1
|
Protic D, Breeze E, Mendoza G, Zafarullah M, Abbeduto L, Hagerman R, Coffey C, Cudkowicz M, Durbin-Johnson B, Ashwood P, Berry-Kravis E, Erickson CA, Filipink R, Gropman A, Lehwald L, Maxwell-Horn A, Morris S, Bennett AP, Prock L, Talboy A, Tartaglia N, Veenstra-VanderWeele J, Tassone F. Negative effect of treatment with mGluR5 negative allosteric modulator AFQ056 on blood biomarkers in young individuals with Fragile X syndrome. SAGE Open Med 2024; 12:20503121241282401. [PMID: 39483619 PMCID: PMC11526204 DOI: 10.1177/20503121241282401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Fragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome. In a recent large multi-site trial, FXLEARN, the effects of the mGluR5 negative allosteric modulator, AFQ056 (mavoglurant), were investigated, but did not show a significant impact of AFQ056 on language development in children with fragile X syndrome aged 3-6 years. Objectives The current analyses from biospecimens collected in the FXLEARN study aimed to determine whether AFQ056 affects the level of potential biomarkers associated with Akt/mTOR and matrix metalloproteinase 9 signaling in young individuals with fragile X syndrome. Previous research has indicated that these biomarkers play crucial roles in the pathophysiology of fragile X syndrome. Design A double-blind placebo-controlled parallel-group flexible-dose forced titration design. Methods Blood samples for biomarkers were collected during the FXLEARN at baseline and subsequent visits (1- and 8-month visits). Biomarker analyses included fragile X messenger ribonucleoprotein-1 genotyping by Southern blot and PCR approaches, fragile X messenger ribonucleoprotein-1 mRNA levels determined by PCR, matrix metalloproteinase 9 levels' detection using a magnetic bead panel, and targets of the Akt/mTOR signaling pathway with their phosphorylation levels detected. Results This research revealed that administering AFQ056 does not affect the expression levels of the investigated blood biomarkers in young children with fragile X syndrome. Conclusion Our findings of the lack of association between clinical improvement and biomarkers' levels in the treatment group are in line with the lack of benefit observed in the FXLEARN study. These findings indicate that AFQ056 does not provide benefits as assessed by primary or secondary endpoints. Registration ClincalTrials.gov NCT02920892.
Collapse
Affiliation(s)
- Dragana Protic
- Faculty of Medicine, Department of Pharmacology, Clinical Pharmacology, and Toxicology, University of Belgrade, Belgrade, Serbia
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, Belgrade, Serbia
| | - Elizabeth Breeze
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Anatomy, and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | - Stephanie Morris
- Washington University Medical Center, Saint Louis Children’s Hospital, St. Louis, MO, USA
| | | | - Lisa Prock
- Boston Children’s Hospital, Boston, MA, USA
| | - Amy Talboy
- Emory University Medical Center, Atlanta, GA, USA
| | | | - Jeremy Veenstra-VanderWeele
- Center for Autism and the Developing Brain, New York-Presbyterian, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Tian Y, Yu F, Yun E, Lin JW, Man HY. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep 2024; 25:1282-1309. [PMID: 38316900 PMCID: PMC10933332 DOI: 10.1038/s44319-024-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Feiyuan Yu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Eunice Yun
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Jong YJI, Izumi Y, Harmon SK, Zorumski CF, ÓMalley KL. Striatal mGlu 5-mediated synaptic plasticity is independently regulated by location-specific receptor pools and divergent signaling pathways. J Biol Chem 2023; 299:104949. [PMID: 37354970 PMCID: PMC10388212 DOI: 10.1016/j.jbc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles F Zorumski
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Karen L ÓMalley
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
7
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
8
|
Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022; 11:cells11233815. [PMID: 36497075 PMCID: PMC9740047 DOI: 10.3390/cells11233815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- Correspondence:
| |
Collapse
|
9
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
10
|
Jeon SJ, Kwon H, Bae HJ, Gonzales EL, Kim J, Chung HJ, Kim DH, Ryu JH, Shin CY. Agmatine relieves behavioral impairments in Fragile X mice model. Neuropharmacology 2022; 219:109234. [PMID: 36057317 DOI: 10.1016/j.neuropharm.2022.109234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/25/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common heritable form of neurodevelopmental disorder, which is caused by the loss of fragile X mental retardation protein (FMRP) expression. Despite the unceasing efforts to develop therapeutic agents against FXS based on the pathophysiological changes observed in animal models of FXS and human patients, therapeutic candidates including mGluR signaling modulators have failed to provide sufficient effects. Based on the recent successful demonstration of an endogenous polyamine, agmatine, to improve the autism-like symptoms in the valproic acid animal model of autism, we investigated the effects of agmatine against FXS symptoms using Fmr1 knockout (KO) mice. METHODS We used male Fmr1 KO mice for behavioral tests such as marble burying, open-field test, memory tasks, social interaction tests and startle response to confirm the symptoms of FXS. We also checked the electrophysiological profile of neural activity in agmatine-treated Fmr1 KO mice. RESULTS Agmatine reversed the compulsion, learning and memory deficits, hyperactivity, aberrant social interaction, and communication deficit in Fmr1 KO mice while it normalized the aberrant LTP and LTD in the hippocampus. CONCLUSIONS The results highlight the potential of agmatine's novel disease-ameliorating effects in FXS, which warrants further studies to ascertain whether these findings translate into clinical effects in FXS patients.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Huiyoung Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Junhyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Morrill NK, Joly-Amado A, Li Q, Prabhudeva S, Weeber EJ, Nash KR. Reelin central fragment supplementation improves cognitive deficits in a mouse model of Fragile X Syndrome. Exp Neurol 2022; 357:114170. [PMID: 35863501 DOI: 10.1016/j.expneurol.2022.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.
Collapse
Affiliation(s)
- Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
12
|
Holley A, Shedd A, Boggs A, Lovelace J, Erickson C, Gross C, Jankovic M, Razak K, Huber K, Gibson JR. A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiol Dis 2022; 170:105767. [PMID: 35588990 PMCID: PMC9273231 DOI: 10.1016/j.nbd.2022.105767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Sensory impairments commonly occur in patients with autism or intellectual disability. Fragile X syndrome (FXS) is one form of intellectual disability that is often comorbid with autism. In electroencephalographic (EEG) recordings obtained from humans with FXS, the ability of cortical regions to consistently synchronize, or “phase-lock”, to modulated auditory stimuli is reduced compared to that of typically developing individuals. At the same time, less time-locked, “non-phase-locked” power induced by sounds is higher. The same changes occur in the Fmr1 knockout (KO) mouse – an animal model of FXS. We determined if Fmr1 deletion in a subset of brainstem auditory neurons plays any role in these EEG changes in the mouse. Methods: We reinstated FMRP expression in a subpopulation of brainstem auditory neurons in an otherwise Fmr1 KO control (conditional on; cON Fmr1) mouse and used EEG recordings to determine if reinstatement normalized, or “rescued”, the phase-locking phenotype observed in the cON Fmr1 mouse. In determining rescue, this also meant that Fmr1 deletion in the same neuron population was necessary for the phenotype to occur. Results: We find that Fmr1 reinstatement in a subset of brainstem neurons rescues certain aspects of the phase-locking phenotype but does not rescue the increase in non-phase-locked power. Unexpectedly, not all electrophysiological phenotypes observed in the Fmr1 KO were observed in the cON Fmr1 mouse used for the reinstatement experiments, and this was likely due to residual expression of FMRP in these Fmr1 KO controls. Conclusions: Fmr1 deletion in brainstem neurons is necessary for certain aspects of the decreased phase-locking phenotype in the Fmr1 KO, but not necessary for the increase in non-phase-locked power induced by a sound. The most likely brainstem structure underlying these results is the inferior colliculus. We also demonstrate that low levels of FMRP can rescue some EEG phenotypes but not others. This latter finding provides a foundation for how symptoms in FXS individuals may vary due to FMRP levels and that reinstatement of low FMRP levels may be sufficient to alleviate particular symptoms.
Collapse
Affiliation(s)
- AndrewJ Holley
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Aleya Shedd
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Anna Boggs
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miranda Jankovic
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Kimberly Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA.
| |
Collapse
|
13
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
14
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front Cell Neurosci 2021; 15:764761. [PMID: 34867203 PMCID: PMC8640214 DOI: 10.3389/fncel.2021.764761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Rett syndrome (RTT) and Fragile X syndrome (FXS) are two monogenetic neurodevelopmental disorders with complex clinical presentations. RTT is caused by mutations in the Methyl-CpG binding protein 2 gene (MECP2) altering the function of its protein product MeCP2. MeCP2 modulates gene expression by binding methylated CpG dinucleotides, and by interacting with transcription factors. FXS is caused by the silencing of the FMR1 gene encoding the Fragile X Mental Retardation Protein (FMRP), a RNA binding protein involved in multiple steps of RNA metabolism, and modulating the translation of thousands of proteins including a large set of synaptic proteins. Despite differences in genetic etiology, there are overlapping features in RTT and FXS, possibly due to interactions between MeCP2 and FMRP, and to the regulation of pathways resulting in dysregulation of common molecular signaling. Furthermore, basic physiological mechanisms are regulated by these proteins and might concur to the pathophysiology of both syndromes. Considering that RTT and FXS are disorders affecting brain development, and that most of the common targets of MeCP2 and FMRP are involved in brain activity, we discuss the mechanisms of synaptic function and plasticity altered in RTT and FXS, and we consider the similarities and the differences between these two disorders.
Collapse
Affiliation(s)
- Snow Bach
- School of Mathematical Sciences, Dublin City University, Dublin, Ireland.,Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | | | - Barbara Bardoni
- Inserm, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Université Côte d'Azur, Valbonne, France
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
16
|
Beyond Trinucleotide Repeat Expansion in Fragile X Syndrome: Rare Coding and Noncoding Variants in FMR1 and Associated Phenotypes. Genes (Basel) 2021; 12:genes12111669. [PMID: 34828275 PMCID: PMC8623550 DOI: 10.3390/genes12111669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.
Collapse
|
17
|
Fernandes G, Mishra PK, Nawaz MS, Donlin-Asp PG, Rahman MM, Hazra A, Kedia S, Kayenaat A, Songara D, Wyllie DJA, Schuman EM, Kind PC, Chattarji S. Correction of amygdalar dysfunction in a rat model of fragile X syndrome. Cell Rep 2021; 37:109805. [PMID: 34644573 DOI: 10.1016/j.celrep.2021.109805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.
Collapse
Affiliation(s)
- Giselle Fernandes
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Pradeep K Mishra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Mohammad Sarfaraz Nawaz
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | | | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anupam Hazra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Sonal Kedia
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Aiman Kayenaat
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; University of Transdisciplinary Health Sciences and Technology, Bangalore 560064, India
| | - Dheeraj Songara
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - David J A Wyllie
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Peter C Kind
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sumantra Chattarji
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
18
|
Liu X, Ying J, Wang X, Zheng Q, Zhao T, Yoon S, Yu W, Yang D, Fang Y, Hua F. Astrocytes in Neural Circuits: Key Factors in Synaptic Regulation and Potential Targets for Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:729273. [PMID: 34658786 PMCID: PMC8515196 DOI: 10.3389/fnmol.2021.729273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are the major glial cells in the brain, which play a supporting role in the energy and nutritional supply of neurons. They were initially regarded as passive space-filling cells, but the latest progress in the study of the development and function of astrocytes highlights their active roles in regulating synaptic transmission, formation, and plasticity. In the concept of "tripartite synapse," the bidirectional influence between astrocytes and neurons, in addition to their steady-state and supporting function, suggests that any negative changes in the structure or function of astrocytes will affect the activity of neurons, leading to neurodevelopmental disorders. The role of astrocytes in the pathophysiology of various neurological and psychiatric disorders caused by synaptic defects is increasingly appreciated. Understanding the roles of astrocytes in regulating synaptic development and the plasticity of neural circuits could help provide new treatments for these diseases.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
19
|
Differential Retinoic Acid Signaling in the Hippocampus of Aged Rats with and without Memory Impairment. eNeuro 2021; 8:ENEURO.0120-21.2021. [PMID: 34417282 PMCID: PMC8442538 DOI: 10.1523/eneuro.0120-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.
Collapse
|
20
|
Clifton NE, Rees E, Holmans PA, Pardiñas AF, Harwood JC, Di Florio A, Kirov G, Walters JTR, O'Donovan MC, Owen MJ, Hall J, Pocklington AJ. Genetic association of FMRP targets with psychiatric disorders. Mol Psychiatry 2021; 26:2977-2990. [PMID: 33077856 PMCID: PMC8505260 DOI: 10.1038/s41380-020-00912-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
21
|
Feng X, Yang F, Rabenstein M, Wang Z, Frech MJ, Wree A, Bräuer AU, Witt M, Gläser A, Hermann A, Rolfs A, Luo J. Stimulation of mGluR1/5 Improves Defective Internalization of AMPA Receptors in NPC1 Mutant Mouse. Cereb Cortex 2021; 30:1465-1480. [PMID: 31599924 DOI: 10.1093/cercor/bhz179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is characterized by neurodegeneration caused by cholesterol accumulation in the late endosome/lysosome. In this study, a defective basal and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated internalization of GluR2-containing AMPA receptors in NPC1-/- cortical neurons was detected. Our results show that the amount of cholesterol and group I metabotropic glutamate receptors (mGluR1/5) in lipid rafts of NPC1-/- cortical tissue and neurons are decreased and their downstream signals of p-ERK are defective, which are restored by a rebalance of cholesterol homeostasis through β-cyclodextrin (β-CD) treatment. Application of 3,5-dihydroxyphenylglycine (DHPG)-a mGluR1/5 agonist-and β-CD markedly increases the internalization of AMPA receptors and decreases over-influx of calcium in NPC1-/- neurons, respectively. Furthermore, the defective phosphorylated GluR2 and protein kinase C signals are ameliorated by the treatment with DHPG and β-CD, respectively, suggesting an involvement of them in internalization dysfunction. Taken together, our data imply that abnormal internalization of AMPA receptors is a critical mechanism for neuronal dysfunction and the correction of dysfunctional mGluR1/5 is a potential therapeutic strategy for NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Fan Yang
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Michael Rabenstein
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Zhen Wang
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Andreas Wree
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anja U Bräuer
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg 26129, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Martin Witt
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anne Gläser
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock 18147, Germany
| | | | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| |
Collapse
|
22
|
Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Rep 2021; 32:108179. [PMID: 32966779 DOI: 10.1016/j.celrep.2020.108179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.
Collapse
|
23
|
Moskalyuk A, Van De Vijver S, Verstraelen P, De Vos WH, Kooy RF, Giugliano M. Single-Cell and Neuronal Network Alterations in an In Vitro Model of Fragile X Syndrome. Cereb Cortex 2021; 30:31-46. [PMID: 30958540 DOI: 10.1093/cercor/bhz068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.
Collapse
Affiliation(s)
- Anastasiya Moskalyuk
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Sebastiaan Van De Vijver
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Flanders, Belgium
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
24
|
Jin SX, Higashimori H, Schin C, Tamashiro A, Men Y, Chiang MSR, Jarvis R, Cox D, Feig L, Yang Y. Astroglial FMRP modulates synaptic signaling and behavior phenotypes in FXS mouse model. Glia 2020; 69:594-608. [PMID: 32970902 DOI: 10.1002/glia.23915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited intellectual disability (ID) disorders, in which the loss of FMRP protein induces a range of cellular signaling changes primarily through excess protein synthesis. Although neuron-centered molecular and cellular events underlying FXS have been characterized, how different CNS cell types are involved in typical FXS synaptic signaling changes and behavioral phenotypes is largely unknown. Recent evidence suggests that selective loss of astroglial FMRP is able to dysregulate glutamate uptake, increase spine density, and impair motor-skill learning. Here we investigated the effect of astroglial FMRP on synaptic signaling and FXS-related behavioral and learning phenotypes in astroglial Fmr1 cKO and cON mice in which FMRP expression is selectively diminished or restored in astroglia. We found that selective loss of astroglial FMRP contributes to cortical hyperexcitability by enhancing NMDAR-mediated evoked but not spontaneous miniEPSCs and elongating cortical UP state duration. Selective loss of astroglial FMRP is also sufficient to increase locomotor hyperactivity, significantly diminish social novelty preference, and induce memory acquisition and extinction deficits in astroglial Fmr1 cKO mice. Importantly, re-expression of astroglial FMRP is able to significantly rescue the hyperactivity (evoked NMDAR response, UP state duration, and open field test) and social novelty preference in astroglial Fmr1 cON mice. These results demonstrate a profound role of astroglial FMRP in the evoked synaptic signaling, spontaneously occurring cortical UP states, and FXS-related behavioral and learning phenotypes and provide important new insights in the cell type consideration for the FMRP reactivation strategy.
Collapse
Affiliation(s)
- Shan-Xue Jin
- Department of Developmental, Molecular, and Cellular Biology, Tufts University, Boston, Massachusetts, USA
| | - Haruki Higashimori
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Christina Schin
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Alessandra Tamashiro
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Yuqin Men
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Ming Sum R Chiang
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Rachel Jarvis
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Dan Cox
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Larry Feig
- Department of Developmental, Molecular, and Cellular Biology, Tufts University, Boston, Massachusetts, USA.,Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Yongjie Yang
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts, USA.,Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
26
|
Hu J, Chen L, Yin J, Yin H, Huang Y, Tian J. Hyperactivity, Memory Defects, and Craniofacial Abnormalities in Zebrafish fmr1 Mutant Larvae. Behav Genet 2020; 50:152-160. [PMID: 32048109 DOI: 10.1007/s10519-020-09995-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
Abstract
Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jian Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Huancai Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, People's Republic of China.
| | - Jingjing Tian
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China.
- Academy for Engineering & Technology, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
27
|
Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC. Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology 2020; 162:107736. [DOI: 10.1016/j.neuropharm.2019.107736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
28
|
Evidence for a Contribution of the Nlgn3/Cyfip1/Fmr1 Pathway in the Pathophysiology of Autism Spectrum Disorders. Neuroscience 2019; 445:31-41. [PMID: 31705895 DOI: 10.1016/j.neuroscience.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. Among these genes are FMR1, CYFIP1 and NLGN3, all present at the synapse and reliably linked to ASD. In this review, we evaluate the evidence for the contribution of these genes to the same biological pathway responsible for the regulation of structural and physiological plasticity. Alterations in dendritic spine density and turnover, as well as long-term depression (LTD), were found in mouse models of mutations of all three genes. This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.
Collapse
|
29
|
Mejias R, Chiu SL, Han M, Rose R, Gil-Infante A, Zhao Y, Huganir RL, Wang T. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis 2019; 132:104602. [PMID: 31476380 DOI: 10.1016/j.nbd.2019.104602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
Cerebellar Purkinje cell (PC) loss is a consistent pathological finding in autism. However, neural mechanisms of PC-dysfunction in autism remain poorly characterized. Glutamate receptor interacting proteins 1/2 (Grip1/2) regulate AMPA receptor (AMPAR) trafficking and synaptic strength. To evaluate role of PC-AMPAR signaling in autism, we produced PC-specific Grip1/2 knockout mice by crossing Grip2 conventional and Grip1 conditional KO with L7-Cre driver mice. PCs in the mutant mice showed normal morphology and number, and a lack of Grip1/2 expression. Rodent behavioral testing identified normal ambulation, anxiety, social interaction, and an increase in repetitive self-grooming. Electrophysiology studies revealed normal mEPSCs but an impaired mGluR-LTD at the Parallel Fiber-PC synapses. Immunoblots showed increased expression of mGluR5 and Arc, and enhanced phosphorylation of P38 and AKT in cerebellum of PC-specific Grip1/2 knockout mice. Results indicate that loss of Grip1/2 in PCs contributes to increased repetitive self-grooming, a core autism behavior in mice. Results support a role of AMPAR trafficking defects in PCs and disturbances of mGluR5 signaling in cerebellum in the pathogenesis of repetitive behaviors.
Collapse
Affiliation(s)
- Rebeca Mejias
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Physiology, University of Seville, 41012 Seville, Spain.
| | - Shu-Ling Chiu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mei Han
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ana Gil-Infante
- Department of Physiology, University of Seville, 41012 Seville, Spain
| | - Yifan Zhao
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
31
|
Mahajan G, Nadkarni S. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines. J Physiol 2019; 597:3473-3502. [PMID: 31099020 PMCID: PMC6636706 DOI: 10.1113/jp277726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Key points Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Abstract Long‐term plasticity mediated by NMDA receptors supports input‐specific, Hebbian forms of learning at excitatory CA3–CA1 connections in the hippocampus. There exists an additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales to ensure that plasticity occurs in a constrained manner. Here, we investigated the role of calcium (Ca2+) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity at individual CA1 synapses. Our study was spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over‐represented in larger spines that are likely to have undergone activity‐dependent strengthening, and (2) evidence suggesting that ER motility at synapses can be rapid, and accompany activity‐regulated spine remodelling. We constructed a physiologically realistic computational model of an ER‐bearing CA1 spine, and examined how IP3‐sensitive Ca2+ stores affect spine Ca2+ dynamics during activity patterns mimicking the induction of long‐term potentiation and long‐term depression (LTD). Our results suggest that the presence of ER modulates NMDA receptor‐dependent plasticity in a graded manner that selectively enhances LTD induction. We propose that ER may locally tune Ca2+‐based plasticity, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our study provides a biophysically accurate description of postsynaptic Ca2+ regulation, and suggests that ER in the spine may promote the re‐use of hippocampal synapses with saturated strengths. Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Collapse
Affiliation(s)
- Gaurang Mahajan
- Indian Institute of Science Education and Research, Pune, 411 008, India
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune, 411 008, India
| |
Collapse
|
32
|
Zhou Y, Hu Y, Sun Q, Xie N. Non-coding RNA in Fragile X Syndrome and Converging Mechanisms Shared by Related Disorders. Front Genet 2019; 10:139. [PMID: 30881383 PMCID: PMC6405884 DOI: 10.3389/fgene.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is one of the most common forms of hereditary intellectual disability. It is also a well-known monogenic cause of autism spectrum disorders (ASD). Repetitive trinucleotide expansion of CGG repeats in the 5'-UTR of FMR1 is the pathological mutation. Full mutation CGG repeats epigenetically silence FMR1 and thus lead to the absence of its product, fragile mental retardation protein (FMRP), which is an indispensable translational regulator at synapsis. Loss of FMRP causes abnormal neural morphology, dysregulated protein translation, and distorted synaptic plasticity, giving rise to FXS phenotypes. Non-coding RNAs, including siRNA, miRNA, and lncRNA, are transcribed from DNA but not meant for protein translation. They are not junk sequence but play indispensable roles in diverse cellular processes. FXS is the first neurological disorder being linked to miRNA pathway dysfunction. Since then, insightful knowledge has been gained in this field. In this review, we mainly focus on how non-coding RNAs, especially the siRNAs, miRNAs, and lncRNAs, are involved in FXS pathogenesis. We would also like to discuss several potential mechanisms mediated by non-coding RNAs that may be shared by FXS and other related disorders.
Collapse
Affiliation(s)
- Yafang Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yacen Hu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
33
|
Danesi C, Keinänen K, Castrén ML. Dysregulated Ca 2+-Permeable AMPA Receptor Signaling in Neural Progenitors Modeling Fragile X Syndrome. Front Synaptic Neurosci 2019; 11:2. [PMID: 30800064 PMCID: PMC6375879 DOI: 10.3389/fnsyn.2019.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies that have searched for similarities in syndromic and non-syndromic forms of ASD have paid special attention to alterations of maturation and function of glutamatergic synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression and trafficking affect neural progenitor differentiation and synapse formation and neuronal plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to abnormal synaptic function in FXS and, by implication, in some forms of ASD.
Collapse
Affiliation(s)
- Claudia Danesi
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kari Keinänen
- Research Program in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Graziani D, Caligari S, Callegari E, De Toma C, Longhi M, Frigerio F, Dilernia R, Menegon S, Pinzi L, Pirona L, Tazzari V, Valsecchi AE, Vistoli G, Rastelli G, Riva C. Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5. J Med Chem 2019; 62:1246-1273. [PMID: 30624919 DOI: 10.1021/acs.jmedchem.8b01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative allosteric modulators (NAMs) of the metabotropic glutamate receptor 5 (mGlu5) hold great promise for the treatment of a variety of central nervous system disorders. We have recently reported that prop-2-ynylidenecycloalkylamine derivatives are potent and selective NAMs of the mGlu5 receptor. In this work, we explored the amide, carbamate, sulfonamide, and urea derivatives of prop-2-ynylidenecycloalkylamine compounds with the aim of improving solubility and metabolic stability. In silico and experimental analyses were performed on the synthesized series of compounds to investigate structure-activity relationships. Compounds 12, 32, and 49 of the carbamate, urea, and amide classes, respectively, showed the most suitable cytochrome inhibition and metabolic stability profiles. Among them, compound 12 showed excellent selectivity, solubility, and stability profiles as well as suitable in vitro and in vivo pharmacokinetic properties. It was highly absorbed in rats and dogs and was active in anxiety, neuropathic pain, and lower urinary tract models.
Collapse
Affiliation(s)
- Davide Graziani
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Silvia Caligari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Elisa Callegari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Carlo De Toma
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Matteo Longhi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Fabio Frigerio
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Roberto Dilernia
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Sergio Menegon
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Luca Pinzi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Lorenza Pirona
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Valerio Tazzari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Anna Elisa Valsecchi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences , Università degli Studi di Milano , Via Mangiagalli 25 , 20133 Milan , Italy
| | - Giulio Rastelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Carlo Riva
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| |
Collapse
|
35
|
Okoniewski KC, Wheeler AC, Lee S, Boyea B, Raspa M, Taylor JL, Bailey DB. Early Identification of Fragile X Syndrome through Expanded Newborn Screening. Brain Sci 2019; 9:brainsci9010004. [PMID: 30609779 PMCID: PMC6356907 DOI: 10.3390/brainsci9010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/07/2022] Open
Abstract
Over the past 20 years, research on fragile X syndrome (FXS) has provided foundational understanding of the complex experiences of affected individuals and their families. Despite this intensive focus, there has been little progress on earlier identification, with the average age of diagnosis being 3 years. For intervention and treatment approaches to have the greatest impact, they need to begin shortly after birth. To access this critical timespan, differential methods of earlier identification need to be considered, with an emerging focus on newborn screening practices. Currently, barriers exist that prevent the inclusion of FXS on standard newborn screening panels. To address these barriers, an innovative program is being implemented in North Carolina to offer voluntary screening for FXS under a research protocol, called Early Check. This program addresses the difficulties observed in prior pilot studies, such as recruitment, enrollment, lab testing, and follow-up. Early Check provides an opportunity for stakeholders and the research community to continue to gain valuable information about the feasibility and greater impact of newborn screening on the FXS population.
Collapse
Affiliation(s)
| | - Anne C Wheeler
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Stacey Lee
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Beth Boyea
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | | | - Donald B Bailey
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| |
Collapse
|
36
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
37
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
38
|
Westmark PR, Dekundy A, Gravius A, Danysz W, Westmark CJ. Rescue of Fmr1 KO phenotypes with mGluR 5 inhibitors: MRZ-8456 versus AFQ-056. Neurobiol Dis 2018; 119:190-198. [PMID: 30125640 DOI: 10.1016/j.nbd.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is a drug target for central nervous system disorders such as fragile X syndrome that involve excessive glutamate-induced excitation. We tested the efficacy of a novel negative allosteric modulator of mGluR5 developed by Merz Pharmaceuticals, MRZ-8456, in comparison to MPEP and AFQ-056 (Novartis, a.k.a. mavoglurant) in both in vivo and in vitro assays in a mouse model of fragile X syndrome, Fmr1KO mice. The in vivo assays included susceptibility to audiogenic-induced seizures and pharmacokinetic measurements of drug availability. The in vitro assays included dose response assessments of biomarker expression and dendritic spine length and density in cultured primary neurons. Both MRZ-8456 and AFQ-056 attenuated wild running and audiogenic-induced seizures in Fmr1KO mice with similar pharmacokinetic profiles. Both drugs significantly reduced dendritic expression of amyloid-beta protein precursor (APP) and rescued the ratio of mature to immature dendritic spines. These findings demonstrate that MRZ-8456, a drug being developed for the treatment of motor complications of L-DOPA in Parkinson's disease and which completed a phase I clinical trial, is effective in attenuating both well-established (seizures and dendritic spine maturity) and exploratory biomarker (APP expression) phenotypes in a mouse model of fragile X syndrome.
Collapse
Affiliation(s)
- Pamela R Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA; University of Wisconsin-Madison, Department of Medicine, Madison, WI, USA
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Andreas Gravius
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Cara J Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA.
| |
Collapse
|
39
|
Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1718-1732. [PMID: 30992134 DOI: 10.1016/j.bbamcr.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to "functionalize" many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.
Collapse
Affiliation(s)
- Rachel L Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yuliya V Medvedeva
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Tejasvi E Ayyagari
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Galina Schmunk
- UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pediatrics, Section of Human Genetics and Genomics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
40
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Protein Translation in the Nucleus Accumbens Is Dysregulated during Cocaine Withdrawal and Required for Expression of Incubation of Cocaine Craving. J Neurosci 2018; 38:2683-2697. [PMID: 29431650 DOI: 10.1523/jneurosci.2412-17.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 01/11/2023] Open
Abstract
Exposure to drug-associated cues can induce drug craving and relapse in abstinent addicts. Cue-induced craving that progressively intensifies ("incubates") during withdrawal from cocaine has been observed in both rats and humans. Building on recent evidence that aberrant protein translation underlies incubation-related adaptations in the NAc, we used male rats to test the hypothesis that translation is dysregulated during cocaine withdrawal and/or when rats express incubated cocaine craving. We found that intra-NAc infusion of anisomycin, a general protein translation inhibitor, or rapamycin, an inhibitor of mammalian target of rapamycin, reduced the expression of incubated cocaine craving, consistent with previous results showing that inhibition of translation in slices normalized the adaptations that maintain incubation. We then examined signaling pathways involved in protein translation using NAc synaptoneurosomes prepared after >47 d of withdrawal from cocaine or saline self-administration, or after withdrawal plus a cue-induced seeking test. The most robust changes were observed following seeking tests. Most notably, we found that eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 2α (eIF2α) are dephosphorylated when cocaine rats undergo a cue-induced seeking test; both effects are consistent with increased translation during the test. Blocking eIF2α dephosphorylation and thereby restoring its inhibitory influence on translation, via intra-NAc injection of Sal003 just before the test, substantially reduced cocaine seeking. These results are consistent with dysregulation of protein translation in the NAc during cocaine withdrawal, enabling cocaine cues to elicit an aberrant increase in translation that is required for the expression of incubated cocaine craving.SIGNIFICANCE STATEMENT Cue-induced cocaine craving progressively intensifies (incubates) during withdrawal in both humans and rats. This may contribute to persistent vulnerability to relapse. We previously demonstrated a role for protein translation in synaptic adaptations in the NAc closely linked to incubation. Here, we tested the hypothesis that translation is dysregulated during cocaine withdrawal, and this contributes to incubated craving. Analysis of signaling pathways regulating translation suggested that translation is enhanced when "incubated" rats undergo a cue-induced seeking test. Furthermore, intra-NAc infusions of drugs that inhibit protein translation through different mechanisms reduced expression of incubated cue-induced cocaine seeking. These results demonstrate that the expression of incubation depends on an acute increase in translation that may result from dysregulation of several pathways.
Collapse
|
42
|
Achuta VS, Möykkynen T, Peteri UK, Turconi G, Rivera C, Keinänen K, Castrén ML. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome. Sci Signal 2018; 11:11/513/eaan8784. [PMID: 29339535 DOI: 10.1126/scisignal.aan8784] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered neuronal network formation and function involving dysregulated excitatory and inhibitory circuits are associated with fragile X syndrome (FXS). We examined functional maturation of the excitatory transmission system in FXS by investigating the response of FXS patient-derived neural progenitor cells to the glutamate analog (AMPA). Neural progenitors derived from induced pluripotent stem cell (iPSC) lines generated from boys with FXS had augmented intracellular Ca2+ responses to AMPA and kainate that were mediated by Ca2+-permeable AMPA receptors (CP-AMPARs) lacking the GluA2 subunit. Together with the enhanced differentiation of glutamate-responsive cells, the proportion of CP-AMPAR and N-methyl-d-aspartate (NMDA) receptor-coexpressing cells was increased in human FXS progenitors. Differentiation of cells lacking GluA2 was also increased and paralleled the increased inward rectification in neural progenitors derived from Fmr1-knockout mice (the FXS mouse model). Human FXS progenitors had increased the expression of the precursor and mature forms of miR-181a, a microRNA that represses translation of the transcript encoding GluA2. Blocking GluA2-lacking, CP-AMPARs reduced the neurite length of human iPSC-derived control progenitors and further reduced the shortened length of neurites in human FXS progenitors, supporting the contribution of CP-AMPARs to the regulation of progenitor differentiation. Furthermore, we observed reduced expression of Gria2 (the GluA2-encoding gene) in the frontal lobe of FXS mice, consistent with functional changes of AMPARs in FXS. Increased Ca2+ influx through CP-AMPARs may increase the vulnerability and affect the differentiation and migration of distinct cell populations, which may interfere with normal circuit formation in FXS.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Tommi Möykkynen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Giorgio Turconi
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée, INSERM, Unité 901, 13009 Marseille, France.,Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Kari Keinänen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland. .,Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.,Autism Foundation, Kuortaneenkatu 7B, FIN-00520 Helsinki, Finland
| |
Collapse
|
43
|
Smidak R, Sialana FJ, Kristofova M, Stojanovic T, Rajcic D, Malikovic J, Feyissa DD, Korz V, Hoeger H, Wackerlig J, Mechtcheriakova D, Lubec G. Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. Front Aging Neurosci 2017; 9:384. [PMID: 29218006 PMCID: PMC5703695 DOI: 10.3389/fnagi.2017.00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 11/15/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) encoded by Fragile X mental retardation 1 (FMR1) gene is a RNA-binding regulator of mRNA translation, transport and stability with multiple targets responsible for proper synaptic function. Epigenetic silencing of FMR1 gene expression leads to the development of Fragile X syndrome (FXS) that is characterized by intellectual disability and other behavioral problems including autism. In the rat FXS model, the lack of FMRP caused a deficit in hippocampal-dependent memory. However, the hippocampal changes of FMRP in aging rats are not fully elucidated. The current study addresses the changes in FMRP levels in dentate gyrus (DG) from young (17 weeks) and aging (22 months) Sprague – Dawley rats. The aging animal group showed significant decline in spatial reference memory. Protein samples from five rats per each group were analyzed by quantitative proteomic analysis resulting in 153 significantly changed proteins. FMRP showed significant reduction in aging animals which was confirmed by immunoblotting and immunofluorescence microscopy. Furthermore, bioinformatic analysis of the differential protein dataset revealed several functionally related protein groups with individual interactions with FMRP. These include high representation of the RNA translation and processing machinery connected to FMRP and other RNA-binding regulators including CAPRIN1, the members of Pumilio (PUM) and CUG-BP, Elav-like (CELF) family, and YTH N(6)-methyladenosine RNA-binding proteins (YTHDF). The results of the current study point to the important role of FMRP and regulation of RNA processing in the rat DG and memory decline during the aging process.
Collapse
Affiliation(s)
- Roman Smidak
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Judit Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
44
|
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci 2017; 18:ijms18091916. [PMID: 28880200 PMCID: PMC5618565 DOI: 10.3390/ijms18091916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.
Collapse
|
45
|
Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, Lin HC. D-Cycloserine Ameliorates Autism-Like Deficits by Removing GluA2-Containing AMPA Receptors in a Valproic Acid-Induced Rat Model. Mol Neurobiol 2017; 55:4811-4824. [PMID: 28733898 DOI: 10.1007/s12035-017-0685-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022]
Abstract
Valproic acid (VPA)-exposed rat offspring have demonstrated autism spectrum disorder (ASD) phenotypes and impaired N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the lateral nucleus of the amygdala. NMDAR partial agonist D-cycloserine (DCS) has been reported to act as a cognitive enhancer by increasing the NMDAR response to improve autistic-like phenotypes in animals. However, the mechanism of DCS in alleviating the ASD is still unknown. Using combined behavioral, electrophysiological, and molecular approaches, we found that DCS administration rescued social interaction deficits and anxiety/repetitive-like behaviors observed in VPA-exposed offspring. In the amygdala synapses, DCS treatment reversed the decreased paired pulse ratio (PPR) and the impaired NMDAR-dependent LTD, increased the frequency and amplitude of miniature excitatory post-synaptic currents (mEPSCs), and resulted in a higher dendritic spine density at the amygdala synapses in the VPA-exposed offspring. Moreover, we found that DCS facilitated the removal of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (GluA2/AMPARs) by inducing NMDAR-dependent LTD in the VPA-exposed offspring. We further established that the effects of DCS treatment, including increased GluA2/AMPAR removal and rescues of impaired social behavior, were blocked by Tat-GluA23Y, a GluA2-derived peptide that disrupted regulation of AMPAR endocytosis. These results provided the first evidence that rescue of the ASD-like phenotype by DCS is mediated by the mechanism of GluA2/AMPAR removal in VPA-exposed rat offspring.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Addiction Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ya-Ting Hsu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Tzu-Feng Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
46
|
Cheng GR, Li XY, Xiang YD, Liu D, McClintock SM, Zeng Y. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome. Physiol Res 2017; 66:715-727. [PMID: 28730825 DOI: 10.33549/physiolres.933473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequently inherited form of intellectual disability and prevalent single-gene cause of autism. A priority of FXS research is to determine the molecular mechanisms underlying the cognitive and social functioning impairments in humans and the FXS mouse model. Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate a majority of fast excitatory neurotransmission in the central nervous system and are critically important for nearly all aspects of brain function, including neuronal development, synaptic plasticity, and learning and memory. Both preclinical and clinical studies have indicated that expression, trafficking, and functions of AMPARs are altered and result in altered synapse development and plasticity, cognitive impairment, and poor mental health in FXS. In this review, we discuss the contribution of AMPARs to disorders of FXS by highlighting recent research advances with a specific focus on change in AMPARs expression, trafficking, and dependent synaptic plasticity. Since changes in synaptic strength underlie the basis of learning, development, and disease, we suggest that the current knowledge base of AMPARs has reached a unique point to permit a comprehensive re-evaluation of their roles in FXS.
Collapse
Affiliation(s)
- Gui-Rong Cheng
- Brain and Cognition Research Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China, Hubei Key Laboratory of Hazard Identification and Control for Occupational Disease, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
47
|
Won J, Jin Y, Choi J, Park S, Lee TH, Lee SR, Chang KT, Hong Y. Melatonin as a Novel Interventional Candidate for Fragile X Syndrome with Autism Spectrum Disorder in Humans. Int J Mol Sci 2017. [PMID: 28632163 PMCID: PMC5486135 DOI: 10.3390/ijms18061314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.
Collapse
Affiliation(s)
- Jinyoung Won
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
| | - Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
| | - Sookyoung Park
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
48
|
Vose LR, Stanton PK. Synaptic Plasticity, Metaplasticity and Depression. Curr Neuropharmacol 2017; 15:71-86. [PMID: 26830964 PMCID: PMC5327460 DOI: 10.2174/1570159x14666160202121111] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 01/30/2023] Open
Abstract
The development of a persistent depressive affective state has for some time been thought to result from persistent alterations in neurotransmitter-mediated synaptic transmission. While the identity of those transmitters has changed over the years, the literature has lacked mechanistic connections between the neurophysiological mechanisms they regulate, and how these mechanisms alter neuronal function, and, hence, affective homeostasis. This review will examine recent work that suggests that both long-term activity-dependent changes in synaptic strength (“plasticity”), and shifting set points for the ease of induction of future long-term changes (“metaplasticity”), may be critical to establishing and reversing a depressive behavioral state. Activity-dependent long-term synaptic plasticity involves both strengthening and weakening of synaptic connections associated with a dizzying array of neurochemical alterations that include synaptic insertion and removal of a number of subtypes of AMPA, NMDA and metabotropic glutamate receptors, changes in presynaptic glutamate release, and structural changes in dendritic spines. Cellular mechanisms of metaplasticity are far less well understood. Here, we will review the growing evidence that long-term synaptic changes in glutamatergic transmission, in brain regions that regulate mood, are key determinants of affective homeostasis and therapeutic targets with immense potential for drug development.
Collapse
Affiliation(s)
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
49
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
50
|
The impact of FMR1 gene mutations on human reproduction and development: a systematic review. J Assist Reprod Genet 2016; 33:1135-47. [PMID: 27432256 DOI: 10.1007/s10815-016-0765-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE This is a comprehensive review of the literature in this field attempting to put the FMR1 gene and its evaluation into context, both in general and for the reproductive health audience. METHODS Online database search of publications with systematic review of all papers relevant to ovarian reserve and assisted reproduction was done. RESULTS Relevant papers were identified and assessed, and an attempt was made to understand, rationalize and explain the divergent views in this field of study. Seminal and original illustrations were employed. CONCLUSIONS FMR1 is a highly conserved gene whose interpretation and effect on outcomes remains controversial in the reproductive health setting. Recent re-evaluations of the commonly accepted normal range have yielded interesting tools for possibly explaining unexpected outcomes in assisted reproduction. Fragile X investigations should perhaps become more routinely assessed in the reproductive health setting, particularly following a failed treatment cycle where oocyte quality is thought to be a contributing factor, or in the presence of a surprise finding of diminished ovarian reserve in a young patient.
Collapse
|