1
|
Crowell JW, Beard KC, Chester SGB. Micro-computed tomography unveils anatomy of the oldest known plesiadapiform cranium. J Hum Evol 2025; 201:103655. [PMID: 40080934 DOI: 10.1016/j.jhevol.2025.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
Palaechthonids are a likely paraphyletic or polyphyletic assemblage of dentally plesiomorphic plesiadapiforms known from the Paleocene of North America. This family is known primarily from isolated dental fossils, but one partial cranium of the palaechthonid Plesiolestes nacimienti (Division of Vertebrate Paleontology, Biodiversity Institute, University of Kansas [KUVP] 9557) exists and was studied a half-century ago to infer aspects of the paleobiology of basal or stem primates. Since then, additional plesiadapiform crania representing several families have been described, but KUVP 9557 remains the best preserved for a palaechthonid and is the geologically oldest known cranial fossil of any plesiadapiform or euarchontan mammal (primates + colugos + treeshrews). Here, for the first time, we scanned the partial cranium of P. nacimienti using micro-computed tomography (μCT) to assess previously described morphology, document novel morphology, and make comparisons with crania of other plesiadapiforms and euarchontans. While several previous cranial descriptions are reaffirmed here (e.g., caudal expansion of the nasals, an intraorbital lacrimal foramen), μCT scan data have clarified that certain previously identified structures (e.g., postorbital process) are not present and have unveiled previously unknown structures (e.g., foramen ovale, optic foramen). Comparisons indicate that the cranial anatomy of P. nacimienti is most like that of non-microsyopid plesiadapiforms and that unambiguous synapomorphies with an extant euarchontan clade are absent. Paleobiological inferences presented here suggest that P. nacimienti was broadly similar to the extant treeshrew Ptilocercus, albeit less insectivorous, which is in line with evolutionary scenarios proposed for the ancestral primatomorphan or the ancestral primate (sensu lato) that emphasize the importance of arboreality and angiosperm products.
Collapse
Affiliation(s)
- Jordan W Crowell
- Ph.D. Program in Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA; Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - K Christopher Beard
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66045, USA
| | - Stephen G B Chester
- Ph.D. Program in Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA; Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| |
Collapse
|
2
|
Hovatter BT, Chester SGB, Wilson Mantilla GP. New records of early Paleocene (earliest Torrejonian) plesiadapiforms from northeastern Montana, USA, provide a window into the diversification of stem primates. J Hum Evol 2024; 192:103500. [PMID: 38762383 DOI: 10.1016/j.jhevol.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 05/20/2024]
Abstract
Plesiadapiforms (putative stem primates) appear in the fossil record shortly after the Cretaceous/Paleogene boundary and subsequently radiated throughout the Paleocene into a taxonomically and ecomorphologically diverse group. The oldest known plesiadapiforms come from early Puercan (the oldest North American Land Mammal 'age' [NALMA] of the Cenozoic) deposits in northeastern Montana, and all records of Puercan plesiadapiforms are taxonomically restricted to members of the Purgatoriidae and the enigmatic genus Pandemonium. Plesiadapiform diversity substantially increased in the following Torrejonian NALMA, but the sparse record of faunas between the Puercan and the well-known middle and late Torrejonian has hampered our understanding of this important interval in early primate evolution. Here we report new plesiadapiform dental fossils from early Torrejonian (To1) deposits from the Tullock Member of the Fort Union Formation in northeastern Montana that record several poorly known taxa including members of the Purgatoriidae, Paromomyidae and Pandemonium, and that document the largest and most diverse assemblage of To1 plesiadapiforms known. We describe a new species of the purgatoriid Ursolestes (Ursolestes blissorum, sp. nov.) that represents the largest plesiadapiform known from the early Paleocene and, among other taxa, provides additional evidence that the temporal range of purgatoriids extended into the Torrejonian. Large sample sizes of the oldest known paromomyid, Paromomys farrandi, allowed us to document intraspecific variability and one undescribed tooth locus. Our observations illuminate changes in dental morphology of some taxa that occurred in To1 and may inform the acquisition of certain diagnostic plesiadapiform dental characters. We evaluate plesiadapiform species richness, mean body mass and body-mass disparity through the Paleocene and reveal unrecognized levels of richness in To1 and a general trend of stable body mass and body-mass disparity. Our findings contribute to documented patterns of plesiadapiform provincialism in the early Paleocene and shed light on the early stages of their Torrejonian radiation.
Collapse
Affiliation(s)
- Brody T Hovatter
- Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm-070, Box 351310, 3920 Okanogan Lane NE, Seattle, WA, 98195-1310, USA; Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, 4303 Memorial Way NE, Seattle, WA, 98195, USA.
| | - Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; New York Consortium in Evolutionary Primatology, 200 Central Park West, New York, NY, 10024, USA
| | - Gregory P Wilson Mantilla
- Department of Biology, University of Washington, 3747 West Stevens Way NE, LSB, Rm B147A, Seattle, WA, 98195-1800, USA; Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, 4303 Memorial Way NE, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Kemp AD. Effect of binocular visual cue availability on fruit and insect grasping performance in two cheirogaleids: Implications for primate origins hypotheses. J Hum Evol 2024; 188:103456. [PMID: 38325119 DOI: 10.1016/j.jhevol.2023.103456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 02/09/2024]
Abstract
Forward-facing eyes with parallel optic axes, which provide a wide field of binocular vision and precise depth perception, are among the diagnostic features of crown primates; however, the adaptive significance of this feature remains contentious. Two of the most prominent primate-origins hypotheses propose that either foraging for fruit or nocturnal predation on insects created selective pressures that led to the evolution of diagnostic primate traits, including a wide binocular field. To determine whether either of these hypotheses provides a viable explanation for the evolution of primates' derived eye orientation, the importance of binocular depth cues for the two tasks invoked by these hypotheses was evaluated experimentally in Microcebus murinus and Cheirogaleus medius, cheirogaleids' considered reasonable living analogs of the earliest euprimates. Performance in grasping insects and fruit was evaluated when the animals made use of their full binocular visual field and when their binocular visual field was restricted using a helmet-mounted blinder. Restriction of the binocular field had no effect on fruit grasping performance; however, restriction of the binocular field resulted in a significant deficit in insect predation performance. Differences in behavioral variables also suggest that insect predation is a more visually demanding task than fruit foraging. These results support the role of insect predation, but not fruit foraging, in contributing to the selective pressures that led to the evolution of parallel optic axes and a wide binocular field in crown primates.
Collapse
Affiliation(s)
- Addison D Kemp
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, 403 Bishop Memorial Teaching Building, 133 San Pablo St, Los Angeles, CA, 90033-9112, USA.
| |
Collapse
|
4
|
Kemp AD. Effects of binocular cue availability on leaping performance in Cheirogaleus medius: implications for primate origins. J Exp Biol 2024; 227:jeb245434. [PMID: 38348492 PMCID: PMC10918687 DOI: 10.1242/jeb.245434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Multiple competing hypotheses attribute the evolution of the suite of traits that distinguish primates from their closest relatives, including forward-facing eyes, which create a wide field of binocular vision, to specific behavioral and ecological factors. The grasp-leaping hypothesis suggests that the evolution of these traits in basal primates was driven by the demands of a form of leaping locomotion unique to primates. Whether the grasp-leaping hypothesis provides a viable mechanism for the evolution of primates' forward-facing eyes remains untested. To determine whether grasp-leaping locomotion may have contributed to driving the evolution of primates' forward-facing eyes, the importance of vision within the binocular field for this type of leaping was evaluated experimentally in Cheirogaleus medius, one of the cheirogaleid primate species considered reasonable living analogs of the earliest primates. Availability of binocular visual cues was experimentally restricted using a head-mounted blinder that narrowed the binocular visual field without altering the total visual field. Animals altered their launch behavior, reduced their horizontal leap speed, and were significantly more likely to select paths that offered the shortest available leaps when their binocular field was restricted. Restriction of binocular cue availability also significantly increased the probability of adverse landings even when statistically controlling for potentially confounding variables such as leap distance, horizontal leap speed, learning effects, etc. These results suggest a functional mechanism by which selection for improved grasp-leaping could also have contributed to the evolution of forward-facing eyes in the earliest crown primates.
Collapse
Affiliation(s)
- Addison D. Kemp
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Crowell JW, Wible JR, Chester SGB. Basicranial evidence suggests picrodontid mammals are not stem primates. Biol Lett 2024; 20:20230335. [PMID: 38195058 PMCID: PMC10776232 DOI: 10.1098/rsbl.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.
Collapse
Affiliation(s)
- Jordan W. Crowell
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - John R. Wible
- Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA
| | - Stephen G. B. Chester
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
6
|
Liang X, Heath LS. Towards understanding paleoclimate impacts on primate de novo genes. G3 (BETHESDA, MD.) 2023; 13:jkad135. [PMID: 37313728 PMCID: PMC10468307 DOI: 10.1093/g3journal/jkad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
De novo genes are genes that emerge as new genes in some species, such as primate de novo genes that emerge in certain primate species. Over the past decade, a great deal of research has been conducted regarding their emergence, origins, functions, and various attributes in different species, some of which have involved estimating the ages of de novo genes. However, limited by the number of species available for whole-genome sequencing, relatively few studies have focused specifically on the emergence time of primate de novo genes. Among those, even fewer investigate the association between primate gene emergence with environmental factors, such as paleoclimate (ancient climate) conditions. This study investigates the relationship between paleoclimate and human gene emergence at primate species divergence. Based on 32 available primate genome sequences, this study has revealed possible associations between temperature changes and the emergence of de novo primate genes. Overall, findings in this study are that de novo genes tended to emerge in the recent 13 MY when the temperature continues cooling, which is consistent with past findings. Furthermore, in the context of an overall trend of cooling temperature, new primate genes were more likely to emerge during local warming periods, where the warm temperature more closely resembled the environmental condition that preceded the cooling trend. Results also indicate that both primate de novo genes and human cancer-associated genes have later origins in comparison to random human genes. Future studies can be in-depth on understanding human de novo gene emergence from an environmental perspective as well as understanding species divergence from a gene emergence perspective.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Monclús-Gonzalo O, Alba DM, Duhamel A, Fabre AC, Marigó J. Early euprimates already had a diverse locomotor repertoire: Evidence from ankle bone morphology. J Hum Evol 2023; 181:103395. [PMID: 37320961 DOI: 10.1016/j.jhevol.2023.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
The morphological adaptations of euprimates have been linked to their origin and early evolution in an arboreal environment. However, the ancestral and early locomotor repertoire of this group remains contentious. Although some tarsal bones like the astragalus and the calcaneus have been thoroughly studied, the navicular remains poorly studied despite its potential implications for foot mobility. Here, we evaluate early euprimate locomotion by assessing the shape of the navicular-an important component of the midtarsal region of the foot-using three-dimensional geometric morphometrics in relation to quantified locomotor repertoire in a wide data set of extant primates. We also reconstruct the locomotor repertoire of representatives of the major early primate lineages with a novel phylogenetically informed discriminant analysis and characterize the changes that occurred in the navicular during the archaic primate-euprimate transition. To do so, we included in our study an extensive sample of naviculars (36 specimens) belonging to different species of adapiforms, omomyiforms, and plesiadapiforms. Our results indicate that navicular shape embeds a strong functional signal, allowing us to infer the type of locomotion of extinct primates. We demonstrate that early euprimates displayed a diverse locomotor behavior, although they did not reach the level of specialization of some living forms. Finally, we show that the navicular bone experienced substantial reorganization throughout the archaic primate-euprimate transition, supporting the major functional role of the tarsus during early primate evolution. This study demonstrates that navicular shape can be used as a reliable proxy for primate locomotor behavior. In addition, it sheds light on the diverse locomotor behavior of early primates as well as on the archaic primate-euprimate transition, which involved profound morphological changes within the tarsus, including the navicular bone.
Collapse
Affiliation(s)
- Oriol Monclús-Gonzalo
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Anaïs Duhamel
- University of Lyon, ENSL, CNRS, LGL-TPE, Villeurbanne 69622, France
| | - Anne-Claire Fabre
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; Life Sciences Department, Vertebrates Division, Natural History Museum, London SW7 5BD, UK.
| | - Judit Marigó
- Universitat Autònoma de Barcelona, Departament de Geologia, 08193 Cerdanyola del Vallès, Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
White CL, Bloch JI, Morse PE, Silcox MT. Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution. J Hum Evol 2023; 175:103303. [PMID: 36608392 DOI: 10.1016/j.jhevol.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Paleogene microsyopid plesiadapiforms are among the oldest euarchontans known from relatively complete crania. While cranial endocasts are known for larger-bodied Eocene microsyopine microsyopids, this study documents the first virtual endocast for the more diminutive uintasoricine microsyopids, derived from a specimen of Niptomomys cf. Niptomomys doreenae (USNM 530198) from the late Paleocene of Wyoming. Size estimates of smaller-bodied uintasoricines are similar to those inferred for the common ancestor of Primates, so the virtual endocast of Niptomomys may provide a useful model to study early primate brain evolution. Due to the broken and telescoped nature of the neurocranium of USNM 530198, a μCT scan of the specimen was used to create a 3D model of multiple bone fragments that were then independently isolated, repositioned, and merged to form a cranial reconstruction from which a virtual endocast was extracted. The virtual endocast of Niptomomys has visible caudal colliculi, suggesting less caudal expansion of the cerebrum compared to that of euprimates, but similar to that of several other plesiadapiforms. The part of the endocast representing the olfactory bulbs is larger relative to overall endocast volume in Niptomomys (8.61%) than that of other known plesiadapiforms (∼5%) or euprimates (<3.5%). The petrosal lobules (associated with visual stabilization) are relatively large for a Paleocene placental mammal (1.66%). The encephalization quotient of Niptomomys is relatively high (range = 0.35-0.85) compared to that of Microsyops (range = 0.32-0.52), with the upper estimates in the range of values calculated for early euprimates. However, this contrast likely relates in part to the small size of the taxon, and is not associated with evidence of neocortical expansion. These findings are consistent with a model of shifting emphasis in primate evolution toward functions of the cerebrum and away from olfaction with the origin of euprimates.
Collapse
Affiliation(s)
- Chelsea L White
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA
| | - Paul E Morse
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada.
| |
Collapse
|
9
|
Basal Primatomorpha colonized Ellesmere Island (Arctic Canada) during the hyperthermal conditions of the early Eocene climatic optimum. PLoS One 2023; 18:e0280114. [PMID: 36696373 PMCID: PMC9876366 DOI: 10.1371/journal.pone.0280114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Anthropogenically induced warming is transforming Arctic ecosystems across a geologically short timescale, but earlier episodes of Earth history provide insights on the nature and limitations of biotic change in a rapidly warming Arctic. Late early Eocene strata (~52 Ma) of the Margaret Formation on Ellesmere Island, Nunavut, Canada sample a warm temperate ecosystem with a polar light regime situated at ~77°N paleolatitude. This extinct boreal ecosystem hosted a diversity of early Cenozoic vertebrates, including thermophilic taxa such as crocodilians and tapiroid perissodactyls. Here we describe two new species of the early primatomorphan Ignacius from Ellesmere, which are by far the northernmost known records for Paleogene Primatomorpha. Ellesmere species of Ignacius are sister taxa, indicating a single colonization of Ellesmere from farther south in North America coincident with the onset of the hyperthermal Early Eocene Climatic Optimum (EECO). The Ellesmere Ignacius clade differs from closely related taxa inhabiting mid-latitudes in being larger (thereby conforming to Bergmann's rule) and having modified dentition and muscles of mastication for a dietary regime emphasizing hard objects, possibly reflecting an increased reliance on fallback foods during long polar winters. The late early Eocene mammalian fauna of Ellesmere indicates that its unique paleoenvironment rendered it uninhabitable to some clades, including euprimates, while selected taxa were able to adapt to its challenging conditions and diversify.
Collapse
|
10
|
Woodruff ED, Kircher BK, Armfield BA, Levy JK, Bloch JI, Cohn MJ. Domestic cat embryos reveal unique transcriptomes of developing incisor, canine, and premolar teeth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:516-531. [PMID: 35816012 DOI: 10.1002/jez.b.23168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Division of the dentition into morphologically distinct classes of teeth (incisors, canines, premolars, and molars) and the acquisition of tribosphenic molars facilitated precise occlusion between the teeth early in mammal evolution. Despite the evolutionary and ecological importance of distinct classes of teeth with unique cusp, crest, and basin morphologies, relatively little is known about the genetic basis for the development of different tooth classes within the embryo. Here we investigated genetic differences between developing deciduous incisor, canine, and premolar teeth in the domestic cat (Felis catus), which we propose to be a new model for tooth development. We examined differences in both developmental timing and crown morphology between the three tooth classes. Using RNA sequencing of early bell stage tooth germs, we showed that each of the three deciduous tooth classes possess a unique transcriptional profile. Three notable groups of genes emerged from our differential expression analysis; genes involved in the extracellular matrix (ECM), Wnt pathway signaling, and members of multiple homeobox gene families (Lhx, Dlx, Alx, and Nkx). Our results suggest that ECM genes may play a previously under-appreciated role in shaping the surface of the tooth crown during development. Differential regulation of these genes likely underlies differences in tooth crown shape and size, although subtle temporal differences in development between the tooth germs could also be responsible. This study provides foundational data for future experiments to examine the function of these candidate genes in tooth development to directly test their potential effects on crown morphology.
Collapse
Affiliation(s)
- Emily D Woodruff
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Brooke A Armfield
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Julie K Levy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan I Bloch
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN. Attenuated evolution of mammals through the Cenozoic. Science 2022; 378:377-383. [DOI: 10.1126/science.abm7525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Cenozoic diversification of placental mammals is the archetypal adaptive radiation. Yet, discrepancies between molecular divergence estimates and the fossil record fuel ongoing debate around the timing, tempo, and drivers of this radiation. Analysis of a three-dimensional skull dataset for living and extinct placental mammals demonstrates that evolutionary rates peak early and attenuate quickly. This long-term decline in tempo is punctuated by bursts of innovation that decreased in amplitude over the past 66 million years. Social, precocial, aquatic, and herbivorous species evolve fastest, especially whales, elephants, sirenians, and extinct ungulates. Slow rates in rodents and bats indicate dissociation of taxonomic and morphological diversification. Frustratingly, highly similar ancestral shape estimates for placental mammal superorders suggest that their earliest representatives may continue to elude unequivocal identification.
Collapse
Affiliation(s)
- Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Eve Noirault
- Department of Life Sciences, Natural History Museum, London, UK
| | - Ellen J. Coombs
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London, UK
- Naturhistorisches Museum Bern, Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Thomas J. D. Halliday
- Department of Life Sciences, Natural History Museum, London, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Akinobu Watanabe
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Brian L. Beatty
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jonathan H. Geisler
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - David L. Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ryan N. Felice
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
12
|
Measuring Molarization: Change Through Time in Premolar Function in An Extinct Stem Primate Lineage. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Bertrand OC, Shelley SL, Williamson TE, Wible JR, Chester SGB, Flynn JJ, Holbrook LT, Lyson TR, Meng J, Miller IM, Püschel HP, Smith T, Spaulding M, Tseng ZJ, Brusatte SL. Brawn before brains in placental mammals after the end-Cretaceous extinction. Science 2022; 376:80-85. [PMID: 35357913 DOI: 10.1126/science.abl5584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.,Ecology, Evolutionary Biology, and Behavior subprogram, PhD Program in Biology, The Graduate Center, City University of New York, New York, NY, USA.,PhD Program in Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, NY, USA
| | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Ian M Miller
- Denver Museum of Nature & Science, Denver, CO, USA.,National Geographic Society, Washington, DC, USA
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK
| | - Thierry Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Michelle Spaulding
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, USA
| | - Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland EH9 3FE, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
14
|
The largest and earliest known sample of dental caries in an extinct mammal (Mammalia, Euarchonta, Microsyops latidens) and its ecological implications. Sci Rep 2021; 11:15920. [PMID: 34504127 PMCID: PMC8429469 DOI: 10.1038/s41598-021-95330-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Dental cavities or caries is a common disease among modern humans, affecting almost every adult. Caries frequency has been used to study dietary change in humans over time, based on an inferred tie between the incidence of caries and a carbohydrate-rich diet. However, the disease is not unique to our species. Among non-human primates, there is also variation in caries frequency associated with diet, suggesting that this metric may provide a mechanism for studying diet in broader contexts, and across geological time. To date, very few studies have examined caries among fossil mammals, and none have done so among Eocene mammals. Here, we present our analysis of the largest sample to date of fossil caries in a single extinct mammal species, Microsyops latidens, a stem primate from the early Eocene, which is known from over a thousand specimens from the Southern Bighorn Basin of Wyoming (n = 1030). Our results show that Microsyops latidens is characterized by a high prevalence of dental caries (7.48% of individuals), with notable variation through time, reaching 17.24% of individuals from a particular interval. This interval is also associated with a change in overall dental form, as quantified by dental topographic analysis, which measures functional aspects of the chewing surface of teeth. These observations suggest that this species experienced a shift in their diet to include more fruit or other sugar rich-foods for a short period. Our analysis, therefore, suggests that the diet of M. latidens fluctuated over time, as well as providing a framework for assessing caries in other fossil taxa.
Collapse
|
15
|
Abstract
Although viruses have threatened our ancestors for millions of years, prehistoric epidemics of viruses are largely unknown. Endogenous bornavirus-like elements (EBLs) are ancient bornavirus sequences derived from the viral messenger RNAs that were reverse transcribed and inserted into animal genomes, most likely by retrotransposons. These elements can be used as molecular fossil records to trace past bornaviral infections. In this study, we systematically identified EBLs in vertebrate genomes and revealed the history of bornavirus infections over nearly 100 My. We confirmed that ancient bornaviral infections have occurred in diverse vertebrate lineages, especially in primate ancestors. Phylogenetic analyses indicated that primate ancestors were infected with various bornaviral lineages during evolution. EBLs in primate genomes formed clades according to their integration ages, suggesting that bornavirus lineages infected with primate ancestors had changed chronologically. However, some bornaviral lineages may have coexisted with primate ancestors and underwent repeated endogenizations for tens of millions of years. Moreover, a bornaviral lineage that coexisted with primate ancestors also endogenized in the genomes of some ancestral bats. The habitats of these bat ancestors have been reported to overlap with the migration route of primate ancestors. These results suggest that long-term virus-host coexistence expanded the geographic distributions of the bornaviral lineage along with primate migration and may have spread their infections to these bat ancestors. Our findings provide insight into the history of bornavirus infections over geological timescales that cannot be deduced from research using extant viruses alone, thus broadening our perspective on virus-host coevolution.
Collapse
|
16
|
Smaers JB, Rothman RS, Hudson DR, Balanoff AM, Beatty B, Dechmann DKN, de Vries D, Dunn JC, Fleagle JG, Gilbert CC, Goswami A, Iwaniuk AN, Jungers WL, Kerney M, Ksepka DT, Manger PR, Mongle CS, Rohlf FJ, Smith NA, Soligo C, Weisbecker V, Safi K. The evolution of mammalian brain size. SCIENCE ADVANCES 2021; 7:7/18/eabe2101. [PMID: 33910907 PMCID: PMC8081360 DOI: 10.1126/sciadv.abe2101] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
Collapse
Affiliation(s)
- J B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - R S Rothman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - D R Hudson
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A M Balanoff
- Department of Psychological and Brain Sciences Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - B Beatty
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- United States National Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - D K N Dechmann
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - D de Vries
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WX, UK
| | - J C Dunn
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria
| | - J G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - C C Gilbert
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Department of Anthropology, Hunter College, New York, NY 10065, USA
- PhD Program in Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - A Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - A N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K-3M4, Canada
| | - W L Jungers
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - M Kerney
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - D T Ksepka
- Bruce Museum, Greenwich, CT 06830, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
| | - P R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C S Mongle
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - F J Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - N A Smith
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Campbell Geology Museum, Clemson University, Clemson, SC 29634, USA
| | - C Soligo
- Department of Anthropology, University College London, London WC1H 0BW, UK
| | - V Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - K Safi
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
17
|
Wilson Mantilla GP, Chester SGB, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, Mitchell WS, Mans WW, Mundil R, Renne PR. Earliest Palaeocene purgatoriids and the initial radiation of stem primates. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210050. [PMID: 33972886 PMCID: PMC8074693 DOI: 10.1098/rsos.210050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 06/03/2023]
Abstract
Plesiadapiform mammals, as stem primates, are key to understanding the evolutionary and ecological origins of Pan-Primates and Euarchonta. The Purgatoriidae, as the geologically oldest and most primitive known plesiadapiforms and one of the oldest known placental groups, are also central to the evolutionary radiation of placentals and the Cretaceous-Palaeogene biotic recovery on land. Here, we report new dental fossils of Purgatorius from early Palaeocene (early Puercan) age deposits in northeastern Montana that represent the earliest dated occurrences of plesiadapiforms. We constrain the age of these earliest purgatoriids to magnetochron C29R and most likely to within 105-139 thousand years post-K/Pg boundary. Given the occurrence of at least two species, Purgatorius janisae and a new species, at the locality, we provide the strongest support to date that purgatoriids and, by extension, Pan-Primates, Euarchonta and Placentalia probably originated by the Late Cretaceous. Within 1 million years of their arrival in northeastern Montana, plesiadapiforms outstripped archaic ungulates in numerical abundance and dominated the arboreal omnivore-frugivore niche in mammalian local faunas.
Collapse
Affiliation(s)
- Gregory P. Wilson Mantilla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Stephen G. B. Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - William A. Clemens
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Jason R. Moore
- Honors College, University of New Mexico, Albuquerque, NM 87131, USA
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Brody T. Hovatter
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Wade W. Mans
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Roland Mundil
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| | - Paul R. Renne
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Silcox MT, Selig KR, Bown TM, Chew AE, Rose KD. Cladogenesis and replacement in the fossil record of Microsyopidae (?Primates) from the southern Bighorn Basin, Wyoming. Biol Lett 2021; 17:20200824. [PMID: 33563133 DOI: 10.1098/rsbl.2020.0824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The early Eocene of the southern Bighorn Basin, Wyoming, is notable for its nearly continuous record of mammalian fossils. Microsyopinae (?Primates) is one of several lineages that shows evidence of evolutionary change associated with an interval referred to as Biohorizon A. Arctodontomys wilsoni is replaced by a larger species, Arctodontomys nuptus, during the biohorizon interval in what is likely an immigration/emigration or immigration/local extinction event. The latter is then superseded by Microsyops angustidens after the end of the Biohorizon A interval. Although this pattern has been understood for some time, denser sampling has led to the identification of a specimen intermediate in morphology between A. nuptus and M. angustidens, located stratigraphically as the latter is appearing. Because specimens of A. nuptus have been recovered approximately 60 m above the appearance of M. angustidens, it is clear that A. nuptus did not suffer pseudoextinction. Instead, evidence suggests that M. angustidens branched off from a population of A. nuptus, but the latter species persisted. This represents possible evidence of cladogenesis, which has rarely been directly documented in the fossil record. The improved understanding of both evolutionary transitions with better sampling highlights the problem of interpreting gaps in the fossil record as punctuations.
Collapse
Affiliation(s)
- Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Keegan R Selig
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Thomas M Bown
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523-1701, USA
| | - Amy E Chew
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, RI 02912, USA
| | - Kenneth D Rose
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Geng WH, Wang XP, Che LF, Wang X, Liu R, Zhou T, Roos C, Irwin DM, Yu L. Convergent Evolution of Locomotory Modes in Euarchontoglires. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.615862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The research of phenotypic convergence is of increasing importance in adaptive evolution. Locomotory modes play important roles in the adaptive evolution of species in the Euarchontoglires, however, the investigation of convergent evolution of the locomotory modes across diverse Euarchontoglire orders is incomplete. We collected measurements of three phalangeal indices of manual digit III, including metacarpal of digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory modes. This data can be separated into seven groups defined by order and locomotory mode. Based on combination of the three phalangeal indices, the Principle component analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal species of Scandentia, Rodentia, and Primates together and the terrestrial species of Scandentia and Rodentia together, showing the convergent signal in evolution of the arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05). Our work provides insight into the convergent evolution of locomotory modes in Euarchontoglires, and reveals that these three indices contribute valuable information to identify convergent evolution in Euarchontoglires.
Collapse
|
20
|
López-Torres S, Bertrand OC, Lang MM, Silcox MT, Fostowicz-Frelik Ł. Cranial endocast of the stem lagomorph Megalagus and brain structure of basal Euarchontoglires. Proc Biol Sci 2020; 287:20200665. [PMID: 32576117 PMCID: PMC7329053 DOI: 10.1098/rspb.2020.0665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Early lagomorphs are central to our understanding of how the brain evolved in Glires (rodents, lagomorphs and their kin) from basal members of Euarchontoglires (Glires + Euarchonta, the latter grouping primates, treeshrews, and colugos). Here, we report the first virtual endocast of the fossil lagomorph Megalagus turgidus, from the Orella Member of the Brule Formation, early Oligocene, Nebraska, USA. The specimen represents one of the oldest nearly complete lagomorph skulls known. Primitive aspects of the endocranial morphology in Megalagus include large olfactory bulbs, exposure of the midbrain, a small neocortex and a relatively low encephalization quotient. Overall, this suggests a brain morphology closer to that of other basal members of Euarchontoglires (e.g. plesiadapiforms and ischyromyid rodents) than to that of living lagomorphs. However, the well-developed petrosal lobules in Megalagus, comparable to the condition in modern lagomorphs, suggest early specialization in that order for the stabilization of eye movements necessary for accurate visual tracking. Our study sheds new light on the reconstructed morphology of the ancestral brain in Euarchontoglires and fills a critical gap in the understanding of palaeoneuroanatomy of this major group of placental mammals.
Collapse
Affiliation(s)
- Sergi López-Torres
- Division of Paleontology, American Museum of Natural History, New York, NY, USA.,Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA.,Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Ornella C Bertrand
- School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh EH9 3FE, UK
| | - Madlen M Lang
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Łucja Fostowicz-Frelik
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland.,Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| |
Collapse
|
21
|
Dang Y, Wang JY, Liu C, Zhang K, Jinrong P, He J. Evolutionary and Molecular Characterization of liver-enriched gene 1. Sci Rep 2020; 10:4262. [PMID: 32144352 PMCID: PMC7060313 DOI: 10.1038/s41598-020-61208-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
Liver-enriched gene 1 (Leg1) is a newly identified gene with little available functional information. To evolutionarily and molecularly characterize Leg1 genes, a phylogenetic study was first conducted, which indicated that Leg1 is a conserved gene that exists from bacteria to mammals. During the evolution of mammals, Leg1s underwent tandem duplications, which gave rise to Leg1a, Leg1b, and Leg1c clades. Analysis of the pig genome showed the presence of all three paralogs of pig Leg1 genes (pLeg1s), whereas only Leg1a could be found in the human (hLeg1a) or mouse (mLeg1a) genomes. Purifying force acts on the evolution of Leg1 genes, likely subjecting them to functional constraint. Molecularly, pLeg1a and its coded protein, pig LEG1a (pLEG1a), displayed high similarities to its human and mouse homologs in terms of gene organization, expression patterns, and structures. Hence, pLeg1a, hLeg1a, and mLeg1a might preserve similar functions. Additionally, expression analysis of the three Leg1as suggested that eutherian Leg1as might have different functions from those of zebrafish and platypus due to subfunctionalization. Therefore, pLeg1a might provide essential information about eutherian Leg1a. Moreover, a preliminary functional study using RNA-seq suggested that pLeg1a is involved in the lipid homeostasis. In conclusion, our study provides some basic information on the aspects of evolution and molecular function, which could be applied for further validation of Leg1 using pig models.
Collapse
Affiliation(s)
- Yanna Dang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jin-Yang Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Chen Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Kun Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Peng Jinrong
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
22
|
Schottenstein NH, Hubbe M, Hunter J. Modules and Mosaics in the Evolution of the Tetonius – Pseudotetonius Dentition. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhang ML, Li ML, Ayoola AO, Murphy RW, Wu DD, Shao Y. Conserved sequences identify the closest living relatives of primates. Zool Res 2019; 40:532-540. [PMID: 31393097 PMCID: PMC6822925 DOI: 10.24272/j.issn.2095-8137.2019.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Elucidating the closest living relatives of extant primates is essential for fully understanding important biological processes related to the genomic and phenotypic evolution of primates, especially of humans. However, the phylogenetic placement of these primate relatives remains controversial, with three primary hypotheses currently espoused based on morphological and molecular evidence. In the present study, we used two algorithms to analyze differently partitioned genomic datasets consisting of 45.4 Mb of conserved non-coding elements and 393 kb of concatenated coding sequences to test these hypotheses. We assessed different genomic histories and compared with other molecular studies found solid support for colugos being the closest living relatives of primates. Our phylogeny showed Cercopithecinae to have low levels of nucleotide divergence, especially for Papionini, and gibbons to have a high rate of divergence. The MCMCtree comprehensively updated divergence dates of early evolution of Primatomorpha and Primates.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming Yunnan 650022, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto M5S 2C6, Canada
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
24
|
Cartmill M, Brown K, Atkinson C, Cartmill EA, Findley E, Gonzalez‐Socoloske D, Hartstone‐Rose A, Mueller J. The gaits of marsupials and the evolution of diagonal‐sequence walking in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:182-197. [DOI: 10.1002/ajpa.23959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matt Cartmill
- Department of Anthropology Boston University Boston Massachusetts
- Department of Evolutionary Anthropology Duke University Durham North Carolina
| | - Kaye Brown
- Department of Anthropology Boston University Boston Massachusetts
| | - Christopher Atkinson
- Department of Gastroenterology University of New Mexico Health Sciences Center Albuquerque New Mexico
| | - Erica A. Cartmill
- Departments of Anthropology and Psychology University of California Los Angeles California
| | - Erica Findley
- Southwest Boulevard Family Health Care Kansas City Kansas
| | | | - Adam Hartstone‐Rose
- Department of Biology North Carolina State University Raleigh North Carolina
| | - Joanne Mueller
- Department of Anthropology Boston University Boston Massachusetts
| |
Collapse
|
25
|
Melchionna M, Mondanaro A, Serio C, Castiglione S, Di Febbraro M, Rook L, Diniz-Filho JAF, Manzi G, Profico A, Sansalone G, Raia P. Macroevolutionary trends of brain mass in Primates. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A distinctive trait in primate evolution is the expansion in brain mass. The potential drivers of this trend and how and whether encephalization influenced diversification dynamics in this group are hotly debated. We assembled a phylogeny accounting for 317 primate species, including both extant and extinct taxa, to identify macroevolutionary trends in brain mass evolution. Our findings show that Primates as a whole follow a macroevolutionary trend for an increase in body mass, relative brain mass and speciation rate over time. Although the trend for increased encephalization (brain mass) applies to all Primates, hominins stand out for their distinctly higher rates. Within hominins, this unique trend applies linearly over time and starts with Australopithecus africanus. The increases in both speciation rate and encephalization begin in the Oligocene, suggesting the two variables are causally associated. The substitution of early, stem Primates belonging to plesiadapiforms with crown Primates seems to be responsible for these macroevolutionary trends. However, our findings also suggest that cognitive capacities favoured speciation in hominins.
Collapse
Affiliation(s)
- M Melchionna
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - A Mondanaro
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
- Department of Earth Sciences, University of Florence, Italy
| | - C Serio
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - S Castiglione
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - M Di Febbraro
- Dipartimento di Bioscienze e Territorio, University of Molise, C. da Fonte Lappone, 15, 86090 Pesche, IS, Italy
| | - L Rook
- Department of Earth Sciences, University of Florence, Italy
| | - J A F Diniz-Filho
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - G Manzi
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - A Profico
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - G Sansalone
- Department of Environmental and Rural Sciences, FEARlab, University of New England, Armidale, 2351, NSW, Australia
| | - P Raia
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| |
Collapse
|
26
|
Selig KR, Sargis EJ, Silcox MT. The frugivorous insectivores? Functional morphological analysis of molar topography for inferring diet in extant treeshrews (Scandentia). J Mammal 2019. [DOI: 10.1093/jmammal/gyz151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractThe ecology, and particularly the diet, of treeshrews (order Scandentia) is poorly understood compared to that of their close relatives, the primates. This stems partially from treeshrews having fast food transit times through the gut, meaning fecal and stomach samples only represent a small portion of the foodstuffs consumed in a given day. Moreover, treeshrews are difficult to observe in the wild, leading to a lack of observational data in the literature. Although treeshrews are mixed feeders, consuming both insects and fruit, it is currently unknown how the relative importance of these food types varies across Scandentia. Previous study of functional dental morphology has provided an alternative means for understanding the diet of living euarchontans. We used dental topographic metrics to quantify aspects of functional dental morphology in a large sample of treeshrews (n = 58). We measured relief index, Dirichlet normal energy, and three-dimensional orientation patch count rotated, which quantify crown relief, occlusal curvature, and complexity, respectively. Our results suggest that treeshrews exhibit dental morphology consistent with high levels of insectivory relative to other euarchontans. They also suggest that taxa such as Dendrogale melanura and Tupaia belangeri appear to be best suited to insectivory, whereas taxa such as T. palawanensis and T. gracilis appear to be best adapted to frugivory. Our results suggest that Ptilocercus lowii is characterized by a dentition better adapted to insectivory than the early primate Purgatorius. If P. lowii represents a good modern analogue for primitive euarchontans, this contrast would support models of primate origins that include a shift to greater frugivory.
Collapse
Affiliation(s)
- Keegan R Selig
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Eric J Sargis
- Department of Anthropology, Yale University, New Haven, CT 06520, USA
| | - Mary T Silcox
- Divisions of Vertebrate Zoology and Vertebrate Paleontology, Peabody Museum of Natural History, New Haven, CT, USA
| |
Collapse
|
27
|
Bertrand OC, Shelley SL, Wible JR, Williamson TE, Holbrook LT, Chester SGB, Butler IB, Brusatte SL. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J Anat 2019; 236:21-49. [PMID: 31667836 DOI: 10.1111/joa.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The end-Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non-avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high-resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini, which belong to a cluster of 'archaic' placental mammals called 'arctocyonid condylarths' that thrived during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long-mysterious 'arctocyonids', and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12-0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | - Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Ian B Butler
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
28
|
Scott JE. Macroevolutionary effects on primate trophic evolution and their implications for reconstructing primate origins. J Hum Evol 2019; 133:1-12. [PMID: 31358174 DOI: 10.1016/j.jhevol.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
The visual-predation hypothesis proposes that certain derived features shared by crown primates reflect an insectivorous ancestry. Critics of this idea have argued that because insectivory is uncommon among extant primates it is unlikely to have been a major influence on early primate evolution. According to this perspective, the low frequency of insectivory indicates that it is an apomorphic deviation from the mostly conserved primate ecological pattern of herbivory. The present study tests two alternative hypotheses that are compatible with an insectivorous ancestor: (1) that trophic evolution was biased, such that herbivory evolved repeatedly with few shifts back to insectivory, and (2) that insectivorous lineages have diversified at a lower rate than herbivorous lineages owing to differential trophic effects on speciation and extinction probabilities. Model-based analysis conducted using trait data for 307 extant primate species indicates that rates of transition into and out of insectivory are similar, rejecting the hypothesis of biased trophic evolution. On the other hand, the hypothesis of asymmetric diversification is supported, with insectivorous lineages having a lower rate of diversification than herbivorous lineages. This correlation is mediated by activity pattern: insectivory occurs mostly in nocturnal lineages, which have a lower diversification rate than diurnal lineages. The frequency of insectivory also appears to have been shaped by repeated transitions into ecological contexts in which insectivory is absent (large body size) or rare (diurnality). These findings suggest that the current distribution of trophic strategies among extant primates is the result of macroevolutionary processes that have favored the proliferation and persistence of herbivory relative to insectivory. This conclusion implies that the low frequency of insectivory is not necessarily evidence against the visual-predation hypothesis.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St. Pomona, California, 91766-1854, USA.
| |
Collapse
|
29
|
Nyakatura JA. Early primate evolution: insights into the functional significance of grasping from motion analyses of extant mammals. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität, Philippstraße, Berlin, Germany
| |
Collapse
|
30
|
Chester SGB, Williamson TE, Silcox MT, Bloch JI, Sargis EJ. Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta, Palaechthonidae). J Hum Evol 2019; 128:76-92. [PMID: 30825983 DOI: 10.1016/j.jhevol.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022]
Abstract
Plesiadapiforms, like other Paleogene mammals, are known mostly from fossil teeth and jaw fragments. The several families of plesiadapiforms known from partial skeletons have all been reconstructed as arborealists, but differences in postcranial morphology among these taxa indicate a diversity of positional behaviors. Here we provide the first detailed descriptions and comparisons of a dentally associated partial skeleton (NMMNH P-54500) and of the most complete dentary with anterior teeth (NMMNH P-71598) pertaining to Torrejonia wilsoni, from the early Paleocene (late Torrejonian To3 interval zone) of the Nacimiento Formation, San Juan Basin, New Mexico, USA. NMMNH P-54500 is the oldest known partial skeleton of a plesiadapiform and the only known postcrania for the Palaechthonidae. This skeleton includes craniodental fragments with all permanent teeth fully erupted, and partial forelimbs and hind limbs with some epiphyses unfused, indicating that this individual was a nearly fully-grown subadult. Analysis of the forelimb suggests mobile shoulder and elbow joints, a habitually flexed forearm, and capacity for manual grasping. The hip joint allowed abduction and lateral rotation of the thigh and provides evidence for frequent orthograde postures on large diameter supports. Other aspects of the hind limb suggest a habitually flexed thigh and knee with no evidence for specialized leaping, and mobile ankle joints capable of high degrees of inversion and eversion. Although it is likely that some variability exists within the group, analysis of this skeleton suggests that palaechthonids are most like paromomyids among plesiadapiforms, but retain more plesiomorphic postcranial features than has been documented for the Paromomyidae. These observations are congruent with craniodental evidence supporting palaechthonids and paromomyids as closely related within the Paromomyoidea. The skeleton of T. wilsoni also demonstrates that many regions of the postcranium were already well adapted for arboreality within the first few million years of the diversification of placental mammals following the Cretaceous-Paleogene extinction event.
Collapse
Affiliation(s)
- Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Department of Anthropology, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104-1375, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611-7800, USA
| | - Eric J Sargis
- Department of Anthropology, Yale University, P. O. Box 208277, New Haven, CT 06520, USA; Division of Vertebrate Paleontology, Peabody Museum of Natural History, New Haven, CT 06520, USA
| |
Collapse
|
31
|
Youlatos D, Widayati KA, Tsuji Y. Foot postures and grasping of free-ranging Sunda colugos (Galeopterus variegatus) in West Java, Indonesia. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
New fossils, systematics, and biogeography of the oldest known crown primate Teilhardina from the earliest Eocene of Asia, Europe, and North America. J Hum Evol 2019; 128:103-131. [DOI: 10.1016/j.jhevol.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
|
33
|
Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): Insights into early euprimate evolution. J Hum Evol 2018; 123:148-159. [DOI: 10.1016/j.jhevol.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022]
|
34
|
Boyer DM, Maiolino SA, Holroyd PA, Morse PE, Bloch JI. Oldest evidence for grooming claws in euprimates. J Hum Evol 2018; 122:1-22. [DOI: 10.1016/j.jhevol.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
|
35
|
Reis MD, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD. Using Phylogenomic Data to Explore the Effects of Relaxed Clocks and Calibration Strategies on Divergence Time Estimation: Primates as a Test Case. Syst Biol 2018; 67:594-615. [PMID: 29342307 PMCID: PMC6005039 DOI: 10.1093/sysbio/syy001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
Primates have long been a test case for the development of phylogenetic methods for divergence time estimation. Despite a large number of studies, however, the timing of origination of crown Primates relative to the Cretaceous-Paleogene (K-Pg) boundary and the timing of diversification of the main crown groups remain controversial. Here, we analysed a data set of 372 taxa (367 Primates and 5 outgroups, 3.4 million aligned base pairs) that includes nine primate genomes. We systematically explore the effect of different interpretations of fossil calibrations and molecular clock models on primate divergence time estimates. We find that even small differences in the construction of fossil calibrations can have a noticeable impact on estimated divergence times, especially for the oldest nodes in the tree. Notably, choice of molecular rate model (autocorrelated or independently distributed rates) has an especially strong effect on estimated times, with the independent rates model producing considerably more ancient age estimates for the deeper nodes in the phylogeny. We implement thermodynamic integration, combined with Gaussian quadrature, in the program MCMCTree, and use it to calculate Bayes factors for clock models. Bayesian model selection indicates that the autocorrelated rates model fits the primate data substantially better, and we conclude that time estimates under this model should be preferred. We show that for eight core nodes in the phylogeny, uncertainty in time estimates is close to the theoretical limit imposed by fossil uncertainties. Thus, these estimates are unlikely to be improved by collecting additional molecular sequence data. All analyses place the origin of Primates close to the K-Pg boundary, either in the Cretaceous or straddling the boundary into the Palaeogene.
Collapse
Affiliation(s)
- Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Gregg F Gunnell
- Division of Fossil Primates, Duke University Lemur Center, Durham, 1013 Broad Street, NC 27705, USA
| | - Jose Barba-Montoya
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Alex Wilkins
- Division of Fossil Primates, Duke University Lemur Center, Durham, 1013 Broad Street, NC 27705, USA
- Department of Anthropology, The Ohio State University, Columbus, OH 43210, USA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Cartmill M. A sort of revolution: Systematics and physical anthropology in the 20th century. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:677-687. [DOI: 10.1002/ajpa.23321] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Matt Cartmill
- Boston University; Boston Massachusetts
- Duke University; Durham North Carolina
| |
Collapse
|
37
|
Kay RF. 100 years of primate paleontology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:652-676. [DOI: 10.1002/ajpa.23429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Richard F. Kay
- Department of Evolutionary Anthropology and Division of Earth and Ocean Sciences; Duke University; Durham North Carolina 27708
| |
Collapse
|
38
|
Herrera JP. Primate diversification inferred from phylogenies and fossils. Evolution 2017; 71:2845-2857. [PMID: 28913907 DOI: 10.1111/evo.13366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.
Collapse
Affiliation(s)
- James P Herrera
- Richard Gilder Graduate School, Department of Mammalogy and Division of Vertebrate Paleontology, American Museum of Natural History, New York, New York 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York 10024
| |
Collapse
|
39
|
Gowlett JAJ. The discovery of fire by humans: a long and convoluted process. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0164. [PMID: 27216521 PMCID: PMC4874402 DOI: 10.1098/rstb.2015.0164] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Numbers of animal species react to the natural phenomenon of fire, but only humans have learnt to control it and to make it at will. Natural fires caused overwhelmingly by lightning are highly evident on many landscapes. Birds such as hawks, and some other predators, are alert to opportunities to catch animals including invertebrates disturbed by such fires and similar benefits are likely to underlie the first human involvements with fires. Early hominins would undoubtedly have been aware of such fires, as are savanna chimpanzees in the present. Rather than as an event, the discovery of fire use may be seen as a set of processes happening over the long term. Eventually, fire became embedded in human behaviour, so that it is involved in almost all advanced technologies. Fire has also influenced human biology, assisting in providing the high-quality diet which has fuelled the increase in brain size through the Pleistocene. Direct evidence of early fire in archaeology remains rare, but from 1.5 Ma onward surprising numbers of sites preserve some evidence of burnt material. By the Middle Pleistocene, recognizable hearths demonstrate a social and economic focus on many sites. The evidence of archaeological sites has to be evaluated against postulates of biological models such as the ‘cooking hypothesis' or the ‘social brain’, and questions of social cooperation and the origins of language. Although much remains to be worked out, it is plain that fire control has had a major impact in the course of human evolution. This article is part of the themed issue ‘The interaction of fire and mankind’.
Collapse
Affiliation(s)
- J A J Gowlett
- Archaeology, Classics and Egyptology, School of Histories, Language and Cultures, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK
| |
Collapse
|
40
|
Hanna JB, Granatosky MC, Rana P, Schmitt D. The evolution of vertical climbing in primates: evidence from reaction forces. J Exp Biol 2017; 220:3039-3052. [PMID: 28620013 DOI: 10.1242/jeb.157628] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022]
Abstract
Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches.
Collapse
Affiliation(s)
- Jandy B Hanna
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Michael C Granatosky
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
- University of Chicago, Organismal Biology and Anatomy, Chicago, IL 60637, USA
| | - Pooja Rana
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Daniel Schmitt
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
| |
Collapse
|
41
|
Gaudry MJ, Jastroch M, Treberg JR, Hofreiter M, Paijmans JLA, Starrett J, Wales N, Signore AV, Springer MS, Campbell KL. Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades. SCIENCE ADVANCES 2017; 3:e1602878. [PMID: 28706989 PMCID: PMC5507634 DOI: 10.1126/sciadv.1602878] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is essential for nonshivering thermogenesis in brown adipose tissue and is widely accepted to have played a key thermoregulatory role in small-bodied and neonatal placental mammals that enabled the exploitation of cold environments. We map ucp1 sequences from 133 mammals onto a species tree constructed from a ~51-kb sequence alignment and show that inactivating mutations have occurred in at least 8 of the 18 traditional placental orders, thereby challenging the physiological importance of UCP1 across Placentalia. Selection and timetree analyses further reveal that ucp1 inactivations temporally correspond with strong secondary reductions in metabolic intensity in xenarthrans and pangolins, or in six other lineages coincided with a ~30 million-year episode of global cooling in the Paleogene that promoted sharp increases in body mass and cladogenesis evident in the fossil record. Our findings also demonstrate that members of various lineages (for example, cetaceans, horses, woolly mammoths, Steller's sea cows) evolved extreme cold hardiness in the absence of UCP1-mediated thermogenesis. Finally, we identify ucp1 inactivation as a historical contingency that is linked to the current low species diversity of clades lacking functional UCP1, thus providing the first evidence for species selection related to the presence or absence of a single gene product.
Collapse
Affiliation(s)
- Michael J. Gaudry
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Parkring 13, 85748 Garching, Germany
- Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany
| | - Jason R. Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Michael Hofreiter
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | | | - James Starrett
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Anthony V. Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mark S. Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kevin L. Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
42
|
Silcox MT, Bloch JI, Boyer DM, Chester SGB, López-Torres S. The evolutionary radiation of plesiadapiforms. Evol Anthropol 2017; 26:74-94. [PMID: 28429568 DOI: 10.1002/evan.21526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/08/2022]
Abstract
Very shortly after the disappearance of the non-avian dinosaurs, the first mammals that had features similar to those of primates started appearing. These first primitive forms went on to spawn a rich diversity of plesiadapiforms, often referred to as archaic primates. Like many living primates, plesiadapiforms were small arboreal animals that generally ate fruit, insects, and, occasionally, leaves. However, this group lacked several diagnostic features of euprimates. They also had extraordinarily diverse specializations, represented in eleven families and more than 140 species, which, in some cases, were like nothing seen since in the primate order. Plesiadapiforms are known from all three Northern continents, with representatives that persisted until at least 37 million years ago. In this article we provide a summary of the incredible diversity of plesiadapiform morphology and adaptations, reviewing our knowledge of all eleven families. We also discuss the challenges that remain in our understanding of their ecology and evolution.
Collapse
Affiliation(s)
- Mary T Silcox
- University of Toronto Scarborough, Scarborough, ON, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | | |
Collapse
|
43
|
Chester SGB, Williamson TE, Bloch JI, Silcox MT, Sargis EJ. Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170329. [PMID: 28573038 PMCID: PMC5451839 DOI: 10.1098/rsos.170329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 06/03/2023]
Abstract
Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62 Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first postcranial elements recovered for a palaechthonid. Results from a cladistic analysis that includes new data from this skeleton suggest that palaechthonids are a paraphyletic group of stem primates, and that T. wilsoni is most closely related to paromomyids. New evidence from the appendicular skeleton of T. wilsoni fails to support an influential hypothesis based on inferences from craniodental morphology that palaechthonids were terrestrial. Instead, the postcranium of T. wilsoni indicates that it was similar to that of all other plesiadapiforms for which skeletons have been recovered in having distinct specializations consistent with arboreality.
Collapse
Affiliation(s)
- Stephen G. B. Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Department of Anthropology, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Thomas E. Williamson
- New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104-1375, USA
| | - Jonathan I. Bloch
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611-7800, USA
| | - Mary T. Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, CanadaM1C 1A4
| | - Eric J. Sargis
- Department of Anthropology, Yale University, PO Box 208277, New Haven, CT 06520, USA
- Division of Vertebrate Paleontology, New Haven, CT 06520, USA
- Division of Vertebrate Zoology, Yale Peabody Museum of Natural History, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Femenias-Gual J, Minwer-Barakat R, Marigó J, Poyatos-Moré M, Moyà-Solà S. Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genus Agerinia. PeerJ 2017; 5:e3239. [PMID: 28462042 PMCID: PMC5410143 DOI: 10.7717/peerj.3239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Eocene was the warmest epoch of the Cenozoic and recorded the appearance of several orders of modern mammals, including the first occurrence of Euprimates. During the Eocene, Euprimates were mainly represented by two groups, adapiforms and omomyiforms, which reached great abundance and diversity in the Northern Hemisphere. Despite this relative abundance, the record of early Eocene primates from the European continent is still scarce and poorly known, preventing the observation of clear morphological trends in the evolution of the group and the establishment of phylogenetic relationships among different lineages. However, knowledge about the early Eocene primates from the Iberian Peninsula has been recently increased through the description of new material of the genus Agerinia from several fossil sites from Northeastern Spain. METHODS Here we present the first detailed study of the euprimate material from the locality of Masia de l'Hereuet (early Eocene, NE Spain). The described remains consist of one fragment of mandible and 15 isolated teeth. This work provides detailed descriptions, accurate measurements, high-resolution figures and thorough comparisons with other species of Agerinia as well with other Eurasian notharctids. Furthermore, the position of the different species of Agerinia has been tested with two phylogenetic analyses. RESULTS The new material from Masia de l'Hereuet shows several traits that were previously unknown for the genus Agerinia, such as the morphology of the upper and lower fourth deciduous premolars and the P2, and the unfused mandible. Moreover, this material clearly differs from the other described species of Agerinia, A. roselli and A. smithorum, thus allowing the erection of the new species Agerinia marandati. The phylogenetic analyses place the three species of Agerinia in a single clade, in which A. smithorum is the most primitive species of this genus. DISCUSSION The morphology of the upper molars reinforces the distinction of Agerinia from other notharctids like Periconodon. The analysis of the three described species of the genus, A. smithorum, A. marandati and A. roselli, reveals a progressive change in several morphological traits such as the number of roots and the position of the P1 and P2, the molarization of the P4, the reduction of the paraconid on the lower molars and the displacement of the mental foramina. These gradual modifications allow for the interpretation that these three species, described from the early Eocene of the Iberian Peninsula, are part of a single evolutionary lineage. The stratigraphical position of Masia de l'Hereuet and Casa Retjo-1 (type locality of A. smithorum) and the phylogenetic analyses developed in this work support this hypothesis.
Collapse
Affiliation(s)
- Joan Femenias-Gual
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Raef Minwer-Barakat
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Judit Marigó
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités –MNHN, CNRS, UMPC-Paris6–, Muséum National d’Histoire Naturelle, Paris, France
| | - Miquel Poyatos-Moré
- Department of Geosciences, University of Oslo, Sem Sælands vei 1, Oslo, Norway
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Unit of Anthropology, BABVE Department, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| |
Collapse
|
45
|
A comparative analysis of infraorbital foramen size in Paleogene euarchontans. J Hum Evol 2017; 105:57-68. [DOI: 10.1016/j.jhevol.2017.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
|
46
|
Yapuncich GS, Seiffert ER, Boyer DM. Quantification of the position and depth of the flexor hallucis longus groove in euarchontans, with implications for the evolution of primate positional behavior. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:367-406. [PMID: 28345775 DOI: 10.1002/ajpa.23213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE On the talus, the position and depth of the groove for the flexor hallucis longus tendon have been used to infer phylogenetic affinities and positional behaviors of fossil primates. This study quantifies aspects of the flexor hallucis longus groove (FHLG) to test if: (1) a lateral FHLG is a derived strepsirrhine feature, (2) a lateral FHLG reflects inverted and abducted foot postures, and (3) a deeper FHLG indicates a larger muscle. METHODS We used linear measurements of microCT-generated models from a sample of euarchontans (n = 378 specimens, 125 species) to quantify FHLG position and depth. Data are analyzed with ANOVA, Ordinary and Phylogenetic Generalized Least Squares, and Bayesian Ancestral State Reconstruction (ASR). RESULTS Extant strepsirrhines, adapiforms, plesiadapiforms, dermopterans, and Ptilocercus exhibit lateral FHLGs. Extant anthropoids, subfossil lemurs, and Tupaia have medial FHLGs. FHLGs of omomyiforms and basal fossil anthropoids are intermediate between those of strepsirrhines and extant anthropoids. FHLG position has few correlations with pedal inversion features. Relative FHLG depth is not significantly correlated with body mass. ASRs support a directional model for FHLG position and a random walk model for FHLG depth. CONCLUSIONS The prevalence of lateral FHLGs in many non-euprimates suggests a lateral FHLG is not a derived strepsirrhine feature. The lack of correlations with pedal inversion features suggests a lateral FHLG is not a sufficient indicator of strepsirrhine-like foot postures. Instead, a lateral FHLG may reduce the risk of tendon displacement in abducted foot postures on large diameter supports. A deep FHLG does not indicate a larger muscle, but likely reduces bowstringing during plantarflexion.
Collapse
Affiliation(s)
- Gabriel S Yapuncich
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Erik R Seiffert
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| |
Collapse
|
47
|
Bertrand OC, Amador‐Mughal F, Silcox MT. Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J Anat 2017; 230:128-151. [PMID: 27580644 PMCID: PMC5192888 DOI: 10.1111/joa.12537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
Extant squirrels exhibit extensive variation in brain size and shape, but published endocranial data for living squirrels are limited, and no study has ever examined brain evolution in Sciuridae from the perspective of the fossil record to understand how this diversity emerged. We describe the first virtual endocast for a fossil sciurid, Cedromus wilsoni, which is known from a complete cranium from Wyoming (Orellan, Oligocene), and make comparisons to a diverse sample of virtual endocasts for living sciurids (N = 20). The virtual endocasts were obtained from high-resolution X-ray micro-computed tomography data. Comparisons were also made with endocasts of extinct ischyromyid rodents, the most primitive rodents known from an endocranial record, which provide the opportunity to study the neuroanatomical changes occurring near the base of Sciuridae. The encephalization quotient of C. wilsoni is higher than that of Ischyromys typus from the same epoch, and falls within the range of modern terrestrial squirrel variation, but below the range of extant scansorial, arboreal and gliding sciurids when using cheek-tooth area for the estimation of body mass. In a principal components analysis, the shape of the endocast of C. wilsoni is found to be intermediate between that of primitive fossil taxa and the modern sample. Cedromus wilsoni has a more expanded neocortical surface area, especially the caudal region of the cerebrum, compared with ischyromyid rodents. Furthermore, C. wilsoni had proportionally larger paraflocculi and a more complex cerebellar morphology compared with ischyromyid rodents. These neurological differences may be associated with improvements in vision, although it is worth noting that the size of the parts of the brain most directly involved with vision [the rostral (superior) colliculi and the primary visual cortex] cannot be directly assessed on endocasts. The changes observed could also relate to balance and limb coordination. Ultimately, the available evidence suggests that early squirrels were more agile and visually oriented animals compared with more primitive rodents, which may relate to the process of becoming arboreal. Extant sciurids have an even more expanded neocortical surface area, while exhibiting proportionally smaller paraflocculi, compared with C. wilsoni. This suggests that the neocortex may continue increasing in size in more recent sciurid rodents in relation to other factors than arboreality. Despite the fact that both Primates and Rodentia exhibit neocortical expansion through time, since the adoption of arboreality preceded major increases in the neocortex in Primates, those neurological changes may be related to different ecological factors, underlining the complexity of the inter-relationship between time and ecology in shaping the brain in even closely related clades.
Collapse
Affiliation(s)
- Ornella C. Bertrand
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| | | | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
48
|
Minwer-Barakat R, Marigó J, Femenias-Gual J, Costeur L, De Esteban-Trivigno S, Moyà-Solà S. Microchoerus hookeri nov. sp., a new late Eocene European microchoerine (Omomyidae, Primates): New insights on the evolution of the genus Microchoerus. J Hum Evol 2016; 102:42-66. [PMID: 28012463 DOI: 10.1016/j.jhevol.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 11/25/2022]
Abstract
The study of Eocene primates is crucial for understanding the evolutionary steps undergone by the earliest members of our lineage and the relationships between extinct and extant taxa. Recently, the description of new material from Spain has improved knowledge of European Paleogene primates considerably, particularly regarding microchoerines. Here we describe the remains of Microchoerus from Sossís (late Eocene, Northern Spain), consisting of more than 120 specimens and representing the richest sample of Microchoerus from Spain. This primate was first documented in Sossís during the 1960s, on the basis of scarce specimens that were ascribed to Microchoerus erinaceus. However, the studied material clearly differs from M. erinaceus at its type locality, Hordle Cliff, and shows some characters that allow the erection of a new species, Microchoerus hookeri. This new species is characterized by its medium size, moderate enamel wrinkling, generally absent mesoconid and small hypoconulid in the M1 and M2, single paracone in the upper molars and premolars and, particularly, by the lack of mesostyle in most M1 and M2, a trait not observed in any other species of Microchoerus. Some specimens from Eclépens B (late Eocene, Switzerland), determined previously to be Microcherus aff. erinaceus, are also ascribed to M. hookeri. M. hookeri represents the first step of a lineage that differentiated from Necrolemur antiquus and, later, gave rise to several unnamed forms of Microchoerus, such as those from Euzet and Perrière, finally leading to M. erinaceus. This discovery sheds new light on the complex evolutionary scheme of Microchoerus, indicating that it is most probably a paraphyletic group. A detailed revision of the age of the localities containing remains of Microchoerus and the description of the still unpublished material from some European localities, are necessary to clarify the phylogenetic relationships among the members of this microchoerine group.
Collapse
Affiliation(s)
- Raef Minwer-Barakat
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Judit Marigó
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités-MNHN, CNRS, UMPC-Paris6-, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, CP38, F-75005, Paris, France
| | - Joan Femenias-Gual
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Loïc Costeur
- Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001, Basel, Switzerland
| | - Soledad De Esteban-Trivigno
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; Transmitting Science, Gardenia 2, 08784, Piera, Barcelona, Spain
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain; Unit of Anthropology, BABVE department, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
49
|
New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine–haplorhine divergence. J Hum Evol 2016; 99:25-51. [DOI: 10.1016/j.jhevol.2016.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
|
50
|
Harrington AR, Silcox MT, Yapuncich GS, Boyer DM, Bloch JI. First virtual endocasts of adapiform primates. J Hum Evol 2016; 99:52-78. [DOI: 10.1016/j.jhevol.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|