1
|
Rogers D, O’Brien WJ, Gao Y, Zimmermann B, Grover S, Zhang Y, Gaona AK, Duwadi S, Anderson JE, Carlton L, Rahimi P, Farzam PY, von Lühmann A, Reinhart RMG, Boas DA, Yücel MA. Co-localized optode-electrode design for multimodal functional near infrared spectroscopy and electroencephalography. NEUROPHOTONICS 2025; 12:025006. [PMID: 40201225 PMCID: PMC11978466 DOI: 10.1117/1.nph.12.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Significance Neuroscience of the everyday world requires continuous mobile brain imaging in real time and in ecologically valid environments, which aids in directly translating research for human benefit. Combined functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) studies have increased in demand, as the combined systems can provide great insights into cortical hemodynamics, neuronal activity, and neurovascular coupling. However, fNIRS-EEG studies remain limited in modularity and portability due to restrictions in combined cap designs, especially for high-density (HD) fNIRS measurements. Aim We have built and tested custom fNIRS sources that attach to electrodes without decreasing the overall modularity and portability of the probe. Approach To demonstrate the design's utility, we screened for any potential interference and performed a HD-fNIRS-EEG measurement with co-located opto-electrode positions during a modified Stroop task. Results No observable interference was present from the fNIRS source optodes in the EEG spectral analysis. The performance, fNIRS, and EEG results of the Stroop task supported the trends from previous research. We observed increased activation with both fNIRS and EEG within the regions of interest. Conclusion Overall, these results suggest that the co-localization method is a promising approach to multimodal imaging.
Collapse
Affiliation(s)
- De’Ja Rogers
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Walker Joseph O’Brien
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, Unites States
| | - Yuanyuan Gao
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Bernhard Zimmermann
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Shrey Grover
- Boston University, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - Yiwen Zhang
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anna Kawai Gaona
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sudan Duwadi
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Jessica E. Anderson
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Physical Therapy, Boston, Massachusetts, United States
| | - Laura Carlton
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Speech, Language, and Hearing, Boston, Massachusetts, United States
| | - Parisa Rahimi
- Boston University, Questrom School of Business, Boston, Massachusetts, United States
| | - Parya Y. Farzam
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Alexander von Lühmann
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Technical University of Berlin, Intelligent Biomedical Sensing (IBS) Lab, Machine Learning Department, Berlin, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Robert M. G. Reinhart
- Boston University, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Meryem A. Yücel
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain functional connectivity and anatomical features as predictors of cognitive behavioral therapy outcome for anxiety in youths. Psychol Med 2025; 55:e91. [PMID: 40125734 DOI: 10.1017/s0033291724003131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have a major impact. This study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. METHODS Two datasets were studied: (A) one consisted of n = 54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n = 15 subjects treated for 8 weeks. Connectome predictive modeling (CPM) was used to predict treatment response, as assessed with the PARS. The main analysis included network edges positively correlated with treatment outcome and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses are also presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r, and mean absolute error (MAE). RESULTS The main model showed a MAE of approximately 3.5 (95% CI: [3.1-3.8]) points, an R2 of 0.08 [-0.14-0.26], and an r of 0.38 [0.24-0.511]. When testing this model in the left-out sample (B), the results were similar, with an MAE of 3.4 [2.8-4.7], R2-0.65 [-2.29-0.16], and r of 0.4 [0.24-0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. CONCLUSIONS The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, this study does not support the extensive use of CPM to predict outcomes in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace V Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily S Finn
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Krystal M Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
3
|
Su CW, Tang Y, Tang NL, Liu N, Li JW, Qi S, Wang HN, Huang ZG. Unveiling the dynamic effects of major depressive disorder and its rTMS interventions through energy landscape analysis. Front Neurosci 2025; 19:1444999. [PMID: 40109660 PMCID: PMC11920141 DOI: 10.3389/fnins.2025.1444999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Brain dynamics offer a more direct insight into brain function than network structure, providing a profound understanding of dysregulation and control mechanisms within intricate brain systems. This study investigates the dynamics of functional brain networks in major depressive disorder (MDD) patients to decipher the mechanisms underlying brain dysfunction during depression and assess the impact of repetitive transcranial magnetic stimulation (rTMS) intervention. Methods We employed energy landscape analysis of functional magnetic resonance imaging (fMRI) data to examine the dynamics of functional brain networks in MDD patients. The analysis focused on key dynamical indicators of the default mode network (DMN), the salience network (SN), and the central execution network (CEN). The effects of rTMS intervention on these networks were also evaluated. Results Our findings revealed notable dynamical alterations in the pDMN, the vDMN, and the aSN, suggesting their potential as diagnostic and therapeutic markers. Particularly striking was the altered activity observed in the dDMN in the MDD group, indicative of patterns associated with depressive rumination. Notably, rTMS intervention partially reverses the identified dynamical alterations. Discussion Our results shed light on the intrinsic dysfunction mechanisms of MDD from a dynamic standpoint and highlight the effects of rTMS intervention. The identified alterations in brain network dynamics provide promising analytical markers for the diagnosis and treatment of MDD. Future studies should further explore the clinical applications of these markers and the comprehensive dynamical effects of rTMS intervention.
Collapse
Affiliation(s)
- Chun-Wang Su
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yurui Tang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nai-Long Tang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Nian Liu
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, The 904th Hospital of the PLA Joint Logistics Support Force, Changzhou, Jiangsu, China
| | - Jing-Wen Li
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shun Qi
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Zi-Gang Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Jantz PB, Bigler ED. A case of severe TBI: Recovery? APPLIED NEUROPSYCHOLOGY. CHILD 2025:1-24. [PMID: 39874021 DOI: 10.1080/21622965.2025.2455115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Chronic stage neuropsychological assessments of children with severe TBI typically center around a referral question and focus on assessing cognitive, behavioral, and emotional functioning, making differential diagnoses, and planning treatment. When severe TBI-related neurological deficits are subtle and fall outside commonly assessed behavioral indicators, as can happen with theory of mind and social information processing, they can go unobserved and subsequently fail to be assessed. Additionally, should chronic stage cognitive, behavioral, and emotional assessment findings fall within the average to above average range, a child experiencing ongoing significant unassessed severe TBI-related subtle deficits could be mistakenly judged to have "recovered" from their injury; and to be experiencing no significant ongoing residual neurological deficits. To illustrate how this could happen, and how subacute neuroimaging and brain network theory might be early indicators of emergent chronic stage neuropsychological deficits, we present a child with a severe TBI and average to above average cognitive, behavioral, and emotional assessment findings who has comorbid significant deficits in theory of mind and social functioning.
Collapse
Affiliation(s)
- Paul B Jantz
- Department of Counseling, Leadership, Adult Education, and School Psychology, Texas State University, San Marcos, USA
| | - E D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, USA
- Departments of Neurology, Psychiatry, and Radiology University of Utah Salt Lake City, UT, USA
| |
Collapse
|
5
|
Yin X, Yang W, Song L, Liu J, Li M, Yang Z, Liu W, Wang Z, Wang H, Guo W. Abnormal neurovascular coupling exists in patients with peritoneal dialysis and hemodialysis: evidence from a multi-mode MRI study. Clin Kidney J 2025; 18:sfae353. [PMID: 39850666 PMCID: PMC11756302 DOI: 10.1093/ckj/sfae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 01/25/2025] Open
Abstract
Background Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood. Methods ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls. Voxel-based global analysis for both ALFF and CBF, alongside region-based analyses of ALFF-CBF coupling coefficients, were conducted. Additionally, the study explored the correlation between clinical laboratory indices and imaging metrics. Results Compared with HC, NVC was reduced in the bilateral medial superior frontal gyrus (SFGmed), insula, posterior cingulate cortex (PCC) and caudate (CAU) among dialysis patients. Furthermore, the PD group exhibited lower NVC in the bilateral SFGmed, bilateral PCC and left CAU compared with the HD group. Within the PD group, sodium level was negatively correlated with the ALFF-CBF coupling coefficient in the right insula. Additionally, a positive correlation emerged between the ALFF-CBF coupling coefficient in bilateral SFGmed and the dialysis adequacy. Conclusion While Montreal Cognitive Assessment scores did not significantly differ between patients with PD and HD, PD group demonstrated poorer NVC in the bilateral SFGmed, bilateral PCC and left CAU. Sodium level and dialysis adequacy may affect NVC in patients with PD.
Collapse
Affiliation(s)
- Xiayan Yin
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Jiamin Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Weikang Guo
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
6
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids. BIONANOSCIENCE 2024; 15:65. [PMID: 39980746 PMCID: PMC11835939 DOI: 10.1007/s12668-024-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/22/2025]
Abstract
An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
7
|
Fang Z, Lynn E, Knott VJ, Jaworska N. Functional connectivity profiles in remitted depression and their relation to ruminative thinking. Neuroimage Clin 2024; 45:103716. [PMID: 39622113 PMCID: PMC11648890 DOI: 10.1016/j.nicl.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 11/24/2024] [Indexed: 03/17/2025]
Abstract
The triple network model suggests that dysfunction in three major brain networks - the default mode network (DMN), central executive network (CEN), and salience network (SN) - might contribute to cognitive impairments in various psychiatric disorders, including major depressive disorder (MDD). While hyperconnectivity in the DMN, hypoconnectivity in the CEN, and abnormal SN connectivity have been observed in acutely depressed patients, evidence for network alterations during remission is limited. Further, there are few studies examining connectivity in people in remission from MDD (rMDD) during emotional processing tasks, including during affective cognition (i.e., tasks that encompass affective processing in the context of cognitive processes, such as inhibition). To address these literature gaps, this study compared functional connectivity (FC) between resting and task conditions, specifically during the emotional Stroop (eStroop) task, as well as between rMDD and healthy volunteers (HVs), within and between nodes of the three networks. We also explored how FC relates to rumination in the rMDD group, given that rumination tends to persist in rMDD and involves affective and cognitive networks. We unexpectedly found greater FC during the task vs. rest condition within the DMN, and decreased FC during the task vs. rest conditions within the CEN and SN across the groups. Greater FC during the task vs. rest condition between DMN and SN nodes, as well as between CEN and SN nodes were also observed. These effects were more pronounced in the rMDD group as per our exploratory analyses. Additionally, the rMDD vs. HV group showed higher FC between DMN-CEN nodes, regardless of condition. Higher hopeless rumination scores were associated with decreased resting FC within the DMN, while higher active problem-solving scores were associated with increased task FC within the DMN in the rMDD group. These findings suggest that tasks engaging affective cognition processes influence FC within and among the three networks, with this effect more pronounced in the rMDD group. This might indicate potential protective and compensatory mechanisms in rMDD and expands our understanding of large-scale intrinsic network connectivity alterations during remission from depression. However, given the limited sample and the exploratory nature of some of our analyses, replication is necessary.
Collapse
Affiliation(s)
- Zhuo Fang
- University of Ottawa Institute of Mental Health Research, ON, Canada
| | - Emma Lynn
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada
| | - Verner J Knott
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
8
|
Leon C, Kaur S, Sagar R, Tayade P, Sharma R. Default at fault? Exploring neural correlates of default mode network in children with ADHD, their unaffected siblings versus neurotypical controls: A quantitative EEG study. Asian J Psychiatr 2024; 102:104291. [PMID: 39488947 DOI: 10.1016/j.ajp.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Sustained activation of default mode network has been implicated for momentary lapses of attention and higher errors during performance of cognitive tasks in attention deficit hyperactive disorder (ADHD) children. Despite emerging evidence indicating the genetic basis of ADHD, there is paucity of literature investigating the alteration of DMN in children with ADHD and their unaffected siblings. AIM To study the cortical sources of DMN in children with ADHD compared to their siblings and neurotypical controls. METHODS Eighty-six participants (35 ADHD (12.4(±2.7) years), 16 unaffected siblings (11.8(±4.3) years) and 35 matched neurotypical controls (12.6 (±3.6) years) participated in the study. 128 channel EEG data was acquired during rest and Stroop cognitive task and analyzed for cortical source estimation using LORETA software. RESULTS Higher activation of DMN and DMN associated areas were observed during encoding of the color-word stimuli in children with ADHD. Sustained activation of core DMN areas namely medial frontal gyrus, posterior cingulate gyrus, parahippocampal gyrus and inferior parietal lobule was observed across all groups. Among the three groups, distinct cortical source activation differences were identified solely in the DMN and its associated areas among children with ADHD during the task encoding phase compared to baseline. In contrast, both siblings and neurotypical controls displayed activation in fronto-parieto-temporal areas subserving executive function were also observed. CONCLUSION Sustained activity of DMN areas with minimal activity in executive network in ADHD children and unaffected siblings during encoding of stimulus implies potential endophenotypic marker in children with ADHD compared to neurotypical controls.
Collapse
Affiliation(s)
- Chaithanya Leon
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prashant Tayade
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
9
|
Figueroa-Jiménez MD, Cañete-Massé C, Gudayol-Ferre E, Gallardo-Moreno GB, Peró-Cebollero M, Guàrdia-Olmos J. Functional brain hubs are related to age: A primer study with rs-fMRI. Int J Clin Health Psychol 2024; 24:100517. [PMID: 39533988 PMCID: PMC11555343 DOI: 10.1016/j.ijchp.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objective Research on the ontogenetic development of brain networks using resting state has shown to be useful for understanding age-associated changes in brain connectivity. This work aimed to analyze the relationship between brain connectivity, age and intelligence. Methods A sample of 26 children and adolescents between 6 and 18 years of both sexes underwent a resting-state functional magnetic resonance imaging study. We estimated the values of fractional Amplitude low-frequency fluctuations (fALFF) and the values of Regional homogeneity (ReHo) in a voxelwise analysis to later correlate them with age and intelligence quotient (IQ). Results No significant correlations were found with IQ, but it was found that the fALFF values of the left precentral cortex (premotor cortex and supplementary motor area), as well as the ReHo values of the medial frontal gyrus, and the precentral cortex of the left hemisphere, correlate with age. Conclusions: Hubs related to various "task positive" networks closely related to cognitive functioning would present a development more related to age and relatively independent of individual differences in intelligence. These findings suggest that the premotor cortex and supplementary motor cortex could be a cortical hub that develops earlier than previously reported and that it would be more related to age than to intelligence level.
Collapse
Affiliation(s)
- María D. Figueroa-Jiménez
- Departamento Ciencias de la Salud, Centro Universitario de los Valles CUVALLES, University of Guadalajara, Guadalajara, México
| | - Cristina Cañete-Massé
- Department of Social Psychology & Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Esteve Gudayol-Ferre
- Facultad de Psicología Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | - Geisa B. Gallardo-Moreno
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias CUCBA, University of Guadalajara, Guadalajara, Mexico
| | - Maribel Peró-Cebollero
- Department of Social Psychology & Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- UB Institute of Complex Systems, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Department of Social Psychology & Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- UB Institute of Complex Systems, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Mitiureva D, Sysoeva O, Proshina E, Portnova G, Khayrullina G, Martynova O. Comparative analysis of resting-state EEG functional connectivity in depression and obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2024; 342:111828. [PMID: 38833944 DOI: 10.1016/j.pscychresns.2024.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Major depressive disorder (MDD) and obsessive-compulsive disorder (OCD) are psychiatric disorders that often co-occur. We aimed to investigate whether their high comorbidity could be traced not only by clinical manifestations, but also at the level of functional brain activity. In this paper, we examined the differences in functional connectivity (FC) at the whole-brain level and within the default mode network (DMN). Resting-state EEG was obtained from 43 controls, 26 OCD patients, and 34 MDD patients. FC was analyzed between 68 cortical sources, and between-group differences in the 4-30 Hz range were assessed via the Network Based Statistic method. The strength of DMN intra-connectivity was compared between groups in the theta, alpha and beta frequency bands. A cluster of 67 connections distinguished the OCD, MDD and control groups. The majority of the connections, 8 of which correlated with depressive symptom severity, were found to be weaker in the clinical groups. Only 3 connections differed between the clinical groups, and one of them correlated with OCD severity. The DMN strength was reduced in the clinical groups in the alpha and beta bands. It can be concluded that the high comorbidity of OCD and MDD can be traced at the level of FC.
Collapse
Affiliation(s)
- Dina Mitiureva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Sirius Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ekaterina Proshina
- Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.
| | - Galina Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Guzal Khayrullina
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Centre for Cognition & Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Martynova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
11
|
Hu X, Pan K, Zhao M, Lv J, Wang J, Zhang X, Liu Y, Song Y, Gudmundson AT, Edden RA, Ren F, Zhang T, Gao F. Brain extended and closed forms glutathione levels decrease with age and extended glutathione is associated with visuospatial memory. Neuroimage 2024; 293:120632. [PMID: 38701994 PMCID: PMC11315812 DOI: 10.1016/j.neuroimage.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Xiaofeng Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| |
Collapse
|
12
|
Zou Y, Tong C, Peng W, Qiu Y, Li J, Xia Y, Pei M, Zhang K, Li W, Xu M, Liang Z. Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference. Neuron 2024; 112:1342-1357.e6. [PMID: 38359827 DOI: 10.1016/j.neuron.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.
Collapse
Affiliation(s)
- Yijuan Zou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chuanjun Tong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wanling Peng
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200032, China
| | - Jiangxue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengchao Pei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weishuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
13
|
Yi H, Xiao M, Chen X, Yan Q, Yang Y, Liu Y, Song S, Gao X, Chen H. Resting-state functional network connectivity underlying conscientiousness in school-aged children. Child Neuropsychol 2024; 30:486-502. [PMID: 37278282 DOI: 10.1080/09297049.2023.2221757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Conscientiousness is a personality trait that matures from early childhood to late adolescence, yet little is known about its underlying brain mechanisms during this period. To investigate this, our study examined the resting-state functional network connectivity (rsFNC) of 69 school-aged children (mean age = 10.12 years, range = 9-12) using a whole-brain region-of-interest (ROI) based analysis, based on functional magnetic resonance imaging (fMRI). The results indicated a positive association between conscientiousness and the rsFNC between the fronto-parietal network (FPN) and two brain networks: the somatosensory motor-hand network (SMHN) and the auditory network (AN). However, conscientiousness was negatively associated with the rsFNC between FPN and two other networks: the salience network (SN); the default mode network (DMN). Moreover, our results suggest that the FPN may play a hub role in the neural performance of children's conscientiousness. Intrinsic brain networks, particularly those involved in higher-order cognitive functions, impact children's conscientiousness. Therefore, FPN plays an important role in the development of children's personality, providing insight into the neural mechanisms underlying children's personality.
Collapse
Affiliation(s)
- Haijing Yi
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Qiaoling Yan
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Yue Yang
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Shiqing Song
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Kim HE, Eom H, Jo HJ, Kim MK, Kim J, Kim JJ. Neural substrates of marriage on self-parents processing and the association with a parents-oriented perspective shift in a collectivistic culture. Biol Psychol 2024; 187:108768. [PMID: 38432426 DOI: 10.1016/j.biopsycho.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Relationship with parents is a special bond that shapes self-other representations and have an impact on adult-child's marriage, especially in the early stages of marriage. This study sought to investigate the neural mechanisms underlying self-parents processing as well as their relationship with marriage. Seventy-eight premarital Korean participants were scanned in functional MRI while evaluating traits of the self and parents. Then, 21 of them returned after being married to engage in the identical task three years later. The precuneus and temporoparietal junction were identified to activate stronger for parents than self at both marital statuses. The dorsal anterior cingulate cortex, posterior cingulate cortex, parietal operculum, and caudate activated more for self than parents before marriage, but their activities changed during marriage. The activation increase of the parietal operculum between marital statuses in the parents condition was negatively correlated with the level of marital dissatisfaction, and this association only appeared among participants with a child. Self-parents processing may recruit brain regions involved in autobiographical memory and self-other distinction, and marriage has an impact on the way individuals process rewards and multimodal sensory information during this processing. Marriage may lead to changes in brain function that affect the processing of emotions toward parents and a more parents-oriented perspective shift in collectivistic societies.
Collapse
Affiliation(s)
- Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyojung Eom
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Jeong Jo
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyeong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain Functional Connectivity and Anatomical Features as Predictors of Cognitive Behavioral Therapy Outcome for Anxiety in Youths. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301959. [PMID: 38352528 PMCID: PMC10862993 DOI: 10.1101/2024.01.29.24301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have major impact. However, existing clinical models are weakly predictive. The current study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. Methods Two datasets were studied: (A) one consisted of n=54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n=15 subjects treated for 8 weeks. Connectome Predictive Modeling (CPM) was used to predict treatment response, as assessed with the PARS; additionally we investigated models using anatomical features, instead of functional connectivity. The main analysis included network edges positively correlated with treatment outcome, and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses also are presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r and mean absolute error (MAE). Outcomes The main model showed a mean absolute error of approximately 3.5 (95%CI: [3.1-3.8]) points a R2 of 0.08 [-0.14 - 0.26] and r of 0.38 [0.24 - 0.511]. When testing this model in the left-out sample (B) the results were similar, with a MAE of 3.4 [2.8 - 4.7], R2-0.65 [-2.29 - 0.16] and r of 0.4 [0.24 - 0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. Interpretation The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, the current study does not support extensive use of CPM to predict outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, 3 Maynard St, Hanover, NH, 03755, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wendy K. Silverman
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Eli R. Lebowitz
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Anderson M. Winkler
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, 1 West University Blvd, Brownsville, TX 78520, USA
| |
Collapse
|
16
|
Jaiswal S, Purpura SR, Manchanda JK, Nan J, Azeez N, Ramanathan D, Mishra J. Design and Implementation of a Brief Digital Mindfulness and Compassion Training App for Health Care Professionals: Cluster Randomized Controlled Trial. JMIR Ment Health 2024; 11:e49467. [PMID: 38252479 PMCID: PMC10845023 DOI: 10.2196/49467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Several studies show that intense work schedules make health care professionals particularly vulnerable to emotional exhaustion and burnout. OBJECTIVE In this scenario, promoting self-compassion and mindfulness may be beneficial for well-being. Notably, scalable, digital app-based methods may have the potential to enhance self-compassion and mindfulness in health care professionals. METHODS In this study, we designed and implemented a scalable, digital app-based, brief mindfulness and compassion training program called "WellMind" for health care professionals. A total of 22 adult participants completed up to 60 sessions of WellMind training, 5-10 minutes in duration each, over 3 months. Participants completed behavioral assessments measuring self-compassion and mindfulness at baseline (preintervention), 3 months (postintervention), and 6 months (follow-up). In order to control for practice effects on the repeat assessments and calculate effect sizes, we also studied a no-contact control group of 21 health care professionals who only completed the repeated assessments but were not provided any training. Additionally, we evaluated pre- and postintervention neural activity in core brain networks using electroencephalography source imaging as an objective neurophysiological training outcome. RESULTS Findings showed a post- versus preintervention increase in self-compassion (Cohen d=0.57; P=.007) and state-mindfulness (d=0.52; P=.02) only in the WellMind training group, with improvements in self-compassion sustained at follow-up (d=0.8; P=.01). Additionally, WellMind training durations correlated with the magnitude of improvement in self-compassion across human participants (ρ=0.52; P=.01). Training-related neurophysiological results revealed plasticity specific to the default mode network (DMN) that is implicated in mind-wandering and rumination, with DMN network suppression selectively observed at the postintervention time point in the WellMind group (d=-0.87; P=.03). We also found that improvement in self-compassion was directly related to the extent of DMN suppression (ρ=-0.368; P=.04). CONCLUSIONS Overall, promising behavioral and neurophysiological findings from this first study demonstrate the benefits of brief digital mindfulness and compassion training for health care professionals and compel the scale-up of the digital intervention. TRIAL REGISTRATION Trial Registration: International Standard Randomized Controlled Trial Number Registry ISRCTN94766568, https://www.isrctn.com/ISRCTN94766568.
Collapse
Affiliation(s)
- Satish Jaiswal
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Suzanna R Purpura
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - James K Manchanda
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Jason Nan
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Nihal Azeez
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Dhakshin Ramanathan
- Department of Mental Health, Veterans Affairs San Diego Medical Center, San Diego, CA, United States
| | - Jyoti Mishra
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Hasan MA, Sattar P, Qazi SA, Fraser M, Vuckovic A. Brain Networks With Modified Connectivity in Patients With Neuropathic Pain and Spinal Cord Injury. Clin EEG Neurosci 2024; 55:88-100. [PMID: 34714181 DOI: 10.1177/15500594211051485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuropathic pain (NP) following spinal cord injury (SCI) affects the quality of life of almost 40% of the injured population. The modified brain connectivity was reported under different NP conditions. Therefore, brain connectivity was studied in the SCI population with and without NP with the aim to identify networks that are altered due to injury, pain, or both. Methods. The study cohort is classified into 3 groups, SCI patients with NP, SCI patients without NP, and able-bodied. EEG of each participant was recorded during motor imagery (MI) of paralyzed and painful, and nonparalyzed and nonpainful limbs. Phased locked value was calculated using Hilbert transform to study altered functional connectivity between different regions. Results. The posterior region connectivity with frontal, fronto-central, and temporal regions is strongly decreased mainly during MI of dominant upper limb (nonparalyzed and nonpainful limbs) in SCI no pain group. This modified connectivity is prominent in the alpha and high-frequency bands (beta and gamma). Moreover, oscillatory modified global connectivity is observed in the pain group during MI of painful and paralyzed limb which is more evident between fronto-posterior, frontocentral-posterior, and within posterior and within frontal regions in the theta and SMR frequency bands. Cluster coefficient and local efficiency values are reduced in patients with no reported pain group while increased in the PWP group. Conclusion. The altered theta band connectivity found in the fronto-parietal network along with a global increase in local efficiency is a consequence of pain only, while altered connectivity in the beta and gamma bands along with a decrease in cluster coefficient values observed in the sensory-motor network is dominantly a consequence of injury only. The outcomes of this study may be used as a potential diagnostic biomarker for the NP. Further, the expected insight holds great clinical relevance in the design of neurofeedback-based neurorehabilitation and connectivity-based brain-computer interfaces for SCI patients.
Collapse
Affiliation(s)
- Muhammad A Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Parisa Sattar
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
| | - Saad A Qazi
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
- Department of Electrical and Computer Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Matthew Fraser
- Queen Elizabeth National Spinal Unit, Southern General Hospital, Glasgow, UK
| | - Aleksandra Vuckovic
- Centre for Rehabilitation Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Song L, Ren Y, Xu S, Hou Y, He X. A hybrid spatiotemporal deep belief network and sparse representation-based framework reveals multilevel core functional components in decoding multitask fMRI signals. Netw Neurosci 2023; 7:1513-1532. [PMID: 38144693 PMCID: PMC10745082 DOI: 10.1162/netn_a_00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/17/2023] [Indexed: 12/26/2023] Open
Abstract
Decoding human brain activity on various task-based functional brain imaging data is of great significance for uncovering the functioning mechanism of the human mind. Currently, most feature extraction model-based methods for brain state decoding are shallow machine learning models, which may struggle to capture complex and precise spatiotemporal patterns of brain activity from the highly noisy fMRI raw data. Moreover, although decoding models based on deep learning methods benefit from their multilayer structure that could extract spatiotemporal features at multiscale, the relatively large populations of fMRI datasets are indispensable, and the explainability of their results is elusive. To address the above problems, we proposed a computational framework based on hybrid spatiotemporal deep belief network and sparse representations to differentiate multitask fMRI (tfMRI) signals. Using a relatively small cohort of tfMRI data as a test bed, our framework can achieve an average classification accuracy of 97.86% and define the multilevel temporal and spatial patterns of multiple cognitive tasks. Intriguingly, our model can characterize the key components for differentiating the multitask fMRI signals. Overall, the proposed framework can identify the interpretable and discriminative fMRI composition patterns at multiple scales, offering an effective methodology for basic neuroscience and clinical research with relatively small cohorts.
Collapse
Affiliation(s)
- Limei Song
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Yudan Ren
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Shuhan Xu
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Yuqing Hou
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Xiaowei He
- School of Information Science and Technology, Northwest University, Xi’an, China
| |
Collapse
|
19
|
Schwartz OS, Amminger P, Baune BT, Bedi G, Berk M, Cotton SM, Daglas-Georgiou R, Glozier N, Harrison B, Hermens DF, Jennings E, Lagopoulos J, Loo C, Mallawaarachchi S, Martin D, Phelan B, Read N, Rodgers A, Schmaal L, Somogyi AA, Thurston L, Weller A, Davey CG. The Study of Ketamine for Youth Depression (SKY-D): study protocol for a randomised controlled trial of low-dose ketamine for young people with major depressive disorder. Trials 2023; 24:686. [PMID: 37875938 PMCID: PMC10594918 DOI: 10.1186/s13063-023-07631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Existing treatments for young people with severe depression have limited effectiveness. The aim of the Study of Ketamine for Youth Depression (SKY-D) trial is to determine whether a 4-week course of low-dose subcutaneous ketamine is an effective adjunct to treatment-as-usual in young people with major depressive disorder (MDD). METHODS SKY-D is a double-masked, randomised controlled trial funded by the Australian Government's National Health and Medical Research Council (NHMRC). Participants aged between 16 and 25 years (inclusive) with moderate-to-severe MDD will be randomised to receive either low-dose ketamine (intervention) or midazolam (active control) via subcutaneous injection once per week for 4 weeks. The primary outcome is change in depressive symptoms on the Montgomery-Åsberg Depression Rating Scale (MADRS) after 4 weeks of treatment. Further follow-up assessment will occur at 8 and 26 weeks from treatment commencement to determine whether treatment effects are sustained and to investigate safety outcomes. DISCUSSION Results from this trial will be important in determining whether low-dose subcutaneous ketamine is an effective treatment for young people with moderate-to-severe MDD. This will be the largest randomised trial to investigate the effects of ketamine to treat depression in young people. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ID: ACTRN12619000683134. Registered on May 7, 2019. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377513 .
Collapse
Affiliation(s)
- Orli S Schwartz
- Department of Psychiatry, University of Melbourne, Melbourne, Australia.
- Orygen, Melbourne, Australia.
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia.
| | - Paul Amminger
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Bernard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Department of Psychiatry, University of Münster, Münster, Germany
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Gillinder Bedi
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Michael Berk
- Orygen, Melbourne, Australia
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Sue M Cotton
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Rothanthi Daglas-Georgiou
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Nick Glozier
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence for Children and Families Over the Life Course, Sydney, Australia
- Professor Marie Bashir Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ben Harrison
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Australia
| | - Emma Jennings
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Australia
- Thompson Brain and Mind Healthcare, Sunshine Coast, Australia
| | - Colleen Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Sumudu Mallawaarachchi
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Donel Martin
- Black Dog Institute, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Bethany Phelan
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Nikki Read
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Anthony Rodgers
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Lianne Schmaal
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Andrew A Somogyi
- School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Lily Thurston
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Amber Weller
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Victorian Department of Health, Melbourne, Australia
| | - Christopher G Davey
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Torabian S, Grossman ED. When shapes are more than shapes: perceptual, developmental, and neurophysiological basis for attributions of animacy and theory of mind. Front Psychol 2023; 14:1168739. [PMID: 37744598 PMCID: PMC10513434 DOI: 10.3389/fpsyg.2023.1168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Among a variety of entities in their environment, what do humans consider alive or animate and how does this attribution of animacy promote development of more abstract levels of mentalizing? By decontextualizing the environment of bodily features, we review how physical movements give rise to perceived animacy in Heider-Simmel style animations. We discuss the developmental course of how perceived animacy shapes our interpretation of the social world, and specifically discuss when and how children transition from perceiving actions as goal-directed to attributing behaviors to unobservable mental states. This transition from a teleological stance, asserting a goal-oriented interpretation to an agent's actions, to a mentalistic stance allows older children to reason about more complex actions guided by hidden beliefs. The acquisition of these more complex cognitive behaviors happens developmentally at the same time neural systems for social cognition are coming online in young children. We review perceptual, developmental, and neural evidence to identify the joint cognitive and neural changes associated with when children begin to mentalize and how this ability is instantiated in the brain.
Collapse
Affiliation(s)
- Sajjad Torabian
- Visual Perception and Neuroimaging Lab, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
21
|
Leonards CA, Harrison BJ, Jamieson AJ, Steward T, Lux S, Philipsen A, Davey CG. A distinct intra-individual suppression subnetwork in the brain's default mode network across cognitive tasks. Cereb Cortex 2023; 33:4553-4561. [PMID: 36130087 PMCID: PMC10110429 DOI: 10.1093/cercor/bhac361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppression of the brain's default mode network (DMN) during external goal-directed cognitive tasks has been consistently observed in neuroimaging studies. However, emerging insights suggest the DMN is not a monolithic "task-negative" network but is comprised of subsystems that show functional heterogeneity. Despite considerable research interest, no study has investigated the consistency of DMN activity suppression across multiple cognitive tasks within the same individuals. In this study, 85 healthy 15- to 25-year-olds completed three functional magnetic resonance imaging tasks that were designed to reliably map DMN suppression from a resting baseline. Our findings revealed a distinct suppression subnetwork across the three tasks that comprised traditional DMN and adjacent regions. Specifically, common suppression was observed in the medial prefrontal cortex, the dorsal-to-mid posterior cingulate cortex extending to the precuneus, and the posterior insular cortex and parietal operculum. Further, we found the magnitude of suppression of these regions were significantly correlated within participants across tasks. Overall, our findings indicate that externally oriented cognitive tasks elicit common suppression of a distinct subnetwork of the broader DMN. The consistency to which the DMN is suppressed within individuals suggests a domain-general mechanism that may reflect a stable feature of cognitive function that optimizes external goal-directed behavior.
Collapse
Affiliation(s)
- Christine A Leonards
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
22
|
Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Silk TJ, Tomoda A, Menon V. Methylphenidate Enhances Spontaneous Fluctuations in Reward and Cognitive Control Networks in Children With Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:271-280. [PMID: 36717325 DOI: 10.1016/j.bpsc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Methylphenidate, a first-line treatment for attention-deficit/hyperactivity disorder (ADHD), is thought to influence dopaminergic neurotransmission in the nucleus accumbens (NAc) and its associated brain circuitry, but this hypothesis has yet to be systematically tested. METHODS We conducted a randomized, placebo-controlled, double-blind crossover trial including 27 children with ADHD. Children with ADHD were scanned twice with resting-state functional magnetic resonance imaging under methylphenidate and placebo conditions, along with assessment of sustained attention. We examined spontaneous neural activity in the NAc and the salience, frontoparietal, and default mode networks and their links to behavioral changes. Replicability of methylphenidate effects on spontaneous neural activity was examined in a second independent cohort. RESULTS Methylphenidate increased spontaneous neural activity in the NAc and the salience and default mode networks. Methylphenidate-induced changes in spontaneous activity patterns in the default mode network were associated with improvements in intraindividual response variability during a sustained attention task. Critically, despite differences in clinical trial protocols and data acquisition parameters, the NAc and the salience and default mode networks showed replicable patterns of methylphenidate-induced changes in spontaneous activity across two independent cohorts. CONCLUSIONS We provide reproducible evidence demonstrating that methylphenidate enhances spontaneous neural activity in NAc and cognitive control networks in children with ADHD, resulting in more stable sustained attention. Our findings identified a novel neural mechanism underlying methylphenidate treatment in ADHD to inform the development of clinically useful biomarkers for evaluating treatment outcomes.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Timothy J Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California.
| |
Collapse
|
23
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
24
|
Rafi H, Murray R, Delavari F, Perroud N, Vuilleumier P, Debbané M, Piguet C. Neural Basis of Internal Attention in Adults with Pure and Comorbid ADHD. J Atten Disord 2023; 27:423-436. [PMID: 36635890 DOI: 10.1177/10870547221147546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To examine whether putatively atypical neuronal activity during internal attention in ADHD yields insights into processes underlying emotion dysregulation. METHODS We used a word processing paradigm to assess neural activations in adults with ADHD (N = 46) compared to controls (N = 43). We measured effects of valence, applied partial-least squares correlation analysis to assess multivariate brainbehavior relationships and ran subgroup analyses to isolate results driven by pure ADHD (N = 18). RESULTS During internal attention, ADHD, compared to controls, have (1) increased activation in the right angular gyrus (rAG), which appears driven by pure, not comorbid, ADHD and (2) diminished activation in the insula and fronto-striatal circuitry. Diminished activations were driven by negatively-valenced internal attention and negatively correlated with increased affective lability within the ADHD group. CONCLUSION Internal attention in ADHD is associated with increased rAG activation, possibly reflecting difficulty converging external and internal information, and diminished activation within emotion regulation circuitry.
Collapse
Affiliation(s)
| | - Ryan Murray
- University of Geneva, Switzerland
- University of Geneva, Campus Biotech, Switzerland
| | - Farnaz Delavari
- University of Geneva, Switzerland
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | | | | | - Martin Debbané
- University of Geneva, Switzerland
- University College London, UK
| | - Camille Piguet
- University of Geneva, Switzerland
- University Hospitals of Geneva, Switzerland
| |
Collapse
|
25
|
Sacco L, Ceroni M, Pacifico D, Zerboni G, Rossi S, Galati S, Caverzasio S, Kaelin-Lang A, Riccitelli GC. Transcranial Magnetic Stimulation Improves Executive Functioning through Modulation of Social Cognitive Networks in Patients with Mild Cognitive Impairment: Preliminary Results. Diagnostics (Basel) 2023; 13:415. [PMID: 36766520 PMCID: PMC9914912 DOI: 10.3390/diagnostics13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Patients with mild cognitive impairment (MCI) often present impairment in executive functions (EFs). This study aimed to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on EFs in patients with MCI. (2) Methods: A prospective trial was conducted on 11 patients with MCI. Participants underwent 25 min of 20 Hz rTMS for ten days on the right temporo-parietal junction (RTPJ) and medial prefrontal cortex (MPFC). Before (T0) and after rTMS treatment (T1), global cognitive profile and EFs were investigated using the Montreal cognitive assessment (MoCA), trial making test (TMT) A and B, and frontal assessment battery (FAB). Depression symptoms were assessed using the geriatric depression scale (GDS). Statistical analysis included Wilcoxon signed-rank test. (3) Results: After treatment, patients showed a significant improvement in the MoCA EFs subtask (T0 vs. T1, p = 0.015) and TMT-B (T0 vs. T1, p = 0.028). Five MCI patients with EF impairment showed full recovery of these deficits. No significant changes in the GDS were observed. (4) Conclusions: rTMS stimulation over the TPJ and MPFC induced significant short-term improvements in EFs in MCI patients. These findings suggest that the TPJ and MPFC may be involved in the attention-executive skills to redirect attention toward behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Leonardo Sacco
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Martino Ceroni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Deborah Pacifico
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Giorgia Zerboni
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Stefania Rossi
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Serena Caverzasio
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Movement Disorders Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Gianna C. Riccitelli
- Neuropsychology and Behavioral Neurology Research Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
26
|
Vision- and touch-dependent brain correlates of body-related mental processing. Cortex 2022; 157:30-52. [PMID: 36272330 DOI: 10.1016/j.cortex.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In humans, the nature of sensory input influences body-related mental processing. For instance, behavioral differences (e.g., response time) can be found between mental spatial transformations (e.g., mental rotation) of viewed and touched body parts. It can thus be hypothesized that distinct brain activation patterns are associated with such sensory-dependent body-related mental processing. However, direct evidence that the neural correlates of body-related mental processing can be modulated by the nature of the sensory stimuli is still missing. We thus analyzed event-related functional magnetic resonance imaging (fMRI) data from thirty-one healthy participants performing mental rotation of visually- (images) and haptically-presented (plastic) hands. We also dissociated the neural activity related to rotation or task-related performance using models that either regressed out or included the variance associated with response time. Haptically-mediated mental rotation recruited mostly the sensorimotor brain network. Visually-mediated mental rotation led to parieto-occipital activations. In addition, faster mental rotation was associated with sensorimotor activity, while slower mental rotation was associated with parieto-occipital activations. The fMRI results indicated that changing the type of sensory inputs modulates the neural correlates of body-related mental processing. These findings suggest that distinct sensorimotor brain dynamics can be exploited to execute similar tasks depending on the available sensory input. The present study can contribute to a better evaluation of body-related mental processing in experimental and clinical settings.
Collapse
|
27
|
Lee JK, Cho ACB, Andrews DS, Ozonoff S, Rogers SJ, Amaral DG, Solomon M, Nordahl CW. Default mode and fronto-parietal network associations with IQ development across childhood in autism. J Neurodev Disord 2022; 14:51. [PMID: 36109700 PMCID: PMC9479280 DOI: 10.1186/s11689-022-09460-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intellectual disability affects approximately one third of individuals with autism spectrum disorder (autism). Yet, a major unresolved neurobiological question is what differentiates autistic individuals with and without intellectual disability. Intelligence quotients (IQs) are highly variable during childhood. We previously identified three subgroups of autistic children with different trajectories of intellectual development from early (2–3½ years) to middle childhood (9–12 years): (a) persistently high: individuals whose IQs remained in the normal range; (b) persistently low: individuals whose IQs remained in the range of intellectual disability (IQ < 70); and (c) changers: individuals whose IQs began in the range of intellectual disability but increased to the normal IQ range. The frontoparietal (FPN) and default mode (DMN) networks have established links to intellectual functioning. Here, we tested whether brain regions within the FPN and DMN differed volumetrically between these IQ trajectory groups in early childhood. Methods We conducted multivariate distance matrix regression to examine the brain regions within the FPN (11 regions x 2 hemispheres) and the DMN (12 regions x 2 hemispheres) in 48 persistently high (18 female), 108 persistently low (32 female), and 109 changers (39 female) using structural MRI acquired at baseline. FPN and DMN regions were defined using networks identified in Smith et al. (Proc Natl Acad Sci U S A 106:13040–5, 2009). IQ trajectory groups were defined by IQ measurements from up to three time points spanning early to middle childhood (mean age time 1: 3.2 years; time 2: 5.4 years; time 3: 11.3 years). Results The changers group exhibited volumetric differences in the DMN compared to both the persistently low and persistently high groups at time 1. However, the persistently high group did not differ from the persistently low group, suggesting that DMN structure may be an early predictor for change in IQ trajectory. In contrast, the persistently high group exhibited differences in the FPN compared to both the persistently low and changers groups, suggesting differences related more to concurrent IQ and the absence of intellectual disability. Conclusions Within autism, volumetric differences of brain regions within the DMN in early childhood may differentiate individuals with persistently low IQ from those with low IQ that improves through childhood. Structural differences in brain networks between these three IQ-based subgroups highlight distinct neural underpinnings of these autism sub-phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09460-y.
Collapse
|
28
|
Yue J, Zhao N, Qiao Y, Feng Z, Hu Y, Ge Q, Zhang T, Zhang Z, Wang J, Zang Y. Higher reliability and validity of Wavelet-ALFF of resting-state fMRI: From multicenter database and application to rTMS modulation. Hum Brain Mapp 2022; 44:1105-1117. [PMID: 36394386 PMCID: PMC9875929 DOI: 10.1002/hbm.26142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Amplitude of low-frequency fluctuation (ALFF) has been widely used for localization of abnormal activity at the single-voxel level in resting-state fMRI (RS-fMRI) studies. However, previous ALFF studies were based on fast Fourier transform (FFT-ALFF). Our recent study found that ALFF based on wavelet transform (Wavelet-ALFF) showed better sensitivity and reproducibility than FFT-ALFF. The current study aimed to test the reliability and validity of Wavelet-ALFF, and apply Wavelet-ALFF to investigate the modulation effect of repetitive transcranial magnetic stimulation (rTMS). The reliability and validity were assessed on multicenter RS-fMRI datasets under eyes closed (EC) and eyes open (EO) conditions (248 healthy participants in total). We then detected the sensitivity of Wavelet-ALFF using a rTMS modulation dataset (24 healthy participants). For each dataset, Wavelet-ALFF based on five mother wavelets (i.e., db2, bior4.4, morl, meyr and sym3) and FFT-ALFF were calculated in the conventional band and five frequency sub-bands. The results showed that the reliability of both inter-scanner and intra-scanner was higher with Wavelet-ALFF than with FFT-ALFF across multiple frequency bands, especially db2-ALFF in the higher frequency band slow-2 (0.1992-0.25 Hz). In terms of validity, the multicenter ECEO datasets showed that the effect sizes of Wavelet-ALFF with all mother wavelets (especially for db2-ALFF) were larger than those of FFT-ALFF across multiple frequency bands. Furthermore, Wavelet-ALFF detected a larger modulation effect than FFT-ALFF. Collectively, Wavelet db2-ALFF showed the best reliability and validity, suggesting that db2-ALFF may offer a powerful metric for inspecting regional spontaneous brain activities in future studies.
Collapse
Affiliation(s)
- Juan Yue
- TMS Center, Hangzhou Normal University Affiliated Deqing HospitalHuzhouChina,Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Na Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina,Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health SciencesUniversity of MacauMacao SARChina,Centre for Cognitive and Brain SciencesUniversity of MacauMacao SARChina
| | - Yang Qiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina,Centre for Cognitive and Brain SciencesUniversity of MacauMacao SARChina,Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Zi‐Jian Feng
- TMS Center, Hangzhou Normal University Affiliated Deqing HospitalHuzhouChina
| | - Yun‐Song Hu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Qiu Ge
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | | | - Zhu‐Qian Zhang
- School of MedicineHangzhou Normal UniversityHangzhouChina
| | - Jue Wang
- Institute of sports medicine and healthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina,Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina,Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| |
Collapse
|
29
|
Xia H, He Q, Chen A. Understanding cognitive control in aging: A brain network perspective. Front Aging Neurosci 2022; 14:1038756. [PMID: 36389081 PMCID: PMC9659905 DOI: 10.3389/fnagi.2022.1038756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive control decline is a major manifestation of brain aging that severely impairs the goal-directed abilities of older adults. Magnetic resonance imaging evidence suggests that cognitive control during aging is associated with altered activation in a range of brain regions, including the frontal, parietal, and occipital lobes. However, focusing on specific regions, while ignoring the structural and functional connectivity between regions, may impede an integrated understanding of cognitive control decline in older adults. Here, we discuss the role of aging-related changes in functional segregation, integration, and antagonism among large-scale networks. We highlight that disrupted spontaneous network organization, impaired information co-processing, and enhanced endogenous interference promote cognitive control declines during aging. Additionally, in older adults, severe damage to structural network can weaken functional connectivity and subsequently trigger cognitive control decline, whereas a relatively intact structural network ensures the compensation of functional connectivity to mitigate cognitive control impairment. Thus, we propose that age-related changes in functional networks may be influenced by structural networks in cognitive control in aging (CCA). This review provided an integrative framework to understand the cognitive control decline in aging by viewing the brain as a multimodal networked system.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
30
|
Aponik-Gremillion L, Chen YY, Bartoli E, Koslov SR, Rey HG, Weiner KS, Yoshor D, Hayden BY, Sheth SA, Foster BL. Distinct population and single-neuron selectivity for executive and episodic processing in human dorsal posterior cingulate. eLife 2022; 11:e80722. [PMID: 36169132 PMCID: PMC9519147 DOI: 10.7554/elife.80722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Posterior cingulate cortex (PCC) is an enigmatic region implicated in psychiatric and neurological disease, yet its role in cognition remains unclear. Human studies link PCC to episodic memory and default mode network (DMN), while findings from the non-human primate emphasize executive processes more associated with the cognitive control network (CCN) in humans. We hypothesized this difference reflects an important functional division between dorsal (executive) and ventral (episodic) PCC. To test this, we utilized human intracranial recordings of population and single unit activity targeting dorsal PCC during an alternated executive/episodic processing task. Dorsal PCC population responses were significantly enhanced for executive, compared to episodic, task conditions, consistent with the CCN. Single unit recordings, however, revealed four distinct functional types with unique executive (CCN) or episodic (DMN) response profiles. Our findings provide critical electrophysiological data from human PCC, bridging incongruent views within and across species, furthering our understanding of PCC function.
Collapse
Affiliation(s)
- Lyndsey Aponik-Gremillion
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Health Sciences, Dumke College for Health Professionals, Weber State UniversityOgdenUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hernan G Rey
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
- Department of Neurosurgery, Medical College of WisconsinMilwaukeeUnited States
- Joint Department of Biomedical Engineering, Medical College of WisconsinMilwaukeeUnited States
| | - Kevin S Weiner
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Benjamin Y Hayden
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
- Center for Magnetic Resonance Research, University of MinnesotaMinneapolisUnited States
- Center for Neural Engineering, University of MinnesotaMinneapolisUnited States
| | - Sameer A Sheth
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
31
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
32
|
Asakage S, Nakano T. The salience network is activated during self-recognition from both first-person and third-person perspectives. Hum Brain Mapp 2022; 44:559-570. [PMID: 36129447 PMCID: PMC9842878 DOI: 10.1002/hbm.26084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
We usually observe ourselves from two perspectives. One is the first-person perspective, which we perceive directly with our own eyes, and the other is the third-person perspective, which we observe ourselves in a mirror or a picture. However, whether the self-recognition associated with these two perspectives has a common or separate neural basis remains unclear. To address this, we used functional magnetic resonance imaging to examine brain activity while participants viewed pretaped video clips of themselves and others engaged in meal preparation taken from first-person and third-person perspectives. We found that the first-person behavioral videos of the participants and others induced greater activation in the premotor-intraparietal region. In contrast, the third-person behavioral videos induced greater activation in the default mode network compared with the first-person videos. Regardless of the perspective, the videos of the participants induced greater activation in the salience network than the videos of others. On the other hand, the videos of others induced greater activation in the precuneus and lingual gyrus than the videos of the participants. These results suggest that the salience network is commonly involved in self-recognition from both perspectives, even though the brain regions involved in action observation for the two perspectives are distinct.
Collapse
Affiliation(s)
- Shoko Asakage
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan
| | - Tamami Nakano
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan,Graduate School of MedicineOsaka UniversityOsakaJapan,Center for Information and Neural Networks (CiNet)OsakaJapan
| |
Collapse
|
33
|
Effects of aging on functional connectivity in a neurodegenerative risk cohort: resting state versus task measurement using near-infrared spectroscopy. Sci Rep 2022; 12:11262. [PMID: 35788629 PMCID: PMC9253312 DOI: 10.1038/s41598-022-13326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Changes in functional brain organization are considered to be particularly sensitive to age-related effects and may precede structural cognitive decline. Recent research focuses on aging processes determined by resting state (RS) functional connectivity (FC), but little is known about differences in FC during RS and cognitive task conditions in elderly participants. The purpose of this study is to compare FC within and between the cognitive control (CCN) and dorsal attention network (DAN) at RS and during a cognitive task using functional near-infrared spectroscopy (fNIRS). In a matched, neurodegenerative high-risk cohort comprising early (n = 98; 50–65 y) and late (n = 98; 65–85 y) elder subjects, FC was measured at RS and during performance of the Trail Making Test (TMT) via fNIRS. Both, under RS and task conditions our results revealed a main effect for age, characterized by reduced FC for late elder subjects within the left inferior frontal gyrus. During performance of the TMT, negative correlations of age and FC were confirmed in various regions of the CCN and DAN. For the whole sample, FC of within-region connections was elevated, while FC between regions was decreased at RS. The results confirm a reorganization of functional brain connectivity with increasing age and cognitive demands.
Collapse
|
34
|
Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 2022; 227:1711-1734. [PMID: 35179638 PMCID: PMC9098625 DOI: 10.1007/s00429-022-02467-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode network (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstructive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional functions. However, an important finding was that the various activation maps were often different from the canonical representation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external regions such as the insula. Altogether, our findings suggest that the intrinsic-extrinsic opposition may be better understood in the form of a continuous scale, rather than a dichotomy.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | | | - Donato Liloia
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Giulia Buzi
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Franco Cauda
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
35
|
Brain Network Changes in Lumbar Disc Herniation Induced Chronic Nerve Roots Compression Syndromes. Neural Plast 2022; 2022:7912410. [PMID: 35607420 PMCID: PMC9124092 DOI: 10.1155/2022/7912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Lumbar disc herniation (LDH) induced nerve compression syndromes have been a prevalent problem with complex neural mechanisms. Changes in distributed brain areas are involved in the occurrence and persistence of syndromes. The present study aimed to investigate the changes of brain functional network in LDH patients with chronic sciatica using graph theory analysis. A total of thirty LDH adults presenting L4 and/or L5 root (s) compression syndromes (LDH group) and thirty age-, sex-, BMI- and education-matched healthy control (HC group) were recruited for functional MRI scan. Whole-brain functional network was constructed for each participant using Pearson's correlation. Global and nodal properties were calculated and compared between two groups, including small-worldness index, clustering coefficient, characteristic path length, degree centrality (DC), betweenness centrality (BC) and nodal efficiency. Both LDH and HC groups showed small-world architecture in the functional network of brain. However, LDH group showed that nodal centralities (DC, BC and nodal efficiency) increased in opercular part of inferior frontal gyrus; and decreased in orbital part of inferior frontal gyrus, lingual cortex and inferior occipital gyrus. The DC and efficiency in the right inferior occipital gyrus were negatively related with the Oswestry Disability Index in LDH group. In conclusion, the LDH-related chronic sciatica syndromes may induce regional brain alterations involving self-referential, emotional responses and pain regulation functions. But the whole-brain small-world architecture was not significantly disturbed. It may provide new insights into LDH patients with radicular symptoms from new perspectives.
Collapse
|
36
|
Jamieson AJ, Harrison BJ, Razi A, Davey CG. Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology 2022; 47:1240-1248. [PMID: 34782701 PMCID: PMC9018815 DOI: 10.1038/s41386-021-01214-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
The rostral anterior cingulate cortex (rACC) is consistently implicated in the neurobiology of depression. While the functional connectivity of the rACC has been previously associated with treatment response, there is a paucity of work investigating the specific directional interactions underpinning these associations. We compared the fMRI resting-state effective connectivity of 94 young people with major depressive disorder and 91 healthy controls. Following the fMRI scan, patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or a placebo. Using spectral dynamic causal modelling, we examined the effective connectivity of the rACC with eight other regions implicated in depression: the left and right anterior insular cortex (AIC), amygdalae, and dorsolateral prefrontal cortex (dlPFC); and in the midline, the subgenual (sgACC) and dorsal anterior cingulate cortex (dACC). Parametric empirical Bayes was used to compare baseline differences between controls and patients and responders and non-responders to treatment. Depressed patients demonstrated greater inhibitory connectivity from the rACC to the dlPFC, AIC, dACC and left amygdala. Moreover, treatment responders illustrated greater inhibitory connectivity from the rACC to dACC, greater excitatory connectivity from the dACC to sgACC and reduced inhibitory connectivity from the sgACC to amygdalae at baseline. The inhibitory hyperconnectivity of the rACC in depressed patients aligns with hypotheses concerning the dominance of the default mode network over other intrinsic brain networks. Surprisingly, treatment responders did not demonstrate connectivity which was more similar to healthy controls, but rather distinct alterations that may have predicated their enhanced treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, VIC, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, VIC, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
37
|
Velichkovsky BM, Osipov GS, Nosovets ZA, Velichkovsky BB. Personal Meaning and Solving Creative Tasks: Contemporary Neurocognitive Studies. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2022. [DOI: 10.3103/s0147688221050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Yang D, Qin R, Chu L, Xu H, Ni L, Ma J, Shao P, Huang L, Zhang B, Zhang M, Xu Y. Abnormal Cerebrovascular Reactivity and Functional Connectivity Caused by White Matter Hyperintensity Contribute to Cognitive Decline. Front Neurosci 2022; 16:807585. [PMID: 35310084 PMCID: PMC8930816 DOI: 10.3389/fnins.2022.807585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aims This study aimed to investigate the relationships of impaired cerebrovascular reactivity (CVR) and abnormal functional connectivity (FC) with white matter hyperintensity (WMH)-related cognitive decline. Methods A total of 233 WMH subjects were recruited and categorized into WMH-I (n = 106), WMH-II (n = 72), and WMH-III (n = 55) groups according to Fazekas visual rating scale. All participants underwent neuropsychological tests and multimodal MRI scans, including 3D-T1, and resting-state functional magnetic resonance imaging (rs-fMRI). The alterations of CVR maps and FC were further explored. Results Subjects with a higher WMH burden displayed a lower CVR in the left medial occipital gyrus (MOG). The FC analysis using MOG as a seed revealed that the FC of the left insula, left inferior parietal lobule, and thalamus changed abnormally as WMH aggravated. After adjusting for age, gender, and education years, the serial mediation analysis revealed that periventricular white matter hyperintensity contributes indirectly to poorer Mini-Mental State Examination (MMSE) scores (indirect effect: β = −0.1248, 95% CI: −0.4689, −0188), poorer Montreal Cognitive Assessment (MoCA) (indirect effect: β = −0.1436, 95% CI: −0.4584, −0.0292) scores, and longer trail making tests A (TMT-A) (indirect effect: β = 0.1837, 95% CI: 0.0069, 0.8273) times, specifically due to the lower CVR of the left MOG and the higher FC of the left insula-MOG. Conclusion The CVR decline of the left MOG and the abnormal FC of the left insula-MOG attributed to WMH progression were responsible for the poor general cognition (MMSE and MoCA) and information processing speed (TMT-A). The left MOG may act as a connection, which is involved in the processing of cognitive biases by connecting with the left insula-cortical regions in WMH individuals.
Collapse
Affiliation(s)
- Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hengheng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ling Ni
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- *Correspondence: Meijuan Zhang,
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- Yun Xu,
| |
Collapse
|
40
|
Nyrup R, Robinson D. Explanatory pragmatism: a context-sensitive framework for explainable medical AI. ETHICS AND INFORMATION TECHNOLOGY 2022; 24:13. [PMID: 35250370 PMCID: PMC8885497 DOI: 10.1007/s10676-022-09632-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Explainable artificial intelligence (XAI) is an emerging, multidisciplinary field of research that seeks to develop methods and tools for making AI systems more explainable or interpretable. XAI researchers increasingly recognise explainability as a context-, audience- and purpose-sensitive phenomenon, rather than a single well-defined property that can be directly measured and optimised. However, since there is currently no overarching definition of explainability, this poses a risk of miscommunication between the many different researchers within this multidisciplinary space. This is the problem we seek to address in this paper. We outline a framework, called Explanatory Pragmatism, which we argue has two attractive features. First, it allows us to conceptualise explainability in explicitly context-, audience- and purpose-relative terms, while retaining a unified underlying definition of explainability. Second, it makes visible any normative disagreements that may underpin conflicting claims about explainability regarding the purposes for which explanations are sought. Third, it allows us to distinguish several dimensions of AI explainability. We illustrate this framework by applying it to a case study involving a machine learning model for predicting whether patients suffering disorders of consciousness were likely to recover consciousness.
Collapse
Affiliation(s)
- Rune Nyrup
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| | - Diana Robinson
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Department of Computer Science, University of Cambridge, Cambridge, UK
- Microsoft Research, Cambridge, UK
| |
Collapse
|
41
|
Modulation of the brain's core-self network by self-appraisal processes. Neuroimage 2022; 251:118980. [PMID: 35143976 DOI: 10.1016/j.neuroimage.2022.118980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
The 'core' regions of the default mode network (DMN) - the medial prefrontal cortex (MPFC), the posterior cingulate cortex (PCC), and inferior parietal lobules (IPL) - show consistent involvement across mental states that involve self-oriented processing. Precisely how these regions interact in support of such processes remains an important unanswered question. In the current functional magnetic resonance imaging (fMRI) study, we examined dynamic interactions of the 'core-self' DMN regions during two forms of self-referential cognition: direct self-appraisal (thinking about oneself) and reflected self-appraisal (thinking about oneself from a third-person perspective). One-hundred and eleven participants completed our dual self-appraisal task during fMRI, and general linear models were used to characterize common and distinct neural responses to these conditions. Informed by these results, we then applied dynamic causal modelling to examine causal interactions among the 'core-self' regions, and how they were specifically modulated under the influence of direct and reflected self-appraisal. As a primary observation, this network modelling revealed a distinct inhibitory influence of the left IPL on the PCC during reflected compared to direct self-appraisal, which was accompanied by evidence of greater activation in both regions during the reflected self-appraisal condition. We suggest that the greater engagement posterior DMN regions during reflected self-appraisal is a function of the higher-order processing needed for this form of self-appraisal, with the left IPL supporting abstract self-related processes including episodic memory retrieval and shifts of perspective. Overall, we show that core DMN regions interact in functionally unique ways in support of self-referential processes, even when these processes are inter-related. Further characterization of DMN functional interactions across self-related mental states is likely to inform a deeper understanding of how this brain network orchestrates the self.
Collapse
|
42
|
Marín-Morales A, Bueso-Izquierdo N, Hidalgo-Ruzzante N, Pérez-García M, Catena-Martínez A, Verdejo-Román J. "Would You Allow Your Wife to Dress in a Miniskirt to the Party"? : Batterers Do Not Activate Default Mode Network During Moral Decisions About Intimate Partner Violence. JOURNAL OF INTERPERSONAL VIOLENCE 2022; 37:NP1463-NP1488. [PMID: 32529936 DOI: 10.1177/0886260520926494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Moral convictions consist of assessments based on perceptions of morality and immorality, of right and wrong. There are people who, based on morality, commit crimes. For instance, social and moral norms based on inequality appear to play an important role in the batterer's behavior to commit violent acts. Research shows that batterers consider themselves to be moral persons, are defenders of their beliefs, and, if necessary, are self-delusional, enjoying a "feeling" of moral worth. The main aim of this work was to uncover the brain mechanisms underlying moral decision making related to intimate partner violence (IPV) against women. We conducted a functional magnetic resonance imaging (fMRI) study comparing moral decisions related to IPV and general violence (GV) in a sample of convicted Spanish men. The two groups of our sample were recruited from the Center for Social Insertion (CSI; Granada, Spain): batterers (BG, n = 21), people convicted for IPV, and other criminals (OCG, n = 20) convicted of violating other legal norms without violence against people. Greene's classical dilemmas were used to validate IPV and GV dilemmas. First, our results showed that IPV and GV dilemmas activate the same brain areas as those activated by Greene's dilemmas, primarily involving the default mode network (DMN), which suggests that IPV and GV dilemmas are both moral dilemmas. Second, our results showed that other criminals activated the DMN during both types of dilemmas. Nevertheless, batterers activated the DMN during the GV dilemmas but not during the IPV ones, suggesting that decisions about their female partners do not entail moral conflict. Thus, these preliminary results showed that batterers do not activate moral areas during IPV dilemmas specifically, but do so during GV dilemmas. These results suggest that intervention programs for batterers should aim to specifically modify the value system held by the abuser toward his female partner and not toward other people.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Verdejo-Román
- University of Granada, Spain
- Centre for Biomedical Technology, Madrid, Spain
| |
Collapse
|
43
|
Davey CG, Harrison BJ. The self on its axis: a framework for understanding depression. Transl Psychiatry 2022; 12:23. [PMID: 35042843 PMCID: PMC8766552 DOI: 10.1038/s41398-022-01790-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The self is experienced differently in depression. It is infused with pervasive low mood, and structured by negative self-related thoughts. The concept of the self has been difficult to define-one of the reasons it is now infrequently an object of enquiry for psychiatry-but findings from functional brain imaging and other neuroscience studies have provided new insights. They have elucidated how the self is supported by complex, hierarchical brain processes. Bodily sensations rise through the spinal cord, brainstem, and subcortical regions through to cortical networks, with the default mode network sitting at the apex, integrating interoceptive signals with information about the extended social environment. We discuss how this forms a "self axis", and demonstrate how this axis is set awry by depression. Our self-axis model of depression establishes a new perspective on the disorder. It emphasises the multi-level nature of depression, and how impacts made at different explanatory levels influence others along the axis. It suggests that diverse treatments might be effective for depression, from lifestyle interventions to psychotherapies to medications: they target different aspects of the self, but changes at one level of the self axis can affect others along it. Our framework for depression establishes a central role for the self, which might again become a useful focus of investigation.
Collapse
Affiliation(s)
- Christopher G. Davey
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
| | - Ben J. Harrison
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
44
|
Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, Glarin RK, Steward T. Dynamic Subcortical Modulators of Human Default Mode Network Function. Cereb Cortex 2021; 32:4345-4355. [PMID: 34974620 PMCID: PMC9528899 DOI: 10.1093/cercor/bhab487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The brain’s “default mode network” (DMN) enables flexible switching between internally and externally focused cognition. Precisely how this modulation occurs is not well understood, although it may involve key subcortical mechanisms, including hypothesized influences from the basal forebrain (BF) and mediodorsal thalamus (MD). Here, we used ultra-high field (7 T) functional magnetic resonance imaging to examine the involvement of the BF and MD across states of task-induced DMN activity modulation. Specifically, we mapped DMN activity suppression (“deactivation”) when participants transitioned between rest and externally focused task performance, as well as DMN activity engagement (“activation”) when task performance was internally (i.e., self) focused. Consistent with recent rodent studies, the BF showed overall activity suppression with DMN cortical regions when comparing the rest to external task conditions. Further analyses, including dynamic causal modeling, confirmed that the BF drove changes in DMN cortical activity during these rest-to-task transitions. The MD, by comparison, was specifically engaged during internally focused cognition and demonstrated a broad excitatory influence on DMN cortical activation. These results provide the first direct evidence in humans of distinct BF and thalamic circuit influences on the control of DMN function and suggest novel mechanistic avenues for ongoing translational research.
Collapse
Affiliation(s)
- Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hannah S Savage
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine A Leonards
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca K Glarin
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3010, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
45
|
Davey CG, Cearns M, Jamieson A, Harrison BJ. Suppressed activity of the rostral anterior cingulate cortex as a biomarker for depression remission. Psychol Med 2021; 53:1-8. [PMID: 36762975 PMCID: PMC10123826 DOI: 10.1017/s0033291721004323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Suppression of the rostral anterior cingulate cortex (rACC) has shown promise as a prognostic biomarker for depression. We aimed to use machine learning to characterise its ability to predict depression remission. METHODS Data were obtained from 81 15- to 25-year-olds with a major depressive disorder who had participated in the YoDA-C trial, in which they had been randomised to receive cognitive behavioural therapy plus either fluoxetine or placebo. Prior to commencing treatment patients performed a functional magnetic resonance imaging (fMRI) task to assess rACC suppression. Support vector machines were trained on the fMRI data using nested cross-validation, and were similarly trained on clinical data. We further tested our fMRI model on data from the YoDA-A trial, in which participants had completed the same fMRI paradigm. RESULTS Thirty-six of 81 (44%) participants in the YoDA-C trial achieved remission. Our fMRI model was able to predict remission status (AUC = 0.777 [95% confidence interval (CI) 0.638-0.916], balanced accuracy = 67%, negative predictive value = 74%, p < 0.0001). Clinical models failed to predict remission status at better than chance levels. Testing the model on the alternative YoDA-A dataset confirmed its ability to predict remission (AUC = 0.776, balanced accuracy = 64%, negative predictive value = 70%, p < 0.0001). CONCLUSIONS We confirm that rACC activity acts as a prognostic biomarker for depression. The machine learning model can identify patients who are likely to have difficult-to-treat depression, which might direct the earlier provision of enhanced support and more intensive therapies.
Collapse
Affiliation(s)
| | - Micah Cearns
- Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Alec Jamieson
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Ben J. Harrison
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
46
|
Li YL, Wu JJ, Ma J, Li SS, Xue X, Wei D, Shan CL, Zheng MX, Hua XY, Xu JG. Brain Structural Changes in Carpal Tunnel Syndrome Patients: From the Perspectives of Structural Connectivity and Structural Covariance Network. Neurosurgery 2021; 89:978-986. [PMID: 34634107 DOI: 10.1093/neuros/nyab335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Carpal tunnel syndrome (CTS) is a common peripheral entrapment neuropathy. However, CTS-related changes of brain structural covariance and structural covariance networks (SCNs) patterns have not been clearly studied. OBJECTIVE To explore CTS-related brain changes from perspectives of structural connectivity and SCNs. METHODS Brain structural magnetic resonance images were acquired from 27 CTS patients and 19 healthy controls (HCs). Structural covariance and SCNs were constructed based on gray matter volume. The global network properties including clustering coefficient (Cp), characteristic path length (Lp), small-worldness index, global efficiency (Eglob), and local efficiency (Eloc) and regional network properties including degree, betweenness centrality (BC), and Eloc of a given node were calculated with graph theoretical analysis. RESULTS Compared with HCs, the strength of structural connectivity between the dorsal anterior insula and medial prefrontal thalamus decreased (P < .001) in CTS patients. There was no intergroup difference of area under the curve for Cp, Lp¸ Eglob, and Eloc (all P > .05). The real-world SCN of CTS patients showed a small-world topology ranging from 2% to 32%. CTS patients showed lower nodal degrees of the dorsal anterior insula and medial prefrontal thalamus, and higher Eloc of a given node and BC in the lateral occipital cortex (P < .001) and the dorsolateral middle temporal gyrus (P < .001) than HCs, respectively. CONCLUSION CTS had a profound impact on brain structures from perspectives of structural connectivity and SCNs.
Collapse
Affiliation(s)
- Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Wei
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center, Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Childhood urbanicity interacts with polygenic risk for depression to affect stress-related medial prefrontal function. Transl Psychiatry 2021; 11:522. [PMID: 34642305 PMCID: PMC8511000 DOI: 10.1038/s41398-021-01650-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
Urbanization is increasing globally, and is associated with stress and increased mental health risks, including for depression. However, it remains unclear, especially at the level of brain function, how urbanicity, social threat stressors, and psychiatric risk may be linked. Here, we aim to define the structural and functional MRI neural correlates of social stress, childhood urbanicity, and their putative mechanistic relevance to depressive illness risk, in terms of behavioral traits and genetics. We studied a sample of healthy adults with divergent urban and rural childhoods. We examined childhood urbanicity effects on brain structure as suggested by MRI, and its functional relevance to depression risk, through interactions between urbanicity and trait anxiety-depression, as well as between urbanicity and polygenic risk for depression, during stress-related medial prefrontal cortex (mPFC) engagement. Subjects with divergent rural and urban childhoods were similar in adult socioeconomic status and were genetically homogeneous. Urban childhood was associated with relatively reduced mPFC gray matter volumes as suggested by MRI. MPFC engagement under social status threat correlated with the higher trait anxiety-depression in subjects with urban childhoods, but not in their rural counterparts, implicating an exaggerated physiological response to the threat context with urbanicity, in association with behavioral risk for depression. Stress-associated mPFC engagement also interacted with polygenic risk for depression, significantly predicting a differential mPFC response in individuals with urban but not rural childhoods. Developmental urbanicity, therefore, appears to interact with genetic and behavioral risk for depression on the mPFC neural response to a threat context.
Collapse
|
48
|
Garrison JR, Saviola F, Morgenroth E, Barker H, Lührs M, Simons JS, Fernyhough C, Allen P. Modulating medial prefrontal cortex activity using real-time fMRI neurofeedback: Effects on reality monitoring performance and associated functional connectivity. Neuroimage 2021; 245:118640. [PMID: 34648961 PMCID: PMC8752965 DOI: 10.1016/j.neuroimage.2021.118640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Neuroimaging studies have found ‘reality monitoring’, our ability to distinguish internally generated experiences from those derived from the external world, to be associated with activity in the medial prefrontal cortex (mPFC) of the brain. Here we probe the functional underpinning of this ability using real-time fMRI neurofeedback to investigate the involvement of mPFC in recollection of the source of self-generated information. Thirty-nine healthy individuals underwent neurofeedback training in a between groups study receiving either Active feedback derived from the paracingulate region of the mPFC (21 subjects) or Sham feedback based on a similar level of randomised signal (18 subjects). Compared to those in the Sham group, participants receiving Active signal showed increased mPFC activity over the course of three real-time neurofeedback training runs undertaken in a single scanning session. Analysis of resting state functional connectivity associated with changes in reality monitoring accuracy following Active neurofeedback revealed increased connectivity between dorsolateral frontal regions of the fronto-parietal network (FPN) and the mPFC region of the default mode network (DMN), together with reduced connectivity within ventral regions of the FPN itself. However, only a trend effect was observed in the interaction of the recollection of the source of Imagined information compared with recognition memory between participants receiving Active and Sham neurofeedback, pre- and post- scanning. As such, these findings demonstrate that neurofeedback can be used to modulate mPFC activity and increase cooperation between the FPN and DMN, but the effects on reality monitoring performance are less clear.
Collapse
Affiliation(s)
- J R Garrison
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom; Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom.
| | - F Saviola
- School of Psychology, University of Roehampton, Whitelands College, Holybourne Avenue, London SW15 4JD, United Kingdom; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Trento 38068, Italy
| | - E Morgenroth
- School of Psychology, University of Roehampton, Whitelands College, Holybourne Avenue, London SW15 4JD, United Kingdom; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, Lausanne 1015, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - H Barker
- School of Psychology, University of Roehampton, Whitelands College, Holybourne Avenue, London SW15 4JD, United Kingdom
| | - M Lührs
- Department of Cognitive Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands; Research Department, Brain Innovation B.V., Oxfordlaan 55, Maastricht 6229 EV, The Netherlands
| | - J S Simons
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom; Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | - C Fernyhough
- Department of Psychology, Durham University, Upper Mountjoy, South Rd, Durham DH1 3LE, United Kingdom
| | - P Allen
- School of Psychology, University of Roehampton, Whitelands College, Holybourne Avenue, London SW15 4JD, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, United Kingdom; Department of Psychiatry, Icahn Medical Institute, Mount Sinai Hospital, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029, USA
| |
Collapse
|
49
|
Gergelyfi M, Sanz-Arigita EJ, Solopchuk O, Dricot L, Jacob B, Zénon A. Mental fatigue correlates with depression of task-related network and augmented DMN activity but spares the reward circuit. Neuroimage 2021; 243:118532. [PMID: 34496289 DOI: 10.1016/j.neuroimage.2021.118532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Long-lasting and demanding cognitive activity typically leads to mental fatigue (MF). Indirect evidence suggests that MF may be caused by altered motivational processes. Here, we hypothesized that if MF consists in an alteration of motivational states, brain functional changes induced by MF could specifically affect the brain motivation circuit. In order to test this hypothesis, we devised a functional neuroimaging protocol to detect altered brain activity in reward-related brain regions in relation to cognitively induced mental fatigue. Twenty-five healthy participants underwent a FATIGUE and a CONTROL session on different days. In the FATIGUE session, MF was induced by performing a demanding cognitive task (adapted Stroop task) during 90 min, whereas in the CONTROL session, participants were asked to read magazines for the same period of time. We measured the neural consequences of the MF induction during a working memory task (Missing Number task) while modulating extrinsic motivation with block-wise variations in monetary reward. We also tracked participants' momentary fatigue, anxiety state and intrinsic motivation prior to and following the MF inducement and measurement. Accuracy on the Missing Number Task was lower in the FATIGUE than in the CONTROL condition. Furthermore, subjective MF, but not its behavioral manifestations, was associated with hypoactivity of the task-evoked neural responses. Importantly, activity in regions modulated by reward showed no differences between FATIGUE and CONTROL sessions. In parallel, subjective MF correlated with increased on-task activity and resting-state functional connectivity in the default mode network. These results indicate that subjective mental fatigue is not associated with altered activity in the brain motivation circuit but rather with hypoactivity in task-specific brain regions as well as relative increases of activity and connectivity in the default mode network during and after the task.
Collapse
Affiliation(s)
- Mόnika Gergelyfi
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | | | - Oleg Solopchuk
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium; Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Benvenuto Jacob
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium; Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
50
|
Su C, Zhou H, Wang C, Geng F, Hu Y. Individualized video recommendation modulates functional connectivity between large scale networks. Hum Brain Mapp 2021; 42:5288-5299. [PMID: 34363282 PMCID: PMC8519862 DOI: 10.1002/hbm.25616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
With the emergence of AI‐powered recommender systems and their extensive use in the video streaming service, questions and concerns also arise. Why can recommended video content continuously capture users' attention? What is the impact of long‐term exposure to personalized video content on one's behaviors and brain functions? To address these questions, we designed an fMRI experiment presenting participants with personally recommended videos and generally recommended ones. To examine how large‐scale networks were modulated by personalized video content, graph theory analysis was applied to investigate the interaction between seven networks, including the ventral and dorsal attention networks (VAN, DAN), frontal–parietal network (FPN), salience network (SN), and three subnetworks of default mode network (dorsal medial prefrontal (dMPFC), Core, and medial temporal lobe (MTL)). Our results showed that viewing nonpersonalized video content mainly enhanced the connectivity in the DAN‐FPN‐Core pathway, whereas viewing personalized ones increased not only the connectivity in this pathway but also the DAN‐VAN‐dMPFC pathway. In addition, both personalized and nonpersonalized short videos decreased the couplings between SN and VAN as well as between two DMN subsystems, Core and MTL. Collectively, these findings uncovered distinct patterns of network interactions in response to short videos and provided insights into potential neural mechanisms by which human behaviors are biased by personally recommended content.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|