1
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
2
|
Xu D, Yang L. Spatial regulation of immunity: unmasking the secrets of abaxial immunity to powdery mildew. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1213-1216. [PMID: 38416207 PMCID: PMC10901199 DOI: 10.1093/jxb/erae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article comments on: Wu Y, Sexton WK, Zhang Q, Bloodgood D, Wu Y, Hooks C, Coker F, Vasquez A, Wei C-I, Xiao S. 2024. Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. Journal of Experimental Botany 75, 1465-1478.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Zhao C, Liu W, Zhang Y, Li Y, Ma C, Tian R, Li R, Li M, Huang L. Two transcription factors, AcREM14 and AcC3H1, enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae. HORTICULTURE RESEARCH 2024; 11:uhad242. [PMID: 38222821 PMCID: PMC10782502 DOI: 10.1093/hr/uhad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Kiwifruit bacterial canker is a global disease caused by Pseudomonas syringae pv. actinidiae (Psa), which poses a major threat to kiwifruit production worldwide. Despite the economic importance of Actinidia chinensis var. chinensis, only a few resistant varieties have been identified to date. In this study, we screened 44 kiwifruit F1 hybrid lines derived from a cross between two A. chinensis var. chinensis lines and identified two offspring with distinct resistance to Psa: resistant offspring RH12 and susceptible offspring SH14. To identify traits associated with resistance, we performed a comparative transcriptomic analysis of these two lines. We identified several highly differentially expressed genes (DEGs) associated with flavonoid synthesis, pathogen interactions, and hormone signaling pathways, which play essential roles in disease resistance. Additionally, using weighted gene co-expression network analysis, we identified six core transcription factors. Moreover, qRT-PCR results demonstrated the high expression of AcC3H1 and AcREM14 in Psa-induced highly resistant hybrid lines. Ultimately, Overexpression of AcC3H1 and AcREM14 in kiwifruit enhanced disease resistance, and this was associated with upregulation of enzymatic activity and gene expression in the salicylic acid (SA) signaling pathway. Our study elucidates a molecular mechanism underlying disease resistance in kiwifruit and contributes to the advancement of research on kiwifruit breeding.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yali Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuanzhe Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
4
|
Cha OK, Yang S, Lee H. Transcriptomics Using the Enriched Arabidopsis Shoot Apex Reveals Developmental Priming Genes Involved in Plastic Plant Growth under Salt Stress Conditions. PLANTS 2022; 11:plants11192546. [PMID: 36235412 PMCID: PMC9570865 DOI: 10.3390/plants11192546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
In the shoot apical meristem (SAM), the homeostasis of the stem cell population supplying new cells for organ formation is likely a key mechanism of multicellular plant growth and development. As plants are sessile organisms and constantly encounter environmental abiotic stresses, postembryonic development from the shoot stem cell population must be considered with surrounding abiotic stresses for plant adaptation. However, the underlying molecular mechanisms for plant adaptation remain unclear. Previous studies found that the stem-cell-related mutant clv3-2 has the property of salt tolerance without the differential response of typical stress-responsive genes compared to those in WT Ler. Based on these facts, we hypothesized that shoot meristems contain developmental priming genes having comprehensively converged functions involved in abiotic stress response and development. To better understand the biological process of developmental priming genes in the SAM, we performed RNA sequencing (RNA-seq) and transcriptome analysis through comparing genome-wide gene expression profiles between enriched shoot apex and leaf tissues. As a result, 121 putative developmental priming genes differentially expressed in the shoot apex compared to the leaf were identified under normal and salt stress conditions. RNA-seq experiments also revealed the shoot apex-specific responsive genes for salt stress conditions. Based on combinatorial comparisons, 19 developmental priming genes were finally identified, including developmental genes related to cell division and abiotic/biotic-stress-responsive genes. Moreover, some priming genes showed CLV3-dependent responses under salt stress conditions in the clv3-2. These results presumably provide insight into how shoot meristem tissues have relatively high viability against stressful environmental conditions for the developmental plasticity of plants.
Collapse
Affiliation(s)
| | | | - Horim Lee
- Correspondence: ; Tel.: +82-10-3762-6331
| |
Collapse
|
5
|
He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda MN, Tang Y, Wang J, Yang W, Yan M, Cheng J, Ruan J, Dulloo E, Zhang Z, Georgiev MI, Chapman MA, Zhou M. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. THE NEW PHYTOLOGIST 2022; 235:1927-1943. [PMID: 35701896 DOI: 10.1111/nph.18306] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/22/2022] [Indexed: 05/09/2023]
Abstract
Golden buckwheat (Fagopyrum dibotrys or Fagopyrum cymosum) and Tartary buckwheat (Fagopyrum tataricum) belong to the Polygonaceae and the Fagopyrum genus is rich in flavonoids. Golden buckwheat is a wild relative of Tartary buckwheat, yet golden buckwheat is a traditional Chinese herbal medicine and Tartary buckwheat is a food crop. The genetic basis of adaptive divergence between these two buckwheats is poorly understood. Here, we assembled a high-quality chromosome-level genome of golden buckwheat and found a one-to-one syntenic relationship with the chromosomes of Tartary buckwheat. Two large inversions were identified that differentiate golden buckwheat and Tartary buckwheat. Metabolomic and genetic comparisons of golden buckwheat and Tartary buckwheat indicate an amplified copy number of FdCHI, FdF3H, FdDFR, and FdLAR gene families in golden buckwheat, and a parallel increase in medicinal flavonoid content. Resequencing of 34 wild golden buckwheat accessions across the two morphologically distinct ecotypes identified candidate genes, including FdMYB44 and FdCRF4, putatively involved in flavonoid accumulation and differentiation of plant architecture, respectively. Our comparative genomic study provides abundant genomic resources of genomic divergent variation to improve buckwheat with excellent nutritional and medicinal value.
Collapse
Affiliation(s)
- Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Md Nurul Huda
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| | - Junzhen Wang
- Research Station of Alpine Crop, Xichang Institute of Agricultural Sciences, Liangshan, 616150, Sichuan, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co. Ltd, Beijing, 100176, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ehsan Dulloo
- The Alliance of Bioversity International and CIAT, Via di San Domenico, 100153, Rome, Italy
| | - Zongwen Zhang
- The Alliance of Bioversity International and CIAT, Via di San Domenico, 100153, Rome, Italy
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4002, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4002, Plovdiv, Bulgaria
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street no. 12, Haidian District, Beijing, 100081, China
| |
Collapse
|
6
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
7
|
Chai N, Xu J, Zuo R, Sun Z, Cheng Y, Sui S, Li M, Liu D. Metabolic and Transcriptomic Profiling of Lilium Leaves Infected With Botrytis elliptica Reveals Different Stages of Plant Defense Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:730620. [PMID: 34630478 PMCID: PMC8493297 DOI: 10.3389/fpls.2021.730620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Botrytis elliptica, the causal agent of gray mold disease, poses a major threat to commercial Lilium production, limiting its ornamental value and yield. The molecular and metabolic regulation mechanisms of Lilium's defense response to B. elliptica infection have not been completely elucidated. Here, we performed transcriptomic and metabolomic analyses of B. elliptica resistant Lilium oriental hybrid "Sorbonne" to understand the molecular basis of gray mold disease resistance in gray mold disease. A total of 115 differentially accumulated metabolites (DAMs) were detected by comparing the different temporal stages of pathogen infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed the differentially expressed genes (DEGs) and DAMs were enriched in the phenylpropanoid and flavonoid pathways at all stages of infection, demonstrating the prominence of these pathways in the defense response of "Sorbonne" to B. elliptica. Network analysis revealed high interconnectivity of the induced defense response. Furthermore, time-course analysis of the transcriptome and a weighted gene coexpression network analysis (WGCNA) led to the identification of a number of hub genes at different stages, revealing that jasmonic acid (JA), salicylic acid (SA), brassinolide (BR), and calcium ions (Ca2+) play a crucial role in the response of "Sorbonne" to fungal infection. Our work provides a comprehensive perspective on the defense response of Lilium to B. elliptica infection, along with a potential transcriptional regulatory network underlying the defense response, thereby offering gene candidates for resistance breeding and metabolic engineering of Lilium.
Collapse
Affiliation(s)
- Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rumeng Zuo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhengqiong Sun
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, Legrand J, Faure E, Vachez L, Armezzani A, Risson AE, Zhao F, Das P, Prunet N, Meyerowitz EM, Godin C, Malandain G, Jönsson H, Traas J. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev Cell 2021; 56:540-556.e8. [PMID: 33621494 PMCID: PMC8519405 DOI: 10.1016/j.devcel.2021.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development.
Collapse
Affiliation(s)
- Yassin Refahi
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France.
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Gaël Michelin
- Université Côte d'Azur, Inria, Sophia Antipolis, CNRS, I3S, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Bruno Leggio
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Jonathan Legrand
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Laetitia Vachez
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Alessia Armezzani
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Anne-Evodie Risson
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Feng Zhao
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Pradeep Das
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Nathanaël Prunet
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elliot M Meyerowitz
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christophe Godin
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden; Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK.
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France.
| |
Collapse
|
9
|
Picart-Picolo A, Grob S, Picault N, Franek M, Llauro C, Halter T, Maier TR, Jobet E, Descombin J, Zhang P, Paramasivan V, Baum TJ, Navarro L, Dvořáčková M, Mirouze M, Pontvianne F. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res 2020; 30:1583-1592. [PMID: 33033057 PMCID: PMC7605254 DOI: 10.1101/gr.261586.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Christel Llauro
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Halter
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Edouard Jobet
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Julie Descombin
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Panpan Zhang
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Lionel Navarro
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Marie Mirouze
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | - Frédéric Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
10
|
González‐Fuente M, Carrère S, Monachello D, Marsella BG, Cazalé A, Zischek C, Mitra RM, Rezé N, Cottret L, Mukhtar MS, Lurin C, Noël LD, Peeters N. EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. MOLECULAR PLANT PATHOLOGY 2020; 21:1257-1270. [PMID: 33245626 PMCID: PMC7488465 DOI: 10.1111/mpp.12965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/16/2023]
Abstract
Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly "effector hubs" and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.
Collapse
Affiliation(s)
- Manuel González‐Fuente
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Dario Monachello
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | | | - Anne‐Claire Cazalé
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Claudine Zischek
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Raka M. Mitra
- Department of BiologyCarleton CollegeNorthfieldMNUSA
| | - Nathalie Rezé
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Ludovic Cottret
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Claire Lurin
- Institut des Sciences des Plantes de Paris SaclayUEVEINRAECNRSUniversité Paris SudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Université de ParisGif‐sur‐YvetteFrance
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro‐organismes, INRAECNRSUniversité de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
11
|
Ziegler-Graff V. Molecular Insights into Host and Vector Manipulation by Plant Viruses. Viruses 2020; 12:v12030263. [PMID: 32121032 PMCID: PMC7150927 DOI: 10.3390/v12030263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Plant viruses rely on both host plant and vectors for a successful infection. Essentially to simplify studies, transmission has been considered for decades as an interaction between two partners, virus and vector. This interaction has gained a third partner, the host plant, to establish a tripartite pathosystem in which the players can react with each other directly or indirectly through changes induced in/by the third partner. For instance, viruses can alter the plant metabolism or plant immune defence pathways to modify vector’s attraction, settling or feeding, in a way that can be conducive for virus propagation. Such changes in the plant physiology can also become favourable to the vector, establishing a mutualistic relationship. This review focuses on the recent molecular data on the interplay between viral and plant factors that provide some important clues to understand how viruses manipulate both the host plants and vectors in order to improve transmission conditions and thus ensuring their survival.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
12
|
Xu YJ, Lei Y, Li R, Zhang LL, Zhao ZX, Zhao JH, Fan J, Li Y, Yang H, Shang J, Xiao S, Wang WM. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1-Mediated Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2044. [PMID: 29250093 PMCID: PMC5714888 DOI: 10.3389/fpls.2017.02044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 06/02/2023]
Abstract
Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150) positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3' splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3) in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.
Collapse
Affiliation(s)
- Yong-Ju Xu
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yang Lei
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ran Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, College Park, MD, United States
| | - Wen-Ming Wang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Kim YH, Park SC, Yun BW, Kwak SS. Overexpressing sweetpotato peroxidase gene swpa4 affects nitric oxide production by activating the expression of reactive oxygen species- and nitric oxide-related genes in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:52-60. [PMID: 28987862 DOI: 10.1016/j.plaphy.2017.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are key signaling molecules involved in various developmental and stress responses in plants. NO and ROS production, which is triggered by various stimuli, activates downstream signaling pathways to help plants cope with abiotic and biotic stresses. Recent evidence suggests that the interplay between NO and ROS signaling plays a critical role in regulating stress responses. However, the underlying molecular mechanism remains poorly understood. We previously reported that transgenic tobacco overexpressing the swpa4 peroxidase (POD) gene from sweetpotato exhibits increased tolerance to stress. Overexpression of swpa4 also induces the generation of H2O2 and activates the expression of various extracellular acidic pathogenesis-related (PR) genes. Here, we show that swpa4 positively regulates the expression of ROS- and NO-related genes in transgenic tobacco plants. Plants expressing swpa4 exhibited increased expression of ROS-related genes and increased ROS-related enzyme activity under normal conditions and H2O2 treatment, whereas the expression of NO associated 1 (NOA1) only increased under normal conditions. Moreover, plants overexpressing swpa4 showed increased NO levels under normal conditions and after treatment with the NO donor sodium nitroprusside (SNP). Interestingly, treatment with a POD inhibitor dramatically reduced NO levels in swpa4 transgenic plants. These findings suggest that swpa4 regulates H2O2 and NO homeostasis in plants under stress conditions, thereby establishing a possible molecular link between the NO and ROS signaling pathways.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, Gyeongsang National University, 501 Jinju-Daero, Jinju, 660-701, South Korea
| | - Sung Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea.
| |
Collapse
|
14
|
Zhong X, Wang ZQ, Xiao R, Cao L, Wang Y, Xie Y, Zhou X. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant. J Virol 2017; 91:e00300-17. [PMID: 28539450 PMCID: PMC5533934 DOI: 10.1128/jvi.00300-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor.IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N. benthamiana ASYMMETRIC LEAVES 1. To our knowledge, this is the first report establishing an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as both a VSR and a symptom determinant and to provide a mechanistic explanation of how SNF1-related protein kinase 1 acts as a host defense factor. These findings expand the scope of phosphorylation-mediated defense mechanisms and contribute to further understanding of plant defense mechanisms against geminiviruses.
Collapse
Affiliation(s)
- Xueting Zhong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhan Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruyuan Xiao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
16
|
Kaurilind E, Brosché M. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal. PLoS One 2017; 12:e0170532. [PMID: 28107453 PMCID: PMC5249244 DOI: 10.1371/journal.pone.0170532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.
Collapse
Affiliation(s)
- Eve Kaurilind
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikael Brosché
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. PLANT MOLECULAR BIOLOGY 2016; 91:713-25. [PMID: 26879412 PMCID: PMC4932134 DOI: 10.1007/s11103-016-0452-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly threatened by potential pathogens. In order to optimize the output of defense against pathogens with distinct lifestyles, plants depend on hormonal networks to fine-tune specific responses and regulate growth-defense tradeoffs. To counteract, pathogens have evolved various strategies to disturb hormonal homeostasis and facilitate infection. Many pathogens synthesize plant hormones; more importantly, toxins and effectors are produced to manipulate hormonal crosstalk. Accumulating evidence has shown that pathogens exert extensive effects on plant hormone pathways not only to defeat immunity, but also modify habitat structure, optimize nutrient acquisition, and facilitate pathogen dissemination. In this review, we summarize mechanisms by which a wide array of pathogens gain benefits from manipulating plant hormone pathways.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ. A remorin gene is implicated in quantitative disease resistance in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:591-602. [PMID: 26849237 DOI: 10.1007/s00122-015-2650-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/08/2015] [Indexed: 05/02/2023]
Abstract
Quantitative disease resistance is used by plant breeders to improve host resistance. We demonstrate a role for a maize remorin ( ZmREM6.3 ) in quantitative resistance against northern leaf blight using high-resolution fine mapping, expression analysis, and mutants. This is the first evidence of a role for remorins in plant-fungal interactions. Quantitative disease resistance (QDR) is important for the development of crop cultivars and is particularly useful when loci also confer multiple disease resistance. Despite its widespread use, the underlying mechanisms of QDR remain largely unknown. In this study, we fine-mapped a known quantitative trait locus (QTL) conditioning disease resistance on chromosome 1 of maize. This locus confers resistance to three foliar diseases: northern leaf blight (NLB), caused by the fungus Setosphaeria turcica; Stewart's wilt, caused by the bacterium Pantoea stewartii; and common rust, caused by the fungus Puccinia sorghi. The Stewart's wilt QTL was confined to a 5.26-Mb interval, while the rust QTL was reduced to an overlapping 2.56-Mb region. We show tight linkage between the NLB QTL locus and the loci conferring resistance to Stewart's wilt and common rust. Pleiotropy cannot be excluded for the Stewart's wilt and the common rust QTL, as they were fine-mapped to overlapping regions. Four positional candidate genes within the 243-kb NLB interval were examined with expression and mutant analysis: a gene with homology to an F-box gene, a remorin gene (ZmREM6.3), a chaperonin gene, and an uncharacterized gene. The F-box gene and ZmREM6.3 were more highly expressed in the resistant line. Transposon tagging mutants were tested for the chaperonin and ZmREM6.3, and the remorin mutant was found to be more susceptible to NLB. The putative F-box is a strong candidate, but mutants were not available to test this gene. Multiple lines of evidence strongly suggest a role for ZmREM6.3 in quantitative disease resistance.
Collapse
Affiliation(s)
- Tiffany M Jamann
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Xingyu Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura Morales
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Judith M Kolkman
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chia-Lin Chung
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Rebecca J Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
20
|
Cocker JM, Webster MA, Li J, Wright J, Kaithakottil G, Swarbreck D, Gilmartin PM. Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development. THE NEW PHYTOLOGIST 2015; 208:149-61. [PMID: 25856106 PMCID: PMC4973830 DOI: 10.1111/nph.13370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant.
Collapse
Affiliation(s)
- Jonathan M. Cocker
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Margaret A. Webster
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jinhong Li
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jonathan Wright
- The Genome Analysis CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - David Swarbreck
- The Genome Analysis CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philip M. Gilmartin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
21
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
22
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
23
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015; 4:e07295. [PMID: 26076231 PMCID: PMC4487144 DOI: 10.7554/elife.07295] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
24
|
Dobón A, Canet JV, García-Andrade J, Angulo C, Neumetzler L, Persson S, Vera P. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog 2015; 11:e1004800. [PMID: 25830627 PMCID: PMC4382300 DOI: 10.1371/journal.ppat.1004800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Carlos Angulo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria, Australia
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| |
Collapse
|
25
|
Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, Qian H, Tee C, van Loon JJA, Dicke M, Chua NH, Liu SS, Ye J. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. THE PLANT CELL 2014; 26:4991-5008. [PMID: 25490915 PMCID: PMC4311212 DOI: 10.1105/tpc.114.133181] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector.
Collapse
Affiliation(s)
- Ran Li
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, Wageningen 6700 EH, The Netherlands
| | - Jie Li
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Choonkyun Jung
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Jing Qu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Yanwei Sun
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Qian
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - ChuanSia Tee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen 6700 EH, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen 6700 EH, The Netherlands
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Shu-Sheng Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Ye
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Tully JP, Hill AE, Ahmed HMR, Whitley R, Skjellum A, Mukhtar MS. Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics 2014; 15:421. [PMID: 24888606 PMCID: PMC4070563 DOI: 10.1186/1471-2164-15-421] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/27/2014] [Indexed: 01/12/2023] Open
Abstract
Background Plants respond to diverse environmental cues including microbial perturbations by coordinated regulation of thousands of genes. These intricate transcriptional regulatory interactions depend on the recognition of specific promoter sequences by regulatory transcription factors. The combinatorial and cooperative action of multiple transcription factors defines a regulatory network that enables plant cells to respond to distinct biological signals. The identification of immune-related modules in large-scale transcriptional regulatory networks can reveal the mechanisms by which exposure to a pathogen elicits a precise phenotypic immune response. Results We have generated a large-scale immune co-expression network using a comprehensive set of Arabidopsis thaliana (hereafter Arabidopsis) transcriptomic data, which consists of a wide spectrum of immune responses to pathogens or pathogen-mimicking stimuli treatments. We employed both linear and non-linear models to generate Arabidopsis immune co-expression regulatory (AICR) network. We computed network topological properties and ascertained that this newly constructed immune network is densely connected, possesses hubs, exhibits high modularity, and displays hallmarks of a “real” biological network. We partitioned the network and identified 156 novel modules related to immune functions. Gene Ontology (GO) enrichment analyses provided insight into the key biological processes involved in determining finely tuned immune responses. We also developed novel software called OCCEAN (One Click Cis-regulatory Elements ANalysis) to discover statistically enriched promoter elements in the upstream regulatory regions of Arabidopsis at a whole genome level. We demonstrated that OCCEAN exhibits higher precision than the existing promoter element discovery tools. In light of known and newly discovered cis-regulatory elements, we evaluated biological significance of two key immune-related functional modules and proposed mechanism(s) to explain how large sets of diverse GO genes coherently function to mount effective immune responses. Conclusions We used a network-based, top-down approach to discover immune-related modules from transcriptomic data in Arabidopsis. Detailed analyses of these functional modules reveal new insight into the topological properties of immune co-expression networks and a comprehensive understanding of multifaceted plant defense responses. We present evidence that our newly developed software, OCCEAN, could become a popular tool for the Arabidopsis research community as well as potentially expand to analyze other eukaryotic genomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-421) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA.
| |
Collapse
|
27
|
Ishikawa N, Ikeda H, Yi TS, Takabe-Ito E, Okada H, Tsukaya H. Lineage diversification and hybridization in the Cayratia japonica–Cayratia tenuifolia species complex. Mol Phylogenet Evol 2014; 75:227-38. [DOI: 10.1016/j.ympev.2014.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
|
28
|
Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH. Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genomics 2014; 15:334. [PMID: 24885798 PMCID: PMC4035065 DOI: 10.1186/1471-2164-15-334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tomato (Solanum lycopersicum), one of the world's most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea. RESULTS Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites. CONCLUSIONS In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.
Collapse
Affiliation(s)
- Jonathon E Smith
- />Department of Plant Pathology, University of Arkansas Division of Agriculture, 217 Plant Sciences, Fayetteville, AR 72701 USA
| | - Bemnet Mengesha
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Hua Tang
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Tesfaye Mengiste
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Burton H Bluhm
- />Department of Plant Pathology, University of Arkansas Division of Agriculture, 217 Plant Sciences, Fayetteville, AR 72701 USA
| |
Collapse
|
29
|
Huang C, Hu G, Li F, Li Y, Wu J, Zhou X. NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2013; 149:297-309. [PMID: 23387304 DOI: 10.1111/ppl.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/19/2013] [Accepted: 01/19/2013] [Indexed: 05/14/2023]
Abstract
MYB transcriptional factors, characterized by the presence of conserved DNA-binding domains (BDs) (MYB domain), are involved in diverse processes including plant growth, development, metabolic and stress responses. In this study, a new R2R3-type MYB gene, NbPHAN (Nicotiana benthamiana PHANTASTICA), was identified in N. benthamiana. The NbPHAN encodes a protein of 362 amino acids and shares high sequence identities with the AS1-RS2-PHANs (ARPs) from other plant species. The NbPHAN protein targets to and forms homodimers in the nucleus. The MYB domain and C-terminal region of NbPHAN determine its subcellular localization and homodimerization, respectively. Using virus-induced gene silencing, we showed that the NbPHAN-silenced leaves exhibited severe downward curling and abnormal growth of blades along the main veins through suppressing the expression of the NTH20 gene. In addition, we found NbPHAN plays an important role in drought tolerance. The NbPHAN-silenced plants exhibited severe wilting and increased rate of water loss than that found in the non-silenced plants when growing under the water deficit condition. Although abscisic acid accumulation was not altered in the NbPHAN-silenced plants as compared with that in the non-silenced plants, several other stress-inducible genes were clearly repressed under the water deficit condition. Our results provide strong evidence that other than controlling leaf development, the ARP genes can also regulate plant tolerance to drought stress.
Collapse
Affiliation(s)
- Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
30
|
Zheng ZL, Zhao Y. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to 'Candidatus Liberibacter asiaticus' infection. BMC Genomics 2013; 14:27. [PMID: 23324561 PMCID: PMC3577516 DOI: 10.1186/1471-2164-14-27] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 01/09/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Huanglongbing (HLB) is arguably the most destructive disease for the citrus industry. HLB is caused by infection of the bacterium, Candidatus Liberibacter spp. Several citrus GeneChip studies have revealed thousands of genes that are up- or down-regulated by infection with Ca. Liberibacter asiaticus. However, whether and how these host genes act to protect against HLB remains poorly understood. RESULTS As a first step towards a mechanistic view of citrus in response to the HLB bacterial infection, we performed a comparative transcriptome analysis and found that a total of 21 Probesets are commonly up-regulated by the HLB bacterial infection. In addition, a number of genes are likely regulated specifically at early, late or very late stages of the infection. Furthermore, using Pearson correlation coefficient-based gene coexpression analysis, we constructed a citrus HLB response network consisting of 3,507 Probesets and 56,287 interactions. Genes involved in carbohydrate and nitrogen metabolic processes, transport, defense, signaling and hormone response were overrepresented in the HLB response network and the subnetworks for these processes were constructed. Analysis of the defense and hormone response subnetworks indicates that hormone response is interconnected with defense response. In addition, mapping the commonly up-regulated HLB responsive genes into the HLB response network resulted in a core subnetwork where transport plays a key role in the citrus response to the HLB bacterial infection. Moreover, analysis of a phloem protein subnetwork indicates a role for this protein and zinc transporters or zinc-binding proteins in the citrus HLB defense response. CONCLUSION Through integrating transcriptome comparison and gene coexpression network analysis, we have provided for the first time a systems view of citrus in response to the Ca. Liberibacter spp. infection causing HLB.
Collapse
Affiliation(s)
- Zhi-Liang Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, Citrus Research Institute & College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400712, China.
| | | |
Collapse
|
31
|
Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang JF, Balint-Kurti P, Shyu CR. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. PLANT METHODS 2012; 8:45. [PMID: 23131141 PMCID: PMC3546069 DOI: 10.1186/1746-4811-8-45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/31/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Accurate characterization of complex plant phenotypes is critical to assigning biological functions to genes through forward or reverse genetics. It can also be vital in determining the effect of a treatment, genotype, or environmental condition on plant growth or susceptibility to insects or pathogens. Although techniques for characterizing complex phenotypes have been developed, most are not cost effective or are too imprecise or subjective to reliably differentiate subtler differences in complex traits like growth, color change, or disease resistance. RESULTS We designed an inexpensive imaging protocol that facilitates automatic quantification of two-dimensional visual phenotypes using computer vision and image processing algorithms applied to standard digital images. The protocol allows for non-destructive imaging of plants in the laboratory and field and can be used in suboptimal imaging conditions due to automated color and scale normalization. We designed the web-based tool PhenoPhyte for processing images adhering to this protocol and demonstrate its ability to measure a variety of two-dimensional traits (such as growth, leaf area, and herbivory) using images from several species (Arabidopsis thaliana and Brassica rapa). We then provide a more complicated example for measuring disease resistance of Zea mays to Southern Leaf Blight. CONCLUSIONS PhenoPhyte is a new cost-effective web-application for semi-automated quantification of two-dimensional traits from digital imagery using an easy imaging protocol. This tool's usefulness is demonstrated for a variety of traits in multiple species. We show that digital phenotyping can reduce human subjectivity in trait quantification, thereby increasing accuracy and improving precision, which are crucial for differentiating and quantifying subtle phenotypic variation and understanding gene function and/or treatment effects.
Collapse
Affiliation(s)
- Jason M Green
- Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Heidi Appel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- 371 Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Erin MacNeal Rehrig
- Biology/Chemistry Department, Fitchburg State University, Fitchburg, MA, 01420, USA
| | | | - Jia-Fu Chang
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Peter Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chi-Ren Shyu
- Informatics Institute & Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
32
|
Han HJ, Park HC, Byun HJ, Lee SM, Kim HS, Yun DJ, Cho MJ, Chung WS. The transcriptional repressor activity of ASYMMETRIC LEAVES1 is inhibited by direct interaction with calmodulin in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:1969-82. [PMID: 22554014 DOI: 10.1111/j.1365-3040.2012.02530.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Calmodulin (CaM), a key Ca2+ sensor, regulates diverse cellular processes by modulating the activity of a variety of enzymes and proteins. However, little is known about the biological function of CaM in plant development. In this study, an ASYMMETRIC LEAVES1 (AS1) transcription factor was isolated as a CaM-binding protein. AS1 contains two putative CaM-binding domains (CaMBDs) at the N-terminus. Using domain mapping analysis, both predicted domains were identified as authentic Ca2+ -dependent CaMBDs. We identified three hydrophobic amino acid residues for CaM binding, Trp49 in CaMBDI, and Trp81 and Phe103 in CaMBDII. The interactions of AS1 with CaM were verified in yeast and plant cells. Based on electrophoretic mobility shift assays, CaM inhibited the DNA-binding activity of the AS1/AS2 complex to two cis-regulatory motifs in the KNAT1 promoter. Furthermore, CaM relieved the suppression of KNAT1 transcription by AS1 not only in transient expression assays of protoplasts but also by the overexpression of a CaM-binding negative form of AS1 in as1 mutant plant. Our study suggests that CaM, a calcium sensor, can be involved in the transcriptional control of meristem cell-specific genes by the inhibition of AS1 under the condition of higher levels of Ca2+ in plants.
Collapse
Affiliation(s)
- Hay Ju Han
- Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Thatcher LF, Powell JJ, Aitken EAB, Kazan K, Manners JM. The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt Susceptibility and jasmonate signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:407-18. [PMID: 22786889 PMCID: PMC3440215 DOI: 10.1104/pp.112.199067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/09/2012] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling.
Collapse
Affiliation(s)
- Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland 4067, Australia.
| | | | | | | | | |
Collapse
|
34
|
Tsukaya H, Ishikawa N, Okada H. A hypothesis on the origin of genetic heterozygosity in diploids and triploids in Japanese Cayratia japonica species complex (Vitaceae). JOURNAL OF PLANT RESEARCH 2012; 125:475-481. [PMID: 22200910 DOI: 10.1007/s10265-011-0467-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/26/2011] [Indexed: 05/31/2023]
Abstract
We previously reported the occurrence of triploid strains in Japanese populations of Cayratia japonica (Thunb.) Gagnep. Interestingly, the triploid and most diploid strains had variably reduced pollen fertility. Two questions emerged from this earlier work: (1) How do triploids arise, and are they allotriploids or autotriploids? and (2) Why is there low pollen fertility in some diploid plants? We used a molecular genetic approach to determine the phylogenetic origins of triploids in C. japonica and the closely related species Cayratia tenuifolia (Wight & Arn.) Gagnep. In our analysis, we compared the sequences of the nuclear single-copy genes LEAFY and ASYMMETRIC LEAVES1. As a result, most triploids and diploids were heterozygous for the loci examined; the triploid genome shared an allele with the diploid genome, but other alleles differed between the ploidies. Therefore, Japanese populations of C. japonica and C. tenuifolia almost certainly arose from repeated hybridization events among genetically differentiated strains. Using our sequence data, we discuss possible scenarios accounting for the occurrence of triploids in the two species of Cayratia.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
35
|
Ali F, Yan J. Disease resistance in maize and the role of molecular breeding in defending against global threat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:134-51. [PMID: 22333113 DOI: 10.1111/j.1744-7909.2012.01105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative resistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R-genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic architecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction between different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
36
|
Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 2012; 21:1294-304. [PMID: 22269032 DOI: 10.1111/j.1365-294x.2012.05457.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant-mediated interactions between herbivorous arthropods and pathogens transmitted by herbivores are important determinants of the population dynamics of both types of organisms in the field. The role of plant defence in mediating these types of tripartite interactions have been recognized but rarely examined especially at the physiological and molecular levels. Our previous work shows that a worldwide invasive whitefly can establish mutualism with the begomovirus Tomato yellow leaf curl China virus (TYLCCNV) via crop plants. Here, we show that TYLCCNV and betasatellite co-infection suppresses jasmonic acid defences in the plant. Impairing or enhancing defences mediated by jasmonic acid in the plant enhances or depresses the performance of the whitefly. We further demonstrate that the pathogenicity factor βC1 encoded in the betasatellite is responsible for the initiation of suppression on plant defences and contributes to the realization of the virus-vector mutualism. By integrating ecological, mechanistic and molecular approaches, our study reveals a major mechanism of the plant-mediated mutualism between a virus and its vector. As the test plant is an important economic crop, the results also have substantial implications for developing novel strategies for management of crop viruses and the insect vectors associated with them.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Causier B, Ashworth M, Guo W, Davies B. The TOPLESS interactome: a framework for gene repression in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:423-38. [PMID: 22065421 PMCID: PMC3252085 DOI: 10.1104/pp.111.186999] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/04/2011] [Indexed: 05/17/2023]
Abstract
Transcription factors activate or repress target gene expression or switch between activation and repression. In animals and yeast, Groucho/Tup1 corepressor proteins are recruited by diverse transcription factors to induce context-specific transcriptional repression. Two groups of Groucho/Tup1-like corepressors have been described in plants. LEUNIG and LEUNIG_HOMOLOG constitute one group and TOPLESS (TPL) and the four TPL-related (TPR) corepressors form the other. To discover the processes in which TPL and the TPR corepressors operate, high-throughput yeast two-hybrid approaches were used to identify interacting proteins. We found that TPL/TPR corepressors predominantly interact directly with specific transcription factors, many of which were previously implicated in transcriptional repression. The interacting transcription factors reveal that the TPL/TPR family has been coopted multiple times to modulate gene expression in diverse processes, including hormone signaling, stress responses, and the control of flowering time, for which we also show biological validation. The interaction data suggest novel mechanisms for the involvement of TPL/TPR corepressors in auxin and jasmonic acid signaling. A number of short repression domain (RD) sequences have previously been identified in Arabidopsis (Arabidopsis thaliana) transcription factors. All known RD sequences were enriched among the TPL/TPR interactors, and novel TPL-RD interactions were identified. We show that the presence of RD sequences is essential for TPL/TPR recruitment. These data provide a framework for TPL/TPR-dependent transcriptional repression. They allow for predictions about new repressive transcription factors, corepressor interactions, and repression mechanisms and identify a wide range of plant processes that utilize TPL/TPR-mediated gene repression.
Collapse
|
38
|
Abstract
Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.
Collapse
Affiliation(s)
- Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
39
|
Sun X, Gilroy EM, Chini A, Nurmberg PL, Hein I, Lacomme C, Birch PRJ, Hussain A, Yun BW, Loake GJ. ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. THE NEW PHYTOLOGIST 2011; 192:471-82. [PMID: 21762165 DOI: 10.1111/j.1469-8137.2011.03820.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) proteins comprise the most recently identified family of multidrug transporters. In plants, the numbers of MATE proteins has undergone a remarkable expansion, underscoring the importance of these transporters within this kingdom. Here, we describe the identification and characterization of Activated Disease Susceptibility 1 (ADS1) which encodes a putative MATE transport protein. An activation tagging screen uncovered the ads1-Dominant (ads1-D) mutant, which was subsequently characterized by molecular, genetic and biochemical approaches. The ads1-D mutant was compromised in both basal and nonhost resistance against microbial pathogens. Further, plant defence responses conferred by RPS4 were also disabled in ads1-D plants. By contrast, depletion of ADS1 transcripts by RNA-interference (RNAi) promoted basal disease resistance. Unexpectedly, ads1-D plants were found to constitutively accumulate reactive oxygen intermediates (ROIs). However, analysis of ads1-D Arabidopsis thaliana respiratory burst oxidase (atrboh) double and triple mutants indicated that an increase in ROIs did not impact ads1-D-mediated disease susceptibility. Our findings imply that ADS1 negatively regulates the accumulation of the plant immune activator salicylic acid (SA) and cognate Pathogenesis-Related 1 (PR1) gene expression. Collectively, these data highlight an important role for MATE proteins in the establishment of plant disease resistance.
Collapse
Affiliation(s)
- Xinli Sun
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 2011; 20:430-43. [PMID: 21497757 DOI: 10.1016/j.devcel.2011.03.019] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/05/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022]
Abstract
The transition from vegetative growth to flower formation is critical for the survival of flowering plants. The plant-specific transcription factor LEAFY (LFY) has central, evolutionarily conserved roles in this process, both in the formation of the first flower and later in floral patterning. We performed genome-wide binding and expression studies to elucidate the molecular mechanisms by which LFY executes these roles. Our study reveals that LFY directs an elaborate regulatory network in control of floral homeotic gene expression. LFY also controls the expression of genes that regulate the response to external stimuli in Arabidopsis. Thus, our findings support a key role for LFY in the coordination of reproductive stage development and disease response programs in plants that may ensure optimal allocation of plant resources for reproductive fitness. Finally, motif analyses reveal a possible mechanism for stage-specific LFY recruitment and suggest a role for LFY in overcoming polycomb repression.
Collapse
|
41
|
Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci U S A 2011; 108:7339-44. [PMID: 21490302 DOI: 10.1073/pnas.1011739108] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are attacked by pathogens representing diverse taxonomic groups, such that genes providing multiple disease resistance (MDR) are expected to be under positive selection pressure. To address the hypothesis that naturally occurring allelic variation conditions MDR, we extended the framework of structured association mapping to allow for the analysis of correlated complex traits and the identification of pleiotropic genes. The multivariate analytical approach used here is directly applicable to any species and set of traits exhibiting correlation. From our analysis of a diverse panel of maize inbred lines, we discovered high positive genetic correlations between resistances to three globally threatening fungal diseases. The maize panel studied exhibits rapidly decaying linkage disequilibrium that generally occurs within 1 or 2 kb, which is less than the average length of a maize gene. The positive correlations therefore suggested that functional allelic variation at specific genes for MDR exists in maize. Using a multivariate test statistic, a glutathione S-transferase (GST) gene was found to be associated with modest levels of resistance to all three diseases. Resequencing analysis pinpointed the association to a histidine (basic amino acid) for aspartic acid (acidic amino acid) substitution in the encoded protein domain that defines GST substrate specificity and biochemical activity. The known functions of GSTs suggested that variability in detoxification pathways underlie natural variation in maize MDR.
Collapse
|
42
|
Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1920-35. [PMID: 21282403 PMCID: PMC3091096 DOI: 10.1104/pp.110.171843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain (V.R., A.A., A.C., J.G.-A., M.J.H., B.B., P.V.); Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands (P.B.F.O.); Departamento de Fisiología Vegetal, Universidad de Santiago, Campus Sur, 15782 Santiago de Compostela, Spain (I.Z.)
| |
Collapse
|
43
|
Van Norman JM, Murphy C, Sieburth LE. BYPASS1: synthesis of the mobile root-derived signal requires active root growth and arrests early leaf development. BMC PLANT BIOLOGY 2011; 11:28. [PMID: 21291559 PMCID: PMC3045294 DOI: 10.1186/1471-2229-11-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis bypass1 (bps1) mutant root produces a biologically active mobile compound that induces shoot growth arrest. However it is unknown whether the root retains the capacity to synthesize the mobile compound, or if only shoots of young seedlings are sensitive. It is also unknown how this compound induces arrest of shoot growth. This study investigated both of these questions using genetic, inhibitor, reporter gene, and morphological approaches. RESULTS Production of the bps1 root-synthesized mobile compound was found to require active root growth. Inhibition of postembryonic root growth, by depleting glutathione either genetically or chemically, allowed seedlings to escape shoot arrest. However, the treatments were not completely effective, as the first leaf pair remained radialized, but elongated. This result indicated that the embryonic root transiently synthesized a small amount of the mobile substance. In addition, providing glutathione later in vegetative development caused shoot growth arrest to be reinstated, revealing that these late-arising roots were still capable of producing the mobile substance, and that the older vegetative leaves were still responsive. To gain insight into how leaf development responds to the mobile signal, leaf development was followed morphologically and using the CYCB1,1::GUS marker for G2/M phase cells. We found that arrest of leaf growth is a fully penetrant phenotype, and a dramatic decrease in G2/M phase cells was coincident with arrest. Analyses of stress phenotypes found that late in development, bps1 cotyledons produced necrotic lesions, however neither hydrogen peroxide nor superoxide were abundant as leaves underwent arrest. CONCLUSIONS bps1 roots appear to require active growth in order to produce the mobile bps1 signal, but the potential for this compound's synthesis is present both early and late during vegetative development. This prolonged capacity to synthesize and respond to the mobile compound is consistent with a possible role for the mobile compound in linking shoot growth to subterranean conditions. The specific growth-related responses in the shoot indicated that the mobile substance prevents full activation of cell division in leaves, although whether cell division is a direct response remains to be determined.
Collapse
Affiliation(s)
| | - Caroline Murphy
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112, USA
| | - Leslie E Sieburth
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
44
|
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? THE ARABIDOPSIS BOOK 2010; 8:e0136. [PMID: 22303261 PMCID: PMC3244965 DOI: 10.1199/tab.0136] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Necrotrophic pathogens cause major pre- and post-harvest diseases in numerous agronomic and horticultural crops inflicting significant economic losses. In contrast to biotrophs, obligate plant parasites that infect and feed on living cells, necrotrophs promote the destruction of host cells to feed on their contents. This difference underpins the divergent pathogenesis strategies and plant immune responses to biotrophic and necrotrophic infections. This chapter focuses on Arabidopsis immunity to necrotrophic pathogens. The strategies of infection, virulence and suppression of host defenses recruited by necrotrophs and the variation in host resistance mechanisms are highlighted. The multiplicity of intraspecific virulence factors and species diversity in necrotrophic organisms corresponds to variations in host resistance strategies. Resistance to host-specific necrotophs is monogenic whereas defense against broad host necrotrophs is complex, requiring the involvement of many genes and pathways for full resistance. Mechanisms and components of immunity such as the role of plant hormones, secondary metabolites, and pathogenesis proteins are presented. We will discuss the current state of knowledge of Arabidopsis immune responses to necrotrophic pathogens, the interactions of these responses with other defense pathways, and contemplate on the directions of future research.
Collapse
Affiliation(s)
- Kristin Laluk
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| | - Tesfaye Mengiste
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| |
Collapse
|
45
|
Uchida N, Tasaka M. Intersections between immune responses and morphological regulation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2539-47. [PMID: 20457577 DOI: 10.1093/jxb/erq126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan.
| | | |
Collapse
|
46
|
Tsuchiya T, Eulgem T. The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:518-28. [PMID: 20149132 DOI: 10.1111/j.1365-313x.2010.04169.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana EDM2 was previously shown to be specifically required for disease resistance mediated by the R protein RPP7. Here we provide additional data showing that the role of EDM2 in plant immunity is limited and does not include a function in basal defense. In addition, we found that EDM2 has a promoting effect on the floral transition. We further found that the protein kinase WNK8 physically interacts with EDM2 in the nucleus. Unlike EDM2, which serves as a substrate of this kinase, WNK8 appears not to be required for RPP7-mediated defense. As reported previously, however, WNK8 does affect flowering time. Epistasis analyses suggested that EDM2 acts upstream of the floral repressor FLC (AT5G10140) and downstream of WNK8 (AT5G41990) in a regulatory module that resembles the autonomous floral promotion pathway, comprising a set of mechanisms that are known to affect the floral transition by regulating FLC transcript levels.
Collapse
Affiliation(s)
- Tokuji Tsuchiya
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
47
|
Abstract
The majority of plant viruses rely on vectors for their transmission and completion of their life cycle. These vectors comprise a diverse range of life forms including insects, nematodes, and fungi with the most common of these being insects. The geographic range of many of these vectors is continually expanding due to climate change. The viruses that they carry are therefore also expanding their range to exploit novel and naïve plant hosts. There are many forms of naturally occurring vector resistance ranging from broad nonhost resistance to more specific types of inducible resistance. Understanding and exploiting the many and varied forms of natural resistance to virus vectors is therefore extremely important for current and future agricultural production systems. To demonstrate the range and extent of these resistance mechanisms, this chapter will primarily focus on aphids to highlight key developments appropriate to plant-insect-virus interactions.
Collapse
Affiliation(s)
- Jack H Westwood
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge, United Kingdom.
| | | |
Collapse
|
48
|
|
49
|
Abstract
Most leaves are dorsiventrally flattened and develop clearly defined upper and lower surfaces. Light capturing is the specialization of the adaxial or upper surface and the abaxial or lower surface is specialized for gas exchange (Fig. 5.1). This division into adaxial and abaxial domains is also key for the outgrowth of the leaf blade or lamina, which occurs along the boundary between the upper and lower sides. How this polarity is set up is not clear but genetic analysis in a range of species suggests that several highly conserved interlocking pathways are involved. Positional information from the meristem is reinforced by signaling through the epidermal layer as the meristem grows away from the leaf primordium. Opposing ta-siRNA and miRNA gradients help refine distinct adaxial and abaxial sides, and mutual inhibition between the genes expressed on each side stabilizes the boundary. In this review we consider how recent work in a range of species is clarifying our understanding of these processes.
Collapse
|
50
|
Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ. Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? PHYTOPATHOLOGY 2010; 100:72-9. [PMID: 19968551 DOI: 10.1094/phyto-100-1-0072] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Southern leaf blight (SLB), gray leaf spot (GLS), and northern leaf blight (NLB) are all important foliar diseases impacting maize production. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to these diseases in a maize recombinant inbred line (RIL) population derived from a cross between maize lines Ki14 and B73, and to evaluate the evidence for the presence genes or loci conferring multiple disease resistance (MDR). Each disease was scored in multiple separate trials. Highly significant correlations between the resistances and the three diseases were found. The highest correlation was identified between SLB and GLS resistance (r = 0.62). Correlations between resistance to each of the diseases and time to flowering were also highly significant. Nine, eight, and six QTL were identified for SLB, GLS, and NLB resistance, respectively. QTL for all three diseases colocalized in bin 1.06, while QTL colocalizing for two of the three diseases were identified in bins 1.08 to 1.09, 2.02/2.03, 3.04/3.05, 8.05, and 10.05. QTL for time to flowering were also identified at four of these six loci (bins 1.06, 3.04/3.05, 8.05, and 10.05). No disease resistance QTL was identified at the largest-effect QTL for flowering time in bin 10.03.
Collapse
Affiliation(s)
- John C Zwonitzer
- Department of Plant Pathology, North Carolona State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|