1
|
Hu X, Bai X, Tian F, Xing Y, Shi Y, Tong Y, Zhong J. A novel BSL-2 Lassa virus reverse genetics system modelling the complete viral life cycle. Emerg Microbes Infect 2024; 13:2356149. [PMID: 38747061 PMCID: PMC11168227 DOI: 10.1080/22221751.2024.2356149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024]
Abstract
Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral cis-elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins. The resulting defective virions, named LASVmg, can propagate only in the helper cell line, providing a BSL-2 model to study the complete LASV life cycle. Using this model, we found that a previously reported cellular receptor α-dystroglycan is dispensable for LASVmg infection. Furthermore, we showed that ribavirin can inhibit LASVmg infection by inducing viral mutations. This new BSL-2 system should facilitate studying the LASV life cycle and screening antivirals.
Collapse
Affiliation(s)
- Xiaoyou Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xu Bai
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fangling Tian
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yifan Xing
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yi Shi
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Watanabe R, Zyla D, Parekh D, Hong C, Jones Y, Schendel SL, Wan W, Castillon G, Saphire EO. Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography. Cell 2024; 187:5587-5603.e19. [PMID: 39293445 PMCID: PMC11455616 DOI: 10.1016/j.cell.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.
Collapse
Affiliation(s)
- Reika Watanabe
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dawid Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Connor Hong
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ying Jones
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN 37235, USA
| | - Guillaume Castillon
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Gong M, Peng C, Yang C, Wang Z, Qian H, Hu X, Zhou P, Shan C, Ding Q. Genome-wide CRISPR/Cas9 screen identifies SLC39A9 and PIK3C3 as crucial entry factors for Ebola virus infection. PLoS Pathog 2024; 20:e1012444. [PMID: 39173055 PMCID: PMC11341029 DOI: 10.1371/journal.ppat.1012444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Wang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Donnellan FR, Rayaprolu V, Rijal P, O’Dowd V, Parvate A, Callaway H, Hariharan C, Parekh D, Hui S, Shaffer K, Avalos RD, Hastie K, Schimanski L, Müller-Kräuter H, Strecker T, Balaram A, Halfmann P, Saphire EO, Lightwood DJ, Townsend AR, Draper SJ. A broadly-neutralizing antibody against Ebolavirus glycoprotein that potentiates the breadth and neutralization potency of other antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600001. [PMID: 38979279 PMCID: PMC11230233 DOI: 10.1101/2024.06.21.600001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus. Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro. A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 310 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro, 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.
Collapse
Affiliation(s)
- Francesca R. Donnellan
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Vamseedhar Rayaprolu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | - Amar Parvate
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Chemistry & Biochemistry Building, Montana State University, Bozeman, MT 59717, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Dipti Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sean Hui
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current Affiliation: Department of Pathology & Immunology, Washington University School of Medicine. St. Louis MO 63110, USA
| | - Kelly Shaffer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Lisa Schimanski
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Ariane Balaram
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Peter Halfmann
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | | | - Alain R. Townsend
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
5
|
Eisfeld AJ, Anderson LN, Fan S, Walters KB, Halfmann PJ, Westhoff Smith D, Thackray LB, Tan Q, Sims AC, Menachery VD, Schäfer A, Sheahan TP, Cockrell AS, Stratton KG, Webb-Robertson BJM, Kyle JE, Burnum-Johnson KE, Kim YM, Nicora CD, Peralta Z, N'jai AU, Sahr F, van Bakel H, Diamond MS, Baric RS, Metz TO, Smith RD, Kawaoka Y, Waters KM. A compendium of multi-omics data illuminating host responses to lethal human virus infections. Sci Data 2024; 11:328. [PMID: 38565538 PMCID: PMC10987564 DOI: 10.1038/s41597-024-03124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.
Collapse
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Lindsey N Anderson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shufang Fan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Coronavirus and Other Respiratory Viruses Laboratory Branch (CRVLB), Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30329, USA
| | - Kevin B Walters
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Danielle Westhoff Smith
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Qing Tan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Nuclear, Chemistry, and Biosciences Division; National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam S Cockrell
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Solid Biosciences, Charlston, MA, 02139, USA
| | - Kelly G Stratton
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Partillion Bioscience, Los Angeles, CA, 90064, USA
| | - Alhaji U N'jai
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biological Sciences, Fourah Bay College, Freetown, Sierra Leone
- Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Department of Medical Education, California University of Science and Medicine, Colton, CA, 92324, USA
| | - Foday Sahr
- Department of Microbiology, College of Medicine and Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 108-8639, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 108-8639, Japan
| | - Katrina M Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
6
|
Saphire E, Salie ZL, Ke Z, Halfmann P, DeWald LE, McArdle S, Grinyo A, Davidson E, Schendel S, Hariharan C, Norris M, Yu X, Chennareddy C, Xiong X, Heinrich M, Holbrook M, Doranz B, Crozier I, Hastie K, Kawaoka Y, Branco L, Kuhn J, Briggs J, Worwa G, Davis C, Ahmed R. Anti-Ebola virus mAb 3A6 with unprecedented potency protects highly viremic animals from fatal outcome and physically lifts its glycoprotein target from the virion membrane. RESEARCH SQUARE 2023:rs.3.rs-3722563. [PMID: 38196595 PMCID: PMC10775387 DOI: 10.21203/rs.3.rs-3722563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Moreover, their in vivo efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP1,2 MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP1,2 that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | | | - Michael Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health (NIH)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gil J, Paulson J, Zahn H, Brown M, Nguyen MM, Erickson S. Development of a Replication-Deficient Bacteriophage Reporter Lacking an Essential Baseplate Wedge Subunit. Viruses 2023; 16:8. [PMID: 38275943 PMCID: PMC10821221 DOI: 10.3390/v16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Engineered bacteriophages (phages) can be effective diagnostic reporters for detecting a variety of bacterial pathogens. Although a promising biotechnology, the large-scale use of these reporters may result in the unintentional release of genetically modified viruses. In order to limit the potential environmental impact, the ability of these phages to propagate outside the laboratory was targeted. The phage SEA1 has been previously engineered to facilitate food safety as an accurate and sensitive reporter for Salmonella contamination. In this study, homologous recombination was used to replace the expression of an essential baseplate wedge subunit (gp141) in SEA1 with a luciferase, NanoLuc®. This reporter, referred to as SEA1Δgp141.NL, demonstrated a loss of plaque formation and a failure to increase in titer following infection of Salmonella. SEA1Δgp141.NL was thus incapable of producing infectious progeny in the absence of gp141. In contrast, production of high titer stocks was possible when gp141 was artificially supplied in trans during infection. As a reporter, SEA1Δgp141.NL facilitated rapid, sensitive, and robust detection of Salmonella despite an inability to replicate. These results suggest that replication-deficient reporter phages are an effective method to obtain improved containment without sacrificing significant performance or the ease of production associated with many phage-based diagnostic methods.
Collapse
Affiliation(s)
- Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA 90062, USA;
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Henriett Zahn
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC 27215, USA;
| | - Minh M. Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA; (J.P.); (H.Z.); (M.M.N.)
| |
Collapse
|
8
|
Kuroda M, Halfmann PJ, Thackray LB, Diamond MS, Feldmann H, Marzi A, Kawaoka Y. An Antiviral Role for TRIM14 in Ebola Virus Infection. J Infect Dis 2023; 228:S514-S521. [PMID: 37562033 PMCID: PMC10651195 DOI: 10.1093/infdis/jiad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus that encodes 7 multifunctional structural proteins. Multiple host factors have been reported to interact with the EBOV proteins. Here, we found that tripartite motif-containing 14 (TRIM14), an interferon-stimulated gene that mediates cellular signaling pathways associated with type I interferon and inflammatory cytokine production, interacts with EBOV nucleoprotein to enhance interferon-β (IFN-β) and nuclear factor-κB (NF-κB) promotor activation. Moreover, TRIM14 overexpression reduced viral replication in an infectious but biologically contained EBOVΔVP30 system by approximately 10-fold without affecting viral protein expression. Furthermore, TRM14-deficient mice were more susceptible to mouse-adapted EBOV infection than wild-type mice. Our data suggest that TRIM14 is a host factor with anti-EBOV activity that limits EBOV pathogenesis.
Collapse
Affiliation(s)
- Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Kuroda M, Halfmann PJ, Kawaoka Y. Ebola Virus Infection Induces HCAR2 Expression Leading to Cell Death. J Infect Dis 2023; 228:S508-S513. [PMID: 37578011 PMCID: PMC10651187 DOI: 10.1093/infdis/jiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Ebola virus (EBOV) induces cell death not only in infected permissive cells but also in nonpermissive, bystander cells by employing different mechanisms. Hydroxycarboxylic acid receptor 2 (HCAR2) has been reported to be involved in apoptotic cell death. We previously reported an increase in the expression of HCAR2-specific mRNA in EBOV-infected individuals with fatal outcomes. Here, we report that infection with an EBOV lacking the VP30 gene (EBOVΔVP30) results in the upregulation of HCAR2 mRNA expression in human hepatocyte Huh7.0 cells stably expressing VP30. Transient overexpression of HCAR2 reduced the viability of Huh7.0 cells and human embryonic kidney cells. Phosphatidylserine externalization and cell membrane permeabilization by HCAR2 overexpression was also observed. Interestingly, coexpression of HCAR2 with EBOV VP40 further reduced cell viability in transfected cells compared to HCAR2 coexpression with other viral proteins. Our data suggest that HCAR2 may contribute to EBOV-induced cell death.
Collapse
Affiliation(s)
- Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection, and Advanced Research Center, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Aguilar-Briseño JA, Elliff JM, Patten JJ, Wilson LR, Davey RA, Bailey AL, Maury WJ. Effect of Interferon Gamma on Ebola Virus Infection of Primary Kupffer Cells and a Kupffer Cell Line. Viruses 2023; 15:2077. [PMID: 37896854 PMCID: PMC10611415 DOI: 10.3390/v15102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Ebola virus disease (EVD) represents a global health threat. The etiological agents of EVD are six species of Orthoebolaviruses, with Orthoebolavirus zairense (EBOV) having the greatest public health and medical significance. EVD pathogenesis occurs as a result of broad cellular tropism of the virus, robust viral replication and a potent and dysregulated production of cytokines. In vivo, tissue macrophages are some of the earliest cells infected and contribute significantly to virus load and cytokine production. While EBOV is known to infect macrophages and to generate high titer virus in the liver, EBOV infection of liver macrophages, Kupffer cells, has not previously been examined in tissue culture or experimentally manipulated in vivo. Here, we employed primary murine Kupffer cells (KC) and an immortalized murine Kupffer cell line (ImKC) to assess EBOV-eGFP replication in liver macrophages. KCs and ImKCs were highly permissive for EBOV infection and IFN-γ polarization of these cells suppressed their permissiveness to infection. The kinetics of IFN-γ-elicited antiviral responses were examined using a biologically contained model of EBOV infection termed EBOV ΔVP30. The antiviral activity of IFN-γ was transient, but a modest ~3-fold reduction of infection persisted for as long as 6 days post-treatment. To assess the interferon-stimulated gene products (ISGs) responsible for protection, the efficacy of secreted ISGs induced by IFN-γ was evaluated and secreted ISGs failed to block EBOV ΔVP30. Our studies define new cellular tools for the study of EBOV infection that can potentially aid the development of new antiviral therapies. Furthermore, our data underscore the importance of macrophages in EVD pathogenesis and those IFN-γ-elicited ISGs that help to control EBOV infection.
Collapse
Affiliation(s)
| | - Jonah M. Elliff
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Justin J. Patten
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA; (J.J.P.); (R.A.D.)
| | - Lindsay R. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (L.R.W.); (A.L.B.)
| | - Robert A. Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA; (J.J.P.); (R.A.D.)
| | - Adam L. Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (L.R.W.); (A.L.B.)
| | - Wendy J. Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
12
|
Fang J, Castillon G, Phan S, McArdle S, Hariharan C, Adams A, Ellisman MH, Deniz AA, Saphire EO. Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories. Nat Commun 2023; 14:4159. [PMID: 37443171 PMCID: PMC10345124 DOI: 10.1038/s41467-023-39821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Scripps Research, La Jolla, CA, USA
| | - Guillaume Castillon
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Aiyana Adams
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
13
|
Malik S, Kishore S, Nag S, Dhasmana A, Preetam S, Mitra O, León-Figueroa DA, Mohanty A, Chattu VK, Assefi M, Padhi BK, Sah R. Ebola Virus Disease Vaccines: Development, Current Perspectives & Challenges. Vaccines (Basel) 2023; 11:vaccines11020268. [PMID: 36851146 PMCID: PMC9963029 DOI: 10.3390/vaccines11020268] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The global outgoing outbreaks of Ebola virus disease (EVD) in different regions of Sudan, Uganda, and Western Africa have brought into focus the inadequacies and restrictions of pre-designed vaccines for use in the battle against EVD, which has affirmed the urgent need for the development of a systematic protocol to produce Ebola vaccines prior to an outbreak. There are several vaccines available being developed by preclinical trials and human-based clinical trials. The group of vaccines includes virus-like particle-based vaccines, DNA-based vaccines, whole virus recombinant vaccines, incompetent replication originated vaccines, and competent replication vaccines. The limitations and challenges faced in the development of Ebola vaccines are the selection of immunogenic, rapid-responsive, cross-protective immunity-based vaccinations with assurances of prolonged protection. Another issue for the manufacturing and distribution of vaccines involves post authorization, licensing, and surveillance to ensure a vaccine's efficacy towards combating the Ebola outbreak. The current review focuses on the development process, the current perspective on the development of an Ebola vaccine, and future challenges for combatting future emerging Ebola infectious disease.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
- Correspondence: (S.M.); (R.S.); Tel.: +977-980-309-8857 (R.S.)
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248140, Uttarakhand, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Oishi Mitra
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | | | - Aroop Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur 273008, Uttar Pradesh, India
| | - Vijay Kumar Chattu
- Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha 442107, Maharashtra, India
| | - Marjan Assefi
- Joint School of NanoScience and Nano Engineering, University of North Carolina, Greensboro, NC 27402-6170, USA
| | - Bijaya K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Punjab, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y.Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Correspondence: (S.M.); (R.S.); Tel.: +977-980-309-8857 (R.S.)
| |
Collapse
|
14
|
Tong XK, Li H, Yang L, Xie SZ, Xie S, Gong Y, Peng C, Gao XX, Shi ZL, Yang XL, Zuo JP. Multiplication of defective Ebola virus in a complementary permissive cell line. Antiviral Res 2023; 209:105491. [PMID: 36526073 DOI: 10.1016/j.antiviral.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.
Collapse
Affiliation(s)
- Xian-Kun Tong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Heng Li
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Zhe Xie
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Xie
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Gong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Vanmechelen B, Stroobants J, Chiu W, Naesens L, Schepers J, Vermeire K, Maes P. Development and optimization of biologically contained Marburg virus for high-throughput antiviral screening. Antiviral Res 2022; 207:105426. [DOI: 10.1016/j.antiviral.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
16
|
Vanmechelen B, Stroobants J, Chiu W, Schepers J, Marchand A, Chaltin P, Vermeire K, Maes P. Identification of novel Ebola virus inhibitors using biologically contained virus. Antiviral Res 2022; 200:105294. [PMID: 35337896 DOI: 10.1016/j.antiviral.2022.105294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Joren Stroobants
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Joost Schepers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.
| |
Collapse
|
17
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|
18
|
Milligan JC, Davis CW, Yu X, Ilinykh PA, Huang K, Halfmann PJ, Cross RW, Borisevich V, Agans KN, Geisbert JB, Chennareddy C, Goff AJ, Piper AE, Hui S, Shaffer KCL, Buck T, Heinrich ML, Branco LM, Crozier I, Holbrook MR, Kuhn JH, Kawaoka Y, Glass PJ, Bukreyev A, Geisbert TW, Worwa G, Ahmed R, Saphire EO. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 2022; 185:995-1007.e18. [PMID: 35303429 PMCID: PMC10204903 DOI: 10.1016/j.cell.2022.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.
Collapse
Affiliation(s)
- Jacob C Milligan
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Arthur J Goff
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kelly C L Shaffer
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA; Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pamela J Glass
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 2022; 32:9-23. [PMID: 34737357 PMCID: PMC8566969 DOI: 10.1038/s41422-021-00581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.
Collapse
|
20
|
Ebola Virus Disease, Diagnostics and Therapeutics: Where is the Consensus in Over Three Decades of Clinical Research? SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Gong M, Yang Y, Huang Y, Gan T, Wu Y, Gao H, Li Q, Nie J, Huang W, Wang Y, Zhang R, Zhong J, Deng F, Rao Y, Ding Q. Novel quinolone derivatives targeting human dihydroorotate dehydrogenase suppress Ebola virus infection in vitro. Antiviral Res 2021; 194:105161. [PMID: 34391783 DOI: 10.1016/j.antiviral.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 outbreak in West Africa. Currently, no effective antiviral treatments have been approved for clinical use. Compound 1 RYL-634 is a quinolone-derived compound that can inhibit dihydroorotate dehydrogenase, a rate-limiting enzyme in the de novo pyrimidine synthesis pathway and it exhibited antiviral activity against multiple RNA virus infection. In this study, we evaluated the efficacy of a panel of newly developed compounds based on RYL-634 against EBOV infection. Our data showed that RYL-634 as well as its derivatives are effective against EBOV transcription- and replication-competent virus-like particle (trVLP) infection and authentic EBOV infection in vitro at low nanomolar IC50 values and relatively high CC50. Of note, the new derivative RYL-687 had the lowest IC50 at approximately 7 nM and was almost 6 times more potent than remdesivir (GS-5734). Exogenous addition of different metabolites in the pyrimidine de novo synthesis pathway confirmed DHODH as the target of RYL-687. These data provide evidence that such quinolone-derived compounds are promising therapeutic candidates against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yi Huang
- Wuhan National Biosafety Laboratory, Chinese Academy of Science, Wuhan, 43007, China
| | - Tianyu Gan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongying Gao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, 102629, China
| | - Rong Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of BasicMedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yu Rao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Batra J, Mori H, Small GI, Anantpadma M, Shtanko O, Mishra N, Zhang M, Liu D, Williams CG, Biedenkopf N, Becker S, Gross ML, Leung DW, Davey RA, Amarasinghe GK, Krogan NJ, Basler CF. Non-canonical proline-tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO J 2021; 40:e105658. [PMID: 34260076 DOI: 10.15252/embj.2020105658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.
Collapse
Affiliation(s)
- Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Hiroyuki Mori
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gabriel I Small
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Manu Anantpadma
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mengru Zhang
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dandan Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Michael L Gross
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Davey
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Bailey AL, Farnsworth C. Inactivation of Blood-Borne Enveloped Viruses with the Nonionic Detergent 2-[4-(2,4,4-Trimethylpentan-2-yl)Phenoxy]Ethanol Does Not Bias Clinical Chemistry Results. J Appl Lab Med 2021; 6:1123-1132. [PMID: 33993264 DOI: 10.1093/jalm/jfab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Patients infected with virulent pathogens require the sophisticated diagnostic capabilities of a core laboratory for optimal care. This is especially true in outbreaks that strain healthcare system capacity. However, samples from such patients pose an infection risk for laboratory workers. We evaluated a strategy for mitigating this risk by preincubating specimens with 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol, a non-ionic detergent commonly calledTriton X-100. METHODS Lithium-heparinized plasma was mixed with the detergent Triton X-100 at 1%. Inactivation of Ebola virus (EBOV), yellow fever virus (YFV), and chikungunya virus (CHIKV) was assessed using a virus-outgrowth assay. The impact of 1% Triton X-100 dilution on the components of a complete metabolic panel (CMP) was assessed on a Roche Cobas analyzer with 15 specimens that spanned a large portion of the analytical measurement range. RESULTS Incubation with 1% Triton X-100 for 5 min was sufficient to completely inactivate EBOV and YFV spiked into plasma but did not completely inactivate CHIKV infectivity even after 60 min of incubation. This was true only for CHIKV when spiked into plasma; CHIKV was completely inactivated in cell culture medium. A bias of -0.78 mmol/L (95% CI, -2.41 to 0.85) was observed for CO2 and 5.79 U/L (95% CI, -0.05 to 11.63) was observed for aspartate aminotransferase after addition of Triton X-100. No other components of the CMP were affected by the addition of Triton X-100. CONCLUSIONS Detergent-based inactivation of plasma specimens may be a viable approach to mitigating the risk that certain blood-borne pathogens pose to laboratory workers in an outbreak setting. However, the effectiveness of this method for inactivation may depend on the specimen type and pathogen in question.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Abstract
Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in West Africa have revealed the lack of investigation on this notorious virus. Ebola virus (EBOV) is a highly pathogenic negative-stranded RNA virus that has caused several deadly endemics in the past decades. EBOV reverse genetics systems are available for studying live viruses under biosafety level 4 (BSL-4) or subviral particles under BSL-2 conditions. However, these systems all require cotransfection of multiple plasmids expressing viral genome and viral proteins essential for EBOV replication, which is technically challenging and unable to naturally mimic virus propagation using the subviral particle. Here, we established a new EBOV reverse genetics system only requiring transfection of a single viral RNA genome into an engineered cell line that stably expresses viral nucleoprotein (NP), viral protein 35 (VP35), VP30, and large (L) proteins and has been fine-tuned for its superior permissiveness for EBOV replication. Using this system, subviral particles expressing viral VP40, glycoprotein (GP), and VP24 could be produced and continuously propagated and eventually infect the entire cell population. We demonstrated the authentic response of the subviral system to antivirals and uncovered that the VP35 amount is critical for optimal virus replication. Furthermore, we showed that fully infectious virions can be efficiently rescued by delivering the full-length EBOV genome into the same supporting cell, and the efficiency is not affected by genome polarity or virus variant specificity. In summary, our work provides a new tool for studying EBOV under different biosafety levels. IMPORTANCE Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in Africa have revealed the lack of investigation on this notorious virus. A reverse genetics system is an important tool for studying viruses by producing mutant viruses or generating safer and convenient model systems. Here, we developed an EBOV life cycle modeling system in which subviral particles can spontaneously propagate in cell culture. In addition, this system can be employed to rescue infectious virions of homologous or heterologous EBOV isolates using either sense or antisense viral RNA genomes. In summary, we developed a new tool for EBOV research.
Collapse
|
25
|
Bamford CGG. Two courses of deconstructed coronavirus please. PLoS Pathog 2021; 17:e1009547. [PMID: 33914844 PMCID: PMC8084222 DOI: 10.1371/journal.ppat.1009547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Connor G. G. Bamford
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
27
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
28
|
Kuroda M, Halfmann P, Kawaoka Y. HER2-mediated enhancement of Ebola virus entry. PLoS Pathog 2020; 16:e1008900. [PMID: 33052961 PMCID: PMC7556532 DOI: 10.1371/journal.ppat.1008900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple cell surface molecules including TAM receptors (TYRO3, AXL, and MERTK), a family of tyrosine kinase receptors, can serve as attachment receptors for Ebola virus (EBOV) entry into cells. The interaction of these receptors with EBOV particles is believed to trigger the initial internalization events that lead to macropinocytosis. However, the details of how these interactions lead to EBOV internalization have yet to be elucidated. Here, we screened receptor tyrosine kinase (RTK) inhibitors for anti-EBOV activity by using our previously established biologically contained Ebola virus that lacks the VP30 gene (EBOVΔVP30) and identified several RTKs, including human epidermal growth factor receptor 2 (HER2), as potential targets of anti-EBOV inhibitors and as novel host factors that have a role in EBOV infection. Of these identified RTKs, it was only HER2 whose knockdown by siRNAs impaired EBOVΔVP30-induced AKT1 phosphorylation, an event that is required for AKT1 activation and subsequent macropinocytosis. Stable expression of HER2 resulted in constitutive activation of AKT1, resulting in the enhancement of EBOVΔVP30 growth, EBOV GP-mediated entry, and macropinocytosis. Moreover, we found that HER2 interacts with the TAM receptors, and in particular forms a complex with TYRO3 and EBOVΔVP30 particles on the cell surface. Interestingly, HER2 was required for EBOVΔVP30-induced TYRO3 and AKT1 activation, but the other TAM receptors (TYRO3 and MERTK) were not essential for EBOVΔVP30-induced HER2 and AKT1 activation. Our findings demonstrate that HER2 plays an important role in EBOV entry and provide novel insights for the development of therapeutics against the virus.
Collapse
Affiliation(s)
- Makoto Kuroda
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
30
|
Application of a Biologically Contained Reporter System To Study Gain-of-Function H5N1 Influenza A Viruses with Pandemic Potential. mSphere 2020; 5:5/4/e00423-20. [PMID: 32848003 PMCID: PMC7449622 DOI: 10.1128/msphere.00423-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding how animal influenza viruses can adapt to spread in humans is critical to prepare for, and prevent, new pandemics. However, working safely with pathogens that have pandemic potential requires tight regulation and the use of high-level physical and biological risk mitigation strategies to stop accidental loss of containment. Here, we used a biological containment system for influenza viruses to study strains with pandemic potential. The system relies on deletion of the essential HA gene from the viral genome and its provision by a genetically modified cell line, to which virus propagation is therefore restricted. We show that this method permits safe handling of these pathogens, including gain-of-function variants, without the risk of generating fully infectious viruses. Furthermore, we demonstrate that this system can be used to assess virus sensitivity to both approved and experimental drugs, as well as the antigenic profile of viruses, important considerations for evaluating prepandemic vaccine and antiviral strategies. Natural adaptation of an antigenically novel avian influenza A virus (IAV) to be transmitted efficiently in humans has the potential to trigger a devastating pandemic. Understanding viral genetic determinants underlying adaptation is therefore critical for pandemic preparedness, as the knowledge gained enhances surveillance and eradication efforts, prepandemic vaccine design, and efficacy assessment of antivirals. However, this work has risks, as making gain-of-function substitutions in fully infectious IAVs may create a pathogen with pandemic potential. Thus, such experiments must be tightly controlled through physical and biological risk mitigation strategies. Here, we applied a previously described biological containment system for IAVs to a 2009 pandemic H1N1 strain and a highly pathogenic H5N1 strain. The system relies on deletion of the essential viral hemagglutinin (HA) gene, which is instead provided in trans, thereby restricting multicycle virus replication to genetically modified HA-complementing cells. In place of HA, a Renilla luciferase gene is inserted within the viral genome, and a live-cell luciferase substrate allows real-time quantitative monitoring of viral replication kinetics with a high dynamic range. We demonstrate that biologically contained IAV-like particles exhibit wild-type sensitivities to approved antivirals, including oseltamivir, zanamivir, and baloxavir. Furthermore, the inability of these IAV-like particles to genetically acquire the host-encoded HA allowed us to introduce gain-of-function substitutions in the H5 HA gene that promote mammalian transmissibility. Biologically contained “transmissible” H5N1 IAV-like particles exhibited wild-type sensitivities to approved antivirals, to the fusion inhibitor S20, and to neutralization by existing H5 monoclonal and polyclonal sera. This work represents a proof of principle that biologically contained IAV systems can be used to safely conduct selected gain-of-function experiments. IMPORTANCE Understanding how animal influenza viruses can adapt to spread in humans is critical to prepare for, and prevent, new pandemics. However, working safely with pathogens that have pandemic potential requires tight regulation and the use of high-level physical and biological risk mitigation strategies to stop accidental loss of containment. Here, we used a biological containment system for influenza viruses to study strains with pandemic potential. The system relies on deletion of the essential HA gene from the viral genome and its provision by a genetically modified cell line, to which virus propagation is therefore restricted. We show that this method permits safe handling of these pathogens, including gain-of-function variants, without the risk of generating fully infectious viruses. Furthermore, we demonstrate that this system can be used to assess virus sensitivity to both approved and experimental drugs, as well as the antigenic profile of viruses, important considerations for evaluating prepandemic vaccine and antiviral strategies.
Collapse
|
31
|
Alfano R, Pennybaker A, Halfmann P, Huang CYH. Formulation and production of a blood-free and chemically defined virus production media for VERO cells. Biotechnol Bioeng 2020; 117:3277-3285. [PMID: 32648943 PMCID: PMC7689730 DOI: 10.1002/bit.27486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Vaccines provide effective protection against many infectious diseases as well as therapeutics for select pathologies, such as cancer. Many viral vaccines require amplification of virus in cell cultures during manufacture. Traditionally, cell cultures, such as VERO, have been used for virus production in bovine serum-containing culture media. However, due to concerns of potential adventitious agents present in fetal bovine serum (FBS), regulatory agencies suggest avoiding the use of bovine serum in vaccine production. Current serum-free media suitable for VERO-based virus production contains high concentrations of undefined plant hydrolysates. Although these media have been extensively used, the lack of chemical definition has the potential to adversely affect cell growth kinetics and subsequent virus production. As plant hydrolysates are made from plant raw materials, performance variations could be significant among different lots of production. We developed a chemically defined, serum-free medium, OptiVERO, which was optimized specifically for VERO cells. VERO cell growth kinetics were demonstrated to be equivalent to EMEM-10% FBS in this chemically defined medium while the plant hydrolysate-containing medium demonstrated a slower doubling time in both two-dimensional (2D) and 3D cultures. Virus production comparisons demonstrated that the chemically defined OptiVERO medium performed at least as good as the EMEM-10%FBS and better than the plant hydrolysate-containing media. We report the success in using recombinant proteins to replace undefined plant hydrolysates to formulate a chemically defined medium that can efficiently support VERO cell expansion and virus production.
Collapse
Affiliation(s)
- Randall Alfano
- InVitria, Junction City, Kansas.,Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Peter Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Claire Y-H Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
32
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
33
|
Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nat Commun 2020; 11:2953. [PMID: 32528005 PMCID: PMC7289892 DOI: 10.1038/s41467-020-16768-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
The West Africa Ebola outbreak was the largest outbreak ever recorded, with over 28,000 reported infections; this devastating epidemic emphasized the need to understand the mechanisms to counteract virus infection. Here, we screen a library of nearly 400 interferon-stimulated genes (ISGs) against a biologically contained Ebola virus and identify several ISGs not previously known to affect Ebola virus infection. Overexpression of the top ten ISGs attenuates virus titers by up to 1000-fold. Mechanistic studies demonstrate that three ISGs interfere with virus entry, six affect viral transcription/replication, and two inhibit virion formation and budding. A comprehensive study of one ISG (CCDC92) that shows anti-Ebola activity in our screen reveals that CCDC92 can inhibit viral transcription and the formation of complete virions via an interaction with the viral protein NP. Our findings provide insights into Ebola virus infection that could be exploited for the development of therapeutics against this virus. Here, Kuroda et al. screen a library of nearly 400 interferon-stimulated genes (ISGs) and identify several ISGs that inhibit Ebola virus entry, viral transcription/replication, or virion formation. The study provides insights into interactions between Ebola and the host cells.
Collapse
|
34
|
O'Donnell K, Marzi A. The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Rev Vaccines 2020; 19:267-277. [PMID: 32129120 DOI: 10.1080/14760584.2020.1738225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: For over 40 years, ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates across western and central Africa. In December 2013, an unprecedented Ebola virus (EBOV) epidemic began in West Africa and resulted in the largest outbreak to date. The past and current epidemics in West Africa and the Democratic Republic of the Congo has focused attention on the potential vaccine platforms developed over the past 20 years.Areas covered: This review summarizes the extraordinary progress using a variety of vaccination platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, incorporating the primary antigen of EBOV, the glycoprotein. These vaccine constructs have shown varying degrees of protective efficacy in the 'gold-standard' nonhuman primate model for EBOV infections and were immunogenic in human clinical trials.Expert commentary: A number of these vaccine platforms have moved into phase III clinical trials over the past years and with the recent approval of the first EBOV vaccine in the European Union and the USA there is a strong potential to prevent future outbreaks/epidemics of EBOV infections on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Kyle O'Donnell
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
35
|
Zivcec M, Spiropoulou CF, Spengler JR. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 2: Vaccine efficacy studies. Antiviral Res 2020; 174:104702. [PMID: 31982149 DOI: 10.1016/j.antiviral.2019.104702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
For more than 20 years, researchers have used laboratory mice lacking type I or both type I and II interferon (IFN) responses to study high-containment viruses that cause hemorrhagic fevers (HF) in humans. With the exception of Rift Valley fever virus, agents that cause viral HF in humans, such as Ebola and Lassa virus, do not cause disease in mature immunocompetent mice. In contrast, IFN-deficient mice typically develop severe or fatal disease when inoculated with these agents. The sensitivity of IFN-deficient mice to disease has led to their widespread use in biocontainment laboratories to assess the efficacy of novel vaccines against HF viruses, often without considering whether adaptive immune responses in IFN-deficient mice accurately mirror those in immunocompetent humans. Failure to recognize these questions may lead to inappropriate expectations of the predictive value of mouse experiments. In two invited articles, we investigate these questions. The present article reviews the use of IFN-deficient mice for assessing novel vaccines against HF viruses, including Ebola, Lassa, Crimean-Congo hemorrhagic fever and Rift Valley fever viruses. A companion paper examines the general question of how the lack of IFN signaling may affect adaptive immune responses and the outcome of vaccine studies in mice.
Collapse
Affiliation(s)
- Marko Zivcec
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
36
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
37
|
Halfmann P, Hill-Batorski L, Kawaoka Y. The Induction of IL-1β Secretion Through the NLRP3 Inflammasome During Ebola Virus Infection. J Infect Dis 2019; 218:S504-S507. [PMID: 30060221 DOI: 10.1093/infdis/jiy433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The inflammasome is part of the innate immune system that regulates the secretion of proinflammatory cytokines such as interleukin-1β (IL-1β). Ebola virus (EBOV) infection of monocytes and macrophages (primary target cells early during infection) leads to the production of proinflammatory cytokines; however, the mechanism behind the activation and release of these cytokines is not fully understood. Here, we demonstrate that EBOV infection leads to the activation of the NLRP3 inflammasome and the subsequent secretion of IL-1β and IL-18. This process is dependent on protease caspase-1, a component of the NLRP3 inflammasome complex, but is independent of virus replication. These findings may lead to the development of novel drugs that impede the pathogenesis of EBOV infection.
Collapse
Affiliation(s)
- Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison
| | - Lindsay Hill-Batorski
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison.,Department of Microbiology and Immunology, Division of Virology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
38
|
Halfmann PJ, Eisfeld AJ, Watanabe T, Maemura T, Yamashita M, Fukuyama S, Armbrust T, Rozich I, N’jai A, Neumann G, Kawaoka Y, Sahr F. Serological analysis of Ebola virus survivors and close contacts in Sierra Leone: A cross-sectional study. PLoS Negl Trop Dis 2019; 13:e0007654. [PMID: 31369554 PMCID: PMC6692041 DOI: 10.1371/journal.pntd.0007654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/13/2019] [Accepted: 07/23/2019] [Indexed: 11/18/2022] Open
Abstract
The 2013–2016 Ebola virus outbreak in West Africa was the largest and deadliest outbreak to date. Here we conducted a serological study to examine the antibody levels in survivors and the seroconversion in close contacts who took care of Ebola-infected individuals, but did not develop symptoms of Ebola virus disease. In March 2017, we collected blood samples from 481 individuals in Makeni, Sierra Leone: 214 survivors and 267 close contacts. Using commercial, quantitative ELISAs, we tested the plasma for IgG-specific antibodies against three major viral antigens: GP, the only viral glycoprotein expressed on the virus surface; NP, the most abundant viral protein; and VP40, a major structural protein of Zaire ebolavirus. We also determined neutralizing antibody titers. In the cohort of Ebola survivors, 97.7% of samples (209/214) had measurable antibody levels against GP, NP, and/or VP40. Of these positive samples, all but one had measurable neutralizing antibody titers against Ebola virus. For the close contacts, up to 12.7% (34/267) may have experienced a subclinical virus infection as indicated by detectable antibodies against GP. Further investigation is warranted to determine whether these close contacts truly experienced subclinical infections and whether these asymptomatic infections played a role in the dynamics of transmission. As the causative agent of an often lethal hemorrhagic fever disease in humans and nonhuman primates, Zaire ebolavirus typically causes high fever, severe diarrhea, and vomiting which results in case fatality rates as high as 90%. The 2013–2016 outbreak in West Africa was the largest and most devastating Ebola outbreak to date resulting in over 28,600 identified human cases and 11,300 deaths. Though our knowledge of virus transmission is incomplete, we do know that transmission occurs through direct contact with virus-contaminated body fluids (blood, secretions, or other body fluids), materials such as bedding contaminated with these fluids, and through the handling and preparation of contaminated food. Asymptomatic Ebola virus infections that result in seroconversion in the absence of disease symptoms have been observed both in humans and experimentally in animal models. In the present serology study, we determined a majority of Ebola survivors in our cohort had measurable antibody levels against at least one viral antigen, as expected. In our cohort of close contacts, relatives and health care workers who took care of Ebola-infected individuals during the outbreak, we observed a rate of seroprevalence of 12.7% as indicated by detectable GP antibody levels. Given that Ebola virus is typically associated with a highly lethal disease in humans, it is of great interest to determine the host-virus interactions and transmission dynamics associated with asymptomatic cases.
Collapse
Affiliation(s)
- Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (PJH); (YK)
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tokiko Watanabe
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | | | - Tammy Armbrust
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Isaiah Rozich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alhaji N’jai
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Biological Sciences, Fourah Bay College, University of Sierra Leone, Freetown, Sierra Leone
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (PJH); (YK)
| | - Foday Sahr
- 34 Regimental Military Hospital at Wilberforce, Freetown, Sierra Leone
| |
Collapse
|
39
|
Davis CW, Jackson KJL, McElroy AK, Halfmann P, Huang J, Chennareddy C, Piper AE, Leung Y, Albariño CG, Crozier I, Ellebedy AH, Sidney J, Sette A, Yu T, Nielsen SCA, Goff AJ, Spiropoulou CF, Saphire EO, Cavet G, Kawaoka Y, Mehta AK, Glass PJ, Boyd SD, Ahmed R. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell 2019; 177:1566-1582.e17. [PMID: 31104840 PMCID: PMC6908968 DOI: 10.1016/j.cell.2019.04.036] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity. Ebola virus infection causes massive recruitment of naive B cells Virus-specific antibodies continue to class-switch and mutate for months after acute infection Protective antibodies can be neutralizing or non-neutralizing and can appear early Convergent, protective antibody rearrangements are seen in multiple donors
Collapse
Affiliation(s)
- Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katherine J L Jackson
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anita K McElroy
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Pediatric Infectious Disease, Emory University, Atlanta, GA, USA; Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Jessica Huang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | | | - César G Albariño
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institutes, Frederick, MD, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Division of Immunobiology, Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Arthur J Goff
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erica Ollman Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA; Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Aneesh K Mehta
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Zhang Q, Li N, Deng C, Zhang Z, Li X, Yoshii K, Ye H, Zhang B. Trans Complementation of Replication-defective Omsk Hemorrhagic Fever Virus for Antiviral Study. Virol Sin 2019; 34:412-422. [PMID: 30949960 DOI: 10.1007/s12250-019-00109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022] Open
Abstract
Omsk hemorrhagic fever virus (OHFV) is a tick-borne flavivirus classified as a biosafety level-4 (BSL4) pathogen. Studies of OHFV are restricted to be conducted within BSL4 laboratories. Currently, no commercial vaccines or antiviral drugs are available against OHFV infection. In this study, we recovered a replication-deficient OHFV with an NS1 deletion (OHFV-ΔNS1) and reporter virus replacing NS1 with the Gaussia luciferase (Gluc) (OHFV-ΔNS1-Gluc). Both the defective OHFV-ΔNS1 and OHFV-ΔNS1-Gluc virus could only replicate efficiently in the BHK21 cell line expressing NS1 (BHK21NS1) but not in naïve BHK21 cells. The Gluc reporter gene of OHFV-ΔNS1-Gluc virus was maintained stably after serial passaging of BHK21NS1 cells and was used to surrogate the replication of OHFV. Using NITD008, OHFV-ΔNS1-Gluc virus was validated for antiviral screening, and high-throughput screening parameters were optimized in a 96-well plate format with a calculated Z' value above 0.5. The OHFV-ΔNS1-Gluc reporter virus is a powerful tool for antiviral screening as well as viral replication and pathogenesis studies in BSL2 laboratories.
Collapse
Affiliation(s)
- Qiuyan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglin Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zherui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Hanqing Ye
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
41
|
Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. J Virol 2019; 93:JVI.01439-18. [PMID: 30728263 DOI: 10.1128/jvi.01439-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates.IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.
Collapse
|
42
|
Saphire EO, Schendel SL, Gunn BM, Milligan JC, Alter G. Antibody-mediated protection against Ebola virus. Nat Immunol 2018; 19:1169-1178. [PMID: 30333617 DOI: 10.1038/s41590-018-0233-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023]
Abstract
Recent Ebola virus disease epidemics have highlighted the need for effective vaccines and therapeutics to prevent future outbreaks. Antibodies are clearly critical for control of this deadly disease; however, the specific mechanisms of action of protective antibodies have yet to be defined. In this Perspective we discuss the antibody features that correlate with in vivo protection during infection with Ebola virus, based on the results of a systematic and comprehensive study of antibodies directed against this virus. Although neutralization activity mediated by the Fab domains of the antibody is strongly correlated with protection, recruitment of immune effector functions by the Fc domain has also emerged as a complementary, and sometimes alternative, route to protection. For a subset of antibodies, Fc-mediated clearance and killing of infected cells seems to be the main driver of protection after exposure and mirrors observations in vaccination studies. Continued analysis of antibodies that achieve protection partially or wholly through Fc-mediated functions, the precise functions required, the intersection with specificity and the importance of these functions in different animal models is needed to identify and begin to capitalize on Fc-mediated protection in vaccines and therapeutics alike.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bronwyn M Gunn
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Abstract
The West African Ebola virus (EBOV) epidemic has fast-tracked countermeasures for this rare, emerging zoonotic pathogen. Until 2013-2014, most EBOV vaccine candidates were stalled between the preclinical and clinical milestones on the path to licensure, because of funding problems, lack of interest from pharmaceutical companies, and competing priorities in public health. The unprecedented and devastating epidemic propelled vaccine candidates toward clinical trials that were initiated near the end of the active response to the outbreak. Those trials did not have a major impact on the epidemic but provided invaluable data on vaccine safety, immunogenicity, and, to a limited degree, even efficacy in humans. There are plenty of lessons to learn from these trials, some of which are addressed in this review. Better preparation is essential to executing an effective response to EBOV in the future; yet, the first indications of waning interest are already noticeable.
Collapse
Affiliation(s)
- Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba 93E 0J9, Canada
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
44
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, Halfmann PJ, Brannan JM, Herbert AS, Qiu X, Wagh K, He S, Giorgi EE, Theiler J, Pommert KBJ, Krause TB, Turner HL, Murin CD, Pallesen J, Davidson E, Ahmed R, Aman MJ, Bukreyev A, Burton DR, Crowe JE, Davis CW, Georgiou G, Krammer F, Kyratsous CA, Lai JR, Nykiforuk C, Pauly MH, Rijal P, Takada A, Townsend AR, Volchkov V, Walker LM, Wang CI, Zeitlin L, Doranz BJ, Ward AB, Korber B, Kobinger GP, Andersen KG, Kawaoka Y, Alter G, Chandran K, Dye JM. Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 2018; 174:938-952.e13. [PMID: 30096313 PMCID: PMC6102396 DOI: 10.1016/j.cell.2018.07.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer M Brannan
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Andrew S Herbert
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shihua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kathleen B J Pommert
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyler B Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannah L Turner
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jonathan R Lai
- Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cory Nykiforuk
- Emergent BioSolutions, Winnipeg, Manitoba, R3T 5Y3, Canada
| | | | - Pramila Rijal
- Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 138648, Singapore
| | | | | | - Andrew B Ward
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Médecine, Université Laval Quebec, G1V 046 Canada.
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - John M Dye
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA.
| |
Collapse
|
46
|
Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci U S A 2018; 115:1075-1080. [PMID: 29339477 PMCID: PMC5798334 DOI: 10.1073/pnas.1712263115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Larissa Kolesnikova
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany;
- Thematic Translational Unit Emerging Infections, German Center of Infection Research (DZIF), 35037 Marburg, Germany
| |
Collapse
|
47
|
Eisfeld AJ, Halfmann PJ, Wendler JP, Kyle JE, Burnum-Johnson KE, Peralta Z, Maemura T, Walters KB, Watanabe T, Fukuyama S, Yamashita M, Jacobs JM, Kim YM, Casey CP, Stratton KG, Webb-Robertson BJM, Gritsenko MA, Monroe ME, Weitz KK, Shukla AK, Tian M, Neumann G, Reed JL, van Bakel H, Metz TO, Smith RD, Waters KM, N'jai A, Sahr F, Kawaoka Y. Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis. Cell Host Microbe 2017; 22:817-829.e8. [PMID: 29154144 DOI: 10.1016/j.chom.2017.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.
Collapse
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Jason P Wendler
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY 10029, USA
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Kevin B Walters
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Jon M Jacobs
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Cameron P Casey
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Kelly G Stratton
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA 99352, USA
| | | | - Marina A Gritsenko
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Matthew E Monroe
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Karl K Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Mingyuan Tian
- Department of Chemical and Biological Engineering, UW-Madison, Madison, WI 53706, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Jennifer L Reed
- Department of Chemical and Biological Engineering, UW-Madison, Madison, WI 53706, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, ISMMS, New York City, NY 10029, USA.
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Richard D Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Katrina M Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Alhaji N'jai
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA; Department of Biological Sciences, Fourah Bay College, College of Medicine & Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Foday Sahr
- 34(th) Regimental Military Hospital at Wilberforce, Freetown, Sierra Leone.
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan; International Research Center for Infectious Diseases, IMS, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
48
|
Abstract
The filoviruses, Ebola virus (EBOV), and Marburg virus (MARV), are among the most pathogenic viruses known to man and the causative agents of viral hemorrhagic fever outbreaks in Africa with case fatality rates of up to 90%. Nearly 30,000 infections were observed in the latest EBOV epidemic in West Africa; previous outbreaks were much smaller, typically only affecting less than a few hundred people. Compared to other diseases such as AIDS or Malaria with millions of cases annually, filovirus hemorrhagic fever (FHF) is one of the neglected infectious diseases. There are no licensed vaccines or therapeutics available to treat EBOV and MARV infections; therefore, these pathogens can only be handled in maximum containment laboratories and are classified as select agents. Under these limitations, a very few laboratories worldwide conducted basic research and countermeasure development for EBOV and MARV since their respective discoveries in 1967 (MARV) and 1976 (EBOV). In this review, we discuss several vaccine platforms against EBOV and MARV, which have been assessed for their protective efficacy in animal models of FHF. The focus is on the most promising approaches, which were accelerated in clinical development (phase I-III trials) during the EBOV epidemic in West Africa.
Collapse
Affiliation(s)
- Pierce Reynolds
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
49
|
Groseth A, Hoenen T. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies. Methods Mol Biol 2017; 1628:15-38. [PMID: 28573608 DOI: 10.1007/978-1-4939-7116-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.
Collapse
Affiliation(s)
- Allison Groseth
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
50
|
Abstract
Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.
Collapse
Affiliation(s)
- Takeshi Noda
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|