1
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Gürkan B, Poelman H, Pereverzeva L, Kruijswijk D, de Vos AF, Groenen AG, Nollet EE, Wichapong K, Lutgens E, van der Poll T, Du J, Wiersinga WJ, Nicolaes GAF, van ‘t Veer C. The IRAK-M death domain: a tale of three surfaces. Front Mol Biosci 2024; 10:1265455. [PMID: 38268724 PMCID: PMC10806146 DOI: 10.3389/fmolb.2023.1265455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.
Collapse
Affiliation(s)
- Berke Gürkan
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Poelman
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Liza Pereverzeva
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Danielle Kruijswijk
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Anouk G. Groenen
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Edgar E. Nollet
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - W. Joost Wiersinga
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
4
|
Millar J, Nasser E, Ailawadi G, Salmon M. IL-1 in Abdominal Aortic Aneurysms. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:22-31. [PMID: 37476160 PMCID: PMC10357974 DOI: 10.33696/immunology.5.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Abdominal Aortic Aneurysms (AAA) remain a clinically devastating disease with no effective medical treatment therapy. AAAs are characterized by immune cell infiltration, smooth muscle cell apoptosis, and extracellular matrix degradation. Interleukin-1 (IL-1) has been shown to play role in AAA associated inflammation through immune cell recruitment and activation, endothelial dysfunction, production of reactive oxygen species (ROS), and regulation of transcription factors of additional inflammatory mediators. In this review, we will discuss the principles of IL-1 signaling, its role in AAA specific inflammation, and regulators of IL-1 signaling. Additionally, we will discuss the influence of genetic and pharmacological inhibitors of IL-1 on experimental AAAs. Evidence suggests that IL-1 may prove to be a potential therapeutic target in the management of AAA disease.
Collapse
Affiliation(s)
- Jessica Millar
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elias Nasser
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Li N, Li Y, Han X, Zhang J, Han J, Jiang X, Wang W, Xu Y, Xu Y, Fu Y, Si S. LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing. Front Pharmacol 2022; 13:973612. [PMID: 36313296 PMCID: PMC9614042 DOI: 10.3389/fphar.2022.973612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.
Collapse
Affiliation(s)
- Ni Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Yan Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangxue Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| |
Collapse
|
6
|
Minimal structure of IRAK-1 to induce degradation of TRAF6. Immunobiology 2022; 227:152256. [DOI: 10.1016/j.imbio.2022.152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
7
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
8
|
Liu B, Yu J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021; 9:136. [PMID: 33535473 PMCID: PMC7912743 DOI: 10.3390/biomedicines9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.
Collapse
Affiliation(s)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
9
|
Morgan EL, Chen Z, Van Waes C. Regulation of NFκB Signalling by Ubiquitination: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma? Cancers (Basel) 2020; 12:E2877. [PMID: 33036368 PMCID: PMC7601648 DOI: 10.3390/cancers12102877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with over 600,000 cases per year. The primary causes for HNSCC include smoking and alcohol consumption, with an increasing number of cases attributed to infection with Human Papillomavirus (HPV). The treatment options for HNSCC currently include surgery, radiotherapy, and/or platinum-based chemotherapeutics. Cetuximab (targeting EGFR) and Pembrolizumab (targeting PD-1) have been approved for advanced stage, recurrent, and/or metastatic HNSCC. Despite these advances, whilst HPV+ HNSCC has a 3-year overall survival (OS) rate of around 80%, the 3-year OS for HPV- HNSCC is still around 55%. Aberrant signal activation of transcription factor NFκB plays an important role in the pathogenesis and therapeutic resistance of HNSCC. As an important mediator of inflammatory signalling and the immune response to pathogens, the NFκB pathway is tightly regulated to prevent chronic inflammation, a key driver of tumorigenesis. Here, we discuss how NFκB signalling is regulated by the ubiquitin pathway and how this pathway is deregulated in HNSCC. Finally, we discuss the current strategies available to target the ubiquitin pathway and how this may offer a potential therapeutic benefit in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | | |
Collapse
|
10
|
S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 2020; 39:5307-5322. [PMID: 32555330 DOI: 10.1038/s41388-020-1363-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.
Collapse
|
11
|
Androgen Suppresses Hyperosmolarity-Induced Inflammatory Mediators in Human Corneal Epithelial Cells. Cornea 2020; 39:886-891. [DOI: 10.1097/ico.0000000000002291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20133264. [PMID: 31269778 PMCID: PMC6651260 DOI: 10.3390/ijms20133264] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
The high incidence and poor prognosis of heart failure (HF) patients affected with diabetes (DM) is in part related to a specific cardiac remodeling currently recognized as diabetic cardiomyopathy (DCM). This cardiac frame occurs regardless of the presence of coronary artery diseases (CAD) and it can account for 15–20% of the total diabetic population. The pathogenesis of DCM remains controversial, and several molecular and cellular alterations including myocardial hypertrophy, interstitial fibrosis, oxidative stress and vascular inflammation, have been postulated. The main cardio-vascular alterations associated with hyperglycemia comprise endothelial dysfunction, adverse effects of circulating free fatty acids (FFA) and increased systemic inflammation. High glucose concentrations lead to a loss of mitochondrial networks, increased reactive oxygen species (ROS), endothelial nitric oxide synthase (eNOS) activation and a reduction in cGMP production related to protein kinase G (PKG) activity. Current mechanisms enhance the collagen deposition with subsequent increased myocardial stiffness. Several concerns regarding the exact role of DCM in HF development such as having an appearance as either dilated or as a concentric phenotype and whether diabetes could be considered a causal factor or a comorbidity in HF, remain to be clarified. In this review, we sought to explain the different DCM subtypes and the underlying pathophysiological mechanisms. Therefore, the traditional and new molecular and signal alterations and their relationship with macroscopic structural abnormalities are described.
Collapse
|
14
|
Sharma A, Maurya CK, Arha D, Rai AK, Singh S, Varshney S, Schertzer JD, Tamrakar AK. Nod1-mediated lipolysis promotes diacylglycerol accumulation and successive inflammation via PKCδ-IRAK axis in adipocytes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:136-146. [DOI: 10.1016/j.bbadis.2018.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
|
15
|
Yu X, Li W, Deng Q, Li L, Hsi ED, Young KH, Zhang M, Li Y. MYD88 L265P Mutation in Lymphoid Malignancies. Cancer Res 2018; 78:2457-2462. [PMID: 29703722 DOI: 10.1158/0008-5472.can-18-0215] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing has revealed cancer genomic landscapes, in which over 100 driver genes that, when altered by intragenic mutations, can promote oncogenesis. MYD88 is a driver gene found in hematologic B-cell malignancies. A missense mutation (L265P) changing leucine at position 265 to proline in MYD88 is found in ∼90% of Waldenström macroglobulinemia (WM) cases and in significant portions of activated B-cell diffuse large B-cell lymphomas and IgM monoclonal gammopathy of undetermined significance. Few cancers such as WM have a single amino acid substitution in one gene like MYD88 L265P that occurs in ∼90% of cases, making WM paradigmatic for study of a single causative mutation in oncogenesis. In this review, we summarize the frequency and cancer spectrum of MYD88 L265P and its downstream effects in lymphoid cancers. Malignant B cells with MYD88 L265P are likely transformed from IgM-producing B cells either in response to T-cell-independent antigens or in response to protein antigens before class switching. We also discuss therapeutic strategies that include targeting Bruton tyrosine kinase and other kinases, interfering with the assembly of MYD88 and its interacting partners, and MYD88 L265P-specific peptide-based immunotherapy. Cancer Res; 78(10); 2457-62. ©2018 AACR.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wei Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China
| | - Eric D Hsi
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China.
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
16
|
The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J 2017; 474:2027-2038. [PMID: 28512203 PMCID: PMC5460469 DOI: 10.1042/bcj20170097] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
We have developed the first assays that measure the protein kinase activities of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 reliably in human cell extracts, by employing Pellino1 as a substrate in conjunction with specific pharmacological inhibitors of IRAK1 and IRAK4. We exploited these assays to show that IRAK4 was constitutively active and that its intrinsic activity towards Pellino1 was not increased significantly by stimulation with interleukin-1 (IL-1) in IL-1R-expressing HEK293 cells, Pam3CSK4-stimulated human THP1 monocytes or primary human macrophages. Our results, in conjunction with those of other investigators, suggest that the IL-1-stimulated trans-autophosphorylation of IRAK4 is initiated by the myeloid differentiation primary response gene 88-induced dimerization of IRAK4 and is not caused by an increase in the intrinsic catalytic activity of IRAK4. In contrast with IRAK4, we found that IRAK1 was inactive in unstimulated cells and converted into an active protein kinase in response to IL-1 or Pam3CSK4 in human cells. Surprisingly, the IL-1-stimulated activation of IRAK1 was not affected by pharmacological inhibition of IRAK4 and not reversed by dephosphorylation and/or deubiquitylation, suggesting that IRAK1 catalytic activity is not triggered by a covalent modification but by an allosteric mechanism induced by its interaction with IRAK4.
Collapse
|
17
|
Sun XJ, Kim SP, Zhang D, Sun H, Cao Q, Lu X, Ying Z, Li L, Henry RR, Ciaraldi TP, Taylor SI, Quon MJ. Deletion of interleukin 1 receptor-associated kinase 1 ( Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. J Biol Chem 2017; 292:12339-12350. [PMID: 28572512 DOI: 10.1074/jbc.m117.779108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice (versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201; Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.
| | - Soohyun Park Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dongming Zhang
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201; Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Helen Sun
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Xin Lu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zhekang Ying
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Liwu Li
- Virginia Tech, Blacksburg, Virginia 24061
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System, San Diego, California 92166; Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System, San Diego, California 92166; Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael J Quon
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
18
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017. [DOI: 10.1210/er.2016-1122.2017.1.test] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017; 38:145-168. [PMID: 28323921 PMCID: PMC5460677 DOI: 10.1210/er.2016-1122] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China, and
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl Acad Sci U S A 2017; 114:E514-E523. [PMID: 28069966 DOI: 10.1073/pnas.1620139114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM2CSK4, LTA, FSL-1), TLR1/2 (PAM3CSK4), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.
Collapse
|
21
|
Li YW, Zhao F, Mo ZQ, Luo XC, Li AX, Dan XM. Characterization, expression, and functional study of IRAK-1 from grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 56:374-381. [PMID: 27346155 DOI: 10.1016/j.fsi.2016.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
As crucial components of the toll-like receptor (TLR) and interleukin-1 (IL-1) receptor (IL-1R) signaling pathways, interleukin-1 receptor associated kinase (IRAK) family members play essential roles in an animal's immune response. In this study, an IRAK family member, designated EcIRAK-1, was identified in the orange-spotted grouper Epinephelus coioides, and its role in signal transduction investigated. The full-length EcIRAK-1 gene is 2822 bp, encoding a 760-amino-acid protein that has the typical characteristics of mammalian IRAK-1, including an N-terminal death domain, a ProST domain, a central kinase domain, and C-terminal C1 and C2 domains. EcIRAK-1 shares 42%-79% sequence identity with other fish IRAK-1 proteins, and the death and kinase domains are more conserved than the other domains. Several important amino acids and motifs of mammalian IRAK-1 are also conserved in the grouper and other piscine IRAK-1s. In healthy grouper, EcIRAK-1 was broadly expressed in all the tissues tested, with the highest expression in the gill and skin. After infection with Cryptocaryon irritans, EcIRAK-1 expression increased in the gill and spleen. After its exogenous expression in HEK293T cells, EcIRAK-1 significantly activated nuclear factor kappaB (NF-κB). The death domain, ProST domain, and some conserved amino acids, such as T58, T207, K237, and T387, in EcIRAK-1 are required for its signaling function. These data demonstrate that piscine IRAK-1 has the same structural characteristics as its mammalian counterpart and that its function is conserved among vertebrates.
Collapse
Affiliation(s)
- Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, Guangdong Province, PR China
| | - Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
22
|
Singh R. Model Predicts That MKP1 and TAB1 Regulate p38α Nuclear Pulse and Its Basal Activity through Positive and Negative Feedback Loops in Response to IL-1. PLoS One 2016; 11:e0157572. [PMID: 27314954 PMCID: PMC4912083 DOI: 10.1371/journal.pone.0157572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 01/20/2023] Open
Abstract
Interleukin-1 mediates inflammation and stress response through nuclear activity of p38α. Although IL-1 receptor is not degraded, p38α activation is transient. IL-1 also causes cell migration and EMT by modulating cell-cell junctions. Although molecules involved in p38 activation are known, mechanism of the transient nuclear response and its basal activity remains unknown. By mathematical modeling of IL1/p38 signaling network, we show that IL-1 induces robust p38α activation both in the nucleus and in the cytoplasm/membrane. While nuclear response consists of an acute phase, membrane response resembles a step change. Following stimulation, p38α activity returns to a basal level in absence of receptor degradation. While nuclear pulse is controlled by MKP1 through a negative feedback to pp38, its basal activity is controlled by both TAB1 and MKP1 through a positive feedback loop. Our model provides insight into the mechanism of p38α activation, reason for its transient nuclear response, and explanation of the basal activity of MKK3/6 and p38α, which has been experimentally observed by other groups.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- * E-mail:
| |
Collapse
|
23
|
Dussiau C, Trinquand A, Lhermitte L, Latiri M, Simonin M, Cieslak A, Bedjaoui N, Villarèse P, Verhoeyen E, Dombret H, Ifrah N, Macintyre E, Asnafi V. Targeting IRAK1 in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 6:18956-65. [PMID: 26068967 PMCID: PMC4662467 DOI: 10.18632/oncotarget.4150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors.
Collapse
Affiliation(s)
- Charles Dussiau
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mathieu Simonin
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Agata Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Nawel Bedjaoui
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Patrick Villarèse
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Els Verhoeyen
- CIRI, EVIR Team, INSERM, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France.,INSERM, U1065, C3M, Equipe "Contrôle Métabolique des Morts Cellulaires", Nice, France
| | - Hervé Dombret
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, EA, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service des Maladies du Sang et INSERM U892, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
24
|
Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci Rep 2016; 6:27236. [PMID: 27250532 PMCID: PMC4890118 DOI: 10.1038/srep27236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
Collapse
|
25
|
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener 2016; 11:30. [PMID: 27098079 PMCID: PMC4839164 DOI: 10.1186/s13024-016-0093-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 04/08/2016] [Indexed: 01/24/2023] Open
Abstract
Background The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in neuronal pathophysiology. Using JNK inhibitors, we examined involvement of the JNK pathway in cultured rat retinal ganglion cell (RGC) death and in mouse retinal ischemia/reperfusion (I/R) injury of the visual axis. The in vitro effects of JNK inhibitors were evaluated in cultured adult rat retinal cells enriched in RGCs. Retinal I/R was induced in C57BL/6J mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. SP600125 was administered intraperitoneally once daily for 28 days. Phosphorylation of JNK and c-Jun in the retina was examined by immunoblotting and immunohistochemistry. The thickness of retinal layers and cell numbers in the ganglion cell layer (GCL) were examined using H&E stained retinal cross sections and spectral domain optical coherence tomography (SD-OCT). Retinal function was measured by scotopic flash electroretinography (ERG). Volumetric measurement of the superior colliculus (SC) as well as VGLUT2 and PSD95 expression were studied. Results JNK inhibitors SP600125 and TAT-JNK-III, dose-dependently and significantly (p < 0.05) protected against glutamate excitotoxicity and trophic factor withdrawal induced RGC death in culture. In the I/R model, phosphorylation of JNK (pJNK) in the retina was significantly (p < 0.05) increased after injury. I/R injury significantly (p < 0.05) decreased the thickness of retinal layers, including the whole retina, inner plexiform layer, and inner nuclear layer and cell numbers in the GCL. Administration of SP600125 for 28 days protected against all these degenerative morphological changes (p < 0.05). In addition, SP600125 significantly (p < 0.05) protected against I/R-induced reduction in scotopic ERG b-wave amplitude at 3, 7, 14, 21 and 28 days after injury. SP600125 also protected against the I/R-induced losses in volume and levels of synaptic markers in the SC. Moreover, the protective effects of SP600125 in the retina and SC were also detected even with only 7 days (Days 1–7 after I/R) of SP600125 treatment. Conclusions Our results demonstrate the important role the JNK pathway plays in retinal degeneration in both in vitro and in vivo models and suggest that JNK inhibitors may be a useful therapeutic strategy for neuroprotection of RGCs in the retina. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0093-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Present Address: Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA. .,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
26
|
Minocycline Inhibits Inflammation and Squamous Metaplasia of Conjunctival Tissue Culture in Airlift Conditions. Cornea 2016; 35:249-56. [DOI: 10.1097/ico.0000000000000687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor. Exp Neurol 2015; 275 Pt 1:69-77. [PMID: 26496817 DOI: 10.1016/j.expneurol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.
Collapse
|
28
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Du J, Nicolaes GA, Kruijswijk D, Versloot M, van der Poll T, van 't Veer C. The structure function of the death domain of human IRAK-M. Cell Commun Signal 2014; 12:77. [PMID: 25481771 PMCID: PMC4273448 DOI: 10.1186/s12964-014-0077-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND IRAK-M is an inhibitor of Toll-like receptor signaling that acts by re-directing IRAK-4 activity to TAK1 independent NF-κB activation and by inhibition of IRAK-1/IRAK-2 activity. IRAK-M is expressed in monocytes/macrophages and lung epithelial cells. Lack of IRAK-M in mice greatly improves the resistance to nosocomial pneumonia and lung tumors, which entices IRAK-M as a potential therapeutic target. IRAK-M consists of an N-terminal death domain (DD), a dysfunctional kinase domain and unstructured C-terminal domain. Little is known however on IRAK-M's structure-function relationships. RESULTS Since death domains provide the important interactions of IRAK-1, IRAK-2 and IRAK-4 molecules, we generated a 3D structure model of the human IRAK-M-DD (residues C5-G119) to guide mutagenesis studies and predict protein-protein interaction points. First we identified the DD residues involved in the endogenous capacity of IRAK-M to activate NF-κB that is displayed upon overexpression in 293T cells. W74 and R97, at distinct interfaces of the IRAK-M-DD, were crucial for this endogenous NF-κB activating capacity, as well as the C-terminal domain (S445-E596) of IRAK-M. Resulting anti-inflammatory A20 and pro-inflammatory IL-8 transcription in 293T cells was W74 dependent, while IL-8 protein expression was dependent on R97 and the TRAF6 binding motif at P478. The IRAK-M-DD W74 and R97 binding interfaces are predicted to interact with opposite sides of IRAK-4-DD's. Secondly we identified DD residues important for the inhibitory action of IRAK-M by stable overexpression of mutants in THP-1 macrophages and H292 lung epithelial cells. IRAK-M inhibited TLR2/4-mediated cytokine production in macrophages in a manner that is largely dependent on W74. R97 was not involved in inhibition of TNF production but was engaged in IL-6 down-regulation by IRAK-M. Protein-interactive residues D19-A23, located in between W74 and R97, were also observed to be crucial for inhibition of TLR2/4 mediated cytokine induction in macrophages. Remarkably, IRAK-M inhibited TLR5 mediated IL-8 production by lung epithelial cells independent of W74 and R97, but dependent on D19-A23 and R70, two surface-exposed regions that harbor predicted IRAK-2-DD interaction points of IRAK-M. CONCLUSION IRAK-M employs alternate residues of its DD to inhibit the different inflammatory mediators induced by varying TLRs and cells.
Collapse
|
30
|
Bohannon JK, Hernandez A, Enkhbaatar P, Adams WL, Sherwood ER. The immunobiology of toll-like receptor 4 agonists: from endotoxin tolerance to immunoadjuvants. Shock 2014; 40:451-62. [PMID: 23989337 DOI: 10.1097/shk.0000000000000042] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS, endotoxin) is a structural component of the gram-negative outer membrane. The lipid A moiety of LPS binds to the LPS receptor complex expressed by leukocytes, endothelial cells, and parenchymal cells and is the primary component of gram-negative bacteria that is recognized by the immune system. Activation of the LPS receptor complex by native lipid A induces robust cytokine production, leukocyte activation, and inflammation, which is beneficial for clearing bacterial infections at the local level but can cause severe systemic inflammation and shock at higher challenge doses. Interestingly, prior exposure to LPS renders the host resistant to shock caused by subsequent LPS challenge, a phenomenon known as endotoxin tolerance. Treatment with lipid A has also been shown to augment the host response to infection and to serve as a potent vaccine adjuvant. However, the adverse effects associated with the pronounced inflammatory response limit the use of native lipid A as a clinical immunomodulator. More recently, analogs of lipid A have been developed that possess attenuated proinflammatory activity but retain attractive immunomodulatory properties. The lipid A analog monophosphoryl lipid A exhibits approximately 1/1,000th of the toxicity of native lipid A but retains potent immunoadjuvant activity. As such, monophosphoryl lipid A is currently used as an adjuvant in several human vaccine preparations. Because of the potency of lipid A analogs as immunoadjuvants, numerous laboratories are actively working to identify and develop new lipid A mimetics and to optimize their efficacy and safety. Based on those characteristics, lipid A analogs represent an attractive family of immunomodulators.
Collapse
Affiliation(s)
- Julia K Bohannon
- *Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; †Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas; and ‡School of Medicine, The University of Tennessee Health Science Center, Memphis; and §Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
31
|
IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases. Proc Natl Acad Sci U S A 2014; 111:E2394-403. [PMID: 24912162 DOI: 10.1073/pnas.1320440111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding.
Collapse
|
32
|
Tiwari RL, Singh V, Singh A, Rana M, Verma A, Kothari N, Kohli M, Bogra J, Dikshit M, Barthwal MK. PKCδ-IRAK1 axis regulates oxidized LDL-induced IL-1β production in monocytes. J Lipid Res 2014; 55:1226-44. [PMID: 24792928 DOI: 10.1194/jlr.m045658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.
Collapse
Affiliation(s)
- Rajiv Lochan Tiwari
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Ankita Singh
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Anupam Verma
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Nikhil Kothari
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Monica Kohli
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Jaishri Bogra
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
33
|
Verstak B, Arnot CJ, Gay NJ. An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches signalling adaptor specificity from TRIF to MyD88. THE JOURNAL OF IMMUNOLOGY 2013; 191:6101-9. [PMID: 24198284 DOI: 10.4049/jimmunol.1300849] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A functionally important proline residue is highly conserved in the cytosolic Toll/IL-1R signaling domains of human TLRs. The antiviral Toll, TLR3, is unusual because it has alanine instead of proline at this position and is the only human TLR that associates directly with the adaptor molecule TIR domain-containing adaptor inducing IFN-β (TRIF) rather than MyD88. In this article, we report that a mutant TLR3 that substitutes the BB-loop alanine for proline (A795P) enhances NF-κB activation but is incapable of mediating TRIF-dependent IFN response factor 3 responses. Wild-type and A795P TLR3 associate constitutively with both TRIF and MyD88, and activation induces additional binding of TRIF to the wild-type and of MyD88 to the A795P mutant receptors, respectively. In addition, activation of A795P, but not wild-type TLR3, leads to the recruitment of TRAF6, a downstream signal transducer of the MyD88-dependent pathway. These results show that adaptor specificity can be conferred by minimal determinants of the Toll/IL-1R domain.
Collapse
Affiliation(s)
- Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
34
|
Etoh T, Kim YP, Tanaka H, Hayashi M. Anti-inflammatory effect of berkeleyacetal C through the inhibition of interleukin-1 receptor-associated kinase-4 activity. Eur J Pharmacol 2012; 698:435-43. [PMID: 23127497 DOI: 10.1016/j.ejphar.2012.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 11/28/2022]
Abstract
Berkeleyacetal C (BAC) isolated from Penicillium sp. which had isolated from a soil sample collected in Fukushima, inhibited NO production and induction of iNOS protein in RAW264.7 cells stimulated by the Toll-like receptor (TLR) 2 ligand, peptidoglycan (PGN) or TLR4 ligand, lipopolysaccharide (LPS). The other inflammatory mediator production by these stimulators was also suppressed by BAC in a concentration-dependent manner. BAC inhibited LPS- or PGN-activated nuclear translocation of nuclear factor (NF)-κB and MyD88-dependent signaling molecules. However, it showed no effect on LPS-induced nuclear translocation of interferon regulatory factor (IRF)-3, a MyD88-independent signaling molecule. To clarify the mechanistic basis for BAC ability to inhibit translocation of NF-κB and activated MyD88-dependent signaling molecules, we examined interleukin-1 receptor-associated kinase (IRAK)-4, existing to the most upstream on MyD88-dependent signaling molecules, in vitro kinase assay. BAC suppressed IRAK-4 kinase activity in a concentration-dependent manner. These findings suggest that BAC inhibits LPS- and PGN- induced NO production and iNOS expression by decreasing the level of the translocating of NF-κB in nuclear through inhibiting the kinase activity of IRAK-4 in inflammatory cells.
Collapse
Affiliation(s)
- Tadahiro Etoh
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Iino, Chuo-dai, Iwaki, Fukushima 970-8551, Japan
| | | | | | | |
Collapse
|
35
|
IκB kinase 2 regulates TPL-2 activation of extracellular signal-regulated kinases 1 and 2 by direct phosphorylation of TPL-2 serine 400. Mol Cell Biol 2012; 32:4684-90. [PMID: 22988300 DOI: 10.1128/mcb.01065-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tumor progression locus 2 (TPL-2) functions as a MEK-1/2 kinase, which is essential for Toll-like receptor 4 (TLR4) activation of extracellular signal-regulated kinase 1 and 2 (ERK-1/2) mitogen-activated protein (MAP) kinases in lipopolysaccharide (LPS)-stimulated macrophages and for inducing the production of the proinflammatory cytokines tumor necrosis factor and interleukin-1β. In unstimulated cells, association of TPL-2 with NF-κB1 p105 prevents TPL-2 phosphorylation of MEK-1/2. LPS stimulation of TPL-2 MEK-1/2 kinase activity requires TPL-2 release from p105. This is triggered by IκB kinase 2 (IKK-2) phosphorylation of the p105 PEST region, which promotes p105 ubiquitination and degradation by the proteasome. LPS activation of ERK-1/2 additionally requires transphosphorylation of TPL-2 on serine 400 in its C terminus, which controls TPL-2 signaling to ERK-1/2 independently of p105. However, the identity of the protein kinase responsible for TPL-2 serine 400 phosphorylation remained unknown. In the present study, we show that TPL-2 serine 400 phosphorylation is mediated by IKK2. The IKK complex therefore regulates two of the key regulatory steps required for TPL-2 activation of ERK-1/2, underlining the close linkage of ERK-1/2 MAP kinase activation to upregulation of NF-κB-dependent transcription.
Collapse
|
36
|
The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci U S A 2012; 109:14128-33. [PMID: 22904187 DOI: 10.1073/pnas.1205246109] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proinflammatory cytokine interleukin-1 (IL-1) signals via type I IL-1 receptor (IL-1RI) and IL-1 receptor accessory protein (IL1RAP), which leads to activation of the transcription factor NF-κB and induction of a range of downstream proteins involved in inflammatory and immune responses. Here, we identified the E3 ubiquitin ligase membrane-associated RING-CH (MARCH8) as a suppressor of IL-1β-induced NF-κB- and MAPK-activation pathways. Overexpression of MARCH8 inhibits IL-1β-induced NF-κB and MAPK activation, whereas knockdown of MARCH8 has the opposite effect. Mechanistically, MARCH8 interacts with IL1RAP and targets its Lys512 for K48-linked polyubiquitination and degradation. Our findings suggest that MARCH8-mediated polyubiquitination and degradation of IL1RAP is an important mechanism for negative regulation of IL-1β-induced signaling pathways.
Collapse
|
37
|
Gene expression profiling and pathway analysis identify the integrin signaling pathway to be altered by IL-1β in human pancreatic cancer cells: Role of JNK. Cancer Lett 2012; 320:86-95. [DOI: 10.1016/j.canlet.2012.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 11/23/2022]
|
38
|
Dieudé P, Bouaziz M, Guedj M, Riemekasten G, Airò P, Müller M, Cusi D, Matucci-Cerinic M, Melchers I, Koenig W, Salvi E, Wichmann HE, Cuomo G, Hachulla E, Diot E, Hunzelmann N, Caramaschi P, Mouthon L, Riccieri V, Distler J, Tarner I, Avouac J, Meyer O, Kahan A, Chiocchia G, Boileau C, Allanore Y. Evidence of the contribution of the X chromosome to systemic sclerosis susceptibility: association with the functional IRAK1 196Phe/532Ser haplotype. ACTA ACUST UNITED AC 2012; 63:3979-87. [PMID: 21898345 DOI: 10.1002/art.30640] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Several autoimmune disorders, including systemic sclerosis (SSc), are characterized by a strong sex bias. To date, it is not known whether genes on the sex chromosomes influence SSc susceptibility. Recently, an IRAK1 haplotype that contains the 196Phe functional variant (rs1059702), located on Xq28, was found to confer susceptibility to systemic lupus erythematosus (SLE). This study was undertaken to test for an association between SSc and the IRAK1 SLE risk haplotype. METHODS We tested for an association with the IRAK1 SLE risk haplotype in a discovery set of 849 SSc patients and 625 controls. IRAK1 rs1059702 was further genotyped in a replication set, which included Caucasian women from Italy (493 SSc patients and 509 controls) and Germany (466 SSc patients and 1,083 controls). RESULTS An association between the IRAK1 haplotype and SSc was detected in the discovery set. In both the discovery and replication sets, the rs1059702 TT genotype was found to be associated with specific SSc subsets, highlighting a potential contribution to disease severity. A meta-analysis provided evidence of an association of both the T allele and TT genotype with the overall disease, with an odds ratio (OR) of 1.20 and 95% confidence interval (95% CI) of 1.06-1.35 for the T allele (P = 0.003) and an OR of 1.49 and 95% CI of 1.06-2.10 for the TT genotype (P = 0.023). However, the most notable associations were observed with the diffuse cutaneous, anti-topoisomerase I antibody positive, and SSc-related fibrosing alveolitis subsets (OR 2.35 [95% CI 1.51-3.66], P = 1.56 × 10(-4), OR 2.84 [95% CI 1.87-4.32], P = 1.07 × 10(-6), and OR 2.09 [95% CI 1.35-3.24], P = 9.05 × 10(-4), respectively). CONCLUSION Our study provides the first evidence of an association between IRAK1 and SSc, demonstrating that a sex chromosome gene directly influences SSc susceptibility and its phenotypic heterogeneity.
Collapse
Affiliation(s)
- P Dieudé
- Paris Diderot University, AP-HP, INSERM U699, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:255-63. [PMID: 22033459 DOI: 10.1016/j.bbamcr.2011.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
Abstract
TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.1 cells with various TLR ligands led to decreases in TRAF6 protein levels that occurred at a slower rate than IκBα degradation. The decrease in TRAF6 was inhibited by proteasome inhibitors MG-132, lactacystin and N-acetyl-leucyl-leucyl-norleucinal. Among intracellular TLR signaling molecules MyD88, IRAK-4, IRAK-1, TRAF6, and IKKβ, only IRAK-1 expression downregulated TRAF6 in HEK293 cells. The amount of TRAF6 expressed either transiently or stably was also reduced by co-expression of IRAK-1 and no TRAF6 cleavage products were detected. The levels of either a TRAF6 N-terminal deletion mutant or a ubiquitin ligase-defective mutant were not affected by IRAK-1 expression. Downregulation of TRAF6 required the TRAF6-binding site (Glu544, Glu587, Glu706) of IRAK-1 but not its catalytic site (Asp340). Upon IRAK-1 transfection, no significant TRAF6 ubiquitination was detected. Instead, TRAF6-associated IRAK-1 was ubiquitinated with both Lys48- and Lys63-linked polyubiquitin chains. TRAF6 downregulation was inhibited by co-expression of the E3 ubiquitin ligase Pellino 3, whose Lys63-linked polyubiquitination on IRAK-1 is reported to compete with Lys48-linked IRAK-1 polyubiquitination. Expression of IRAK-1 inhibited IκBα phosphorylation in response to TLR2 stimulation. These results indicate that stimulation of TLRs induces proteasome-dependent downregulation of TRAF6. We conclude that TRAF6 associated with ubiquitinated IRAK-1 is degraded together by the proteasome and that IRAK-1 possesses a negative regulatory role on TLR signaling.
Collapse
|
41
|
Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 2011; 23:701-12. [PMID: 21937456 DOI: 10.1093/intimm/dxr077] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes irreversible joint damage and significant disability. However, the fundamental mechanisms underlying how inflammation and joint destruction in RA develop and are sustained chronically remain largely unknown. Here, we show that signal transducer and activator of transcription 3 (STAT3) is the key mediator of both chronic inflammation and joint destruction in RA. We found that inflammatory cytokines highly expressed in RA patients, such as IL-1β, tumor necrosis factor alpha and IL-6, activated STAT3 either directly or indirectly and in turn induced expression of IL-6 family cytokines, further activating STAT3 in murine osteoblastic and fibroblastic cells. STAT3 activation also induced expression of receptor activator of nuclear factor kappa B ligand (RANKL), a cytokine essential for osteoclastogenesis, and STAT3 deficiency or pharmacological inhibition promoted significant reduction in expression of both IL-6 family cytokines and RANKL in vitro. STAT3 inhibition was also effective in treating an RA model, collagen-induced arthritis, in vivo through significant reduction in expression of IL-6 family cytokines and RANKL, inhibiting both inflammation and joint destruction. Leukemia inhibitory factor expression and STAT3 activation by IL-1β were mainly promoted by IL-6 but still induced in IL-6-deficient cells. Thus, our data provide new insight into RA pathogenesis and provide evidence that inflammatory cytokines trigger a cytokine amplification loop via IL-6-STAT3 that promotes sustained inflammation and joint destruction.
Collapse
Affiliation(s)
- Tomoaki Mori
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tiwari RL, Singh V, Singh A, Barthwal MK. IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2632-45. [PMID: 21804018 DOI: 10.4049/jimmunol.1002526] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.
Collapse
Affiliation(s)
- Rajiv Lochan Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226 001, India
| | | | | | | |
Collapse
|
43
|
Boehncke WH, Sterry W. Psoriasis--a systemic inflammatory disorder: clinic, pathogenesis and therapeutic perspectives. J Dtsch Dermatol Ges 2011; 7:946-52. [PMID: 19341429 DOI: 10.1111/j.1610-0387.2009.07083.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Psoriasis has seen a dramatic change in its perception by dermatologists as well as other medical specialties. Its well-recognized association with several other diseases makes a complete switch in its management necessary. This review summarizes current epidemiological data on the comorbidities of psoriasis. Subsequently, the evidence for insulin resistance as a cause for endothelial cell dysfunction with its relevant pathogenetic link to the development of cardiovascular comorbidity is discussed. Based on these novel insights, we propose a possible state-of-the-art approach towards comprehensive psoriasis management.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Department of Dermatology and Venereology, University of Frankfurt/Main, Frankfurt/Main, Germany.
| | | |
Collapse
|
44
|
Dobierzewska A, Giltiay NV, Sabapathi S, Karakashian AA, Nikolova-Karakashian MN. Protein phosphatase 2A and neutral sphingomyelinase 2 regulate IRAK-1 protein ubiquitination and degradation in response to interleukin-1beta. J Biol Chem 2011; 286:32064-73. [PMID: 21708940 DOI: 10.1074/jbc.m111.238030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The IL-1β signaling cascade is initiated by the phosphorylation of IL-1β receptor-associated kinase-1 (IRAK-1), followed by its ubiquitination and degradation. This paper investigates the regulation of IRAK-1 degradation in primary hepatocytes and in HEK cells overexpressing the IL-1β receptor. We provide evidence that protein phosphatase 2A (PP2A) is a negative regulator of the phosphorylation, Lys(48)-linked ubiquitination, and degradation of IRAK-1. PP2A catalytic activity increased within 30 min of stimulation with IL-1β. siRNA against PP2A catalytic subunit (PP2Ac) or treatment with pharmacological inhibitor, okadaic acid, enhanced IRAK-1 Lys(48)-linked ubiquitination and degradation. Direct interaction between PP2Ac and IRAK-1 was observed, suggesting that IRAK-1 might be a PP2A substrate. The mechanisms of PP2A activation by IL-1β involved neutral sphingomyelinase-2 (NSMase-2) and an accumulation of ceramide. Overexpression of NSMase-2 delayed IRAK-1 degradation in a PP2A-dependent manner, whereas NSMase-2 silencing had the opposite effect. The addition of sphingomyelinase, ceramide, or a proteasome inhibitor all led to retention of IRAK-1 at the cell membrane and to increased JNK phosphorylation. This study suggests that NSMase-2- and PP2A-dependent regulation of IRAK-1 degradation is a novel mechanism to fine tune the magnitude of IL-1β response.
Collapse
Affiliation(s)
- Aneta Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
45
|
Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. ACTA ACUST UNITED AC 2011; 208:1189-201. [PMID: 21555486 PMCID: PMC3173243 DOI: 10.1084/jem.20101823] [Citation(s) in RCA: 688] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ∼22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation.
Collapse
Affiliation(s)
- Mark P Boldin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiong Y, Qiu F, Piao W, Song C, Wahl LM, Medvedev AE. Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and IkappaB kinase gamma and increases A20 expression. J Biol Chem 2011; 286:7905-7916. [PMID: 21220427 DOI: 10.1074/jbc.m110.182873] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.
Collapse
Affiliation(s)
- Yanbao Xiong
- From the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Fu Qiu
- From the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Wenji Piao
- From the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Chang Song
- From the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Larry M Wahl
- NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei E Medvedev
- From the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and.
| |
Collapse
|
47
|
Shirakawa T, Kawazoe Y, Tsujikawa T, Jung D, Sato SI, Uesugi M. Deactivation of STAT6 through serine 707 phosphorylation by JNK. J Biol Chem 2010; 286:4003-10. [PMID: 21123173 DOI: 10.1074/jbc.m110.168435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6), which plays a critical role in immune responses, is activated by interleukin-4 (IL-4). Activity of STAT family members is regulated primarily by tyrosine phosphorylations and possibly also by serine phosphorylations. Here, we report a previously undescribed serine phosphorylation of STAT6, which is activated by cell stress or by the pro-inflammatory cytokine, interleukin-1β (IL-1β). Our analyses suggest that Ser-707 is phosphorylated by c-Jun N-terminal kinase (JNK). Phosphorylation decreases the DNA binding ability of IL-4-stimulated STAT6, thereby inhibiting the transcription of STAT6-responsive genes. Inactivation of STAT6 by JNK-dependent Ser-707 phosphorylation may be one mechanism of controlling the balance between IL-1β and IL-4 signals.
Collapse
Affiliation(s)
- Takashi Shirakawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
48
|
The TRAF2 and TRAF6 expression in myomas and myometrium of women in reproduction and perimenopausal age. Folia Histochem Cytobiol 2010; 48:407-16. [DOI: 10.2478/v10042-010-0039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Quevedo-Diaz MA, Song C, Xiong Y, Chen H, Wahl LM, Radulovic S, Medvedev AE. Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J Leukoc Biol 2010; 88:675-85. [PMID: 20616112 PMCID: PMC2974430 DOI: 10.1189/jlb.1009674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 11/24/2022] Open
Abstract
A better understanding of the pathogenesis of rickettsial disease requires elucidation of mechanisms governing host defense during infection. TLRs are primary sensors of microbial pathogens that activate innate immune cells, as well as initiate and orchestrate adaptive immune responses. However, the role of TLRs in rickettsia recognition and cell activation remains poorly understood. In this study, we examined the involvement of TLR2 and TLR4 in recognition of Rickettsia akari, a causative agent of rickettsialpox. Transfection-based complementation of TLR2/4-negative HEK293T cells with human TLR2 or TLR4 coexpressed with CD14 and MD-2 enabled IκB-α degradation, NF-κB reporter activation, and IL-8 expression in response to heat-killed (HK) R. akari. The presence of the R753Q TLR2 or D299G TLR4 polymorphisms significantly impaired the capacities of the respective TLRs to signal HK R. akari-mediated NF-κB reporter activation in HEK293T transfectants. Blocking Ab against TLR2 or TLR4 markedly inhibited TNF-α release from human monocytes stimulated with HK R. akari, and TNF-α secretion elicited by infection with live R. akari was reduced significantly only upon blocking of TLR2 and TLR4. Live and HK R. akari exerted phosphorylation of IRAK1 and p38 MAPK in 293/TLR4/MD-2 or 293/TLR2 stable cell lines, whereas only live bacteria elicited responses in TLR2/4-negative HEK293T cells. These data demonstrate that HK R. akari triggers cell activation via TLR2 or TLR4 and suggest use of additional TLRs and/or NLRs by live R. akari.
Collapse
Affiliation(s)
- Marco A. Quevedo-Diaz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Chang Song
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Yanbao Xiong
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Haiyan Chen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Larry M. Wahl
- National Institute of Dental And Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Suzana Radulovic
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Andrei E. Medvedev
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| |
Collapse
|
50
|
The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 2010; 6:371. [PMID: 20531401 PMCID: PMC2913394 DOI: 10.1038/msb.2010.29] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022] Open
Abstract
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.
Collapse
|