1
|
Fan J, Liu X, Duan Z, Zhao H, Chang Z, Li L. The Regulatory Role of miRNAs in Zebrafish Fin Regeneration. Int J Mol Sci 2024; 25:10542. [PMID: 39408869 PMCID: PMC11477159 DOI: 10.3390/ijms251910542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Since Teleostei fins have a strong regenerative capacity, further research was conducted on the regulation of gene expression during fin regeneration. This research focuses on miRNA, which is a key post-transcriptional regulatory molecule. In this study, a miRNA library for the fin regeneration of zebrafish was constructed to reveal the differential expression of miRNA during fin regeneration and to explore the regulatory pathway for fin regeneration. Following the injection of miRNA agomir into zebrafish, the proliferation of blastema cells and the overall fin regeneration area were significantly reduced. It was observed that the miRNAs impaired blastocyte formation by affecting fin regeneration through the inhibition of the expressions of genes and proteins associated with blastocyte formation (including yap1 and Smad1/5/9), which is an effect associated with the Hippo pathway. Furthermore, it has been demonstrated that miRNAs can impair the patterns and mineralization of newly formed fin rays. The miRNAs influenced fin regeneration by inhibiting the expression of a range of bone-related genes and proteins in osteoblast lineages, including sp7, runx2a, and runx2b. This study provides a valuable reference for the further exploration of morphological bone reconstruction in aquatic vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, China; (J.F.)
| |
Collapse
|
2
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Lui JC. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front Endocrinol (Lausanne) 2024; 15:1327378. [PMID: 38370361 PMCID: PMC10870149 DOI: 10.3389/fendo.2024.1327378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
4
|
Felekkis K, Pieri M, Papaneophytou C. Exploring the Feasibility of Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int J Mol Sci 2023; 24:13144. [PMID: 37685951 PMCID: PMC10487837 DOI: 10.3390/ijms241713144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation and joint inflammation. As the most common aging-related joint disease, OA is marked by inadequate extracellular matrix synthesis and the breakdown of articular cartilage. However, traditional diagnostic methods for OA, relying on clinical assessments and radiographic imaging, often need to catch up in detecting early-stage disease or i accurately predicting its progression. Consequently, there is a growing interest in identifying reliable biomarkers that can facilitate early diagnosis and prognosis of OA. MicroRNAs (miRNAs) have emerged as potential candidates due to their involvement in various cellular processes, including cartilage homeostasis and inflammation. This review explores the feasibility of circulating miRNAs as diagnostic and prognostic biomarkers in OA, focusing on knee OA while shedding light on the challenges and opportunities associated with their implementation in clinical practice.
Collapse
Affiliation(s)
| | | | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, Nicosia 2417, Cyprus; (K.F.); (M.P.)
| |
Collapse
|
5
|
Balaskas P, Goljanek-Whysall K, Clegg PD, Fang Y, Cremers A, Smagul A, Welting TJM, Peffers MJ. MicroRNA Signatures in Cartilage Ageing and Osteoarthritis. Biomedicines 2023; 11:1189. [PMID: 37189806 PMCID: PMC10136140 DOI: 10.3390/biomedicines11041189] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most common degenerative joint disorder. MicroRNAs are gene expression regulators that act post-transcriptionally to control tissue homeostasis. Microarray analysis was undertaken in osteoarthritic intact, lesioned and young intact cartilage. Principal component analysis showed that young intact cartilage samples were clustered together; osteoarthritic samples had a wider distribution; and osteoarthritic intact samples were separated into two subgroups, osteoarthritic-Intact-1 and osteoarthritic-Intact-2. We identified 318 differentially expressed microRNAs between young intact and osteoarthritic lesioned cartilage, 477 between young intact and osteoarthritic-Intact-1 cartilage and 332 between young intact and osteoarthritic-Intact-2 cartilage samples. For a selected list of differentially expressed microRNAs, results were verified in additional cartilage samples using qPCR. Of the validated DE microRNAs, four-miR-107, miR-143-3p, miR-361-5p and miR-379-5p-were selected for further experiments in human primary chondrocytes treated with IL-1β. Expression of these microRNAs decreased in human primary chondrocytes treated with IL-1β. For miR-107 and miR-143-3p, gain- and loss-of-function approaches were undertaken and associated target genes and molecular pathways were investigated using qPCR and mass spectrometry proteomics. Analyses showed that WNT4 and IHH, predicted targets of miR-107, had increased expression in osteoarthritic cartilage compared to young intact cartilage and in primary chondrocytes treated with miR-107 inhibitor, and decreased expression in primary chondrocytes treated with miR-107 mimic, suggesting a role of miR-107 in chondrocyte survival and proliferation. In addition, we identified an association between miR-143-3p and EIF2 signalling and cell survival. Our work supports the role of miR-107 and miR-143-3p in important chondrocyte mechanisms regulating proliferation, hypertrophy and protein translation.
Collapse
Affiliation(s)
- Panagiotis Balaskas
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Department of Physiology, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter D. Clegg
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andy Cremers
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Aibek Smagul
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
6
|
Winstanley-Zarach P, Rot G, Kuba S, Smagul A, Peffers MJ, Tew SR. Analysis of RNA Polyadenylation in Healthy and Osteoarthritic Human Articular Cartilage. Int J Mol Sci 2023; 24:6611. [PMID: 37047586 PMCID: PMC10094766 DOI: 10.3390/ijms24076611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Polyadenylation (polyA) defines the 3' boundary of a transcript's genetic information. Its position can vary and alternative polyadenylation (APA) transcripts can exist for a gene. This causes variance in 3' regulatory domains and can affect coding sequence if intronic events occur. The distribution of polyA sites on articular chondrocyte transcripts has not been studied so we aimed to define their transcriptome-wide location in age-matched healthy and osteoarthritic knee articular cartilage. Total RNA was isolated from frozen tissue samples and analysed using the QuantSeq-Reverse 3' RNA sequencing approach, where each read runs 3' to 5' from within the polyA tail into the transcript and contains a distinct polyA site. Differential expression of transcripts was significant altered between healthy and osteoarthritic samples with enrichment for functionalities that were strongly associated with joint pathology. Subsequent examination of polyA site data allowed us to define the extent of site usage across all the samples. When comparing healthy and osteoarthritic samples, we found that differential use of polyadenylation sites was modest. However, in the genes affected, there was potential for the APA to have functional relevance. We have characterised the polyadenylation landscape of human knee articular chondrocytes and conclude that osteoarthritis does not elicit a widespread change in their polyadenylation site usage. This finding differentiates knee osteoarthritis from pathologies such as cancer where APA is more commonly observed.
Collapse
Affiliation(s)
- Phaedra Winstanley-Zarach
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Gregor Rot
- Institute of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Shweta Kuba
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- School of Health and Life Sciences, National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Aibek Smagul
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Mandy J. Peffers
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon R. Tew
- Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
7
|
Sanada Y, Ikuta Y, Ding C, Yimiti D, Kato Y, Nakasa T, Mizuno S, Takahashi S, Huang W, Lotz MK, Adachi N, Miyaki S. miR-26a deficiency is associated with bone loss and reduced muscle strength but does not affect severity of cartilage damage in osteoarthritis. Mech Ageing Dev 2023; 212:111806. [PMID: 37003368 DOI: 10.1016/j.mad.2023.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 305-8566
| | - Tomoyuki Nakasa
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA, 91010
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA, 92037
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552.
| |
Collapse
|
8
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
9
|
Guo R, Zhuang H, Chen X, Ben Y, Fan M, Wang Y, Zheng P. Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. J Tissue Eng 2023; 14:20417314231187956. [PMID: 37483459 PMCID: PMC10359656 DOI: 10.1177/20417314231187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Deng L, Li X, Ren X, Lai S, Zhu Y, Li J, Huang H, Mu Y. A grooved porous hydroxyapatite scaffold induces osteogenic differentiation via regulation of PKA activity by upregulating miR-129-5p expression. J Periodontal Res 2022; 57:1238-1255. [PMID: 36222334 DOI: 10.1111/jre.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Hydroxyapatite scaffolds with different morphologies have been widely used in bone tissue engineering. Moreover, microRNAs (miRNAs) have been proven to be extensively involved in regulating bone regeneration. We developed grooved porous hydroxyapatite (HAG) scaffolds with good osteogenic efficiency. However, little is known about the role of miRNAs in HAG scaffold-mediated promotion of bone regeneration. The objective of this study was to reveal the mechanism from the perspective of differential miRNA expression. METHODS Scanning electron microscopy (SEM) was used to perform the coculture of cells and scaffolds. The miRNA profiles were generated by a microarray assay. A synthetic miR-129-5p mimic and inhibitor were used for overexpression or inhibition. The expression of osteogenic marker mRNAs and proteins was detected by quantitative real-time PCR (qRT-PCR), Western blotting, and immunofluorescence. An ALP activity kit and alizarin red staining (ARS) were used to measure ALP activity and mineral deposition formation. Cell migration ability was examined by wound healing and transwell assays. Protein kinase A (PKA) activity was measured by enzyme-linked immunosorbent assay (ELISA) after miR-129-5p transfection. Target genes were identified by a dual-luciferase reporter assay. H89 preculture evaluated the cross talk between miR-129-5p and PKA activity. Heterotopic implantation models, hematoxylin-eosin (HE), immunohistochemistry staining, and micro-CT were used to evaluate miR-129-5p osteogenesis in vivo. RESULTS miRNAs were differentially expressed during osteogenic differentiation induced by HAG in vitro and in vivo. miR-129-5p was the only highly expressed miRNA both in vitro and in vivo. miR-129-5p overexpression promoted osteoblast differentiation and cell migration, while its inhibition weakened the effect of HAG. Moreover, miR-129-5p activated PKA to regulate the phosphorylation of β-catenin and cAMP-response element binding protein (CREB) by inhibiting cAMP-dependent protein kinase inhibitor alpha (Pkia). H89 prevented the effects of miR-129-5p on osteogenic differentiation and cell migration. HE, immunohistochemistry staining and micro-CT results showed that miR-129-5p promoted in vivo osteogenesis of the HAG scaffold. CONCLUSION The HAG scaffold activates Pka by upregulating miR-129-5p and inhibiting Pkia, resulting in CREB-dependent transcriptional activation and accumulation of β-catenin and promoting osteogenic marker expression.
Collapse
Affiliation(s)
- Li Deng
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Xinlun Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohua Ren
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yushu Zhu
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Omoto T, Yimiti D, Sanada Y, Toriyama M, Ding C, Hayashi Y, Ikuta Y, Nakasa T, Ishikawa M, Sano M, Lee M, Akimoto T, Shukunami C, Miyaki S, Adachi N. Tendon-Specific Dicer Deficient Mice Exhibit Hypoplastic Tendon Through the Downregulation of Tendon-Related Genes and MicroRNAs. Front Cell Dev Biol 2022; 10:898428. [PMID: 35784484 PMCID: PMC9241168 DOI: 10.3389/fcell.2022.898428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Tendon is a fibrous connective tissue, that is, transmitting the forces that permit body movement. However, tendon/ligament biology is still not fully understood and especially, the role of miRNAs in tendon/ligament is sparse and uncharacterized in in vivo models. The objectives of this study were to address the function of DICER using mice with tendon/ligament-specific deletion of Dicer (Dicer conditional knockout; cKO), and to identify key miRNAs in tendon/ligament. Dicer cKO mice exhibited hypoplastic tendons through structurally abnormal collagen fibrils with downregulation of tendon-related genes. The fragility of tendon did not significantly affect the tensile strength of tendon in Dicer cKO mice, but they showed larger dorsiflexion angle in gait compared with Control mice. We identified two miRNAs, miR-135a and miR-1247, which were highly expressed in the Achilles tendon of Control mice and were downregulated in the Achilles tendon of Dicer cKO mice compared with Control mice. miR-135a mimic increased the expression of tendon-related genes in injured Achilles tendon-derived fibroblasts. In this study, Dicer cKO mice exhibited immature tendons in which collagen fibrils have small diameter with the downregulation of tendon-related genes such as transcriptional factor, extracellular matrix, and miRNAs. Thus, DICER plays an important role in tendon maturation, and miR-135a may have the potential to become key miRNA for tendon maturation and healing.
Collapse
Affiliation(s)
- Takenori Omoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Minoru Toriyama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Musculoskeletal Traumatology and Reconstructive Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- *Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci 2022; 23:6316. [PMID: 35682994 PMCID: PMC9181530 DOI: 10.3390/ijms23116316] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lin Liu
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lisa Yagasaki
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-851, Japan
| | - Maiko Inotsume
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Georgieva VS, Bluhm B, Probst K, Zhu M, Heilig J, Niehoff A, Brachvogel B. Ablation of the miRNA cluster 24 in cartilage and osteoblasts impairs bone remodeling. Sci Rep 2022; 12:9116. [PMID: 35650319 PMCID: PMC9160244 DOI: 10.1038/s41598-022-13231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate cartilage and bone development and function, however, only few miRNAs have been described to play a role for cartilage to bone transition in vivo. Previously, we showed that cartilage-specific deletion of the Mirc24 cluster in newborn male mice leads to impaired growth plate cartilage development due to increased RAF/MEK/ERK signaling and affects the stability of the cartilage extracellular matrix on account of decreased SOX6 and SOX9 and increased MMP13 levels. Here, we studied how Mirc24 cluster inactivation in cartilage and osteoblasts leads to an increased bone density associated with defects in collagen remodeling in trabecular bone. No changes in osteoblast distribution were observed, whereas the number of osteoclasts was reduced and TRAP activity in osteoclasts decreased. Surprisingly, an increased level of cluster-encoded miR-322 or miR-503 raises Rankl gene expression and inactivation of the cluster in chondrocytes reduces Rankl expression. These results suggest that the Mirc24 cluster regulates Rankl expression in chondrocytes at the chondro-osseous border, where the cluster is mainly expressed to modulate osteoclast formation, bone remodeling and bone integrity.
Collapse
Affiliation(s)
- Veronika S Georgieva
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Björn Bluhm
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Kristina Probst
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Mengjie Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany. .,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun 2022; 13:2447. [PMID: 35508470 PMCID: PMC9068604 DOI: 10.1038/s41467-022-30119-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Damaged hyaline cartilage has no capacity for self-healing, making osteoarthritis (OA) "difficult-to-treat". Cartilage destruction is central to OA patho-etiology and is mediated by matrix degrading enzymes. Here we report decreased expression of miR-17 in osteoarthritic chondrocytes and its deficiency contributes to OA progression. Supplementation of exogenous miR-17 or its endogenous induction by growth differentiation factor 5, effectively prevented OA by simultaneously targeting pathological catabolic factors including matrix metallopeptidase-3/13 (MMP3/13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2). Single-cell RNA sequencing of hyaline cartilage revealed two distinct superficial chondrocyte populations (C1/C2). C1 expressed physiological catabolic factors including MMP2, and C2 carries synovial features, together with C3 in the middle zone. MiR-17 is highly expressed in both superficial and middle chondrocytes under physiological conditions, and maintains the physiological catabolic and anabolic balance potentially by restricting HIF-1α signaling. Together, this study identified dual functions of miR-17 in maintaining cartilage homeostasis and prevention of OA.
Collapse
|
15
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
16
|
Ding R, Liu X, Zhang J, Yuan J, Zheng S, Cheng X, Jia J. Downregulation of miR-1-3p expression inhibits the hypertrophy and mineralization of chondrocytes in DDH. J Orthop Surg Res 2021; 16:512. [PMID: 34407854 PMCID: PMC8371903 DOI: 10.1186/s13018-021-02666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a highly prevalent hip disease among children. However, its pathogenesis remains unclear. MicroRNAs (miRNA) are important regulators of cartilage development. In a previous study, high-throughput miRNA sequencing of tissue samples from an animal model of DDH showed a low level of miR-1-3p in the cartilage of the acetabular roof (ARC), but its role in DDH pathogenesis was not addressed. Therefore, our aim here was to investigate the effects of miR-1-3p in the ARC. METHODS The diagnosis of acetabular dysplasia was confirmed with X-ray examination, while imaging and HE staining were conducted to further evaluate the ARC thickness in each animal model. FISH was employed to verify miR-1-3p expression in the ARC and chondrocytes. The miR-1-3p target genes were predicted by a bioinformatics database. A dual-luciferase reporter assay was used to confirm the targeting relationship between miR-1-3p and SOX9. The gene expression of miR-1-3p, SOX9, RUNX2 and collagen type X was evaluated by qPCR analysis. The protein expression of SOX9, RUNX2 and collagen type X was detected by western blot analysis. The levels of SOX9, RUNX2, and collagen type X in the ARC were further assessed via immunohistochemistry analysis. Finally, Alizarin Red S staining was used to observe the mineralized nodules produced by the chondrocytes. RESULTS We observed low expression of miR-1-3p in the ARC of animals with DDH. SOX9 is a miR-1-3p target gene. Using miR-1-3p silencing technology in vitro, we demonstrated significantly reduced chondrocyte-generated mineralized nodules compared to those of the control. We also confirmed that with miR-1-3p silencing, SOX9 expression was upregulated, whereas the expression of genes associated with endochondral osteogenesis such as RUNX2 and collagen type X was downregulated. To confirm the involvement of miR-1-3p silencing in abnormal ossification through SOX9, we also performed a rescue experiment in which SOX9 silencing restored the low expression of RUNX2 and collagen type X produced by downregulated miR-1-3p expression. Finally, the elevated SOX9 levels and reduced RUNX2 and collagen type X levels in the ARC of rabbits with DDH were also verified using immunohistochemistry, RT-PCR, and western blots. CONCLUSION The relatively low expression of miR-1-3p in the ARC may be the cause of abnormal endochondral ossification in the acetabular roof of animals with DDH.
Collapse
Affiliation(s)
- Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Sikuan Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China.,Institute of Minimally Invasive Orthopedics of Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Li Y, Yang S, Qin L, Yang S. TAZ is required for chondrogenesis and skeletal development. Cell Discov 2021; 7:26. [PMID: 33879790 PMCID: PMC8058044 DOI: 10.1038/s41421-021-00254-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Chondrogenesis is a major contributor to skeletal development and maintenance, as well as bone repair. Transcriptional coactivator with PDZ-binding motif (TAZ) is a key regulator of osteogenesis and adipogenesis, but how TAZ regulates chondrogenesis and skeletal development remains undefined. Here, we found that TAZ expression is gradually increased during chondrogenic differentiation. Deletion of TAZ in chondrocyte lineage impaired articular and growth plate, as well as the bone development in TAZ-deficient mice. Consistently, loss of TAZ impaired fracture healing. Mechanistically, we found that ectopic expression of TAZ markedly promoted chondroprogenitor proliferation, while deletion of TAZ impaired chondrocyte proliferation and differentiation. TAZ associated with Sox5 to regulate the expression and stability of Sox5 and downstream chondrocyte marker genes' expression. In addition, overexpression of TAZ enhanced Col10a1 expression and promoted chondrocyte maturation, which was blocked by deletion of TAZ. Overall, our findings demonstrated that TAZ is required for skeletal development and joint maintenance that provided new insights into therapeutic strategies for fracture healing, heterotopic ossification, osteoarthritis, and other bone diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 2021; 93:7-15. [PMID: 31914447 DOI: 10.1159/000504669] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
19
|
Yang M, Yan X, Yuan FZ, Ye J, Du MZ, Mao ZM, Xu BB, Chen YR, Song YF, Fan BS, Yu JK. MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3 α Signalling in Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6699910. [PMID: 33937412 PMCID: PMC8055413 DOI: 10.1155/2021/6699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin Yan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jing Ye
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ming-Ze Du
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Mu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bing-Bing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yi-Fan Song
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bao-Shi Fan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Hong L, Sun H, Amendt BA. MicroRNA function in craniofacial bone formation, regeneration and repair. Bone 2021; 144:115789. [PMID: 33309989 PMCID: PMC7869528 DOI: 10.1016/j.bone.2020.115789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) and nasal bones are regulated by an array of transcription factors, signaling molecules and microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form the craniofacial complex. By understanding how miRs function in vivo during development they can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases and defects due to traumatic injuries. This review will highlight some of the new miR technologies and functions that form new bone or inhibit bone regeneration.
Collapse
Affiliation(s)
- Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA; The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA, USA; Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
21
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
22
|
Abstract
MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Sun-Kyeong Lee
- Department of Medicine, UCONN Center on Aging, University Connecticut Health Center, Farmington, CT 06030, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
24
|
Abstract
Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | |
Collapse
|
25
|
Ramos YFM, Mobasheri A. MicroRNAs and Regulation of Autophagy in Chondrocytes. Methods Mol Biol 2021; 2245:179-194. [PMID: 33315203 DOI: 10.1007/978-1-0716-1119-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chondrocytes are the main cells responsible for the maintenance of cartilage homeostasis and integrity. During development, extracellular matrix (ECM) macromolecules are produced and deposited by chondrocyte precursors. Autophagy, a highly dynamic process aimed at degradation of dysfunctional or pathogenic proteins, organelles, and intracellular microbes that can damage tissues, is one of the key processes required for sustained cartilage homeostasis. In different cell types it has been shown that, among others, autophagy is regulated by epigenetic mechanisms such as small noncoding RNAs (miRNAs, ~22 base pairs). Increasing evidence suggests that miRNAs are also involved in the regulation of autophagy in chondrocytes. Based on our previous research of gene and miRNA expression in articular cartilage, in this chapter we provide a summary of the tools models to direct in vitro and in vivo studies aimed at gaining a better understanding of the regulatory roles of miRNAs in chondrocyte autophagy.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Queen's Medical Centre, Nottingham, UK.,Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
26
|
MicroRNAs Regulating Autophagy in Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:191-264. [PMID: 34260028 DOI: 10.1007/978-981-16-2830-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Social and economic impacts of neurodegenerative diseases (NDs) become more prominent in our constantly aging population. Currently, due to the lack of knowledge about the aetiology of most NDs, only symptomatic treatment is available for patients. Hence, researchers and clinicians are in need of solid studies on pathological mechanisms of NDs. Autophagy promotes degradation of pathogenic proteins in NDs, while microRNAs post-transcriptionally regulate multiple signalling networks including autophagy. This chapter will critically discuss current research advancements in the area of microRNAs regulating autophagy in NDs. Moreover, we will introduce basic strategies and techniques used in microRNA research. Delineation of the mechanisms contributing to NDs will result in development of better approaches for their early diagnosis and effective treatment.
Collapse
|
27
|
Abstract
MicroRNAs have been shown to play a role in cartilage development, homeostasis and breakdown during osteoarthritis. We previously identified miR-3085 in humans as a chondrocyte-selective microRNA, however it could not be detected by Northern blot. The aim of the current study was to prove that miR-3085 is a microRNA and to investigate the function of miR-3085 in signaling pathways relevant to cartilage homeostasis and osteoarthritis. Here, we confirm that miR-3085 is a microRNA and not another class of small RNA using (1) a pre-miR hairpin maturation assay, (2) expression levels in a Dicer null cell line, and (3) Ago2 pulldown. MicroRNA-3085-3p is expressed more highly in micromass than monolayer cultured chondrocytes. Transfection of miR-3085-3p into chondrocytes decreases expression of COL2A1 and ACAN, both of which are validated as direct targets of miR-3085-3p. Interleukin-1 induces the expression of miR-3085-3p, at least in part via NFκB. In a feed-forward mechanism, miR-3085-3p then potentiates NFκB signaling. However, at early time points after transfection, its action appears to be inhibitory. MyD88 has been shown to be a direct target of miR-3085-3p and may be responsible for the early inhibition of NFκB signaling. However, at later time points, MyD88 knockdown remains inhibitory and so other functions of miR-3085-3p are clearly dominant. TGFβ1 also induces the expression of miR-3085-3p, but in this instance, it exerts a feedback inhibition on signaling with SMAD3 and SMAD4 shown to be direct targets. This in vitro analysis shows that miR-3085-3p functions in chondrocytes to induce IL-1-signaling, reduce TGFβ1 signaling, and inhibit expression of matrix genes. These data suggest that miR-3085-3p has a role in chondrocyte function and could contribute to the process of osteoarthritis.
Collapse
|
28
|
Hou Y, Lin W, Li Y, Sun Y, Liu Y, Chen C, Jiang X, Li G, Xu L. De-osteogenic-differentiated mesenchymal stem cells accelerate fracture healing by mir-92b. J Orthop Translat 2020; 27:25-32. [PMID: 33344169 PMCID: PMC7736910 DOI: 10.1016/j.jot.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are promising targets for therapeutic use in regenerative medicine and tissue engineering. In the previous study, we have found that MSCs could be reverted to a primitive stem cell population after in vitro induction of osteogenic and de-osteogenic differentiation (de-osteogenic differentiated MSCs, De-Os-MSCs). De-Os-MSCs showed improved cell survival and osteogenic potential. However, the underlying mechanism and its potential effect on fracture healing has not been explored. Methods MSCs were isolated from the rat bone marrow. MicroRNAs were cloned into lentiviral vectors and transduced into MSCs to observe the effects on osteogenesis. The expression levels of marker genes were evaluated by quantitative RT-PCR. Ectopic bone formation model was used to evaluate the bone regeneration ability of mir-92b transduced MSCs in vivo. An open femur fracture model was established, and MSCs or De-Os-MSCs were administrated to the fracture sites. Histological, biomechanical and microCT analysis were used to evaluate the quality of bone. Results In the present study, we found that mir-92b was significantly increased in the secretions of De-Os-MSCs. And mir-92b could promote the osteogenic differentiation potential of MSCs by activating pERK and JNK signaling pathways. The ectopic bone formation assay showed that MSCs overexpressing mir-92b formed more bone like tissues in vivo. Most importantly, we found local administration of De-Os-MSCs could accelerate fracture healing using an open femur fracture model in rats. The quality of bone property was much better as shown by microCT and biomechanical testing. Conclusion Taken together, our study demonstrated that mir-92b promoted osteogenesis of MSCs, which was partially accounted for the enhanced osteogenic differentiation potential of De-Os-MSCs. And De-Os-MSCs had shown better regenerative capacity in accelerating fracture healing when they were locally given. The translational potential of this article De-Os-MSCs could be used to accelerate fracture healing, and reduce the occurrence of delayed unions and non-unions.
Collapse
Affiliation(s)
- Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Chen Chen
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Sekar D. Implications of microRNA 21 and its involvement in the treatment of different type of arthritis. Mol Cell Biochem 2020; 476:941-947. [PMID: 33136235 DOI: 10.1007/s11010-020-03960-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Arthritis is a kind of autoimmune disease, which includes many circumstances that affect joints, the tissues surrounding the joints, and other connective tissues. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the common arthritis seen in many populations. Researchers have made extensive studies on all types of arthritis, novel drugs are being developed by many laboratories, but yet no treatment option is available for these diseases and need new insight into the molecular pathways and pathophysiology of all types of arthritis. MicroRNAs (miRNAs), a class of non-coding RNAs, have shown to be played a plenty of roles in both a suppressive and a promoting role in disease pathogenesis and progression. Among the classes of microRNAs, miR-21 is a widespread miRNA commonly upregulated in many diseases and suggesting that it plays an important role in cell proliferation, apoptosis, and invasion. It is highly expressed in osteoclast precursors and the pro-osteoclastogenic nature of miR-21 makes it a promising candidate as a therapeutic target to treat bone-related disorders. Up to now, there are few papers that demonstrate the role of miR-21 in arthritis and related bone disorders and the number of studies related to different types of arthritis is sparse. Therefore, the main thrust of this paper is to provide an overview of the current clinical evidence and significance of miR-21 in arthritis and bone-related inflammation disorders. We summarize the important research findings surrounding the role of miR-21 and its involvement in the treatment of different types of arthritis.
Collapse
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit and Lab Animal Centre, Saveetha Denatal College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
30
|
Shvedova M, Kobayashi T. MicroRNAs in cartilage development and dysplasia. Bone 2020; 140:115564. [PMID: 32745689 PMCID: PMC7502492 DOI: 10.1016/j.bone.2020.115564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Small regulatory microRNAs (miRNAs) post-transcriptionally suppress gene expression. MiRNAs expressed in skeletal progenitor cells and chondrocytes regulate diverse aspects of cellular function and thus skeletal development. In this review, we discuss the role of miRNAs in skeletal development, particularly focusing on those whose physiological roles were revealed in vivo. Deregulation of miRNAs is found in multiple acquired diseases such as cancer; however congenital diseases caused by mutations in miRNA genes are very rare. Among those are mutations in miR-140 and miR-17~92 miRNAs which cause skeletal dysplasias. We also discuss pathological mechanisms underlining these skeletal dysplasias.
Collapse
Affiliation(s)
- Maria Shvedova
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
李 晓, 孔 清. [The regulatory role of microRNA in osteogenic differentiation of mesenchymal stem cells and its application as a therapeutic target and diagnostic tool in orthopedic diseases]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1332-1340. [PMID: 33063501 PMCID: PMC8171876 DOI: 10.7507/1002-1892.201912092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the research progress of the regulatory role of microRNA (miRNA) in osteogenic differentiation of mesenchymal stem cells (MSCs) and its application as a therapeutic target and diagnostic tool in orthopedic diseases. METHODS The recent literature on the regulation of MSCs osteogenic differentiation by miRNAs was extensively reviewed, and its regulatory mechanism and its application as a therapeutic target and diagnostic tool in orthopedic diseases were reviewed. RESULTS miRNAs are small endogenous non-coding RNAs with a length of 20-22 nucleotides, which play an important role in the osteogenic differentiation of MSCs. Osteogenesis begins with the differentiation of MSCs into mature osteoblasts, and each stage of dynamic homeostasis of bone metabolism is associated with the regulation of different miRNAs. miRNAs are regulated from the post-transcriptional level by mRNAs cleavage, degradation, translational repression, or methylation. In addition, current studies suggest that miRNAs can be used as a new diagnostic tool and therapeutic target for orthopedic diseases. CONCLUSION Further study on the regulation mechanism of miRNAs will provide more ideas for finding new therapeutic targets and diagnostic tools for orthopedic disease.
Collapse
Affiliation(s)
- 晓龙 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 清泉 孔
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
32
|
miR-23a-3p regulated by LncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5. Cell Tissue Res 2020; 383:723-733. [PMID: 32960357 DOI: 10.1007/s00441-020-03289-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Cartilage generation and degradation are controlled by miRNAs. Our previous study showed miR-23a-3p was downregulated during chondrogenic differentiation in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the present study, we explored the function of miR-23a-3p in chondrogenesis differentiation. The role of miR-23a-3p in chondrogenic differentiation potential of hADSCs was assessed by Alcian blue staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. We show that miR-23a-3p suppressed the chondrogenic differentiation of hADSCs. LncRNA SNHG5 interacted with miR-23a-3p, and suppression or overexpression of SNHG5 correlates with inhibition and promotion of hADSC chondrogenic differentiation, respectively. We have determined that SNHG5 can sponge miR-23a-3p to regulate the expression of SOX6/SOX5, transcription factors that play essential roles in chondrocyte differentiation. Furthermore, the overexpression of SNHG5 activates the JNK/MAPK/ERK pathway. In conclusion, miR-23a-3p regulated by lncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5.
Collapse
|
33
|
Ross AK, Coutinho de Almeida R, Ramos YFM, Li J, Meulenbelt I, Guilak F. The miRNA-mRNA interactome of murine induced pluripotent stem cell-derived chondrocytes in response to inflammatory cytokines. FASEB J 2020; 34:11546-11561. [PMID: 32767602 DOI: 10.1096/fj.202000889r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, and inflammation within an arthritic joint plays a critical role in disease progression. Pro-inflammatory cytokines, specifically IL-1 and TNF-α, induce aberrant expression of catabolic and degradative enzymes and inflammatory cytokines in OA and result in a challenging environment for cartilage repair and regeneration. MicroRNAs (miRNAS) are small noncoding RNAs and are important regulatory molecules that act by binding to target messenger RNAs (mRNAs) to reduce protein synthesis and have been implicated in many diseases, including OA. The goal of this study was to understand the mechanisms of miRNA regulation of the transcriptome of tissue-engineered cartilage in response to IL-1β and TNF-α using an in vitro murine induced pluripotent stem cell (miPSC) model system. We performed miRNA and mRNA sequencing to determine the temporal and dynamic responses of genes to specific inflammatory cytokines as well as miRNAs that are differentially expressed (DE) in response to both cytokines or exclusively to IL-1β or TNF-α. Through integration of mRNA and miRNA sequencing data, we created networks of miRNA-mRNA interactions which may be controlling the response to inflammatory cytokines. Within the networks, hub miRNAs, miR-29b-3p, miR-17-5p, and miR-20a-5p, were identified. As validation of these findings, we found that delivery of miR-17-5p and miR-20a-5p mimics significantly decreased degradative enzyme activity levels while also decreasing expression of inflammation-related genes in cytokine-treated cells. This study utilized an integrative approach to determine the miRNA interactome controlling the response to inflammatory cytokines and novel mediators of inflammation-driven degradation in tissue-engineered cartilage.
Collapse
Affiliation(s)
- Alison K Ross
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jiehan Li
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
34
|
Nakamichi R, Kurimoto R, Tabata Y, Asahara H. Transcriptional, epigenetic and microRNA regulation of growth plate. Bone 2020; 137:115434. [PMID: 32422296 PMCID: PMC7387102 DOI: 10.1016/j.bone.2020.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Endochondral ossification is a critical event in bone formation, particularly in long shaft bones. Many cellular differentiation processes work in concert to facilitate the generation of cartilage primordium to formation of trabecular structures, all of which occur within the growth plate. Previous studies have revealed that the growth plate is tightly regulated by various transcription factors, epigenetic systems, and microRNAs. Hence, understanding these mechanisms that regulate the growth plate is crucial to furthering the current understanding on skeletal diseases, and in formulating effective treatment strategies. In this review, we focus on describing the function and mechanisms of the transcription factors, epigenetic systems, and microRNAs known to regulate the growth plate.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Tabata
- Department of Orthopaedic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirosi Asahara
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
35
|
Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. BIOLOGY 2020; 9:biology9080194. [PMID: 32751156 PMCID: PMC7464998 DOI: 10.3390/biology9080194] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
As the most common chronic degenerative joint disease, osteoarthritis (OA) is the leading cause of pain and physical disability, affecting millions of people worldwide. Mainly characterized by articular cartilage degradation, osteophyte formation, subchondral bone remodeling, and synovial inflammation, OA is a heterogeneous disease that impacts all component tissues of the articular joint organ. Pathological changes, and thus symptoms, vary from person to person, underscoring the critical need of personalized therapies. However, there has only been limited progress towards the prevention and treatment of OA, and there are no approved effective disease-modifying osteoarthritis drugs (DMOADs). Conventional treatments, including non-steroidal anti-inflammatory drugs (NSAIDs) and physical therapy, are still the major remedies to manage the symptoms until the need for total joint replacement. In this review, we provide an update of the known OA risk factors and relevant mechanisms of action. In addition, given that the lack of biologically relevant models to recapitulate human OA pathogenesis represents one of the major roadblocks in developing DMOADs, we discuss current in vivo and in vitro experimental OA models, with special emphasis on recent development and application potential of human cell-derived microphysiological tissue chip platforms.
Collapse
|
36
|
Song H, Park KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol 2020; 67:12-23. [PMID: 32380234 DOI: 10.1016/j.semcancer.2020.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/23/2019] [Accepted: 04/26/2020] [Indexed: 12/21/2022]
Abstract
Chondrogenesis is a highly coordinated event in embryo development, adult homeostasis, and repair of the vertebrate cartilage. Fate decisions and differentiation of chondrocytes accompany differential expression of genes critical for each step of chondrogenesis. SOX9 is a master transcription factor that participates in sequential events in chondrogenesis by regulating a series of downstream factors in a stage-specific manner. SOX9 either works alone or in combination with downstream SOX transcription factors, SOX5 and SOX6 as chondrogenic SOX Trio. SOX9 is reduced in the articular cartilage of patients with osteoarthritis while highly maintained during tumorigenesis of cartilage and bone. Gene therapy using viral and non-viral vectors accompanied by tissue engineering (scaffolds) is a promising tool to regenerate impaired cartilage. Delivery of SOX9 or chondrogenic SOX Trio into cells produces efficient therapeutic effects on chondrogenesis and this event is facilitated by scaffolds. Non-viral vector-guided delivery systems encapsulated or loaded in mechanically stable solid scaffolds are useful for the regeneration of articular cartilage. Here we review major milestones and most recent studies focusing on regulation and function of chondrogenic SOX Trio, during chondrogenesis and cartilage regeneration, and on the development of advanced technologies in gene delivery with tissue engineering to improve efficiency of cartilage repair process.
Collapse
Affiliation(s)
- Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
37
|
Jiang L, Sun X, Kong H. microRNA-9 might be a novel protective factor for osteoarthritis patients. Hereditas 2020; 157:15. [PMID: 32321579 PMCID: PMC7178977 DOI: 10.1186/s41065-020-00128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The study aimed to identify the targeting genes and miRNAs using the microarray expression profile dataset for Osteoarthritis (OA) patients. Differentially expressed genes (DEGs) between OA and control samples were identified using Bayes method of limma package. Subsequently, a protein-protein interaction (PPI) network was constructed. miRNAs and transcription factor (TFs) based on DEGs in PPI network were identified using Webgestalt and ENCODE, respectively. Finally, MCODE, Gene Ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. The expressions of several DEGs and predicted miRNAs in OA rats were detected by RT-PCR. RESULTS A total of 594 DEGs were identified. In PPI network, there were 313 upregulated DEGs and 22 downregulated DEGs. Besides, the regulatory relationships included 467 upregulated interactions and 85 downregulated interactions (miR-124A → QKI and MAP 1B) between miRNA and DEGs in PPI network. The module from downregulated DEGs-TFs-miRNA networks was mainly enriched to low-density lipoprotein particle clearance, response to linoleic acid, and small molecule metabolic process BP terms. Moreover, QKI, MAP 1B mRNA and miR-9 expressions were significantly reduced in OA rats. CONCLUSION miR-9 might be a protective factor for OA patients via inhibiting proliferation and differentiation of cartilage progenitor cells. miR-124A might play an important role in progression of OA through targeting QKI and MAP 1B.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China
| | - Xu Sun
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China
| | - Hongyang Kong
- Department of Orthopedics, Taizhou People's Hospital, No. 366 Taihu Road, Taizhou City, 225300, Jiangsu Province, China.
| |
Collapse
|
38
|
Exosomal miRNAs in osteoarthritis. Mol Biol Rep 2020; 47:4737-4748. [DOI: 10.1007/s11033-020-05443-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|
39
|
Griffiths R, Woods S, Cheng A, Wang P, Griffiths-Jones S, Ronshaugen M, Kimber SJ. The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis. Sci Rep 2020; 10:4744. [PMID: 32179818 PMCID: PMC7075910 DOI: 10.1038/s41598-020-61734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.
Collapse
Affiliation(s)
- Rosie Griffiths
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Steven Woods
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Aixin Cheng
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Salford Royal NHS Foundation Trust, Department of Trauma and Orthopaedic, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Ping Wang
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Developmental Biology and Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
40
|
Puppo M, Taipaleenmäki H, Hesse E, Clézardin P. Non-coding RNAs in bone remodelling and bone metastasis: Mechanisms of action and translational relevance. Br J Pharmacol 2019; 178:1936-1954. [PMID: 31423566 DOI: 10.1111/bph.14836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022] Open
Abstract
Bone metastases are frequent complications in patients with advanced cancer, which can be fatal or may rapidly impede the quality of life of patients. Current treatments for patients with bone metastases are palliative. Therefore, a better understanding of the molecular mechanisms that precede the overt development of skeletal lesions could lead to better therapeutic interventions. In this review, we present evidence that non-coding RNAs (ncRNAs) such as long ncRNAs, microRNAs, and circular RNAs are emerging as master regulators of bone metastasis formation. We highlight potential opportunities for the therapeutic targeting of ncRNAs. Furthermore, we discuss the possibility that ncRNAs may be used as biomarkers in the context of bone metastases, which might provide insight for improving the response to current bone-targeting therapies. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Margherita Puppo
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Molecular Musculoskeletal Research, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Philippe Clézardin
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| |
Collapse
|
41
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:E4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
42
|
Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, Li Y. Chondrocyte sheet in vivo cartilage regeneration technique using miR-193b-3p to target MMP16. Aging (Albany NY) 2019; 11:7070-7082. [PMID: 31492826 PMCID: PMC6756905 DOI: 10.18632/aging.102237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/22/2019] [Indexed: 04/12/2023]
Abstract
Stable cartilage regeneration has always been a challenge in both tissue engineering research and clinical practice. This study explored the feasibility of using a chondrocyte sheet technique stimulated by microRNAs to regenerate cartilage. We tested the involvement of hsa-miR-193b-3p in the microtia patient remnant auricular chondrocyte extracellular matrix (ECM). We observed in vitro chondrocyte proliferation, ECM synthesis, as well as the increase in the expression of type II collagen (COL2A1) and decrease in the expression of matrix metalloproteinase 16 (MMP16) of the chondrocyte sheets. COL2A1 deposition and MMP16 degradation of regenerative cartilage tissue were examined in vivo. A dual-luciferase reporter showed that the MMP16 gene was the direct target of miR-193b-3p. These results suggested that miR-193b-3p promotes chondrocyte sheet ECM synthesis by inhibiting MMP16. Since the evidence suggests that MMP16 is a critical regulator of chondrocyte ECM, this finding points the way towards a method that both strengthens the ECM and inhibits MMPs.
Collapse
Affiliation(s)
- Xia Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhicheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiyuan Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
43
|
Zhao X, Li H, Wang L. WITHDRAWN: MicroRNA-107 regulates autophagy and apoptosis of osteoarthritis chondrocytes by targeting TRAF3. Int Immunopharmacol 2019; 71:181-187. [PMID: 30909133 DOI: 10.1016/j.intimp.2019.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Department of Infectious, China-Japan Union Hospital, Jinlin University, Changchun 130033, China
| | - Hongyan Li
- Department of Infectious, China-Japan Union Hospital, Jinlin University, Changchun 130033, China
| | - Linlin Wang
- Department of Ultrasoud, China-Japan Union Hospital, Jinlin University, Changchun 130033, China.
| |
Collapse
|
44
|
Mäkilä J, Kiviniemi A, Saanijoki T, Liljenbäck H, Käkelä M, Jadhav S, Poijärvi-Virta P, Lönnberg H, Laitala-Leinonen T, Virta P, Roivainen A. Noninvasive and Quantitative Monitoring of the Distributions and Kinetics of MicroRNA-Targeting Molecules in Vivo by Positron Emission Tomography. Mol Pharm 2019; 16:1507-1515. [PMID: 30865461 PMCID: PMC6727608 DOI: 10.1021/acs.molpharmaceut.8b01169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, small, noncoding ribonucleic acids (RNAs) that bind to the 3' untranslated regions of messenger RNAs (mRNAs) and induce translational repression or mRNA degradation. Although numerous studies have reported that miRNAs are of potential use for disease diagnostics and gene therapy, little is known about their fates in vivo. This study elucidated the whole-body distributions and kinetics of intravenously administered miRNA-targeting molecules in vivo by positron emission tomography (PET) imaging. A 22-mer sequence targeting miR-15b was conjugated with three different chelators and labeled with gallium-68 (68Ga). These tracers were compared with a scrambled 22-mer sequence; 22-mer with two single base substitutions; anti-miR-34 22-mer; hexathymidylate (T6), a 6-mer sequence; and an unconjugated chelator. miR-15b was chosen as a target because it is important for bone remodeling. All three 68Ga-labeled anti-miR-15b molecules had similar biodistributions and kinetics, and they all accumulated in the bones, kidneys, and liver. The bone accumulation of these tracers was the highest in the epiphyses of long tubular bones, maxilla, and mandible. By contrast, the scrambled 22-mer sequence, the 6-mer, and the unconjugated chelator did not accumulate in bones. PET imaging successfully elucidated the distributions and kinetics of 68Ga-labeled chelated miRNA-targeting molecules in vivo. This approach is potentially useful to evaluate new miRNA-based drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish Jadhav
- Department of Cellular and Molecular Medicine, School of Medicine , University of California , San Diego , La Jolla , California 92093 , United States
| | | | | | | | | | - Anne Roivainen
- Turku PET Centre , Turku University Hospital , Turku 20521 , Finland
| |
Collapse
|
45
|
Zeng Q, Wang Y, Gao J, Yan Z, Li Z, Zou X, Li Y, Wang J, Guo Y. miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett 2019; 24:11. [PMID: 30915127 PMCID: PMC6416934 DOI: 10.1186/s11658-019-0136-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Mechanical loading is an essential factor for bone formation. A previous study indicated that mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz for 8 h promoted osteogenesis and corresponding mechanoresponsive microRNAs (miRs) were identified in osteoblasts. However, in osteocytes, it has not been identified which miRs respond to the mechanical strain, and it is not fully understood how the mechanoresponsive miRs regulate osteoblast differentiation. Methods Mouse MLO-Y4 osteocytes were applied to the same mechanical tensile strain in vitro. Using molecular and biochemical methods, IGF-1 (insulin-like growth factor-1), PGE2 (prostaglandin E2), OPG (osteoprotegerin) and NOS (nitric oxide synthase) activities of the cells were assayed. MiR microarray and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were applied to select and validate differentially expressed miRs, and the target genes of these miRs were then predicted. MC3T3-E1 osteoblasts were stimulated by the mechanical tensile strain, and the miR-29b-3p expression was detected with miR microarray and RT-qPCR. Additionally, the effect of miR-29b-3p on IFG-1 secretion of osteocytes and the influence of conditioned medium of osteocytes transfected with miR-29b-3p on osteoblast differentiation were investigated. Results The mechanical strain increased secretions of IGF-1 and PGE2, elevated OPG expression and NOS activities, and resulted in altered expression of the ten miRs, and possible target genes for these differentially expressed miRs were revealed through bioinformatics. Among the ten miRs, miR-29b-3p were down-regulated, and miR-29b-3p overexpression decreased the IGF-1 secretion of osteocytes. The mechanical strain did not change expression of osteoblasts' miR-29b-3p. In addition, the conditioned medium of mechanically strained osteocytes promoted osteoblast differentiation, and the conditioned medium of osteocytes transfected with miR-29b-3p mimic inhibited osteoblast differentiation. Conclusions In osteocytes (but not osteoblasts), miR-29b-3p was responsive to the mechanical tensile strain and regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically strained osteocytes.
Collapse
Affiliation(s)
- Qiangcheng Zeng
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China
| | - Yang Wang
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China.,3Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Jie Gao
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China.,Medical Department, Secondary Renmin Hospital of Dezhou, Dezhou, 253023 Shangdong China
| | - Zhixiong Yan
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Zhenghua Li
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China
| | - Xianqiong Zou
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Yanan Li
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Jiahui Wang
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Yong Guo
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China.,2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| |
Collapse
|
46
|
Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019; 120:523-532. [PMID: 30296494 DOI: 10.1016/j.bone.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022]
Abstract
Within the last decade epigenetics has emerged as fundamental regulator of numerous cellular processes, including those orchestrating embryonic and fetal development. As such, epigenetic factors play especially crucial roles in endochondral ossification, the process by which bone tissue is created, as well during articular cartilage formation. In this review, we summarize the recent discoveries that characterize how DNA methylation, histone post-translational modifications and non-coding RNA (e.g., miRNA and lcnRNA) epigenetically regulate endochondral ossification and chondrogenesis.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | |
Collapse
|
47
|
Baird DA, Evans DS, Kamanu FK, Gregory JS, Saunders FR, Giuraniuc CV, Barr RJ, Aspden RM, Jenkins D, Kiel DP, Orwoll ES, Cummings SR, Lane NE, Mullin BH, Williams FMK, Richards JB, Wilson SG, Spector TD, Faber BG, Lawlor DA, Grundberg E, Ohlsson C, Pettersson‐Kymmer U, Capellini TD, Richard D, Beck TJ, Evans DM, Paternoster L, Karasik D, Tobias JH. Identification of Novel Loci Associated With Hip Shape: A Meta-Analysis of Genomewide Association Studies. J Bone Miner Res 2019; 34:241-251. [PMID: 30320955 PMCID: PMC6375741 DOI: 10.1002/jbmr.3605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/05/2023]
Abstract
We aimed to report the first genomewide association study (GWAS) meta-analysis of dual-energy X-ray absorptiometry (DXA)-derived hip shape, which is thought to be related to the risk of both hip osteoarthritis and hip fracture. Ten hip shape modes (HSMs) were derived by statistical shape modeling using SHAPE software, from hip DXA scans in the Avon Longitudinal Study of Parents and Children (ALSPAC; adult females), TwinsUK (mixed sex), Framingham Osteoporosis Study (FOS; mixed), Osteoporotic Fractures in Men study (MrOS), and Study of Osteoporotic Fractures (SOF; females) (total N = 15,934). Associations were adjusted for age, sex, and ancestry. Five genomewide significant (p < 5 × 10-9 , adjusted for 10 independent outcomes) single-nucleotide polymorphisms (SNPs) were associated with HSM1, and three SNPs with HSM2. One SNP, in high linkage disequilibrium with rs2158915 associated with HSM1, was associated with HSM5 at genomewide significance. In a look-up of previous GWASs, three of the identified SNPs were associated with hip osteoarthritis, one with hip fracture, and five with height. Seven SNPs were within 200 kb of genes involved in endochondral bone formation, namely SOX9, PTHrP, RUNX1, NKX3-2, FGFR4, DICER1, and HHIP. The SNP adjacent to DICER1 also showed osteoblast cis-regulatory activity of GSC, in which mutations have previously been reported to cause hip dysplasia. For three of the lead SNPs, SNPs in high LD (r2 > 0.5) were identified, which intersected with open chromatin sites as detected by ATAC-seq performed on embryonic mouse proximal femora. In conclusion, we identified eight SNPs independently associated with hip shape, most of which were associated with height and/or mapped close to endochondral bone formation genes, consistent with a contribution of processes involved in limb growth to hip shape and pathological sequelae. These findings raise the possibility that genetic studies of hip shape might help in understanding potential pathways involved in hip osteoarthritis and hip fracture. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Denis A Baird
- Musculoskeletal Research UnitUniversity of BristolBristolUK
| | - Daniel S Evans
- California Pacific Medical Center Research InstituteSan FranciscoCAUSA
| | - Frederick K Kamanu
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
| | | | - Fiona R Saunders
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
| | | | - Rebecca J Barr
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
- MEMO ResearchUniversity of DundeeDundeeUK
| | - Richard M Aspden
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
| | | | - Douglas P Kiel
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardBostonMAUSA
| | - Eric S Orwoll
- School of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Steven R Cummings
- California Pacific Medical Center Research InstituteSan FranciscoCAUSA
| | - Nancy E Lane
- University of California at DavisSacramentoCAUSA
| | - Benjamin H Mullin
- Department of Endocrinology and DiabetesSir Charles Gairdner HospitalNedlandsAustralia
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
| | - Frances MK Williams
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - J Brent Richards
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
- Departments of Medicine, Human Genetics, Epidemiology, and BiostatisticsJewish General HospitalMcGill UniversityMontrealCanada
| | - Scott G Wilson
- Department of Endocrinology and DiabetesSir Charles Gairdner HospitalNedlandsAustralia
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - Tim D Spector
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | | | | | - Elin Grundberg
- Department of Human GeneticsMcGill UniversityMontrealCanada
| | - Claes Ohlsson
- Centre for Bone and Arthritis ResearchInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | | | - Terence D Capellini
- Broad Institute of MIT and HarvardBostonMAUSA
- Human Evolutionary BiologyHarvard UniversityBostonMAUSA
| | | | | | - David M Evans
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- University of Queensland Diamantina InstituteTranslational Research InstituteBrisbaneAustralia
| | | | - David Karasik
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Jonathan H Tobias
- Musculoskeletal Research UnitUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| |
Collapse
|
48
|
MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 2019; 19:6. [PMID: 30646874 PMCID: PMC6334453 DOI: 10.1186/s12896-018-0496-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) reportedly participate in the mesenchymal stem cell (MSC) chondrogenic differentiation regulation. We objected to examine how miR-218 regulate chondrogenic differentiation of synovium-derived MSCs (SDSCs) and the maturation of RCJ3.1C5.1 chondrocytes. SDSCs were sourced from the knee joint synovium of New Zealand white rabbits, and their multilineage differentiation potentials were examined. The level of miR-218 was measured during SDSC chondrogenic differentiation, together with determination of SDSCs chondrogenic markers and RCJ3.1C5.1 chondrocytes maturation markers expression level after transfection of miR-218 mimics/inhibitor. Results miR-218 expression was notably upregulated in early chondrogenesis but mostly ceased during the maturation phases of chondrogenic differentiation in SDSCs. The transfection of miR-218 mimics notably enhanced SDSCs chondrocytes differentiation, as evidenced by augmented expressions of chondrogenic markers (SOX9, COL2A1, ACAN, GAG, and COMP) in terms of mRNA and protein level, and the inhibition of miR-218 yielded opposite resutls. Additionally, miR-218 overexpression substantially suppressed the expression of osteogenic markers (ALP, BSP, COL1A1, OCN and OPN) during the early stage of chondrogenesis while increasing that of chondrogenic markers (SOX9, COL2A1, ACAN, GAG and COMP). However, miR-218 mimics notably suppressed maturation markers (CMP, COL10A1, MMP-13 and VEGF) expression in RCJ3.1C5.18 chondrocytes, and the miR-218 inhibitor promoted the expression of these maturation markers. We proposed miR-218 plays a regulatory role on 15-hydroxyprostaglandin dehydrogenase (HPGD), which plays a key role in chondrogenic differentiation, and this finding indicates that miR-218 directly regulates HPGD expression in SDSCs. Conclusion Our study suggests that miR-218 contributes to early chondrogenesis while suppressing later chondrocyte maturation. The miR-218-HPGD pathway offers us a perspective into how SDSCs differentiate into chondrogenic cells.
Collapse
|
49
|
Aquino-Martinez R, Farr JN, Weivoda MM, Negley BA, Onken JL, Thicke BS, Fulcer MM, Fraser DG, van Wijnen AJ, Khosla S, Monroe DG. miR-219a-5p Regulates Rorβ During Osteoblast Differentiation and in Age-related Bone Loss. J Bone Miner Res 2019; 34:135-144. [PMID: 30321475 PMCID: PMC6450079 DOI: 10.1002/jbmr.3586] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Developing novel approaches to treat skeletal disorders requires an understanding of how critical molecular factors regulate osteoblast differentiation and bone remodeling. We have reported that (1) retinoic acid receptor-related orphan receptor beta (Rorβ) is upregulated in bone samples isolated from aged mice and humans in vivo; (2) Rorβ expression is inhibited during osteoblastic differentiation in vitro; and (3) genetic deletion of Rorβ in mice results in preservation of bone mass during aging. These data establish that Rorβ inhibits osteogenesis and that strict control of Rorβ expression is essential for bone homeostasis. Because microRNAs (miRNAs) are known to play important roles in the regulation of gene expression in bone, we explored whether a predicted subset of nine miRNAs regulates Rorβ expression during both osteoblast differentiation and aging. Mouse osteoblastic cells were differentiated in vitro and assayed for Rorβ and miRNA expression. As Rorβ levels declined with differentiation, the expression of many of these miRNAs, including miR-219a-5p, was increased. We further demonstrated that miR-219a-5p was decreased in bone samples from old (24-month) mice, as compared with young (6-month) mice, concomitant with increased Rorβ expression. Importantly, we also found that miR-219a-5p expression was decreased in aged human bone biopsies compared with young controls, demonstrating that this phenomenon also occurs in aging bone in humans. Inhibition of miR-219a-5p in mouse calvarial osteoblasts led to increased Rorβ expression and decreased alkaline phosphatase expression and activity, whereas a miR-219a-5p mimic decreased Rorβ expression and increased osteogenic activity. Finally, we demonstrated that miR-219a-5p physically interacts with Rorβ mRNA in osteoblasts, defining Rorβ as a true molecular target of miR-219a-5p. Overall, our findings demonstrate that miR-219a-5p is involved in the regulation of Rorβ in both mouse and human bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Megan M Weivoda
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Brittany A Negley
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Onken
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brianne S Thicke
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - McKenzie M Fulcer
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
50
|
miRNA Expression and Interaction with Genes Involved in Susceptibility to Pristane-Induced Arthritis. J Immunol Res 2018; 2018:1928405. [PMID: 30648118 PMCID: PMC6311868 DOI: 10.1155/2018/1928405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022] Open
Abstract
Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.
Collapse
|