1
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
2
|
Park J, Kim J, Park H, Kim T, Lee S. ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases. Anim Cells Syst (Seoul) 2024; 28:367-380. [PMID: 39070887 PMCID: PMC11275535 DOI: 10.1080/19768354.2024.2380294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
Collapse
Affiliation(s)
- Jisoo Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jongyoon Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Taewan Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Liao YC, Pang S, Li WP, Shtengel G, Choi H, Schaefer K, Xu CS, Lippincott-Schwartz J. COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites. Dev Cell 2024; 59:1410-1424.e4. [PMID: 38593803 DOI: 10.1016/j.devcel.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Endoplasmic reticulum exit sites (ERESs) are tubular outgrowths of endoplasmic reticulum that serve as the earliest station for protein sorting and export into the secretory pathway. How these structures respond to different cellular conditions remains unclear. Here, we report that ERESs undergo lysosome-dependent microautophagy when Ca2+ is released by lysosomes in response to nutrient stressors such as mTOR inhibition or amino acid starvation in mammalian cells. Targeting and uptake of ERESs into lysosomes were observed by super-resolution live-cell imaging and focus ion beam scanning electron microscopy (FIB-SEM). The mechanism was ESCRT dependent and required ubiquitinated SEC31, ALG2, and ALIX, with a knockout of ALG2 or function-blocking mutations of ALIX preventing engulfment of ERESs by lysosomes. In vitro, reconstitution of the pathway was possible using lysosomal lipid-mimicking giant unilamellar vesicles and purified recombinant components. Together, these findings demonstrate a pathway of lysosome-dependent ERES microautophagy mediated by COPII, ALG2, and ESCRTS induced by nutrient stress.
Collapse
Affiliation(s)
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA; Yale School of Medicine, New Haven, CT, USA
| | - Wei-Ping Li
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - Heejun Choi
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA; Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
4
|
Jiang YJ, Xia Y, Han ZJ, Hu YX, Huang T. Chromosomal localization of mutated genes in non-syndromic familial thyroid cancer. Front Oncol 2024; 14:1286426. [PMID: 38571492 PMCID: PMC10987779 DOI: 10.3389/fonc.2024.1286426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) is a type of thyroid cancer characterized by genetic susceptibility, representing approximately 5% of all non-medullary thyroid carcinomas. While some cases of FNMTC are associated with familial multi-organ tumor predisposition syndromes, the majority occur independently. The genetic mechanisms underlying non-syndromic FNMTC remain unclear. Initial studies utilized SNP linkage analysis to identify susceptibility loci, including the 1q21 locus, 2q21 locus, and 4q32 locus, among others. Subsequent research employed more advanced techniques such as Genome-wide Association Study and Whole Exome Sequencing, leading to the discovery of genes such as IMMP2L, GALNTL4, WDR11-AS1, DUOX2, NOP53, MAP2K5, and others. But FNMTC exhibits strong genetic heterogeneity, with each family having its own pathogenic genes. This is the first article to provide a chromosomal landscape map of susceptibility genes associated with non-syndromic FNMTC and analyze their potential associations. It also presents a detailed summary of variant loci, characteristics, research methodologies, and validation results from different countries.
Collapse
Affiliation(s)
- Yu-jia Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuo-jun Han
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xuan Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Cunha E Rocha K, Ying W, Olefsky JM. Exosome-Mediated Impact on Systemic Metabolism. Annu Rev Physiol 2024; 86:225-253. [PMID: 38345906 DOI: 10.1146/annurev-physiol-042222-024535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Exosomes are small extracellular vesicles that carry lipids, proteins, and microRNAs (miRNAs). They are released by all cell types and can be found not only in circulation but in many biological fluids. Exosomes are essential for interorgan communication because they can transfer their contents from donor to recipient cells, modulating cellular functions. The miRNA content of exosomes is responsible for most of their biological effects, and changes in exosomal miRNA levels can contribute to the progression or regression of metabolic diseases. As exosomal miRNAs are selectively sorted and packaged into exosomes, they can be useful as biomarkers for diagnosing diseases. The field of exosomes and metabolism is expanding rapidly, and researchers are consistently making new discoveries in this area. As a result, exosomes have great potential for a next-generation drug delivery platform for metabolic diseases.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| | - Wei Ying
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Yang Y, Chen HL, Wu SF, Bao W. CHMP4B and VSP4A reverse GSDMD-mediated pyroptosis by cell membrane remodeling in endometrial carcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130497. [PMID: 37931722 DOI: 10.1016/j.bbagen.2023.130497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In advanced and recurrent endometrial carcinoma (EC), the current state of immuno- or targeted therapy remains in the clinical research phase. Our study aimed to explore the role of the ESCRT machinery in maintaining cell membrane integrity and reversing pyroptotic cell death. METHODS Immunohistochemistry, western blotting, and co-immunoprecipitation were performed to determine the expression and relationship between GSDMD, CHMP4B, and VPS4A. We employed techniques such as FITC Annexin V/propidium iodide staining, Ca2+ fluorescence intensity, IL-1β enzyme-linked immunosorbent assay, and lactate dehydrogenase release assay to detect pyroptosis in endometrial cancer cells. Plasma membrane perforations and CHMP4B/VPS4A puncta were observed through electron and fluorescence confocal microscopy. RESULTS We showed that GSDMD, CHMP4B, and VPS4A were differentially expressed in the pyroptotic EC xenograft mouse model group, as well as high, moderate, and mild expression in EC cells treated with LPS and nigericin compared to endometrial epithelial cells. Co-IP confirmed the interaction between GSDMD, CHMP4B, and VPS4A. We found that GSDMD knockdown reduced PI-positive cells, Ca2+ efflux, IL-1β, and LDH release, while CHMP4B and VPS4A depletion enhanced these indicators in HEC1A and AN3CA cells. Electron microscopy showed membrane perforations correspondingly decreased with inactivated GSDMD and increased or decreased after CHMP4B and VPS4A depletion or overexpression in EC cells. Fluorescence confocal microscopy detected CHMP4B protein puncta associated with VPS4A at the injured plasma membrane in GSDMDNT cells. CONCLUSIONS We preliminary evidenced that CHMP4B and VPS4A reverses GSDMD-mediated pyroptosis by facilitating cell membrane remodeling in endometrial carcinoma. Targeting CHMP4B related proteins may promote pyroptosis in endometrial tumors.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China
| | - Hai-Lian Chen
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China
| | - Su Fang Wu
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China.
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, PR China.
| |
Collapse
|
7
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Fromm L, Mehl J, Keller C. Orientia tsutsugamushi: A life between escapes. Microbiologyopen 2023; 12:e1380. [PMID: 37877457 PMCID: PMC10493369 DOI: 10.1002/mbo3.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
The life cycle of the mite-borne, obligate intracellular pathogen Orientia tsutsugamushi (Ot), the causative agent of human scrub typhus, differs in many aspects from that of other members of the Rickettsiales order. Particularly, the nonlytic cellular exit of individual Ot bacteria at the plasma membrane closely resembles the budding of enveloped viruses but has only been rudimentarily studied at the molecular level. This brief article is focused on the current state of knowledge of escape events in the life cycle of Ot and highlights differences in strategies of other rickettsiae.
Collapse
Affiliation(s)
- Lea Fromm
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | - Jonas Mehl
- Institute of VirologyPhilipps University MarburgMarburgGermany
| | | |
Collapse
|
9
|
Velázquez-Cervantes MA, Benítez-Zeferino YR, Flores-Pliego A, Helguera-Repetto AC, Meza-Sánchez DE, Maravillas-Montero JL, León-Reyes G, Mancilla-Ramírez J, Cerna-Cortés JF, Baeza-Ramírez MI, León-Juaárez M. A Review Study of the Participation of Late Domains in Sorting and Transport of Viral Factors to Exosomes. Life (Basel) 2023; 13:1842. [PMID: 37763246 PMCID: PMC10532540 DOI: 10.3390/life13091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular communication depends heavily on the participation of vesicular systems generated by most cells of an organism. Exosomes play central roles in this process. Today, these vesicles have been characterized, and it has been determined that the cargo they transport is not within a random system. In fact, it depends on various molecular signals and the recruitment of proteins that participate in the biogenesis of exosomes. It has also been shown that multiple viruses can recruit these vesicles to transport viral factors such as genomes or proteins. It has been shown that the late domains present in viral proteins are critical for the exosomal selection and biogenesis systems to recognize these viral proteins and introduce them into the exosomes. In this review, the researchers discuss the evidence related to the characterization of these late domains and their role in exosome recruitment during viral infection.
Collapse
Affiliation(s)
- Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Yazmín Rocío Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico;
| | - Javier Mancilla-Ramírez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 113440, Mexico;
- Hospital de la Mujer, Secretaría de Salud, Mexico City 11340, Mexico
| | - Jorge Francisco Cerna-Cortés
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Moises León-Juaárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
| |
Collapse
|
10
|
Pust S, Brech A, Wegner CS, Stenmark H, Haglund K. Vesicle-mediated transport of ALIX and ESCRT-III to the intercellular bridge during cytokinesis. Cell Mol Life Sci 2023; 80:235. [PMID: 37523003 PMCID: PMC10390626 DOI: 10.1007/s00018-023-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
11
|
Elias RD, Zhu Y, Su Q, Ghirlando R, Zhang J, Deshmukh L. Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation. SCIENCE ADVANCES 2023; 9:eadg3913. [PMID: 37450591 PMCID: PMC10348681 DOI: 10.1126/sciadv.adg3913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Cytokinetic abscission, the last step of cell division, is regulated by the ESCRT machinery. In response to mitotic errors, ESCRT proteins, namely, ALIX, CHMP4B, and CHMP4C, accumulate in the cytosolic compartments termed "abscission checkpoint bodies" (ACBs) to delay abscission and prevent tumorigenesis. ALIX contributes to the biogenesis and stability of ACBs via an unknown mechanism. We show that ALIX phase separates into nondynamic condensates in vitro and in vivo, mediated by the amyloidogenic portion of its proline-rich domain. ALIX condensates confined CHMP4 paralogs in vitro. These condensates dissolved and reformed upon reversible tyrosine phosphorylation of ALIX, mediated by Src kinase and PTP1B, and sequestration of CHMP4C altered their Src-mediated dissolution. NMR analysis revealed how ALIX triggers the activation of CHMP4 proteins, which is required for successful abscission. These results implicate ALIX's phase separation in the modulation of ACBs. This study also highlights how posttranslational modifications can control protein phase separation.
Collapse
Affiliation(s)
- Ruben D. Elias
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingqi Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qi Su
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Jun YW, Lee S, Ban BK, Lee JA, Gao FB. Non-muscle MYH10/myosin IIB recruits ESCRT-III to participate in autophagosome closure to maintain neuronal homeostasis. Autophagy 2023; 19:2045-2061. [PMID: 36849436 PMCID: PMC10283425 DOI: 10.1080/15548627.2023.2169309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Dysfunction of the endosomal sorting complex required for transport (ESCRT) has been linked to frontotemporal dementia (FTD) due in part to the accumulation of unsealed autophagosomes. However, the mechanisms of ESCRT-mediated membrane closure events on phagophores remain largely unknown. In this study, we found that partial knockdown of non-muscle MYH10/myosin IIB/zip rescues neurodegeneration in both Drosophila and human iPSC-derived cortical neurons expressing FTD-associated mutant CHMP2B, a subunit of ESCRT-III. We also found that MYH10 binds and recruits several autophagy receptor proteins during autophagosome formation induced by mutant CHMP2B or nutrient starvation. Moreover, MYH10 interacted with ESCRT-III to regulate phagophore closure by recruiting ESCRT-III to damaged mitochondria during PRKN/parkin-mediated mitophagy. Evidently, MYH10 is involved in the initiation of induced but not basal autophagy and also links ESCRT-III to mitophagosome sealing, revealing novel roles of MYH10 in the autophagy pathway and in ESCRT-related FTD pathogenesis.Abbreviations: ALS: amyotrophic lateral sclerosis; AP: autophagosome; Atg: autophagy-related; ESCRT: endosomal sorting complex required for transport; FTD: frontotemporal dementia.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Soojin Lee
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Byung-Kwan Ban
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Ayyar BV, Ettayebi K, Salmen W, Karandikar UC, Neill FH, Tenge VR, Crawford SE, Bieberich E, Prasad BVV, Atmar RL, Estes MK. CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection. Nat Commun 2023; 14:1148. [PMID: 36854760 PMCID: PMC9974061 DOI: 10.1038/s41467-023-36398-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Salmen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY 40506 and VAMC, Lexington, KY, 40502, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
15
|
Romano JD, Mayoral J, Guevara RB, Rivera-Cuevas Y, Carruthers VB, Weiss LM, Coppens I. Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A. J Cell Sci 2023; 136:jcs260159. [PMID: 36718630 PMCID: PMC10022688 DOI: 10.1242/jcs.260159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.
Collapse
Affiliation(s)
- Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Chang L, Perez A. Ranking Peptide Binders by Affinity with AlphaFold. Angew Chem Int Ed Engl 2023; 62:e202213362. [PMID: 36542066 DOI: 10.1002/anie.202213362] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
AlphaFold has revolutionized structural biology by predicting highly accurate structures of proteins and their complexes with peptides and other proteins. However, for protein-peptide systems, we are also interested in identifying the highest affinity binder among a set of candidate peptides. We present a novel competitive binding assay using AlphaFold to predict structures of the receptor in the presence of two peptides. For systems in which the individual structures of the peptides are well predicted, the assay captures the higher affinity binder in the bound state, and the other peptide in the unbound form with statistical significance. We test the application on six protein receptors for which we have experimental binding affinities to several peptides. We find that the assay is best suited for identifying medium to strong peptide binders that adopt stable secondary structures upon binding.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL, USA.,Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, USA.,Quantum Theory Project, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, Weissenhorn W. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 2023; 30:81-90. [PMID: 36604498 DOI: 10.1038/s41594-022-00867-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.
Collapse
Affiliation(s)
- Kimi Azad
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Delphine Guilligay
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Cecile Boscheron
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Nicola De Franceschi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.,Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guidenn Sulbaran
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gregory Effantin
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Haiyan Wang
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Philippe Kleman
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Patricia Bassereau
- Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guy Schoehn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Ambroise Desfosses
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Winfried Weissenhorn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
18
|
Trisciuzzi D, Siragusa L, Baroni M, Cruciani G, Nicolotti O. An Integrated Machine Learning Model To Spot Peptide Binding Pockets in 3D Protein Screening. J Chem Inf Model 2022; 62:6812-6824. [PMID: 36320100 DOI: 10.1021/acs.jcim.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prediction of peptide-protein binding sites is of utmost importance to tackle the onset of severe neurodegenerative diseases and cancer. In this work, we detail a novel machine learning model based on Linear Discriminant Analysis (LDA) demonstrating to be highly predictive in detecting the putative protein binding regions of small peptides. Starting from 439 high-quality pockets derived from peptide-protein crystallographic complexes, three sets of well-established peptide-binding regions were first selected through a Partitioning Around Medoids (PAM) clustering algorithm based on morphological and energetic 3D GRID-MIF molecular descriptors. Next, the best combination between all the putative interacting peptide pockets and related GRID-MIF scores was automatically explored by using the LDA-based protocol implemented in BioGPS. This approach proved successful to recognize the actual interacting peptide regions (that is, AUC = 0.86 and partial ROC enrichment at 5% of 0.48) from all the other pockets of the protein. Validated on two external collections sets, including 445 and 347 crystallographic peptide-protein complexes, our LDA-based model could be effective to further run peptide-protein virtual screening campaigns.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123Perugia (PG), Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy
| |
Collapse
|
19
|
Preeclampsia and syncytiotrophoblast membrane extracellular vesicles (STB-EVs). Clin Sci (Lond) 2022; 136:1793-1807. [PMID: 36511102 DOI: 10.1042/cs20220149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a hypertensive complication of pregnancy that affects 2-8% of women worldwide and is one of the leading causes of maternal deaths and premature birth. PE can occur early in pregnancy (<34 weeks gestation) or late in pregnancy (>34 weeks gestation). Whilst the placenta is clearly implicated in early onset PE (EOPE), late onset PE (LOPE) is less clear with some believing the disease is entirely maternal whilst others believe that there is an interplay between maternal systems and the placenta. In both types of PE, the syncytiotrophoblast (STB), the layer of the placenta in direct contact with maternal blood, is stressed. In EOPE, the STB is oxidatively stressed in early pregnancy (leading to PE later in gestation- the two-stage model) whilst in LOPE the STB is stressed because of villous overcrowding and senescence later in pregnancy. It is this stress that perturbs maternal systems leading to the clinical manifestations of PE. Whilst some of the molecular species driving this stress have been identified, none completely explain the multisystem nature of PE. Syncytiotrophoblast membrane vesicles (STB-EVs) are a potential contributor to this multisystem disorder. STB-EVs are released into the maternal circulation in increasing amounts with advancing gestational age, and this release is further exacerbated with stress. There are good in vitro evidence that STB-EVs are taken up by macrophages and liver cells with additional evidence supporting endothelial cell uptake. STB-EV targeting remains in the early stages of discovery. In this review, we highlight the role of STB-EVs in PE. In relation to current research, we discuss different protocols for ex vivo isolation of STB-EVs, as well as specific issues involving tissue preparation, isolation (some of which may be unique to STB-EVs), and methods for their analysis. We suggest potential solutions for these challenges.
Collapse
|
20
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
21
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
22
|
Shukla S, Larsen KP, Ou C, Rose K, Hurley JH. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc Natl Acad Sci U S A 2022; 119:e2205590119. [PMID: 35994655 PMCID: PMC9436306 DOI: 10.1073/pnas.2205590119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is centrally involved in the repair of damage to both the plasma and lysosome membranes. ESCRT recruitment to sites of damage occurs on a fast time scale, and Ca2+ has been proposed to play a key signaling role in the process. Here, we show that the Ca2+-binding regulatory protein ALG-2 binds directly to negatively charged membranes in a Ca2+-dependent manner. Next, by monitoring the colocalization of ALIX with ALG-2 on negatively charged membranes, we show that ALG-2 recruits ALIX to the membrane. Furthermore, we show that ALIX recruitment to the membrane orchestrates the downstream assembly of late-acting CHMP4B, CHMP3, and CHMP2A subunits along with the AAA+ ATPase VPS4B. Finally, we show that ALG-2 can also recruit the ESCRT-III machinery to the membrane via the canonical ESCRT-I/II pathway. Our reconstitution experiments delineate the minimal sets of components needed to assemble the entire membrane repair machinery and open an avenue for the mechanistic understanding of endolysosomal membrane repair.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Chenxi Ou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
23
|
Qiu X, Campos Y, van de Vlekkert D, Gomero E, Tanwar A, Kalathur R, Weesner JA, Bongiovanni A, Demmers J, d'Azzo A. Distinct functions of dimeric and monomeric scaffold protein Alix in regulating F-actin assembly and loading of exosomal cargo. J Biol Chem 2022; 298:102425. [PMID: 36030822 PMCID: PMC9531180 DOI: 10.1016/j.jbc.2022.102425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions, and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline rich domain (PRD) for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Diantha van de Vlekkert
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Ajay Tanwar
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Weesner
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Antonella Bongiovanni
- Institute of Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA.
| |
Collapse
|
24
|
Khan FH, Reza MJ, Shao YF, Perwez A, Zahra H, Dowlati A, Abbas A. Role of exosomes in lung cancer: A comprehensive insight from immunomodulation to theragnostic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188776. [PMID: 35961620 DOI: 10.1016/j.bbcan.2022.188776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/18/2022]
Abstract
Exosomes are 30 to 150 nm-diameter lipid bilayer-enclosed extracellular vesicles that enable cell-to-cell communication through secretion and uptake. The exosomal cargoes contain RNA, lipids, proteins, and metabolites which can be delivered to recipient cells in vivo. In a healthy lung, exosomes facilitate interaction between adaptive and innate immunity and help maintain normal lung physiology. However, tumor-derived exosomes in lung cancer (LC) can, on the other hand, restrict immune cell proliferation, cause apoptosis in activated CD8+ T effector cells, reduce natural killer cell activity, obstruct monocyte differentiation, and promote proliferation of myeloid-derived suppressor and regulatory T cells. In addition, exosomes in the tumor microenvironment may also play a critical role in cancer progression and the development of drug resistance. In this review, we aim to comprehensively examine the current updates on the role of exosomes in lung carcinogenesis and their potential application as a diagnostic, prognostic, and therapeutic tool in lung cancer.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Malik Johid Reza
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Yusra Fatima Shao
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ahmad Perwez
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Honey Zahra
- Department of Anatomy, King George's Medical University, Lucknow, UP 226003, India
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA.
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA.
| |
Collapse
|
25
|
Shirasaki T, Feng H, Duyvesteyn HME, Fusco WG, McKnight KL, Xie L, Boyce M, Kumar S, Barouch-Bentov R, González-López O, McNamara R, Wang L, Hertel-Wulff A, Chen X, Einav S, Duncan JA, Kapustina M, Fry EE, Stuart DI, Lemon SM. Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX. PLoS Pathog 2022; 18:e1010543. [PMID: 35969644 PMCID: PMC9410543 DOI: 10.1371/journal.ppat.1010543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Boyce
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sathish Kumar
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adriana Hertel-Wulff
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan-Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth E. Fry
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
26
|
Tseng CC, Piper RC, Katzmann DJ. Bro1 family proteins harmonize cargo sorting with vesicle formation. Bioessays 2022; 44:e2100276. [PMID: 35770783 PMCID: PMC9575758 DOI: 10.1002/bies.202100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRTs) drive membrane remodeling in a variety of cellular processes that include the formation of endosomal intralumenal vesicles (ILVs) during multivesicular body (MVB) biogenesis. During MVB sorting, ESCRTs recognize ubiquitin (Ub) attached to membrane protein cargo and execute ILV formation by controlling the activities of ESCRT-III polymers regulated by the AAA-ATPase Vps4. Exactly how these events are coordinated to ensure proper cargo loading into ILVs remains unclear. Here we discuss recent work documenting the ability of Bro1, an ESCRT-associated Ub-binding protein, to coordinate ESCRT-III and Vps4-dependent ILV biogenesis with upstream events such as cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Arya SB, Chen S, Jordan-Javed F, Parent CA. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 2022; 24:1019-1028. [PMID: 35739317 DOI: 10.1038/s41556-022-00934-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Neutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B4 (LTB4) refs. 1,2. We previously demonstrated that LTB4 and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A4 hydrolase, are packaged and released in exosomes3. Here we report that the biogenesis of the LTB4-containing exosomes originates at the nuclear envelope (NE) of activated neutrophils. We show that the neutral sphingomyelinase 1 (nSMase1)-mediated generation of ceramide-enriched lipid-ordered microdomains initiates the clustering of the LTB4-synthesizing enzymes on the NE. We isolated and analysed exosomes from activated neutrophils and established that the FLAP/5-LO-positive exosome population is distinct from that of the CD63-positive exosome population. Furthermore, we observed a strong co-localization between ALIX and FLAP at the periphery of nuclei and within cytosolic vesicles. We propose that the initiation of NE curvature and bud formation is mediated by nSMase1-dependent ceramide generation, which leads to FLAP and ALIX recruitment. Together, these observations elucidate the mechanism for LTB4 secretion and identify a non-conventional pathway for exosome generation.
Collapse
Affiliation(s)
- Subhash B Arya
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Sánchez-Ares M, Cameselle-García S, Abdulkader-Nallib I, Rodríguez-Carnero G, Beiras-Sarasquete C, Puñal-Rodríguez JA, Cameselle-Teijeiro JM. Susceptibility Genes and Chromosomal Regions Associated With Non-Syndromic Familial Non-Medullary Thyroid Carcinoma: Some Pathogenetic and Diagnostic Keys. Front Endocrinol (Lausanne) 2022; 13:829103. [PMID: 35295987 PMCID: PMC8918666 DOI: 10.3389/fendo.2022.829103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Thyroid cancer is the malignant tumor that is increasing most rapidly in the world, mainly at the expense of sporadic papillary thyroid carcinoma. The somatic alterations involved in the pathogenesis of sporadic follicular cell derived tumors are well recognized, while the predisposing alterations implicated in hereditary follicular tumors are less well known. Since the genetic background of syndromic familial non-medullary carcinoma has been well established, here we review the pathogenesis of non-syndromic familial non-medullary carcinoma emphasizing those aspects that may be useful in clinical and pathological diagnosis. Non-syndromic familial non-medullary carcinoma has a complex and heterogeneous genetic basis involving several genes and loci with a monogenic or polygenic inheritance model. Most cases are papillary thyroid carcinoma (classic and follicular variant), usually accompanied by benign thyroid nodules (follicular thyroid adenoma and/or multinodular goiter). The possible diagnostic and prognostic usefulness of the changes in the expression and/or translocation of various proteins secondary to several mutations reported in this setting requires further confirmation. Given that non-syndromic familial non-medullary carcinoma and sporadic non-medullary thyroid carcinoma share the same morphology and somatic mutations, the same targeted therapies could be used at present, if necessary, until more specific targeted treatments become available.
Collapse
Affiliation(s)
- María Sánchez-Ares
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Soledad Cameselle-García
- Department of Medical Oncology, University Hospital Complex of Ourense, Galician Healthcare Service (SERGAS), Ourense, Spain
| | - Ihab Abdulkader-Nallib
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Department of Endocrinology and Nutrition, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Carolina Beiras-Sarasquete
- Department of Surgery, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - José Antonio Puñal-Rodríguez
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Surgery, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
29
|
Buysse D, West M, Leih M, Odorizzi G. Bro1 binds the Vps20 subunit of ESCRT-III and promotes ESCRT-III regulation by Doa4. Traffic 2022; 23:109-119. [PMID: 34908216 PMCID: PMC8792227 DOI: 10.1111/tra.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
The budding of intralumenal vesicles (ILVs) at endosomes requires membrane scission by the ESCRT-III complex. This step is negatively regulated in yeast by Doa4, the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. Doa4 acts non-enzymatically to inhibit ESCRT-III membrane scission activity by directly binding the Snf7 subunit of ESCRT-III. This interaction inhibits the remodeling/disassembly of Snf7 polymers required for the ILV membrane scission reaction. Thus, Doa4 is thought to have a structural role that delays ILV budding while it also functions enzymatically to deubiquitinate ILV cargoes. In this study, we show that Doa4 binding to Snf7 in vivo is antagonized by another ESCRT-III subunit, Vps20. Doa4 is restricted from interacting with Snf7 in yeast expressing a mutant Vps20 allele that constitutively binds Doa4. This inhibitory effect of Vps20 is suppressed by overexpression of another ESCRT-III-associated protein, Bro1. We show that Bro1 binds directly to Vps20, suggesting that Bro1 has a central role in relieving the antagonistic relationship that Vps20 has toward Doa4.
Collapse
Affiliation(s)
- Dalton Buysse
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mitchell Leih
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA,Author for correspondence ()
| |
Collapse
|
30
|
Roles of ESCRT proteins (ALIX and CHIMP4A) and their interplay with ISG15 during tick-borne flavivirus infection. J Virol 2021; 96:e0162421. [PMID: 34851141 PMCID: PMC8826915 DOI: 10.1128/jvi.01624-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.
Collapse
|
31
|
The Abscission Checkpoint: A Guardian of Chromosomal Stability. Cells 2021; 10:cells10123350. [PMID: 34943860 PMCID: PMC8699595 DOI: 10.3390/cells10123350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.
Collapse
|
32
|
Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. J Cell Sci 2021; 134:272512. [PMID: 34657963 PMCID: PMC8627557 DOI: 10.1242/jcs.259192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5–Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation. Summary: Sorting of endocytic cargo to the multivesicular body is accompanied by endosomal maturation. Here, we provide a potential mechanism by which these two processes are linked.
Collapse
Affiliation(s)
- Gabrielle Parkinson
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Peristera Roboti
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Ling Zhang
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Sandra Taylor
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Mechanistic roles of tyrosine phosphorylation in reversible amyloids, autoinhibition, and endosomal membrane association of ALIX. J Biol Chem 2021; 297:101328. [PMID: 34688656 PMCID: PMC8577116 DOI: 10.1016/j.jbc.2021.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like β-sheet–rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B–mediated dephosphorylation of its conserved tyrosine residues. Analyses of the Bro1 domain of ALIX by solution NMR spectroscopy elucidated the conformational changes originating from its phosphorylation by Src and established that Bro1 binds to hyperphosphorylated proline-rich domain and to analogs of late endosomal membranes via its highly basic surface. These results uncover the autoinhibition mechanism that relocates ALIX to the cytosol and the diverse roles played by tyrosine phosphorylation in cellular and membrane functions of ALIX.
Collapse
|
34
|
Mao S, Ying Y, Ma Z, Yang Y, Chen AK. A Background Assessable and Correctable Bimolecular Fluorescence Complementation System for Nanoscopic Single-Molecule Imaging of Intracellular Protein-Protein Interactions. ACS NANO 2021; 15:14338-14346. [PMID: 34427423 DOI: 10.1021/acsnano.1c03242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bimolecular Fluorescence Complementation (BiFC) is a versatile approach for intracellular analysis of protein-protein interactions (PPIs), but the tendency of the split fluorescent protein (FP) fragments to self-assemble when brought into close proximity of each other by random collision can lead to generation of false-positive signals that hamper high-definition imaging of PPIs occurring on the nanoscopic level. While it is thought that expressing the fusion proteins at a low level can remove false positives without impacting specific signals, there has been no effective strategy to test this possibility. Here, we present a system capable of assessing and removing BiFC false positives, termed Background Assessable and Correctable-BiFC (BAC-BiFC), in which one of the split FP fragments is fused with an optically distinct FP that serves as a reference marker, and the single-cell fluorescence ratio of the BiFC signal to the reference signal is used to gauge an optimal transfection condition. We showed that when BAC-BiFC is designed to image PPIs regulating Human Immunodeficiency Virus type 1 (HIV-1) assembly, the fluorescence ratio could decrease with decreasing probe quantity, and ratios approaching the limit of detection could allow physiologically relevant characterization of the assembly process on the nanoscale by single-molecule localization microscopy (SMLM). With much improved clarity, previously undescribed features of HIV-1 assembly were revealed.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Welker L, Paillart JC, Bernacchi S. Importance of Viral Late Domains in Budding and Release of Enveloped RNA Viruses. Viruses 2021; 13:1559. [PMID: 34452424 PMCID: PMC8402826 DOI: 10.3390/v13081559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023] Open
Abstract
Late assembly (L) domains are conserved sequences that are necessary for the late steps of viral replication, acting like cellular adaptors to engage the ESCRT membrane fission machinery that promote virion release. These short sequences, whose mutation or deletion produce the accumulation of immature virions at the plasma membrane, were firstly identified within retroviral Gag precursors, and in a further step, also in structural proteins of many other enveloped RNA viruses including arenaviruses, filoviruses, rhabdoviruses, reoviruses, and paramyxoviruses. Three classes of L domains have been identified thus far (PT/SAP, YPXnL/LXXLF, and PPxY), even if it has recently been suggested that other motifs could act as L domains. Here, we summarize the current state of knowledge of the different types of L domains and their cellular partners in the budding events of RNA viruses, with a particular focus on retroviruses.
Collapse
Affiliation(s)
| | | | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France; (L.W.); (J.-C.P.)
| |
Collapse
|
36
|
Williams LK, Mackay DR, Whitney MA, Couldwell GC, Sundquist WI, Ullman KS. Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. eLife 2021; 10:63743. [PMID: 34346309 PMCID: PMC8437436 DOI: 10.7554/elife.63743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission. When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final ‘abscission’ checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this ‘no cut’ checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Strohacker et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Strohacker et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.
Collapse
Affiliation(s)
- Lauren K Williams
- Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
| | - Douglas R Mackay
- Oncological Sciences, University of Utah, Salt Lake City, United States
| | | | | | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | | |
Collapse
|
37
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
38
|
Structural Insight into the Interaction of Sendai Virus C Protein with Alix To Stimulate Viral Budding. J Virol 2021; 95:e0081521. [PMID: 34287046 DOI: 10.1128/jvi.00815-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sendai virus (SeV), belonging to the Respirovirus genus of the family Paramyxoviridae, harbors an accessory protein, named C protein, which facilitates the viral pathogenicity in mice. In addition, the C protein is known to stimulate the budding of virus-like particles through the binding to the host ALG-2 interacting protein X (Alix), a component of the endosomal sorting complexes required for transport (ESCRT) machinery. However, siRNA-mediated gene knockdown studies suggested that neither Alix nor C protein are related to the SeV budding. In the present study, we determined the crystal structure of a complex comprising of the C-terminal half of the C protein (Y3) and the Bro1 domain of Alix at a resolution of 2.2 Å, to investigate the role of the association in the SeV budding. The structure revealed that a novel consensus sequence, LxxW, which is conserved among the Respirovirus C proteins, is important for the Alix-binding. SeV possessing a mutated C protein with a reduced Alix-binding affinity showed impaired virus production, which correlated with the binding affinity. Infectivity analysis showed a 160-fold reduction at 12 h post-infection compared with non-mutated virus, while C protein competes with CHMP4, one subunit of the ESCRT-III complex, on the binding to Alix. Altogether, these results highlight the critical role of C protein in the SeV budding. IMPORTANCE Human parainfluenza virus type I (hPIV1) is a respiratory pathogen affecting in young children, immunocompromised patients, and the elderly, with no available vaccines or antiviral drugs. Sendai virus (SeV), a murine counterpart of hPIV1, has been extensively studied to determine the molecular and biological properties of hPIV1. These viruses possess a multifunctional accessory protein, C protein, which is essential for stimulating the viral reproduction, however, its role in budding remains controversial. In the present study, the crystal structure of the C-terminal half of the SeV C protein associated with the Bro1 domain of Alix, a component of a cell membrane modulating machinery ESCRT, was elucidated. Based on the structure, we designed mutated C proteins with different binding affinity to Alix, and showed that the interaction between C and Alix is vital for the viral budding. These findings provide new insights into the development of a new antiviral drugs against hPIV1.
Collapse
|
39
|
Tseng CC, Dean S, Davies BA, Azmi IF, Pashkova N, Payne JA, Staffenhagen J, West M, Piper RC, Odorizzi G, Katzmann DJ. Bro1 stimulates Vps4 to promote intralumenal vesicle formation during multivesicular body biogenesis. J Cell Biol 2021; 220:212434. [PMID: 34160559 PMCID: PMC8240856 DOI: 10.1083/jcb.202102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 01/20/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT-0, -I, -II, -III) execute cargo sorting and intralumenal vesicle (ILV) formation during conversion of endosomes to multivesicular bodies (MVBs). The AAA-ATPase Vps4 regulates the ESCRT-III polymer to facilitate membrane remodeling and ILV scission during MVB biogenesis. Here, we show that the conserved V domain of ESCRT-associated protein Bro1 (the yeast homologue of mammalian proteins ALIX and HD-PTP) directly stimulates Vps4. This activity is required for MVB cargo sorting. Furthermore, the Bro1 V domain alone supports Vps4/ESCRT–driven ILV formation in vivo without efficient MVB cargo sorting. These results reveal a novel activity of the V domains of Bro1 homologues in licensing ESCRT-III–dependent ILV formation and suggest a role in coordinating cargo sorting with membrane remodeling during MVB sorting. Moreover, ubiquitin binding enhances V domain stimulation of Vps4 to promote ILV formation via the Bro1–Vps4–ESCRT-III axis, uncovering a novel role for ubiquitin during MVB biogenesis in addition to facilitating cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Shirley Dean
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ishara F Azmi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| |
Collapse
|
40
|
Díaz-Hernández M, Javier-Reyna R, Sotto-Ortega I, García-Rivera G, Montaño S, Betanzos A, Zanatta D, Orozco E. Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites. Int J Mol Sci 2021; 22:ijms22115709. [PMID: 34071922 PMCID: PMC8198320 DOI: 10.3390/ijms22115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif.
Collapse
Affiliation(s)
- Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Izaid Sotto-Ortega
- Bacteriología y Laboratorio Clínico, Universidad de Santander, 200004 Valledupar, Colombia;
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Sinaloa 80030, Mexico;
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
- Consejo Nacional de Ciencia y Tecnología (Conacyt), Mexico City 03940, Mexico
| | - Dxinegueela Zanatta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
- Correspondence: ; Tel.: +52-55-5747-5642
| |
Collapse
|
41
|
Russell T, Samolej J, Hollinshead M, Smith GL, Kite J, Elliott G. Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. mBio 2021; 12:e02183-20. [PMID: 33975940 PMCID: PMC8262985 DOI: 10.1128/mbio.02183-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses exploit cellular trafficking pathways for their morphogenesis, providing potential scope for the development of new antiviral therapies. We have previously shown that herpes simplex virus 1 (HSV1) utilizes recycling endocytic membranes as the source of its envelope, in a process involving four Rab GTPases. To identify novel factors involved in HSV1 envelopment, we have screened a small interfering RNA (siRNA) library targeting over 80 human trafficking proteins, including coat proteins, adaptor proteins, fusion factors, fission factors, and Rab effectors. The depletion of 11 factors reduced virus yields by 20- to 100-fold, including three early secretory pathway proteins, four late secretory pathway proteins, and four endocytic pathway proteins, three of which are membrane fission factors. Five of the 11 targets were chosen for further analysis in virus infection, where it was found that the absence of only 1, the fission factor CHMP4C, but not the CHMP4A or CHMP4B paralogues, reduced virus production at the final stage of morphogenesis. Ultrastructural and confocal microscopy of CHMP4C-depleted, HSV1-infected cells showed an accumulation of endocytic membranes; extensive tubulation of recycling, transferrin receptor-positive endosomes indicative of aberrant fission; and a failure in virus envelopment. No effect on the late endocytic pathway was detected, while exogenous CHMP4C was shown to localize to recycling endosomes. Taken together, these data reveal a novel role for the CHMP4C fission factor in the integrity of the recycling endosomal network, which has been unveiled through the dependence of HSV1 on these membranes for the acquisition of their envelopes.IMPORTANCE Cellular transport pathways play a fundamental role in secretion and membrane biogenesis. Enveloped viruses exploit these pathways to direct their membrane proteins to sites of envelopment and, as such, are powerful tools for unraveling subtle activities of trafficking factors, potentially pinpointing therapeutic targets. Using the sensitive biological readout of virus production, over 80 trafficking factors involved in diverse and poorly defined cellular processes have been screened for involvement in the complex process of HSV1 envelopment. Out of 11 potential targets, CHMP4C, a key component in the cell cycle abscission checkpoint, stood out as being required for the process of virus wrapping in endocytic tubules, where it localized. In the absence of CHMP4C, recycling endocytic membranes failed to undergo scission in infected cells, causing transient tubulation and accumulation of membranes and unwrapped virus. These data reveal a new role for this important cellular factor in the biogenesis of recycling endocytic membranes.
Collapse
Affiliation(s)
- Tiffany Russell
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Jerzy Samolej
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Kite
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
42
|
Abstract
Extracellular vesicles (EVs) refer to vesicles that are released by cells into the extracellular space. EVs mediate cell-to-cell communication via delivery of functional biomolecules between host and recipient cells. EVs can be categorised based on their mode of biogenesis and secretion and include apoptotic bodies, ectosomes or shedding microvesicles and exosomes among others. EVs have gained immense interest in recent years owing to their implications in pathophysiological conditions. Indeed, EVs have been proven useful in clinical applications as potential drug delivery vehicles and as source of diagnostic biomarkers. Despite the growing body of evidence supporting the clinical benefits, the processes involved in the biogenesis of EVs are poorly understood. Hence, it is critical to gain a deeper understanding of the underlying molecular machineries that ultimately govern the biogenesis and secretion of EVs. This chapter discusses the current knowledge on molecular mechanisms involved in the biogenesis of various subtypes of EVs.
Collapse
Affiliation(s)
- Taeyoung Kang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ishara Atukorala
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
44
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
45
|
Darkwah S, Park EJ, Myint PK, Ito A, Appiah MG, Obeng G, Kawamoto E, Shimaoka M. Potential Roles of Muscle-Derived Extracellular Vesicles in Remodeling Cellular Microenvironment: Proposed Implications of the Exercise-Induced Myokine, Irisin. Front Cell Dev Biol 2021; 9:634853. [PMID: 33614663 PMCID: PMC7892973 DOI: 10.3389/fcell.2021.634853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players of intercellular communication and mediate crosstalk between tissues. Metastatic tumors release tumorigenic EVs, capable of pre-conditioning distal sites for organotropic metastasis. Growing evidence identifies muscle cell-derived EVs and myokines as potent mediators of cellular differentiation, proliferation, and metabolism. Muscle-derived EVs cargo myokines and other biological modulators like microRNAs, cytokines, chemokines, and prostaglandins hence, are likely to modulate the remodeling of niches in vital sites, such as liver and adipose tissues. Despite the scarcity of evidence to support a direct relationship between muscle-EVs and cancer metastasis, their indirect attribution to the regulation of niche remodeling and the establishment of pre-metastatic homing niches can be put forward. This hypothesis is supported by the role of muscle-derived EVs in findings gathered from other pathologies like inflammation and metabolic disorders. In this review, we present and discuss studies that evidently support the potential roles of muscle-derived EVs in the events of niche pre-conditioning and remodeling of metastatic tumor microenvironment. We highlight the potential contributions of the integrin-mediated interactions with an emerging myokine, irisin, to the regulation of EV-driven microenvironment remodeling in tumor metastasis. Further research into muscle-derived EVs and myokines in cancer progression is imperative and may hold promising contributions to advance our knowledge in the pathophysiology, progression and therapeutic management of metastatic cancers.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Cardiothoracic and Vascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
46
|
Pasquali D, Torella A, Accardo G, Esposito D, Del Vecchio Blanco F, Salvatore D, Sabatino P, Pacini F, Barbato F, Castagna MG, Cantara S, Nigro V. BROX haploinsufficiency in familial nonmedullary thyroid cancer. J Endocrinol Invest 2021; 44:165-171. [PMID: 32385852 DOI: 10.1007/s40618-020-01286-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The familial nonmedullary thyroid cancer (FNMTC) is suspected to be a Mendelian condition in up to 3-8% of thyroid cancers. The susceptibility chromosomal loci and genes of 95% of FNMTC cases remain to be characterized. The inheritance of FNMTC appears to be autosomal dominant with incomplete penetrance and variable expressivity. The finding of the causative gene of FNMTC and the identification of patients at risk that need genetic testing were our aim. METHODS We analyzed by whole-exome sequencing patients and non-affected relatives of five families with at least two family members affected by papillary thyroid cancer, selecting for new or extremely rare variants with predicted pathogenic value. RESULTS A family showed, in all three affected members, a new loss-of-function variant (frameshift deletion) in BROX gene at 1q41 that was absent from all internal and external databases. In a second family with three affected relatives, we found an additional new BROX variant. The smaller families presented no variants in BROX or in the other causative genes studied. CONCLUSIONS BROX could be a new causative gene for FNMTC. Variants in BROX may result in the haploinsufficiency of a key gene involved in the morphogenesis of MVBs, in the endosomal sorting of cargo proteins, and in EGFR. Functional studies are needed to support this result. The thorough genomic analysis by NGS in all families with three or more affected members should become a routine approach to obtain a comprehensive genetic view and find confirmative second cases.
Collapse
Affiliation(s)
- D Pasquali
- Department of Medical and Surgical Advanced Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - A Torella
- Genetica Medica, Dipartimento di Medicina di Precisione, University of Campania"Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - G Accardo
- Department of Medical and Surgical Advanced Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - D Esposito
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - F Del Vecchio Blanco
- Genetica Medica, Dipartimento di Medicina di Precisione, University of Campania"Luigi Vanvitelli", Naples, Italy
| | - D Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - P Sabatino
- Azienda Sanitaria Locale Salerno, Naples, Italy
| | - F Pacini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - F Barbato
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - M G Castagna
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - S Cantara
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - V Nigro
- Genetica Medica, Dipartimento di Medicina di Precisione, University of Campania"Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| |
Collapse
|
47
|
Lavado-García J, González-Domínguez I, Cervera L, Jorge I, Vázquez J, Gòdia F. Molecular Characterization of the Coproduced Extracellular Vesicles in HEK293 during Virus-Like Particle Production. J Proteome Res 2020; 19:4516-4532. [PMID: 32975947 PMCID: PMC7640977 DOI: 10.1021/acs.jproteome.0c00581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Irene González-Domínguez
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
48
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Extracellular Vesicles in the Development of the Non-Alcoholic Fatty Liver Disease: An Update. Biomolecules 2020; 10:biom10111494. [PMID: 33143043 PMCID: PMC7693409 DOI: 10.3390/biom10111494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a broad spectrum of liver damage disease from a simple fatty liver (steatosis) to more severe liver conditions such as non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Extracellular vesicles (EVs) are a heterogeneous group of small membrane vesicles released by various cells in normal or diseased conditions. The EVs carry bioactive components in their cargos and can mediate the metabolic changes in recipient cells. In the context of NAFLD, EVs derived from adipocytes are implicated in the development of whole-body insulin resistance (IR), the hepatic IR, and fatty liver (steatosis). Excessive fatty acid accumulation is toxic to the hepatocytes, and this lipotoxicity can induce the release of EVs (hepatocyte-EVs), which can mediate the progression of fibrosis via the activation of nearby macrophages and hepatic stellate cells (HSCs). In this review, we summarized the recent findings of adipocyte- and hepatocyte-EVs on NAFLD disease development and progression. We also discussed previous studies on mesenchymal stem cell (MSC) EVs that have garnered attention due to their effects on preventing liver fibrosis and increasing liver regeneration and proliferation.
Collapse
|
49
|
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 2020; 219:133723. [PMID: 32049272 PMCID: PMC7054990 DOI: 10.1083/jcb.201904113] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III-dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.
Collapse
Affiliation(s)
- Jorge Larios
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Vincent Mercier
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| |
Collapse
|
50
|
Elias RD, Ma W, Ghirlando R, Schwieters CD, Reddy VS, Deshmukh L. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc Natl Acad Sci U S A 2020; 117:24274-24284. [PMID: 32917811 PMCID: PMC7533887 DOI: 10.1073/pnas.2010635117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a "divide-and-conquer" approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.
Collapse
Affiliation(s)
- Ruben D Elias
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Wen Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Charles D Schwieters
- Division of Computational Biosciences, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|