1
|
Li Y, Liang Y, Peng C, Gong J. Truffle protein and its derived peptides exhibit sleep-promoting effects via regulation of lysosomal autophagy, neurological activity, tyrosine metabolism, and fatty acid elongation. Int J Biol Macromol 2024; 281:136476. [PMID: 39393730 DOI: 10.1016/j.ijbiomac.2024.136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Black truffle (Tuber sinense) is a famous luxurious mushroom with abundant protein resources. Nevertheless, until now, no single study has explored the potential function of black truffle protein in any animal models. Thus, this study investigated the sleep-promoting effects of truffle albumin (TA) and its hydrolysate (TAH). Then, two novel sleep-enhancing peptides were explored from TAH. Our results showed that TA and TAH significantly prolonged the total sleep time and improved sleep quality of insomnia Drosophila. Additionally, two novel peptides YLDLAPL and YLRPEGDW with strong sleep-enhancing activity were explored by virtual screening and Drosophila with transgenic RNA interference (RNAi) technology. Finally, the transcriptomics analysis investigated potential mechanisms of sleep-enhancing effects in Drosophila: (1) regulation of the autophagic activity by altering the lysosomal protein; (2) up-regulation the genes in the pathway of neuroactive ligand-receptor interaction and promotion the function of neurons; (3) promotion the conversion of tyrosine into neurotransmitters; (4) regulation substrate feeding into the tricarboxylic acid (TCA) cycle and promotion free radical scavenging in neuronal cells; (5) promotion the fatty acid elongation and preservation neuronal cells avoid from oxidation.
Collapse
Affiliation(s)
- Yujing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yuxuan Liang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650221, China.
| |
Collapse
|
2
|
Tang W, Huang J, Li G, Zhou Z, Wang Z. Upregulation of NPC1 and its association with poor prognosis in gastric cancer. Clin Transl Oncol 2024; 26:2665-2673. [PMID: 38698279 DOI: 10.1007/s12094-024-03490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The Niemann-Pick disease type C1 (NPC1) protein plays a pivotal role in lipid transport, particularly free cholesterol, within lysosomal/late endosomal membranes. Previous studies have highlighted NPC1 as a promising target for cholesterol trafficking and cancer therapy. Nevertheless, the expression of NPC1 in gastric cancer (GC) and its clinical implications remain unexplored. This study aims to investigate NPC1 expression in GC and its correlation with patient prognosis. METHODS NPC1 expression levels in GC and normal tissues were assessed using the GEPIA database, and survival analysis was conducted via Kaplan‒Meier Plotter. Evaluation of potential biological effects of NPC1 in GC by protein-protein interaction network and GO, KEGG bioenrichment analysis. Immunohistochemistry was performed on surgical samples collected from 306 GC patients. Correlations between NPC1 expression, clinical characteristics, and patient prognosis were analyzed. RESULTS NPC1 mRNA expression was elevated in GC tissues compared to normal tissues (P < 0.05) and significantly associated with poorer prognosis. In our cohort of 306 patients, NPC1 exhibited significant upregulation in GC versus adjacent normal tissues (P = 0.031). High NPC1 expression correlated with adverse clinical characteristics, including lymph node metastasis, distant metastasis, and advanced TNM stage (all P < 0.05). Patients with high NPC1 expression experienced notably shorter overall survival (P < 0.001), particularly in stages III and IV (P = 0.003). Multivariate Cox regression analysis identified high NPC1 expression as an independent prognostic factor for GC patients (HR 1.57, 95% CI 1.14-2.18, P = 0.006). Lastly, an optimized nomogram incorporating NPC1, tumor size, and TNM stage was constructed. CONCLUSIONS NPC1 expression is upregulated in GC and serves as a pivotal prognostic factor for adverse outcomes in GC patients.
Collapse
Affiliation(s)
- Wei Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, Guangdong, China
| | - Jiahua Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, Guangdong, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, Guangdong, China
| | - Zhihao Zhou
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, Guangdong, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Schultz DF, Davies BA, Payne JA, Martin CP, Minard AY, Childs BG, Zhang C, Jeganathan KB, Sturmlechner I, White TA, de Bruin A, Harkema L, Chen H, Davies MA, Jachim S, LeBrasseur NK, Piper RC, Li H, Baker DJ, van Deursen J, Billadeau DD, Katzmann DJ. Loss of HD-PTP function results in lipodystrophy, defective cellular signaling and altered lipid homeostasis. J Cell Sci 2024; 137:jcs262032. [PMID: 39155850 PMCID: PMC11449442 DOI: 10.1242/jcs.262032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
Collapse
Affiliation(s)
- Destiny F Schultz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Immunology Graduate Program, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cole P Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Bennett G Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Huiqin Chen
- Department of Biostatistics, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sarah Jachim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
4
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Zheng G, Zeng G, Wei D. The role of NPC2 gene in glioma was investigated based on bioinformatics analysis. Sci Rep 2024; 14:19134. [PMID: 39160329 PMCID: PMC11333723 DOI: 10.1038/s41598-024-70221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors in adults. The NPC2 gene (Niemann-Pick type C intracellular cholesterol transporter 2) is a protein-coding gene with a lipid recognition domain. The NPC2 gene was found to be significantly increased in gliomas (LGG and GBM), and it is now thought to be a risk factor. COX analysis demonstrated that NPC2 was a significant risk factor for glioma. Functional enrichment analysis of genes that were differentially expressed between high and low expression groups revealed that genes were primarily enriched in the regulation of trans-synaptic signaling, Retrograde endocannabinoid signaling and other pathways. According to the findings of the immunoinfiltration investigation, the NPC2 gene and macrophage, DC, etc. have a strong positive association. In addition, patients with high NPC2 expression had higher levels of immune cell expression. Medication sensitivity research revealed that NPC2's differential expression had some bearing on patients' medication sensitivity. There was a strong correlation between the prognosis of glioma patients and the gene sets NUDT19 and NUME. In brief, the NPC2 gene was identified to be a possible biomarker of glioma, and preliminary analysis was done on the role of the NPC2 gene in immunological microenvironment of glioma.
Collapse
Affiliation(s)
- Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guangming Zeng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Tsikandelova R, Galo E, Cerniauskas E, Hallam D, Georgiou M, Cerna-Chavez R, Atkinson R, Palmowski P, Burté F, Davies T, Steel DH, McKibbin M, Bond J, Haggarty J, Whitfield P, Korolchuk V, Armstrong L, Yang C, Dorgau B, Kurzawa-Akanbi M, Lako M. Retinal cells derived from patients with DRAM2-dependent CORD21 dystrophy exhibit key lysosomal enzyme deficiency and lysosomal content accumulation. Stem Cell Reports 2024; 19:1107-1121. [PMID: 38964324 PMCID: PMC11368688 DOI: 10.1016/j.stemcr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Biallelic mutations in DRAM2 lead to an autosomal recessive cone-rod dystrophy known as CORD21, which typically presents between the third and sixth decades of life. Although DRAM2 localizes to the lysosomes of photoreceptor and retinal pigment epithelium (RPE) cells, its specific role in retinal degeneration has not been fully elucidated. In this study, we generated and characterized retinal organoids (ROs) and RPE cells from induced pluripotent stem cells (iPSCs) derived from two CORD21 patients. Our investigation revealed that CORD21-ROs and RPE cells exhibit abnormalities in lipid metabolism, defects in autophagic flux, accumulation of aberrant lysosomal content, and reduced lysosomal enzyme activity. We identified potential interactions of DRAM2 with vesicular trafficking proteins, suggesting its involvement in this cellular process. These findings collectively suggest that DRAM2 plays a crucial role in maintaining the integrity of photoreceptors and RPE cells by regulating lysosomal function, autophagy, and potentially vesicular trafficking.
Collapse
Affiliation(s)
| | - Eldo Galo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Florence Burté
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Tracey Davies
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Martin McKibbin
- Leeds Teaching Hospitals NHS Trust, Leeds UK and Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Jacquelyn Bond
- Leeds Teaching Hospitals NHS Trust, Leeds UK and Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Phil Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
7
|
Chen L, Zhang J, Xu W, Chen J, Tang Y, Xiong S, Li Y, Zhang H, Li M, Liu Z. Cholesterol-rich lysosomes induced by respiratory syncytial virus promote viral replication by blocking autophagy flux. Nat Commun 2024; 15:6311. [PMID: 39060258 PMCID: PMC11282085 DOI: 10.1038/s41467-024-50711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.
Collapse
Affiliation(s)
- Lifeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Weibin Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yujun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Si Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine & College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. J Biol Chem 2024; 300:107403. [PMID: 38782205 PMCID: PMC11254723 DOI: 10.1016/j.jbc.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonardo Pereyra
- Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany
| | - Justin Dale
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - King Faisal Yambire
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York, USA
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ira Milosevic
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Multidisciplinary Institute for Ageing, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
9
|
Brown RDR, Mahawar U, Wattenberg BW, Spiegel S. ORMDL mislocalization by impaired autophagy in Niemann-Pick type C disease leads to increased de novo sphingolipid biosynthesis. J Lipid Res 2024; 65:100556. [PMID: 38719150 PMCID: PMC11170278 DOI: 10.1016/j.jlr.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Ciavattone NG, Guan N, Farfel A, Stauff J, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Evaluating immunotherapeutic outcomes in triple-negative breast cancer with a cholesterol radiotracer in mice. JCI Insight 2024; 9:e175320. [PMID: 38502228 PMCID: PMC11141879 DOI: 10.1172/jci.insight.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary D Luker
- Department of Radiology, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Up-regulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583589. [PMID: 38496624 PMCID: PMC10942416 DOI: 10.1101/2024.03.06.583589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in the cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Nevertheless, the signaling consequences of primary mitochondrial malfunction and of primary lysosomal defects are not similar, despite in both cases there are impairments of mitochondria and of lysosomes. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects, to identify what are the global cellular consequences that are associated with malfunction of mitochondria or lysosomes. We used these data to determine what are the pathways that are affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. This pathway is transcriptionally up-regulated in cellular and mouse models of lysosomal defects and is transcriptionally down-regulated in cellular and mouse models of mitochondrial defects. We identified a role for post-transcriptional regulation of the transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, the retention of Ca 2+ in the lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo , using models of mitochondria-associated diseases in C. elegans , that normalization of lysosomal Ca 2+ levels results in partial rescue of the developmental arrest induced by the respiratory chain deficiency.
Collapse
|
12
|
Barreda D, Grinstein S, Freeman SA. Target lysis by cholesterol extraction is a rate limiting step in the resolution of phagolysosomes. Eur J Cell Biol 2024; 103:151382. [PMID: 38171214 DOI: 10.1016/j.ejcb.2023.151382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.
Collapse
Affiliation(s)
- Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Çapan ÖY, Yapıcı Z, Özbil M, Çağlayan HS. Exome data of developmental and epileptic encephalopathy patients reveals de novo and inherited pathologic variants in epilepsy-associated genes. Seizure 2024; 116:51-64. [PMID: 37353388 DOI: 10.1016/j.seizure.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey; Department of Molecular Biology and Genetics, İstanbul Arel University, İstanbul, Turkey.
| | - Zuhal Yapıcı
- Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkiye
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey (formerly)
| |
Collapse
|
14
|
Chadwick SR, Barreda D, Wu JZ, Ye G, Yusuf B, Ren D, Freeman SA. Two-pore channels regulate endomembrane tension to enable remodeling and resolution of phagolysosomes. Proc Natl Acad Sci U S A 2024; 121:e2309465121. [PMID: 38354262 PMCID: PMC10895354 DOI: 10.1073/pnas.2309465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.
Collapse
Affiliation(s)
- Sarah R. Chadwick
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Gang Ye
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Bushra Yusuf
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
15
|
Wang Y, Wang X, Chen Y, Du J, Xiao Y, Guo D, Liu S. Adapting to stress: The effects of hibernation and hibernacula temperature on the hepatic transcriptome of Rhinolophus pusillus. FASEB J 2024; 38:e23462. [PMID: 38318662 DOI: 10.1096/fj.202301646r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Hibernation, a survival strategy in mammals for extreme climates, induces physiological phenomena such as ischemia-reperfusion and metabolic shifts that hold great potential for advancements in modern medicine. Despite this, the molecular mechanisms underpinning hibernation remain largely unclear. This study used RNA-seq and Iso-seq techniques to investigate the changes in liver transcriptome expression of Rhinolophus pusillus during hibernation and active periods, as well as under different microhabitat temperatures. We identified 11 457 differentially expressed genes during hibernation and active periods, of which 395 showed significant differential expression. Genes associated with fatty acid catabolism were significantly upregulated during hibernation, whereas genes related to carbohydrate metabolism and glycogen synthesis were downregulated. Conversely, immune-related genes displayed differential expression patterns: genes tied to innate immunity were significantly upregulated, while those linked to adaptive immunity and inflammatory response were downregulated. The analysis of transcriptomic data obtained from different microhabitat temperatures revealed that R. pusillus exhibited an upregulation of genes associated with lipid metabolism in lower microhabitat temperature. This upregulation facilitated an enhanced utilization rate of triglyceride, ultimately resulting in increased energy provision for the organism. Additionally, R. pusillus upregulated gluconeogenesis-related genes regardless of the microhabitat temperature, demonstrating the importance of maintaining blood glucose levels during hibernation. Our transcriptomic data reveal that these changes in liver gene expression optimize energy allocation during hibernation, suggesting that liver tissue adaptively responds to the inherent stress of its function during hibernation. This study sheds light on the role of differential gene expression in promoting more efficient energy allocation during hibernation. It contributes to our understanding of how liver tissue adapts to the stressors associated with this state.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yu Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jianying Du
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
16
|
Martinez-Campanario MC, Cortés M, Moreno-Lanceta A, Han L, Ninfali C, Domínguez V, Andrés-Manzano MJ, Farràs M, Esteve-Codina A, Enrich C, Díaz-Crespo FJ, Pintado B, Escolà-Gil JC, García de Frutos P, Andrés V, Melgar-Lesmes P, Postigo A. Atherosclerotic plaque development in mice is enhanced by myeloid ZEB1 downregulation. Nat Commun 2023; 14:8316. [PMID: 38097578 PMCID: PMC10721632 DOI: 10.1038/s41467-023-43896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Alazne Moreno-Lanceta
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
| | - Lu Han
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - María J Andrés-Manzano
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Marta Farràs
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | | | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Group of signal transduction, intracellular compartments and cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco J Díaz-Crespo
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Belén Pintado
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Joan C Escolà-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pablo García de Frutos
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
- Department Of Cell Death and Proliferation, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Group of Hemotherapy and Hemostasis, IDIBAPS, 08036, Barcelona, Spain
| | - Vicente Andrés
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, 08036, Barcelona, Spain
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
17
|
Navyasree KV, Ramesh ST, Umasankar PK. Cholesterol regulates insulin-induced mTORC1 signaling. J Cell Sci 2023; 136:jcs261402. [PMID: 37921368 DOI: 10.1242/jcs.261402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Furthermore, we identify that fibroblasts from individuals with Smith-Lemli-Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin-mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
Collapse
Affiliation(s)
- Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
18
|
Wüstner D, Dupont Juhl A, Egebjerg JM, Werner S, McNally J, Schneider G. Kinetic modelling of sterol transport between plasma membrane and endo-lysosomes based on quantitative fluorescence and X-ray imaging data. Front Cell Dev Biol 2023; 11:1144936. [PMID: 38020900 PMCID: PMC10644255 DOI: 10.3389/fcell.2023.1144936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Niemann Pick type C1 and C2 (NPC1 and NPC2) are two sterol-binding proteins which, together, orchestrate cholesterol transport through late endosomes and lysosomes (LE/LYSs). NPC2 can facilitate sterol exchange between model membranes severalfold, but how this is connected to its function in cells is poorly understood. Using fluorescent analogs of cholesterol and quantitative fluorescence microscopy, we have recently measured the transport kinetics of sterol between plasma membrane (PM), recycling endosomes (REs) and LE/LYSs in control and NPC2 deficient fibroblasts. Here, we use kinetic modeling of this data to determine rate constants for sterol transport between intracellular compartments. Our model predicts that sterol is trapped in intraluminal vesicles (ILVs) of LE/LYSs in the absence of NPC2, causing delayed sterol export from LE/LYSs in NPC2 deficient fibroblasts. Using soft X-ray tomography, we confirm, that LE/LYSs of NPC2 deficient cells but not of control cells contain enlarged, carbon-rich intraluminal vesicular structures, supporting our model prediction of lipid accumulation in ILVs. By including sterol export via exocytosis of ILVs as exosomes and by release of vesicles-ectosomes-from the PM, we can reconcile measured sterol efflux kinetics and show that both pathways can be reciprocally regulated by the intraluminal sterol transfer activity of NPC2 inside LE/LYSs. Our results thereby connect the in vitro function of NPC2 as sterol transfer protein between membranes with its in vivo function.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - James McNally
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Berlin, Germany
| |
Collapse
|
19
|
Platt FM. The expanding boundaries of sphingolipid lysosomal storage diseases; insights from Niemann-Pick disease type C. Biochem Soc Trans 2023; 51:1777-1787. [PMID: 37844193 PMCID: PMC10657176 DOI: 10.1042/bst20220711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Lysosomal storage diseases are inborn errors of metabolism that arise due to loss of function mutations in genes encoding lysosomal enzymes, protein co-factors or lysosomal membrane proteins. As a consequence of the genetic defect, lysosomal function is impaired and substrates build up in the lysosome leading to 'storage'. A sub group of these disorders are the sphingolipidoses in which sphingolipids accumulate in the lysosome. In this review, I will discuss how the study of these rare lysosomal disorders reveals unanticipated links to other rare and common human diseases using Niemann-Pick disease type C as an example.
Collapse
Affiliation(s)
- Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
20
|
Yaseen NR, Barnes CLK, Sun L, Takeda A, Rice JP. Genetics of vegetarianism: A genome-wide association study. PLoS One 2023; 18:e0291305. [PMID: 37792698 PMCID: PMC10550162 DOI: 10.1371/journal.pone.0291305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
A substantial body of evidence points to the heritability of dietary preferences. While vegetarianism has been practiced for millennia in various societies, its practitioners remain a small minority of people worldwide, and the role of genetics in choosing a vegetarian diet is not well understood. Dietary choices involve an interplay between the physiologic effects of dietary items, their metabolism, and taste perception, all of which are strongly influenced by genetics. In this study, we used a genome-wide association study (GWAS) to identify loci associated with strict vegetarianism in UK Biobank participants. Comparing 5,324 strict vegetarians to 329,455 controls, we identified one SNP on chromosome 18 that is associated with vegetarianism at the genome-wide significant level (rs72884519, β = -0.11, P = 4.997 x 10-8), and an additional 201 suggestively significant variants. Four genes are associated with rs72884519: TMEM241, RIOK3, NPC1, and RMC1. Using the Functional Mapping and Annotation (FUMA) platform and the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool, we identified 34 genes with a possible role in vegetarianism, 3 of which are GWAS-significant based on gene-level analysis: RIOK3, RMC1, and NPC1. Several of the genes associated with vegetarianism, including TMEM241, NPC1, and RMC1, have important functions in lipid metabolism and brain function, raising the possibility that differences in lipid metabolism and their effects on the brain may underlie the ability to subsist on a vegetarian diet. These results support a role for genetics in choosing a vegetarian diet and open the door to future studies aimed at further elucidating the physiologic pathways involved in vegetarianism.
Collapse
Affiliation(s)
- Nabeel R. Yaseen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | | | - Lingwei Sun
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Akiko Takeda
- Retired, St. Louis, MO, United States of America
| | - John P. Rice
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
21
|
Ciavattone NG, Guan J, Farfel A, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Predicting efficacy of immunotherapy in mice with triple negative breast cancer using a cholesterol PET radiotracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560577. [PMID: 37873149 PMCID: PMC10592945 DOI: 10.1101/2023.10.02.560577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.
Collapse
|
22
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MS. The energetics and ion coupling of cholesterol transport through Patched1. SCIENCE ADVANCES 2023; 9:eadh1609. [PMID: 37611095 PMCID: PMC10446486 DOI: 10.1126/sciadv.adh1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between cation binding sites, transmembrane motions, and PTCH1 activity. Using complementary simulations of Dispatched1, we find that transition between "inward-open" and solvent "occluded" states is accompanied by Na+-induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion coupling stoichiometries of PTCH1 transport mechanisms, whereby one to three Na+ or two to three K+ couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol BS8 1TD, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
23
|
Zhou Z, Li X. Research progress in mRNA drug modification and delivery systems. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:439-450. [PMID: 37643978 PMCID: PMC10495253 DOI: 10.3724/zdxbyxb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
Collapse
Affiliation(s)
- Zhengjie Zhou
- Department of Medicine, Pritzker School of Molecular Engineering, The University of Chicago, Chicago 60637, USA.
| | - Xin Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China
| |
Collapse
|
24
|
Min JO, Ho HA, Lee W, Jung BC, Park SJ, Kim S, Lee SJ. Statins suppress cell-to-cell propagation of α-synuclein by lowering cholesterol. Cell Death Dis 2023; 14:474. [PMID: 37500624 PMCID: PMC10374525 DOI: 10.1038/s41419-023-05977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Cell-to-cell propagation of protein aggregates has been implicated in the progression of neurodegenerative diseases. However, the underlying mechanism and modulators of this process are not fully understood. Here, we screened a small-molecule library in a search for agents that suppress the propagation of α-synuclein and mutant huntingtin (mHtt). These screens yielded several molecules, some of which were effective against both α-synuclein and mHtt. Among these molecules, we focused on simvastatin and pravastatin. Simvastatin administration in a transgenic model of synucleinopathy effectively ameliorated behavioral deficits and α-synuclein accumulation, whereas pravastatin had no effect. Because only simvastatin enters the brain effectively, these results suggest that inhibition of brain cholesterol synthesis is important in simvastatin effects. In cultured cells, accumulation of intracellular cholesterol, induced by genetic ablation of the NPC1 gene or by pharmacological treatment with U18666A, increased α-synuclein aggregation and secretion. In contrast, lowering cholesterol using methyl-β-cyclodextrin or statins reversed α-synuclein aggregation and secretion in NPC1-knockout cells. Consistent with these observations, feeding a high-fat diet aggravated α-synuclein pathology and behavioral deficits in the preformed fibril-injected mouse model, an effect that was also reversed by simvastatin administration. These results suggest that statins suppress propagation of protein aggregates by lowering cholesterol in the brain.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hoang-Anh Ho
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonjae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, Republic of Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Sung Jun Park
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | | | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuramedy Co. Ltd, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Kendall RL, Holian A. Cholesterol-dependent molecular mechanisms contribute to cationic amphiphilic drugs' prevention of silica-induced inflammation. Eur J Cell Biol 2023; 102:151310. [PMID: 36934670 PMCID: PMC10330738 DOI: 10.1016/j.ejcb.2023.151310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Silicosis is considered an irreversible chronic inflammatory disease caused by the inhalation of crystalline silica (cSiO2). The cycle of inflammation that drives silicosis and other particle-caused respiratory diseases is mediated by NLRP3 inflammasome activity in macrophages resulting in the release of IL-1β. Lysosomal membrane permeability (LMP) initiated by inhaled particles is the key regulatory step in leading to NLRP3 activity. In addition to its role in LMP, the lysosome is crucial to cellular cholesterol trafficking. Lysosomal cholesterol has been demonstrated to regulate LMP while cationic amphiphilic drugs (CADs) reduce cholesterol trafficking from lysosomes and promote endolysosomal cholesterol accumulation as seen in Niemann Pick disease. Using a bone marrow derived macrophage (BMdM) model, four CADs were examined for their potential to reduce cSiO2-induced inflammation. Here we found that FDA-approved CAD drugs imipramine, hydroxychloroquine, fluvoxamine, and fluoxetine contributed to reduced LMP and IL-1β release in cSiO2 treated BMdM. These drugs inhibited lysosomal enzymatic activity of acid sphingomyelinase, decreased lysosomal proteolytic function, and increased lysosomal pH. CADs also demonstrated a significant increase in lysosomal-associated free cholesterol. Increased lysosomal cholesterol was associated with a significant reduction in cSiO2 induced LMP and IL-1β release. In contrast, reduced lysosomal cholesterol significantly exacerbated cSiO2-induced IL-1β release and reduced the protective effect of CADs on IL-1β release following cSiO2 exposure. Taken together, these results suggest that CAD modification of lysosomal cholesterol may be used to reduce LMP and cSiO2-induced inflammation and could prove an effective therapeutic for silicosis and other particle-caused respiratory diseases.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Science, University of Montana, 32 Campus Way, Missoula, MT 59812, USA.
| | - Andrij Holian
- Center for Environmental Health Science, University of Montana, 32 Campus Way, Missoula, MT 59812, USA
| |
Collapse
|
28
|
Altuzar J, Notbohm J, Stein F, Haberkant P, Hempelmann P, Heybrock S, Worsch J, Saftig P, Höglinger D. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc Natl Acad Sci U S A 2023; 120:e2213886120. [PMID: 36893262 PMCID: PMC10089177 DOI: 10.1073/pnas.2213886120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023] Open
Abstract
Lysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization. These probes feature a modified cage group for lysosomal targeting and controlled release of the active lipids with high temporal precision. An additional photocrosslinkable group allowed for the discovery of lysosomal interactors for both sphingosine and cholesterol. In this way, we found that two lysosomal cholesterol transporters, NPC1 and to a lesser extent LIMP-2/SCARB2, bind to sphingosine and showed that their absence leads to lysosomal sphingosine accumulation which hints at a sphingosine transport role of both proteins. Furthermore, artificial elevation of lysosomal sphingosine levels impaired cholesterol efflux, consistent with sphingosine and cholesterol sharing a common export mechanism.
Collapse
Affiliation(s)
- Janathan Altuzar
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Judith Notbohm
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Pia Hempelmann
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Saskia Heybrock
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, 24118Kiel, Germany
| | - Jutta Worsch
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, 24118Kiel, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| |
Collapse
|
29
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
30
|
Sterling FR, D'Amico J, Brumfield AM, Huegel KL, Vaughan PS, Morris K, Schwarz S, Joyce MV, Boggess B, Champion MM, Maciuba K, Allen P, Marasco E, Koch G, Gonzalez P, Hodges S, Leahy S, Gerstbauer E, Hinchcliffe EH, Vaughan KT. StARD9 is a novel lysosomal kinesin required for membrane tubulation, cholesterol transport and Purkinje cell survival. J Cell Sci 2023; 136:292582. [PMID: 36861884 DOI: 10.1242/jcs.260662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.
Collapse
Affiliation(s)
- Felicity R Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jon D'Amico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kara L Huegel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia S Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kathryn Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shelby Schwarz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michelle V Joyce
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin Maciuba
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Philip Allen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric Marasco
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Grant Koch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peter Gonzalez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Hodges
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Leahy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erica Gerstbauer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kevin T Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The Energetics and Ion Coupling of Cholesterol Transport Through Patched1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528445. [PMID: 36824746 PMCID: PMC9949057 DOI: 10.1101/2023.02.14.528445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol -1 for cholesterol export. In simulations we identify cation binding sites within the PTCH1 transmembrane domain (TMD) which may provide the energetic impetus for cholesterol transport. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between transmembrane motions and PTCH1 activity. Using complementary simulations of Dispatched1 (DISP1) we find that transition between 'inward-open' and solvent 'occluded' states is accompanied by Na + induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion-coupling stoichiometries of PTCH1 transport mechanisms, whereby 1-3 Na + or 2-3 K + couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
32
|
The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
|
33
|
PTCHD1 Binds Cholesterol but Not Sonic Hedgehog, Suggesting a Distinct Cellular Function. Int J Mol Sci 2023; 24:ijms24032682. [PMID: 36769003 PMCID: PMC9917202 DOI: 10.3390/ijms24032682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Deleterious mutations in the X-linked Patched domain-containing 1 (PTCHD1) gene may account for up to 1% of autism cases. Despite this, the PTCHD1 protein remains poorly understood. Structural similarities to Patched family proteins point to a role in sterol transport, but this hypothesis has not been verified experimentally. Additionally, PTCHD1 has been suggested to be involved in Hedgehog signalling, but thus far, the experimental results have been conflicting. To enable a variety of biochemical and structural experiments, we developed a method for expressing PTCHD1 in Spodoptera frugiperda cells, solubilising it in glycol-diosgenin, and purifying it to homogeneity. In vitro and in silico experiments show that PTCHD1 function is not interchangeable with Patched 1 (PTCH1) in canonical Hedgehog signalling, since it does not repress Smoothened in Ptch1-/- mouse embryonic fibroblasts and does not bind Sonic Hedgehog. However, we found that PTCHD1 binds cholesterol similarly to PTCH1. Furthermore, we identified 13 PTCHD1-specific protein interactors through co-immunoprecipitation and demonstrated a link to cell stress responses and RNA stress granule formation. Thus, our results support the notion that despite structural similarities to other Patched family proteins, PTCHD1 may have a distinct cellular function.
Collapse
|
34
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
35
|
Bruno F, Camuso S, Capuozzo E, Canterini S. The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders. Antibiotics (Basel) 2023; 12:antibiotics12010122. [PMID: 36671323 PMCID: PMC9855188 DOI: 10.3390/antibiotics12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer's Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Serena Camuso
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Capuozzo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| |
Collapse
|
36
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
37
|
Samaddar S, Bose D, Loren BP, Skulsky JL, Ilnytska O, Struzik ZJ, Storch J, Thompson DH. Structure-function relationships of cholesterol mobilization from the endo-lysosome compartment of NPC1-deficient human cells by β-CD polyrotaxanes. PLoS One 2022; 17:e0268613. [PMID: 36584173 PMCID: PMC9803220 DOI: 10.1371/journal.pone.0268613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 01/01/2023] Open
Abstract
Niemann-Pick Type C is a rare metabolic disorder characterized by the cellular accumulation of cholesterol within endosomal and lysosomal compartments. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) containing polyrotaxanes represent an attractive approach for treating this disease due to their ability to circulate in the blood stream for longer periods of time as a prodrug form of HP-β-CD. Once inside the cell, the macromolecular structure is thought to break down into the Pluronic precursor and the active cyclodextrin agent that promotes cholesterol mobilization from the aberrant accumulations within NPC-deficient cells. We now report that both cholesterol and decaarginine (R10) endcapped polyrotaxanes are able to remove cholesterol from NPC1 patient fibroblasts. R10 endcapped materials enter these cells and are localized within endosomes after 16 h. The cholesterol mobilization from endo-lysosomal compartments of NPC1 cells by the polyrotaxanes was directly related to their extent of endcapping and their threading efficiency. Incorporation of 4-sulfobutylether-β-cyclodextrin (SBE-β-CD) significantly improved cholesterol mobilization due to the improved solubility of the compounds. Additionally, in our efforts to scale-up the synthesis for preclinical studies, we prepared a library of polyrotaxanes using a solid phase synthesis method. These compounds also led to significant cholesterol mobilization from the cells, however, cytotoxicity studies showed that they were substantially more toxic than those prepared by the solvent-assisted method, thus limiting the therapeutic utility of agents prepared by this expedited method. Our findings demonstrate that complete endcapping of the polyrotaxanes and improved solubility are important design features for delivering high copy numbers of therapeutic β-CD to promote enhanced sterol clearance in human NPC1-deficient cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Debosreeta Bose
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bradley P. Loren
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph L. Skulsky
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Olga Ilnytska
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Zachary J. Struzik
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (DHT); (JS)
| | - David H. Thompson
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (DHT); (JS)
| |
Collapse
|
38
|
Wood JI, Wong E, Joghee R, Balbaa A, Vitanova KS, Stringer KM, Vanshoiack A, Phelan SLJ, Launchbury F, Desai S, Tripathi T, Hanrieder J, Cummings DM, Hardy J, Edwards FA. Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology. Cell Rep 2022; 41:111686. [PMID: 36417868 DOI: 10.1016/j.celrep.2022.111686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia-touching plaques, neighboring plaques, and far from plaques in an aged Alzheimer's mouse model with late plaque development. In 18-month-old APPNL-F/NL-F knockin mice, with and without the Alzheimer's disease risk mutation Trem2R47H/R47H, we report that expression of 38/55 PIGs have plaque-induced microglial upregulation, with a subset only upregulating in microglia directly contacting plaques. For seven PIGs, including Trem2, this upregulation is prevented in APPNL-F/NL-FTrem2R47H/R47H mice. These TREM2-dependent genes are all involved in phagocytic and degradative processes that we show correspond to a decrease in phagocytic markers and an increase in the density of small plaques in Trem2-mutated mice. Furthermore, despite the R47H mutation preventing increased Trem2 gene expression, TREM2 protein levels and microglial density are still marginally increased on plaques. Hence, both microglial contact with plaques and functioning TREM2 are necessary for microglia to respond appropriately to amyloid pathology.
Collapse
Affiliation(s)
- Jack I Wood
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
| | - Eugenia Wong
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ridwaan Joghee
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aya Balbaa
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Karina S Vitanova
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
| | - Alison Vanshoiack
- Nanostring Technologies, 530 Fairview Avenue N, Seattle, WA 98109, United States
| | | | - Francesca Launchbury
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sneha Desai
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jörg Hanrieder
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
| | - Damian M Cummings
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - John Hardy
- Dementia Research Institute, University College London, Gower Street, London WC1E 6BT, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Frances A Edwards
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Institute of Healthy Ageing, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
39
|
Gutić M, Milosavljević MN, Janković SM. Cost-effectiveness of miglustat versus symptomatic therapy of Niemann-Pick disease type C. Int J Clin Pharm 2022; 44:1442-1453. [PMID: 36243834 DOI: 10.1007/s11096-022-01491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a progressive neurodegenerative disorder with early infantile (< 2 years), late infantile (2-6 years), juvenile (7-15 years) and adolescent (> 15 years) onset. The mainstay of therapy for NP-C patients with neurological symptoms is miglustat, a drug that may modify the course of the disease. AIM Our aim was to evaluate the cost-effectiveness of miglustat in comparison to symptomatic therapy in patients with NP-C in the socio-economic settings of the Republic of Serbia, an upper-middle-income European economy. METHOD The perspective of the Serbian Republic Health Insurance Fund was chosen for this study, and the time horizon was eighty years. The main outcomes of the study were quality-adjusted life years gained with miglustat and comparator, and direct costs of treatment. The study was conducted through the generation and simulation of the Discrete-Event Simulation model. The model results were obtained after Monte Carlo microsimulation of a sample with 1000 virtual patients. RESULTS Treatment with miglustat was not cost-effective when compared with symptomatic therapy and was associated with negative values of net monetary benefit regardless of the onset of neurological manifestations (- 110,447,627.00 ± 701,614.00 RSD, - 343,871,695.00 ± 2,577,441.00 RSD, - 1,397,908,502.00 ± 23,084,235.00 RSD and - 2,953,680,879.00 ± 33,297,412.00 RSD) for early infantile, late infantile, juvenile and adolescent cohorts, respectively). CONCLUSION When traditional pharmacoeconomic evaluation is employed, miglustat is not a cost-effective option in comparison to symptomatic therapy for the treatment of NP-C. However, given the proven efficacy of miglustat, there is a need to find ways to make this drug available to all patients with NP-C.
Collapse
Affiliation(s)
- Medo Gutić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Miloš N Milosavljević
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Slobodan M Janković
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| |
Collapse
|
40
|
O’Brien CE, Younger SH, Jan LY, Jan YN. The GARP complex prevents sterol accumulation at the trans-Golgi network during dendrite remodeling. J Biophys Biochem Cytol 2022; 222:213548. [PMID: 36239632 PMCID: PMC9577387 DOI: 10.1083/jcb.202112108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Membrane trafficking is essential for sculpting neuronal morphology. The GARP and EARP complexes are conserved tethers that regulate vesicle trafficking in the secretory and endolysosomal pathways, respectively. Both complexes contain the Vps51, Vps52, and Vps53 proteins, and a complex-specific protein: Vps54 in GARP and Vps50 in EARP. In Drosophila, we find that both complexes are required for dendrite morphogenesis during developmental remodeling of multidendritic class IV da (c4da) neurons. Having found that sterol accumulates at the trans-Golgi network (TGN) in Vps54KO/KO neurons, we investigated genes that regulate sterols and related lipids at the TGN. Overexpression of oxysterol binding protein (Osbp) or knockdown of the PI4K four wheel drive (fwd) exacerbates the Vps54KO/KO phenotype, whereas eliminating one allele of Osbp rescues it, suggesting that excess sterol accumulation at the TGN is, in part, responsible for inhibiting dendrite regrowth. These findings distinguish the GARP and EARP complexes in neurodevelopment and implicate vesicle trafficking and lipid transfer pathways in dendrite morphogenesis.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA
| | - Susan H. Younger
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
41
|
Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid salvage. Proc Natl Acad Sci U S A 2022; 119:e2210353119. [PMID: 36161949 DOI: 10.1073/pnas.2210353119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lysosome is central to the degradation of proteins, carbohydrates, and lipids and their salvage back to the cytosol for reutilization. Lysosomal transporters for amino acids, sugars, and cholesterol have been identified, and the metabolic fates of these molecules in the cytoplasm have been elucidated. Remarkably, it is not known whether lysosomal salvage exists for glycerophospholipids, the major constituents of cellular membranes. By using a transport assay screen against orphan lysosomal transporters, we identified the major facilitator superfamily protein Spns1 that is ubiquitously expressed in all tissues as a proton-dependent lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) transporter, with LPC and LPE being the lysosomal breakdown products of the most abundant eukaryotic phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively. Spns1 deficiency in cells, zebrafish embryos, and mouse liver resulted in lysosomal accumulation of LPC and LPE species with pathological consequences on lysosomal function. Flux analysis using stable isotope-labeled phospholipid apolipoprotein E nanodiscs targeted to lysosomes showed that LPC was transported out of lysosomes in an Spns1-dependent manner and re-esterified back into the cytoplasmic pools of phosphatidylcholine. Our findings identify a phospholipid salvage pathway from lysosomes to the cytosol that is dependent on Spns1 and critical for maintaining normal lysosomal function.
Collapse
|
42
|
Niemann-Pick Type C Proteins Are Required for Sterol Transport and Appressorium-Mediated Plant Penetration of Colletotrichum orbiculare. mBio 2022; 13:e0223622. [PMID: 36154185 PMCID: PMC9600679 DOI: 10.1128/mbio.02236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many biotrophic and hemibiotrophic fungal pathogens use appressoria to directly penetrate the host plant surface. In the cucumber anthracnose fungus Colletotrichum orbiculare, differentiation of appressoria requires a proper G1/S cell cycle progression, regulated by the GTPase-activating protein complex CoBub2-CoBfa1 and its downstream GTPase CoTem1. To explore the mechanisms by which the CoTem1 cascade regulates plant infection, we screened for CoTem1 interaction factors and identified a Niemann-Pick type C2 homolog (CoNpc2). Niemann-Pick type C proteins NPC1 and NPC2 are sterol-binding proteins required for sterol export from lysosomes (vacuoles) in humans and yeasts. We showed that CoNpc2 colocalized with CoNpc1 in late endosomes and vacuoles and that disruption of its gene resulted in aberrant sterol accumulation in vacuoles and loss of sterol membrane localization, indicating that NPC proteins are engaged in sterol transport in C. orbiculare. For appressorium infection, sterol transport and proper distribution mediated by CoNpc1 and CoNpc2 are critical for membrane integrity and membrane curvature with actin assembly, leading to penetration peg emergence and appressorial cone formation. Our results revealed a novel mechanism by which NPC proteins regulate appressorium-mediated plant infection.
Collapse
|
43
|
Macrophages take up VLDL-sized emulsion particles through caveolae-mediated endocytosis and excrete part of the internalized triglycerides as fatty acids. PLoS Biol 2022; 20:e3001516. [PMID: 36026438 PMCID: PMC9455861 DOI: 10.1371/journal.pbio.3001516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/08/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022] Open
Abstract
Triglycerides are carried in the bloodstream as part of very low-density lipoproteins (VLDLs) and chylomicrons, which represent the triglyceride-rich lipoproteins. Triglyceride-rich lipoproteins and their remnants contribute to atherosclerosis, possibly by carrying remnant cholesterol and/or by exerting a proinflammatory effect on macrophages. Nevertheless, little is known about how macrophages process triglyceride-rich lipoproteins. Here, using VLDL-sized triglyceride-rich emulsion particles, we aimed to study the mechanism by which VLDL triglycerides are taken up, processed, and stored in macrophages. Our results show that macrophage uptake of VLDL-sized emulsion particles is dependent on lipoprotein lipase (LPL) and requires the lipoprotein-binding C-terminal domain but not the catalytic N-terminal domain of LPL. Subsequent internalization of VLDL-sized emulsion particles by macrophages is carried out by caveolae-mediated endocytosis, followed by triglyceride hydrolysis catalyzed by lysosomal acid lipase. It is shown that STARD3 is required for the transfer of lysosomal fatty acids to the ER for subsequent storage as triglycerides, while NPC1 likely is involved in promoting the extracellular efflux of fatty acids from lysosomes. Our data provide novel insights into how macrophages process VLDL triglycerides and suggest that macrophages have the remarkable capacity to excrete part of the internalized triglycerides as fatty acids. How do macrophages take up and process very low density lipoprotein (VLDL) particles? This study reveals that endocytic uptake of VLDLs depends on lipoprotein lipase and caveolae; internalized VLDLs are then processed by lysosomes, and the lipids are hydrolyzed and translocated to the ER for storage as triglycerides.
Collapse
|
44
|
Lu A. Endolysosomal cholesterol export: More than just NPC1. Bioessays 2022; 44:e2200111. [PMID: 35934896 DOI: 10.1002/bies.202200111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
NPC1 plays a central role in cholesterol egress from endolysosomes, a critical step for maintaining intracellular cholesterol homeostasis. Despite recent advances in the field, the full repertoire of molecules and pathways involved in this process remains unknown. Emerging evidence suggests the existence of NPC1-independent, alternative routes. These may involve vesicular and non-vesicular mechanisms, as well as release of extracellular vesicles. Understanding the underlying molecular mechanisms that bypass NPC1 function could have important implications for the development of therapies for lysosomal storage disorders. Here we discuss how cholesterol may be exported from lysosomes in which NPC1 function is impaired.
Collapse
Affiliation(s)
- Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
46
|
Endocytosis-mediated vitellogenin absorption and lipid metabolism in the hindgut-derived placenta of the viviparous teleost Xenotoca eiseni. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159183. [PMID: 35660667 DOI: 10.1016/j.bbalip.2022.159183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
Certain viviparous animals possess mechanisms for mother-to-embryo nutrient transport during gestation. Xenotoca eiseni is one such viviparous teleost species in which the mother supplies proteins and other components to the offspring developing in the ovary. The embryo possesses trophotaenia, hindgut-derived placental structure, to receive the maternal supplement. However, research on the molecular mechanisms underlying viviparous species is scarce in non-mammalian vertebrates, including teleosts. Thus, we conducted this study to investigate the mechanism for nutrient absorption and degradation in trophotaeniae of X. eiseni. A tracer assay indicated that a lipid transfer protein, vitellogenin (Vtg), was absorbed into the epithelial layer cells of the trophotaeniae. Vtg uptake was significantly suppressed by Pitstop-2, an inhibitor of clathrin-mediated endocytosis. Gene expression analysis indicated that the genes involved in endocytosis-mediated lipolysis and lysosomal cholesterol transport were expressed in the trophotaeniae. In contrast, plasma membrane transporters expressed in the intestinal tract were not functional in the trophotaeniae. Our results suggested that endocytosis-mediated lysosomal lipolysis is one of the mechanisms underlying maternal component metabolism. Thus, our study demonstrated how viviparous teleost species have acquired a unique developmental system that is based on the hindgut-derived placenta.
Collapse
|
47
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
48
|
Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J Control Release 2022; 347:521-532. [PMID: 35569584 DOI: 10.1016/j.jconrel.2022.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Delivery of nucleic acids, such as mRNA, to immune cells has become a major focus in the past decade with ionizable lipid nanoparticles (LNPs) emerging as a clinically-validated delivery platform. LNPs-typically composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol lipids -have been designed and optimized for a variety of applications including cancer therapies, vaccines, and gene editing. However, LNPs have only recently been investigated for delivery to T cells, which has various therapeutic applications including the engineering of T cell immunotherapies. While several LNP formulations have been evaluated for mRNA delivery, recent work has demonstrated that the utilization of cholesterol analogs may enhance mRNA delivery. Other studies have shown that cholesterols modified with hydroxyl groups can alter endocytic recycling mechanisms. Here, we engineered a library of LNPs incorporating hydroxycholesterols to evaluate their impact on mRNA delivery to T cells by leveraging endosomal trafficking mechanisms. Substitution of 25% and 50% 7α-hydroxycholesterol for cholesterol in LNPs enhanced mRNA delivery to primary human T cells ex vivo by 1.8-fold and 2.0-fold, respectively. Investigation of endosomal trafficking revealed that these modifications also increase late endosome production and reduce the presence of recycling endosomes. These results suggest that hydroxyl modification of cholesterol molecules incorporated into LNP formulations provides a mechanism for improving delivery of nucleic acid cargo to T cells for a range of immunotherapy applications.
Collapse
|
49
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
50
|
Cawley NX, Lyons AT, Abebe D, Luke R, Yerger J, Telese R, Wassif CA, Bailey-Wilson JE, Porter FD. Complex N-Linked Glycosylation: A Potential Modifier of Niemann-Pick Disease, Type C1 Pathology. Int J Mol Sci 2022; 23:ijms23095082. [PMID: 35563467 PMCID: PMC9103943 DOI: 10.3390/ijms23095082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.
Collapse
Affiliation(s)
- Niamh X. Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Anna T. Lyons
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Daniel Abebe
- Research Animal Management Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Rachel Luke
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Julia Yerger
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Rebecca Telese
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Christopher A. Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA;
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.X.C.); (A.T.L.); (R.L.); (J.Y.); (R.T.); (C.A.W.)
- Correspondence: ; Tel.: +301-435-4432
| |
Collapse
|