV), is a leading cause of mortality and morbidity in Sub-Saharan Africa, particularly in Southern Africa. Phytomedicines are an integral part of African health care. The Southern African flora is composed of at least 23 400 taxa. Despite this richness, only a handful of botanical products have been assessed for activities against HIV. This study aimed to summarize the potential of Sub-Saharan African plants, based on their composition and the established bioactivities, as sources of agents to manage HIV symptoms and as retroviral therapy. At least 109 plant species from 42 families and 94 genera that are found in Southern Africa were shown to have potential or actual activities against HIV. Only 12 of these plant species from 6 families and 10 genera were shown to harbour anti-HIV properties. Phytochemicals that include β-sitosterols, terpenoids, glycosides, saponins, flavonoids, triterpenoids, tannins and alkaloids, which harbour anti-HIV properties, were found to have a near cosmopolitan presence across the plant families in the region. Bioactivities of multiple phytochemicals are comparable to those for standard allopathic antiretroviral drugs. Research to determine the anti-HIV activities of the identified and other plants, including clinical trials, is long overdue.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| |
Collapse
|
32
|
Liu S, Wei W, Li Y, Liu X, Cao X, Lei K, Zhou M. Design, synthesis, biological evaluation and molecular docking studies of phenylpropanoid derivatives as potent anti-hepatitis B virus agents. Eur J Med Chem 2015; 95:473-82. [DOI: 10.1016/j.ejmech.2015.03.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
33
|
Potent natural products and herbal medicines for treating liver fibrosis. Chin Med 2015; 10:7. [PMID: 25897319 PMCID: PMC4403904 DOI: 10.1186/s13020-015-0036-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury characterized by progressive inflammation and deposition of extracellular matrix components. The pathological condition of liver fibrosis involves secretion of extracellular matrix proteins and formation of scar tissue. The major regulators involved in hepatic fibrogenesis are the transforming growth factor (TGF)-β1/SMAD and toll-like receptor 4 (TLR4)-initiated myeloid differentiation primary response 88 gene (MyD88)/NF-ĸB cell signaling pathways. This article reviews natural products and herbal medicines that have demonstrated activity against liver fibrosis through different mechanisms of action, including anti-hepatitis B and C virus activity, anti-inflammation, inhibition of cytokine production and nuclear receptor activation, and free radical scavenging.
Collapse
|
34
|
Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA. Drug Discov Today 2015; 20:548-61. [PMID: 25622780 DOI: 10.1016/j.drudis.2015.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) often leads to the development of liver cancer and cirrhosis, creating immense sociological, clinical and economic burdens worldwide. Although current anti-HBV medications manage to control the disease progression and help restore normal liver functions, they often fail to eliminate the virus completely. A major reason for this failure is the presence of a stable viral genome in the hepatocyte nucleus: the covalently closed circular DNA (cccDNA). Targeting HBV cccDNA is a promising approach that could lead to a complete cure. Here, we review various research approaches that are directed toward eliminating HBV cccDNA. This is a brief, yet comprehensive, summary of current state-of-the-art developments in this emerging area of interest.
Collapse
|
35
|
Synthesis and anti-hepatitis B virus activity of C4 amide-substituted isosteviol derivatives. Bioorg Med Chem 2015; 23:720-8. [PMID: 25600408 DOI: 10.1016/j.bmc.2014.12.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 01/06/2023]
Abstract
A series of novel isosteviol derivatives having C4-amide substituents were synthesized in order to test for antiviral effects against the hepatitis B virus (HBV) in vitro. Among them, IN-4 [N-(propylcarbonyl)-4α-amino-19-nor-ent-16-ketobeyeran] (5) exhibited inhibitory activity against secretion of HBsAg and HBeAg as well as inhibition of HBV DNA replication. Therefore, the mechanism of its antiviral activity was further analyzed using HBV-transfected Huh7 cells. Exposure to IN-4 produced minimal inhibitory effects on viral precore/pregenomic RNA expression. However, expression levels of the 2.4/2.1-kb preS/major S RNA of the viral surface gene significantly decreased, along with intracellular levels of HBV DNA. A promoter activity analysis demonstrated that IN-4 significantly inhibited viral X, S, and preS expression levels but not viral core promoter activities. In particular, IN-4 was observed to significantly inhibit HBV gene regulation by disrupting nuclear factor (NF)-κB-associated promoter activity. In addition, the nuclear expression of p65/p50 NF-κB member proteins was attenuated following IN-4 treatment, while cytoplasmic IκBα protein levels were enhanced. Meanwhile, IN-4 was observed to inhibit the binding activity of NF-κB to putative DNA elements. Furthermore, transfection of a p65 expression plasmid into Huh7 cells significantly reversed the inhibitory effect of IN-4 on HBV DNA levels, providing further evidence of the central role of NF-κB in its antiviral mechanism. It is therefore suggested that IN-4 inhibits HBV by interfering with the NF-κB signaling pathway, resulting in downregulation of viral gene expression and DNA replication.
Collapse
|
36
|
Chen H, Ma YB, Huang XY, Geng CA, Zhao Y, Wang LJ, Guo RH, Liang WJ, Zhang XM, Chen JJ. Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett 2014; 24:2353-9. [PMID: 24731274 DOI: 10.1016/j.bmcl.2014.03.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
Abstract
Dehydroandrographolide and andrographolide, two natural diterpenoids isolated from Andrographis paniculata possessed activity against HBV DNA replication with IC50 values of 22.58 and 54.07μM and low SI values of 8.7 and 3.7 in our random assay. Consequently, 48 derivatives of dehydroandrographolide and andrographolide were synthesized and evaluated for their anti-HBV properties to yield a series of active derivatives with lower cytotoxicity, including 14 derivatives against HBsAg secretion, 19 derivatives against HBeAg secretion and 38 derivatives against HBV DNA replication. Interestingly, compound 4e could inhibit not only HBsAg and HBeAg secretions but also HBV DNA replication with SI values of 20.3, 125.0 and 104.9. Furthermore, the most active compound 2c with SI value higher than 165.1 inhibiting HBV DNA replication was revealed with the optimal logP value of 1.78 and logD values. Structure-activity relationships (SARs) of the derivatives were disclosed for guiding the future research toward the discovery of new anti-HBV drugs.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yong Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Jun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Rui-Hua Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wen-Juan Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
37
|
Yang L, Shi LP, Chen HJ, Tong XK, Wang GF, Zhang YM, Wang WL, Feng CL, He PL, Zhu FH, Hao YH, Wang BJ, Yang DL, Tang W, Nan FJ, Zuo JP. Isothiafludine, a novel non-nucleoside compound, inhibits hepatitis B virus replication through blocking pregenomic RNA encapsidation. Acta Pharmacol Sin 2014; 35:410-8. [PMID: 24487969 DOI: 10.1038/aps.2013.175] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/11/2013] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the action of isothiafludine (NZ-4), a derivative of bis-heterocycle tandem pairs from the natural product leucamide A, on the replication cycle of hepatitis B virus (HBV) in vitro and in vivo. METHODS HBV replication cycle was monitored in HepG2.2.15 cells using qPCR, qRT-PCR, and Southern and Northern blotting. HBV protein expression and capsid assembly were detected using Western blotting and native agarose gel electrophoresis analysis. The interaction of pregenomic RNA (pgRNA) and the core protein was investigated by RNA immunoprecipitation. To evaluate the anti-HBV effect of NZ-4 in vivo, DHBV-infected ducks were orally administered NZ-4 (25, 50 or 100 mg·kg⁻¹·d⁻¹) for 15 d. RESULTS NZ-4 suppressed intracellular HBV replication in HepG2.2.15 cells with an IC₅₀ value of 1.33 μmol/L, whereas the compound inhibited the cell viability with an IC₅₀ value of 50.4 μmol/L. Furthermore, NZ-4 was active against the replication of various drug-resistant HBV mutants, including 3TC/ETV-dual-resistant and ADV-resistant HBV mutants. NZ-4 (5, 10, 20 μmol/L) concentration-dependently reduced the encapsidated HBV pgRNA, resulting in the assembly of replication-deficient capsids in HepG2.2.15 cells. Oral administration of NZ-4 dose-dependently inhibited DHBV DNA replication in the DHBV-infected ducks. CONCLUSION NZ-4 inhibits HBV replication by interfering with the interaction between pgRNA and HBcAg in the capsid assembly process, thus increasing the replication-deficient HBV capsids. Such mechanism of action might provide a new therapeutic strategy to combat HBV infection.
Collapse
|
38
|
Zhang F, Wang G. A review of non-nucleoside anti-hepatitis B virus agents. Eur J Med Chem 2014; 75:267-81. [PMID: 24549242 DOI: 10.1016/j.ejmech.2014.01.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus is the most common cause of chronic liver disease worldwide. Currently approved agents of chronic HBV infection treatment include interferon and nucleoside analogues. However, the side effects of interferon and the viral resistance of nucleoside analogues make the current treatment far from satisfactory. Therefore, new drugs with novel structures and mechanisms are needed. Recently, a number of non-nucleoside HBV inhibitors have been obtained from natural sources or prepared by synthesis/semi-synthesis. Some of them exhibited potent anti-HBV activity with novel mechanisms. These compounds provide useful information for the medicinal chemist to develop novel non-nucleoside compounds as anti-HBV agents.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmacy, Liaoning Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou 121001, PR China.
| | - Gang Wang
- School of Pharmacy, Liaoning Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou 121001, PR China
| |
Collapse
|
39
|
Qiu LP, Chen L, Chen KP. Antihepatitis B therapy: a review of current medications and novel small molecule inhibitors. Fundam Clin Pharmacol 2013; 28:364-81. [DOI: 10.1111/fcp.12053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/14/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Ke-Ping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| |
Collapse
|
40
|
Zhu X, Gong Q, Yu D, Zhang D, Gu L, Han Y, Chen J, Zhang Y, Zhang X. Early serum hepatitis B virus large surface protein level: a stronger predictor of virological response to peginterferon alfa-2a than that to entecavir in HBeAg-positive patients with chronic hepatitis B. J Clin Virol 2013; 57:318-22. [PMID: 23639294 DOI: 10.1016/j.jcv.2013.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND The response rate to antiviral therapy varies greatly among individuals, and its prediction is still very challenging. OBJECTIVES To evaluate the usefulness of serum hepatitis B virus large surface protein (LHBs) levels compared with HBsAg in prediction of the antiviral treatment effect. STUDY DESIGN Quantification of LHBs, HBsAg and HBV DNA was carried out at baseline and during antiviral therapy (weeks 4, 12, 24, 36 and 48) in HBeAg-positive patients treated with peginterferon alfa-2a (n = 21) or entecavir (n = 41). RESULTS The serum LHBs concentration was correlated positively with HBV DNA and HBsAg (r = 0.635 and 0.588, respectively). LHBs and HBV DNA levels decreased significantly in a biphasic manner and HBsAg level tended to decrease slowly in both treatment groups. In peginterferon alfa-2a group, the cutoff of 88.46 ng/ml in serum LHBs at week 4 gave the best AUC ( = 0.96) with positive and negative predictive values of 88.9% and 100%, in association with virological response (VR). Serum LHBs level at week 4 also showed an association with VR in entecavir group (AUC 0.78). The predictive model incorporating LHBs, HBsAg and HBV DNA could discriminate VR at baseline (AUC 0.79) and showed an association with serological response (SR) at week 12 (AUC 0.80) in peginterferon alfa-2a group. CONCLUSIONS On-treatment quantification of serum LHBs may be a more useful parameter for predicting VR in patients on peginterferon alfa-2a than those on entecavir. Combining LHBs, HBsAg and HBV DNA can predict VR and SR more effectively and earlier.
Collapse
Affiliation(s)
- Xuejuan Zhu
- Department of Infectious Diseases, Institute of Infectious & Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Janmanchi D, Lin CH, Hsieh JY, Tseng YP, Chen TA, Jhuang HJ, Yeh SF. Synthesis and biological evaluation of helioxanthin analogues. Bioorg Med Chem 2013; 21:2163-76. [DOI: 10.1016/j.bmc.2012.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/18/2022]
|
42
|
Recovery of Mature Hepatocytic Phenotype following Bile Ductular Transdifferentiation of Rat Hepatocytes in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2094-104. [DOI: 10.1016/j.ajpath.2012.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022]
|
43
|
Qiu LP, Chen KP. Anti-HBV agents derived from botanical origin. Fitoterapia 2012; 84:140-57. [PMID: 23164603 DOI: 10.1016/j.fitote.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 01/16/2023]
Abstract
There are 350,000 hepatitis B virus (HBV) carriers all over the world. Chronic HBV infection is at a high risk of developing liver cirrhosis and hepatocelluar carcinoma (HCC), and heavily threatened people's health. Two kinds of drugs approved by FDA for anti-HBV therapy are immunomodulators (interferon α, pegylated-interferon α) and nucleos(t)ide analogues (lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate). These drugs have been proved to be far from being satisfactory due to their low specificity, side effects, and high rate of drug resistance. There is an urgent need to discover and develop novel effective anti-HBV drugs. With vast resources, various structures, diverse biological activities and action mechanisms, as well as abundant clinical experiences, botanical agents become a promising source of finding new anti-HBV drugs. This review summarizes the recent research and development of anti-HBV agents derived from botanical origin on their sources and active components, inhibitory effects and possible toxicities, as well as action targets and mechanisms, and also addresses the advantages and the existing shortcomings in the development of botanical inhibitors. This information may not only broaden the knowledge of anti-HBV therapy, and offer possible alternative or substitutive drugs for CHB patients, but also provides considerable information for developing new safe and effective anti-HBV drugs.
Collapse
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | | |
Collapse
|
44
|
Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem 2012; 287:30181-90. [PMID: 22791717 DOI: 10.1074/jbc.m112.370312] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Design, synthesis, and molecular hybrids of caudatin and cinnamic acids as novel anti-hepatitis B virus agents. Eur J Med Chem 2012; 54:352-65. [PMID: 22687441 PMCID: PMC7115590 DOI: 10.1016/j.ejmech.2012.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/27/2012] [Accepted: 05/10/2012] [Indexed: 12/29/2022]
Abstract
Forty-six conjugated derivatives of caudatin with substituted cinnamic acids were synthesized, and their anti-hepatitis B virus (HBV) activity was evaluated in HepG 2.2.15 cells. Most of the derivatives exhibited potent anti-HBV activity, especially inhibiting the HBV DNA replication with the IC(50) values from 2.44 to 22.89 μΜ. Compound 18 showed significant activity against the secretion of HBsAg, HBeAg, and HBV DNA replication with IC(50) values of 5.52, 5.52, 2.44 μΜ, respectively, and had good safety (LD(50) > 1250 mg/kg) according to the acute toxicity study. Preliminary mechanism investigation suggested that compound 18 exerted antivirus effects via interfering HBV X promoter and enhancer I to influence HBV transcriptions.
Collapse
|
46
|
Wang LJ, Geng CA, Ma YB, Huang XY, Luo J, Chen H, Guo RH, Zhang XM, Chen JJ. Synthesis, structure–activity relationships and biological evaluation of caudatin derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem 2012; 20:2877-88. [DOI: 10.1016/j.bmc.2012.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023]
|
47
|
Wang LJ, Geng CA, Ma YB, Huang XY, Luo J, Chen H, Zhang XM, Chen JJ. Synthesis, biological evaluation and structure-activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett 2012; 22:3473-9. [PMID: 22520261 DOI: 10.1016/j.bmcl.2012.03.081] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 12/22/2022]
Abstract
Fifty-seven derivatives of glycyrrhetinic acid (GA) were synthesized, and their anti-hepatitis B virus (HBV) activity was evaluated in HepG 2.2.15 cells. Among them, sixteen compounds showed greater anti-HBV activity than GA, especially, compounds 29, 32, 35, 41 exhibited significantly inhibitory activities against HBV DNA replication with IC(50) values of 5.71, 5.36, 8.90 and 9.08 μM, respectively. The structure-activity relationships (SARs) of GA derivatives were discussed for exploring novel anti-HBV agents.
Collapse
Affiliation(s)
- Li-Jun Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hong MH, Chou YC, Wu YC, Tsai KN, Hu CP, Jeng KS, Chen ML, Chang C. Transforming growth factor-β1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4α expression. PLoS One 2012; 7:e30360. [PMID: 22276183 PMCID: PMC3262823 DOI: 10.1371/journal.pone.0030360] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/14/2011] [Indexed: 12/13/2022] Open
Abstract
Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.
Collapse
Affiliation(s)
- Ming-Hsiang Hong
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chi Chou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chieh Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-po Hu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mong-Liang Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chungming Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Feng H, Beck J, Nassal M, Hu KH. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 2011; 6:e27862. [PMID: 22125633 PMCID: PMC3220704 DOI: 10.1371/journal.pone.0027862] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/26/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the ε RNA stem-loop on pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP), to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jürgen Beck
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, Freiburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, Freiburg, Germany
| | - Kang-hong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
50
|
|