1
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
2
|
Furon J, Yetim M, Pouettre E, Martinez de Lizarrondo S, Maubert E, Hommet Y, Lebouvier L, Zheng Z, Ali C, Vivien D. Blood tissue Plasminogen Activator (tPA) of liver origin contributes to neurovascular coupling involving brain endothelial N-Methyl-D-Aspartate (NMDA) receptors. Fluids Barriers CNS 2023; 20:11. [PMID: 36737775 PMCID: PMC9896721 DOI: 10.1186/s12987-023-00411-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Regulation of cerebral blood flow (CBF) directly influence brain functions and dysfunctions and involves complex mechanisms, including neurovascular coupling (NVC). It was suggested that the serine protease tissue-type plasminogen activator (tPA) could control CNV induced by whisker stimulation in rodents, through its action on N-methyl-D-Aspartate receptors (NMDARs). However, the origin of tPA and the location and mechanism of its action on NMDARs in relation to CNV remained debated. METHODS Here, we answered these issues using tPANull mice, conditional deletions of either endothelial tPA (VECad-CreΔtPA) or endothelial GluN1 subunit of NMDARs (VECad-CreΔGluN1), parabioses between wild-type and tPANull mice, hydrodynamic transfection-induced deletion of liver tPA, hepatectomy and pharmacological approaches. RESULTS We thus demonstrate that physiological concentrations of vascular tPA, achieved by the bradykinin type 2 receptors-dependent production and release of tPA from liver endothelial cells, promote NVC, through a mechanism dependent on brain endothelial NMDARs. CONCLUSIONS These data highlight a new mechanism of regulation of NVC involving both endothelial tPA and NMDARs.
Collapse
Affiliation(s)
- Jonathane Furon
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Mervé Yetim
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Elsa Pouettre
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Sara Martinez de Lizarrondo
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Eric Maubert
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Yannick Hommet
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Laurent Lebouvier
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Ze Zheng
- grid.30760.320000 0001 2111 8460Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.280427.b0000 0004 0434 015XBlood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI USA
| | - Carine Ali
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Denis Vivien
- UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074, Caen, France. .,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France.
| |
Collapse
|
3
|
PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: role in the control of anxiety. Mol Psychiatry 2022; 27:2197-2205. [PMID: 35145231 DOI: 10.1038/s41380-022-01455-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.
Collapse
|
4
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
5
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
6
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Zhang X, Goeke CM, Bloom SH, Guizzetti M. Plasminogen activator system homeostasis and its dysregulation by ethanol in astrocyte cultures and the developing brain. Neuropharmacology 2018; 138:193-209. [PMID: 29885422 PMCID: PMC6310223 DOI: 10.1016/j.neuropharm.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 10/30/2022]
Abstract
In utero alcohol exposure can cause fetal alcohol spectrum disorders (FASD), characterized by structural brain abnormalities and long-lasting behavioral and cognitive dysfunction. Neuronal plasticity is affected by in utero alcohol exposure and can be modulated by extracellular proteolysis. Plasmin is a major extracellular serine-protease whose activation is tightly regulated by the plasminogen activator (PA) system. In the present study we explored the effect of ethanol on the expression of the main components of the brain PA system in sex-specific cortical astrocyte primary cultures in vitro and in the cortex and hippocampus of post-natal day (PD) 9 male and female rats. We find that ethanol alters the PA system in astrocytes and in the developing brain. In particular, the expression of tissue-type PA (tPA), encoded by the gene Plat, is consistently upregulated by ethanol in astrocytes in vitro and in the cortex and hippocampus in vivo. Astrocytes exhibit endogenous plasmin activity that is increased by ethanol and recombinant tPA and inhibited by tPA silencing. We also find that tPA is expressed by astrocytes of the developing cortex and hippocampus in vivo. All components of the PA system investigated, with the exception of Neuroserpin/Serpini1, are expressed at higher levels in astrocyte cultures than in the developing brain, suggesting that astrocytes are major producers of these proteins in the brain. In conclusion, astrocyte PA system may play a major role in the modulation of neuronal plasticity; ethanol-induced upregulation of tPA levels and plasmin activity may be responsible for altered neuronal plasticity in FASD.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | - Calla M Goeke
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
9
|
Idell RD, Florova G, Komissarov AA, Shetty S, Girard RBS, Idell S. The fibrinolytic system: A new target for treatment of depression with psychedelics. Med Hypotheses 2017; 100:46-53. [PMID: 28236848 DOI: 10.1016/j.mehy.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/10/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022]
Abstract
Current understanding of the neurobiology of depression has grown over the past few years beyond the traditional monoamine theory of depression to include chronic stress, inflammation and disrupted synaptic plasticity. Tissue plasminogen activator (tPA) is a key factor that not only promotes fibrinolysis via the activation of plasminogen, but also contributes to regulation of synaptic plasticity and neurogenesis through plasmin-mediated activation of a probrain derived neurotrophic factor (BDNF) to mature BDNF. ProBDNF activation could potentially be supressed by competition with fibrin for plasmin and tPA. High affinity binding of plasmin and tPA to fibrin could result in a decrease of proBDNF activation during brain inflammation leading to fibrosis further perpetuating depressed mood. There is a paucity of data explaining the possible role of the fibrinolytic system or aberrant extravascular fibrin deposition in depression. We propose that within the brain, an imbalance between tPA and urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) and neuroserpin favors the inhibitors, resulting in changes in neurogenesis, synaptic plasticity, and neuroinflammation that result in depressive behavior. Our hypothesis is that peripheral inflammation mediates neuroinflammation, and that cytokines such as tumor necrosis factor alpha (TNF-α) can inhibit the fibrinolytic system by up- regulating PAI-1 and potentially neuroserpin. We propose that the decrement of the activity of tPA and uPA occurs with downregulation of uPA in part involving the binding and clearance from the surface of neural cells of uPA/PAI-1 complexes by the urokinase receptor uPAR. We infer that current antidepressants and ketamine mitigate depressive symptoms by restoring the balance of the fibrinolytic system with increased activity of tPA and uPA with down-regulated intracerebral expression of their inhibitors. We lastly hypothesize that psychedelic 5-ht2a receptor agonists, such as psilocybin, can improve mood through anti- inflammatory and pro-fibrinolytic effects that include blockade of TNF-α activity leading to decreased PAI-1 activity and increased clearance. The process involves disinhibition of tPA and uPA with subsequent increased cleavage of proBDNF which promotes neurogenesis, decreased neuroinflammation, decreased fibrin deposition, normalized glial-neuronal cross-talk, and optimally functioning neuro-circuits involved in mood. We propose that psilocybin can alleviate deleterious changes in the brain caused by chronic stress leading to restoration of homeostatic brain fibrinolytic capacity leading to euthymia.
Collapse
Affiliation(s)
- R D Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States.
| | - G Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States
| | - A A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States
| | - S Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States
| | - R B S Girard
- Biotechnology Graduate Program, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States
| | - S Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, United States
| |
Collapse
|
10
|
Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice. Blood 2017; 129:2547-2556. [PMID: 28242605 DOI: 10.1182/blood-2016-11-753202] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment.
Collapse
|
11
|
Lasek AW. Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:2030-2042. [PMID: 27581478 DOI: 10.1111/acer.13200] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol (EtOH) exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, EtOH exposure generally increases perineuronal net components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD.
Collapse
Affiliation(s)
- Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
SERPINE2/Protease Nexin-1 in vivo multiple functions: Does the puzzle make sense? Semin Cell Dev Biol 2016; 62:160-169. [PMID: 27545616 DOI: 10.1016/j.semcdb.2016.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022]
Abstract
Cultures of glial cells and fibroblasts allowed and lead to the identification SERPINE2/Protease Nexin-1 (SERPINE2/PN-1). Cellular, biochemical, immunological and molecular characterization substantiated its variable expression in many organs as a function of development, adult stages, pathological situations or following injury. It is not a circulating serpin, but as other members of the family, its target specificity is influenced by components of the extracellular matrix. The challenges are to identify where and when SERPINE2/PN-1 modulatory action becomes crucial or even possibly specific in a mosaic of feasible in vivo impacts. Data providing correlations are not sufficient to satisfy this aim. Genetically modified mice, or tissue derived thereof, provide interesting in vivo models to identify and study the relevance of this serpin. This review will highlight sometimes-intriguing results indicating a crucial impact of SERPINE2/PN-1, especially in the vasculature, the nervous system or the behavior of cancer cells in vivo. Data presently available will be discussed in an attempt to define general trends in the diversity of SERPINE2/PN-1 modes of action in vivo.
Collapse
|
13
|
Carlson KSB, Nguyen L, Schwartz K, Lawrence DA, Schwartz BS. Neuroserpin Differentiates Between Forms of Tissue Type Plasminogen Activator via pH Dependent Deacylation. Front Cell Neurosci 2016; 10:154. [PMID: 27378851 PMCID: PMC4908126 DOI: 10.3389/fncel.2016.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/27/2016] [Indexed: 11/17/2022] Open
Abstract
Tissue-type plasminogen activator (t-PA), initially characterized for its critical role in fibrinolysis, also has key functions in both physiologic and pathologic processes in the CNS. Neuroserpin (NSP) is a t-PA specific serine protease inhibitor (serpin) found almost exclusively in the CNS that regulates t-PA's proteolytic activity and protects against t-PA mediated seizure propagation and blood-brain barrier disruption. This report demonstrates that NSP inhibition of t-PA varies profoundly as a function of pH within the biologically relevant pH range for the CNS, and reflects the stability, rather than the formation of NSP: t-PA acyl-enzyme complexes. Moreover, NSP differentiates between the zymogen-like single chain form (single chain t-PA, sct-PA) and the mature protease form (two chain t-PA, tct-PA) of t-PA, demonstrating different pH profiles for protease inhibition, different pH ranges over which catalytic deacylation occurs, and different pH dependent profiles of deacylation rates for each form of t-PA. NSP's pH dependent inhibition of t-PA is not accounted for by differential acylation, and is specific for the NSP-t-PA serpin-protease pair. These results demonstrate a novel mechanism for the differential regulation of the two forms of t-PA in the CNS, and suggest a potential specific regulatory role for CNS pH in controlling t-PA proteolytic activity.
Collapse
Affiliation(s)
- Karen-Sue B. Carlson
- Department of Biomolecular Chemistry, University of Wisconsin, MadisonWI, USA
- Medical Scientist Training Program, University of Wisconsin, MadisonWI, USA
| | - Lan Nguyen
- Departments of Biochemistry and Medicine, University of Illinois, UrbanaIL, USA
| | - Kat Schwartz
- Departments of Biochemistry and Medicine, University of Illinois, UrbanaIL, USA
| | - Daniel A. Lawrence
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann ArborMI, USA
| | - Bradford S. Schwartz
- Department of Biomolecular Chemistry, University of Wisconsin, MadisonWI, USA
- Departments of Biochemistry and Medicine, University of Illinois, UrbanaIL, USA
| |
Collapse
|
14
|
Tissue Plasminogen Activator Neurotoxicity is Neutralized by Recombinant ADAMTS 13. Sci Rep 2016; 6:25971. [PMID: 27181025 PMCID: PMC4867598 DOI: 10.1038/srep25971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/22/2016] [Indexed: 12/29/2022] Open
Abstract
Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke, but its neurotoxicity is a significant problem. Here we tested the hypothesis that recombinant ADAMTS 13 (rADAMTS 13) would reduce tPA neurotoxicity in a mouse model of stroke. We show that treatment with rADAMTS 13 in combination with tPA significantly reduced infarct volume compared with mice treated with tPA alone 48 hours after stroke. The combination treatment significantly improved neurological deficits compared with mice treated with tPA or vehicle alone. These neuroprotective effects were associated with significant reductions in fibrin deposits in ischemic vessels and less severe cell death in ischemic brain. The effect of rADAMTS13 on tPA neurotoxicity was mimicked by the N-methyl-D-aspartate (NMDA) receptor antagonist M-801, and was abolished by injection of NMDA. Moreover, rADAMTS 13 prevents the neurotoxicity effect of tPA, by blocking its interaction with the NMDA receptor NR2B and the attendant phosphorylation of NR2B and activation of ERK1/2. Finally, the NR2B-specific NMDA receptor antagonist ifenprodil abolished tPA neurotoxicity and rADAMTS 13 treatment had no further beneficial effect. Our data suggest that the combination of rADAMTS 13 and tPA may provide a novel treatment of ischemic stroke by diminishing the neurotoxic effects of exogenous tPA.
Collapse
|
15
|
Lee TW, Tsang VWK, Birch NP. Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system. Front Cell Neurosci 2015; 9:396. [PMID: 26528129 PMCID: PMC4602146 DOI: 10.3389/fncel.2015.00396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/22/2015] [Indexed: 12/03/2022] Open
Abstract
Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration. In this article, we briefly review the physiological and pathological roles of tPA in the nervous system, which includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and neurodegeneration, as well as a contribution to neurological disease. We summarize tPA's multiple mechanisms of action and also highlight the contributions of the inhibitor neuroserpin to these processes.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa Auckland, New Zealand
| |
Collapse
|
16
|
Vander Pluym JH, O'Sullivan J, Andrew G, Bolduc FV. Genomic characterization of chromosome 8 pericentric trisomy. Clin Case Rep 2015; 3:570-7. [PMID: 26273445 PMCID: PMC4527799 DOI: 10.1002/ccr3.234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
We present a patient with trisomy 8p11.21q11.21 associated with language, gross motor, fine motor, and cognitive delay. Furthermore, using array-based comparative genomic hybridization, we identify the specific genes duplicated in our patient.
Collapse
Affiliation(s)
- Juliana H Vander Pluym
- Division of Pediatric Neuroscience, Stollery Children Hospital, University of Alberta Edmonton, Alberta, Canada
| | - Julia O'Sullivan
- Division of Pediatric Neuroscience, Stollery Children Hospital, University of Alberta Edmonton, Alberta, Canada
| | - Gail Andrew
- Division of Neurodevelopmental and Neuromotor Pediatrics, University of Alberta Edmonton, Alberta, Canada
| | - Francois V Bolduc
- Division of Pediatric Neuroscience, Stollery Children Hospital, University of Alberta Edmonton, Alberta, Canada ; Neuroscience and Mental Health Institute, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 2015; 125:2558-67. [PMID: 25673638 DOI: 10.1182/blood-2014-08-588442] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022] Open
Abstract
Persistent intracerebral hemorrhage (ICH) is a major cause of death and disability after traumatic brain injury (TBI) for which no medical treatment is available. Delayed bleeding is often ascribed to consumptive coagulopathy initiated by exposed brain tissue factor. We examined an alternative hypothesis, namely, that marked release of tissue-type plasminogen activator (tPA) followed by delayed synthesis and release of urokinase plasminogen activator (uPA) from injured brain leads to posttraumatic bleeding by causing premature clot lysis. Using a murine model of severe TBI, we found that ICH is reduced in tPA(-/-) and uPA(-/-) mice but increased in PAI-1(-/-) mice compared with wild-type (WT) mice. tPA(-/-), but not uPA(-/-), mice developed a systemic coagulopathy post-TBI. Tranexamic acid inhibited ICH expansion in uPA(-/-)mice but not in tPA(-/-) mice. Catalytically inactive tPA-S(481)A inhibited plasminogen activation by tPA and uPA, attenuated ICH, lowered plasma d-dimers, lessened thrombocytopenia, and improved neurologic outcome in WT, tPA(-/-), and uPA(-/-) mice. ICH expansion was also inhibited by tPA-S(481)A in WT mice anticoagulated with warfarin. These data demonstrate that protracted endogenous fibrinolysis induced by TBI is primarily responsible for persistent ICH and post-TBI coagulopathy in this model and offer a novel approach to interrupt bleeding.
Collapse
|
18
|
Oh SB, Byun CJ, Yun JH, Jo DG, Carmeliet P, Koh JY, Lee JY. Tissue plasminogen activator arrests Alzheimer's disease pathogenesis. Neurobiol Aging 2014; 35:511-9. [DOI: 10.1016/j.neurobiolaging.2013.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
19
|
Tsilibary E, Tzinia A, Radenovic L, Stamenkovic V, Lebitko T, Mucha M, Pawlak R, Frischknecht R, Kaczmarek L. Neural ECM proteases in learning and synaptic plasticity. PROGRESS IN BRAIN RESEARCH 2014; 214:135-57. [PMID: 25410356 DOI: 10.1016/b978-0-444-63486-3.00006-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.
Collapse
Affiliation(s)
- Effie Tsilibary
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Athina Tzinia
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Lidija Radenovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenkovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tomasz Lebitko
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | | | | - Renato Frischknecht
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland.
| |
Collapse
|
20
|
Tamura H, Ishikawa Y, Shiosaka S. Does extracellular proteolysis control mammalian cognition? Rev Neurosci 2013; 24:365-74. [DOI: 10.1515/revneuro-2013-0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/14/2013] [Indexed: 11/15/2022]
|
21
|
Abstract
Nature has provided a vast array of bioactive compounds that have been exploited for either diagnostic or therapeutic use. The field of thrombosis and haemostasis in particular has enjoyed much benefit from compounds derived from nature, notably from snakes and blood-feeding animals. Indeed, the likelihood that blood-feeding animals would harbour reagents with relevant pharmacology and with potential pharmaceutical benefit in haemostasis was not too far-fetched. Blood-feeding animals including leeches and ticks have evolved a means to keep blood from clotting or to at least maintain the liquid state, and some of these have been the subject of clinical development. A more recent example of this has been the saliva of the common vampire bat Desmodus rotundus, which has proven to harbour a veritable treasure trove of novel regulatory molecules. Among the bioactive compounds present is a fibrinolytic compound that was shown over 40 years ago to be a potent plasminogen activator. Studies of this vampire bat-derived plasminogen activator, more recently referred to as desmoteplase, revealed that this protease shared a number of structural and functional similarities to the human fibrinolytic protease, tissue-type plasminogen activator (t-PA) yet harboured critically important differences that have rendered this molecule attractive for clinical development for patients with ischaemic stroke.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, 89 Commercial Road, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Ng KS, Leung HW, Wong PTH, Low CM. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor. J Biol Chem 2012; 287:25520-9. [PMID: 22610100 DOI: 10.1074/jbc.m112.374397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.
Collapse
Affiliation(s)
- Kay-Siong Ng
- Departments of Pharmacology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
23
|
Deng X, Takaki H, Wang L, Kuroki T, Nakahara T, Hashimoto K, Ninomiya H, Arinami T, Inada T, Ujike H, Itokawa M, Tochigi M, Watanabe Y, Someya T, Kunugi H, Iwata N, Ozaki N, Shibata H, Fukumaki Y. Positive association of phencyclidine-responsive genes, PDE4A and PLAT, with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:850-8. [PMID: 21898905 DOI: 10.1002/ajmg.b.31233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 07/28/2011] [Indexed: 11/08/2022]
Abstract
As schizophrenia-like symptoms are produced by administration of phencyclidine (PCP), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, PCP-responsive genes could be involved in the pathophysiology of schizophrenia. We injected PCP to Wistar rats and isolated five different parts of the brain in 1 and 4 hr after the injection. We analyzed the gene expression induced by the PCP treatment of these tissues using the AGILENT rat cDNA microarray system. We observed changes in expression level in 90 genes and 21 ESTs after the treatment. Out of the 10 genes showing >2-fold expressional change evaluated by qRT-PCR, we selected 7 genes as subjects for the locus-wide association study to identify susceptibility genes for schizophrenia in the Japanese population. In haplotype analysis, significant associations were detected in combinations of two SNPs of BTG2 (P = 1.4 × 10(-6) ), PDE4A (P = 1.4 × 10(-6) ), and PLAT (P = 1 × 10(-3) ), after false discovery rate (FDR) correction. Additionally, we not only successfully replicated the haplotype associations in PDE4A (P = 6.8 × 10(-12) ) and PLAT (P = 0.015), but also detected single-point associations of one SNP in PDE4A (P = 0.0068) and two SNPs in PLAT (P = 0.0260 and 0.0104) in another larger sample set consisting of 2,224 cases and 2,250 controls. These results indicate that PDE4A and PLAT may be susceptibility genes for schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Xiangdong Deng
- Division of Human Molecular Genetics, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res 2011; 1407:107-22. [PMID: 21782155 DOI: 10.1016/j.brainres.2011.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/03/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors have been intensively investigated in the periphery and their roles in a wide range of processes-coagulation, inflammation, and digestion, for example-have been well characterized (see Coughlin, 2000; Macfarlane et al., 2001; Molinari et al., 2003; Wang et al., 2008; Di Cera, 2009 for reviews). A growing number of studies demonstrate that these protein systems are widely expressed in many cell types and regions in mammalian brains. Accumulating lines of evidence suggest that the brain has co-opted the activities of these interesting proteins to regulate various processes underlying synaptic activity and behavior. In this review, we discuss emerging roles for serine proteases in the regulation of mechanisms underlying synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
25
|
Tissue plasminogen activator is required for the development of fetal alcohol syndrome in mice. Proc Natl Acad Sci U S A 2011; 108:5069-74. [PMID: 21383198 DOI: 10.1073/pnas.1017608108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ethanol exposure during developmental synaptogenesis can lead to brain defects referred to as fetal alcohol syndrome (FAS), which can include mental health problems such as cognitive deficits and mental retardation. In FAS, widespread neuronal death and brain mass loss precedes behavioral and cognitive impairments in adulthood. Because tissue plasminogen activator (tPA) has been implicated in neurodegeneration, we examined whether it mediates FAS. Neonatal WT and tPA-/- mice were injected with ethanol to mimic FAS in humans. In WT mice, ethanol elicited caspase-3 activation, significant forebrain neurodegeneration, and decreased contextual fear conditioning in adults. However, tPA-deficient mice were protected from these neurotoxicities, and this protection could be abrogated by exogenous tPA. Selective pharmacological modulators of NMDA and GABAA receptor pathways revealed that the effects of tPA were mediated by the NR2B subunit of the NMDA receptor. This study identifies tPA as a critical signaling component in FAS.
Collapse
|
26
|
Ghafari M, Patil SS, Höger H, Pollak A, Lubec G. NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behav Brain Res 2011; 221:142-8. [PMID: 21377497 DOI: 10.1016/j.bbr.2011.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
Abstract
The N-methyl-d-aspartic acid receptor (NMDAR) is a well-documented key element in the formation of several memories including spatial, olfactory and contextual memory. Although receptor subunits have been linked to memory formation, data on the involvement of the NMDAR complexes is limited. In previous work CD1 mice were trained in the Barnes maze, a low-stress landmaze, and yoked controls were serving as controls. Hippocampal samples from this behavioural study were taken for comparing NMDAR complexes. Hippocampi were taken and stored until analysis at -80 °C. Membrane proteins were extracted from hippocampi using an ultracentrifugation step and applied on Blue Native gels that in turn were used for immunoblotting with antibodies against subunits NR1, NR2A and NR2B. The subunit content of the complexes was determined by denaturing two-dimensional gel electrophoresis and subsequent immunoblotting. An NMDAR complex with an apparent molecular weight between between 146 and 242 kDa, probably representing an NR1 dimer was the only complex that was significantly different between trained and yoked animals. A series of NMDAR complexes containing modulatory subunits NR2A or NR2B or both were detected. All complexes contained the NR1 subunit. The NR1 dimer complex level, increased in memory formation, may be directly or indirectly involved in the process of spatial memory formation in the CD1 mouse. The results are enabling and challenging further NMDAR studies, both, at the pharmacological and molecular level. Moreover, several NMDAR complexes in the CD1 mouse were shown to be mainly heteropolymers of subunits NR1, NR2A and NR2B, although other recently described subunits were not tested due to unavailability of specific antibodies. Determination of native receptor complexes rather than individual subunits is mandatory and provides the molecular basis for understanding mechanisms of spatial memory.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem Int 2010; 58:423-33. [PMID: 21193004 DOI: 10.1016/j.neuint.2010.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022]
Abstract
In brain, the serine protease tissue plasminogen activator (tPA) and its endogenous inhibitor plasminogen activator inhibitor-1 (PAI-1) have been implicated in the regulation of various neurophysiological and pathological responses. In this study, we investigated the differential role of neurons and astrocytes in the regulation of tPA/PAI-1 activity in ischemic brain. The activity of tPA peaked transiently and then decreased in cortex and striatum along with delayed induction of PAI-1 in the inflammatory stage after MCAO/reperfusion injury. In cultured primary cells, glutamate stimulation increased tPA activity in neurons but not in other cells such as microglia and astrocytes. With LPS stimulation, a model of neuroinflammatory insults, robust PAI-1 induction was observed in astrocytes but not in neurons and microglia. The upregulation of PAI-1 by LPS in astrocytes was also verified by RT-PCR analysis as well as PAI-1 promoter reporter assay. Lastly, we checked the effects of hypoxia on tPA/PAI-1 activity. Hypoxia increased tPA release from neurons without effects on microglia, while the activity of tPA in astrocyte was decreased consistent with increased PAI-1 activity in astrocyte. Taken together, the results from the present study suggest that neurons are the major source of tPA and that the glutamate-induced stimulated release is mainly governed by neurons in the acute phase. In contrast, the massive up-regulation of PAI-1 in astrocytes during subchronic and chronic inflammatory conditions, leads to decreased tPA activity in the later stages of MCAO. Differential regulation of tPA and PAI-1 in neurons, astrocytes and microglia suggest more attention is required to understand the role of local tPA activity in the vicinity of individual cell types.
Collapse
|
28
|
Zhou Y, Maiya R, Norris EH, Kreek MJ, Strickland S. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice. Stress 2010; 13:481-90. [PMID: 20666641 PMCID: PMC3832196 DOI: 10.3109/10253891003786415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is evidence that increased release of corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) contributes to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute "binge" cocaine administration. The purpose of this study was to determine if tPA modulates cocaine WD-induced stress responsivity. Wild-type (WT) and tPA-deficient (tPA - / - ) mice were subjected to chronic (14 days) "binge" cocaine (45 mg/kg per day) or its acute (1 day) WD. Extracellular tPA activity, CRF mRNA levels, and plasma corticosterone (CORT) levels were measured in tPA - / - and WT mice. Extracellular tPA activity was reduced by 50% in the CeA and medial amygdala of WT mice after chronic cocaine and returned to basal levels after acute WD. Unlike WT mice, tPA - / - mice did not display elevated amygdalar CRF mRNA levels during cocaine WD. In comparison to WT mice, tPA - / - mice showed a blunted plasma CORT response during acute WD. These results demonstrate that tPA activity in the amygdala (Amy) is altered by chronic cocaine exposure, and further suggest an involvement of tPA in modulating amygdalar CRF stress responsive system and hypothalamic-pituitary-adrenal axis in response to acute cocaine WD.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA.
| | | | | | | | | |
Collapse
|
29
|
Meins M, Herry C, Müller C, Ciocchi S, Moreno E, Lüthi A, Monard D. Impaired fear extinction in mice lacking protease nexin-1. Eur J Neurosci 2010; 31:2033-42. [PMID: 20529116 DOI: 10.1111/j.1460-9568.2010.07221.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serine protease inhibitor protease-nexin-1 (PN-1) has been shown to modulate N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic currents and NMDAR-dependent long-term potentiation of synaptic transmission. Here, we analysed the role of PN-1 in the acquisition and extinction of classical auditory fear conditioning, two distinct forms of learning that both depend on NMDAR activity in the amygdala. Immunostaining revealed that PN-1 is expressed throughout the amygdala, primarily in gamma-aminobutyric acid containing neurons of the central amygdala and intercalated cell masses (ITCs) and in glia. Fear extinction was severely impaired in mice lacking PN-1 (PN-1 KO). Consistent with a role for the basal nucleus of the amygdala in fear extinction, we found that, compared with wild-type (WT) littermate controls, PN-1 KO mice exhibited decreased numbers of Fos-positive neurons in the basal nucleus after extinction. Moreover, immunoblot analysis of laser-microdissected amygdala sub-nuclei revealed specific extinction-induced increases in the level of phosphorylated alpha-calcium/calmodulin protein kinase II in the medial ITCs and in the lateral subdivision of the central amygdala in WT mice. These responses were altered in PN-1 KO mice. Together, these data indicate that lack of extinction in PN-1 KO mice is associated with distinct changes in neuronal activity across the circuitry of the basal and central nuclei and the ITCs, supporting a differential impact on fear extinction of these amygdala substructures. They also suggest a new role for serine protease inhibitors such as PN-1 in modulating fear conditioning and extinction.
Collapse
Affiliation(s)
- Marita Meins
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Nagai N, Matsuo O. Roles of fibrinolytic system components in the nervous system. PATHOPHYSIOLOGY 2010; 17:141-7. [DOI: 10.1016/j.pathophys.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022] Open
|
31
|
NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ 2009; 17:860-71. [PMID: 19911010 DOI: 10.1038/cdd.2009.172] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.
Collapse
|
32
|
Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG. Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun 2009; 23:851-60. [PMID: 19361551 PMCID: PMC2735409 DOI: 10.1016/j.bbi.2009.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022] Open
Abstract
There is growing recognition that psychological stress influences pain. Hormones that comprise the physiological response to stress (e.g., corticosterone; CORT) may interact with effectors of neuropathic pain. To test this hypothesis, mice received a spared nerve injury (SNI) after exposure to 60 min restraint stress. In stressed mice, allodynia was consistently increased. The mechanism(s) underlying the exacerbated pain response involves CORT acting via glucocorticoid receptors (GRs); RU486, a GR antagonist, prevented the stress-induced increase in allodynia whereas exogenous administration of CORT to non-stressed mice reproduced the allodynic response caused by stress. Since nerve injury-induced microglial activation has been implicated in the onset and propagation of neuropathic pain, we evaluated cellular and molecular indices of microglial activation in the context of stress. Activation of dorsal horn microglia was accelerated by stress; however, this effect was transient and was not associated with the onset or maintenance of a pro-inflammatory phenotype. Stress-enhanced allodynia was associated with increased dorsal horn extracellular signal-regulated kinase phosphorylation (pERK). ERK activation could indicate a stress-mediated increase in glutamatergic signaling, therefore mice were treated prior to SNI and stress with memantine, an N-methyl-D-aspartate receptor (NMDAR) antagonist. Memantine prevented stress-induced enhancement of allodynia after SNI. These data suggest that the hormonal responses elicited by stress exacerbate neuropathic pain through enhanced central sensitization. Moreover, drugs that inhibit glucocorticoids (GCs) and/or NMDAR signaling could ameliorate pain syndromes caused by stress.
Collapse
Affiliation(s)
- Jessica K Alexander
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
33
|
Rittenhouse CD, Majewska AK. Synaptic Mechanisms of Activity-Dependent Remodeling in Visual Cortex during Monocular Deprivation. J Exp Neurosci 2009. [DOI: 10.4137/jen.s2559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
It has long been appreciated that in the visual cortex, particularly within a postnatal critical period for experience-dependent plasticity, the closure of one eye results in a shift in the responsiveness of cortical cells toward the experienced eye. While the functional aspects of this ocular dominance shift have been studied for many decades, their cortical substrates and synaptic mechanisms remain elusive. Nonetheless, it is becoming increasingly clear that ocular dominance plasticity is a complex phenomenon that appears to have an early and a late component. Early during monocular deprivation, deprived eye cortical synapses depress, while later during the deprivation open eye synapses potentiate. Here we review current literature on the cortical mechanisms of activity-dependent plasticity in the visual system during the critical period. These studies shed light on the role of activity in shaping neuronal structure and function in general and can lead to insights regarding how learning is acquired and maintained at the neuronal level during normal and pathological brain development.
Collapse
Affiliation(s)
| | - Ania K Majewska
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY
| |
Collapse
|
34
|
Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci U S A 2009; 106:1983-8. [PMID: 19181855 DOI: 10.1073/pnas.0812491106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cocaine exposure induces long-lasting molecular and structural adaptations in the brain. In this study, we show that tissue plasminogen activator (tPA), an extracellular protease involved in neuronal plasticity, modulates the biochemical and behavioral response to cocaine. When injected in the acute binge paradigm, cocaine enhanced tPA activity in the amygdala, which required activation of corticotropin-releasing factor type-1 (CRF-R1) receptors. Compared with WT mice, tPA-/- mice injected with cocaine displayed attenuated phosphorylation of ERK, cAMP response element binding protein (CREB), and dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) and blunted induction of immediate early genes (IEGs) c-Fos, Egr-1, and Homer 1a in the amygdala and the nucleus accumbens (NAc). tPA-/- mice also displayed significantly higher basal preprodynorphin (ppDyn) mRNA levels in the NAc in comparison to WT mice, and cocaine decreased ppDyn mRNA levels in tPA-/- mice only. Cocaine-induced locomotor sensitization and conditioned place preference (CPP) were attenuated in tPA-/- mice. Cocaine exposure also had an anxiolytic effect in tPA-/- but not WT mice. These results identify tPA as an important and novel component of the signaling pathway that modulates cocaine-induced changes in neuroadaptation and behavior.
Collapse
|
35
|
Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 2009; 32:48-55. [DOI: 10.1016/j.tins.2008.09.006] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 12/19/2022]
|
36
|
Samson AL, Nevin ST, Croucher D, Niego B, Daniel PB, Weiss TW, Moreno E, Monard D, Lawrence DA, Medcalf RL. Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 2008; 107:1091-101. [PMID: 18796005 PMCID: PMC3198853 DOI: 10.1111/j.1471-4159.2008.05687.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glutamate is the main excitatory neurotransmitter of the CNS. Tissue-type plasminogen activator (tPA) is recognized as a modulator of glutamatergic neurotransmission. This attribute is exemplified by its ability to potentiate calcium signaling following activation of the glutamate-binding NMDA receptor (NMDAR). It has been hypothesized that tPA can directly cleave the NR1 subunit of the NMDAR and thereby potentiate NMDA-induced calcium influx. In contrast, here we show that this increase in NMDAR signaling requires tPA to be proteolytically active, but does not involve cleavage of the NR1 subunit or plasminogen. Rather, we demonstrate that enhancement of NMDAR function by tPA is mediated by a member of the low-density lipoprotein receptor (LDLR) family. Hence, this study proposes a novel functional relationship between tPA, the NMDAR, a LDLR and an unknown substrate which we suspect to be a serpin. Interestingly, whilst tPA alone failed to cleave NR1, cell-surface NMDARs did serve as an efficient and discrete proteolytic target for plasmin. Hence, plasmin and tPA can affect the NMDAR via distinct avenues. Altogether, we find that plasmin directly proteolyses the NMDAR whilst tPA functions as an indirect modulator of NMDA-induced events via LDLR engagement.
Collapse
Affiliation(s)
- Andre L. Samson
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australia
| | - Simon T. Nevin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - David Croucher
- School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Be’eri Niego
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australia
| | - Philip B. Daniel
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australia
| | - Thomas W. Weiss
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australia
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Denis Monard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Australia
| |
Collapse
|
37
|
Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci U S A 2008; 105:8754-9. [PMID: 18559859 DOI: 10.1073/pnas.0710823105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amyloid hypothesis states that a variety of neurotoxic beta-amyloid (Abeta) species contribute to the pathogenesis of Alzheimer's disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Abeta production and clearance. Enzymes responsible for the degradation of Abeta are not well understood, and, thus far, it has not been possible to enhance Abeta catabolism by pharmacological manipulation. We provide evidence that Abeta catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Abeta levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Abeta oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Abeta. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Abeta levels, restore long-term potentiation deficits in hippocampal slices from transgenic Abeta-producing mice, and reverse cognitive deficits in these mice.
Collapse
|