1
|
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a Therapeutic Target in Breast Tumors: The Cancer stem cell perspective. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2358648. [PMID: 39006309 PMCID: PMC7616179 DOI: 10.1080/27694127.2024.2358648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Anubhav Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| |
Collapse
|
2
|
Zhao Y, Ding C, Zhu Z, Wang W, Wen W, Favoreel HW, Li X. Pseudorabies virus infection triggers mitophagy to dampen the interferon response and promote viral replication. J Virol 2024; 98:e0104824. [PMID: 39212384 PMCID: PMC11494983 DOI: 10.1128/jvi.01048-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Pseudorabies virus (PRV) utilizes multiple strategies to inhibit type I interferon (IFN-I) production and signaling to achieve innate immune evasion. Among several other functions, mitochondria serve as a crucial immune hub in the initiation of innate antiviral responses. It is currently unknown whether PRV inhibits innate immune responses by manipulating mitochondria. In this study, we found that PRV infection damages mitochondrial structure and function, as shown by mitochondrial membrane potential depolarization, reduction in mitochondrial numbers, and an imbalance in mitochondrial dynamics. In addition, PRV infection triggered PINK1-Parkin-mediated mitophagy to eliminate the impaired mitochondria, which resulted in a suppression of IFN-I production, thereby promoting viral replication. Furthermore, we found that mitophagy resulted in the degradation of the mitochondrial antiviral signaling protein, which is located on the mitochondrial outer membrane. In conclusion, the data of the current study indicate that PRV-induced mitophagy represents a previously uncharacterized PRV evasion mechanism of the IFN-I response, thereby promoting virus replication.IMPORTANCEPseudorabies virus (PRV), a pathogen that induces different disease symptoms and is often fatal in domestic animals and wildlife, has caused great economic losses to the swine industry. Since 2011, different PRV variant strains have emerged in Asia, against which current commercial vaccines may not always provide optimal protection in pigs. In addition, there are indications that some of these PRV variant strains may sporadically infect people. In the current study, we found that PRV infection causes mitochondria injury. This is associated with the induction of mitophagy to eliminate the damaged mitochondria, which results in suppressed antiviral interferon production and signaling. Hence, our study reveals a novel mechanism that is used by PRV to antagonize the antiviral host immune response, providing a theoretical basis that may contribute to the research toward and development of new vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Yuan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wei Wen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
4
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple unfolded protein response pathways cooperate to link cytosolic dsDNA release to stimulator of interferon gene activation. Front Immunol 2024; 15:1358462. [PMID: 39100663 PMCID: PMC11294172 DOI: 10.3389/fimmu.2024.1358462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
Affiliation(s)
- Tiancheng Hu
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, NJ, United States
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Fleck
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Cason King
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Elaine Schalk
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zhenyu Zhang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
5
|
Li Y, Guo M, Wang Q, Zhou H, Wu W, Lin H, Fan H. Glaesserella parasuis serotype 5 induces pyroptosis via the RIG-I/MAVS/NLRP3 pathway in swine tracheal epithelial cells. Vet Microbiol 2024; 294:110127. [PMID: 38797057 DOI: 10.1016/j.vetmic.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.
Collapse
Affiliation(s)
- Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenda Wu
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China.
| |
Collapse
|
6
|
Zhao J, Duan L, Li J, Yao C, Wang G, Mi J, Yu Y, Ding L, Zhao Y, Yan G, Li J, Zhao Z, Wang X, Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed Pharmacother 2024; 176:116807. [PMID: 38795644 DOI: 10.1016/j.biopha.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.
Collapse
Affiliation(s)
- Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Liyun Duan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chensi Yao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoqiang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jia Mi
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yongjiang Yu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yunyun Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhixuan Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
Liu J, Li H, Dong Q, Liang Z. Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:10579-10614. [PMID: 38913914 PMCID: PMC11236326 DOI: 10.18632/aging.205964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/29/2024] [Indexed: 06/26/2024]
Abstract
Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huimin Li
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
8
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
9
|
Praharaj PP, Patra S, Singh A, Panigrahi DP, Lee HY, Kabir MF, Hossain MK, Patra SK, Patro BS, Patil S, Klionsky DJ, Chae HJ, Bhutia SK. CLU (clusterin) and PPARGC1A/PGC1α coordinately control mitophagy and mitochondrial biogenesis for oral cancer cell survival. Autophagy 2024; 20:1359-1382. [PMID: 38447939 PMCID: PMC11210931 DOI: 10.1080/15548627.2024.2309904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024] Open
Abstract
Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P. Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Hwa Y. Lee
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Mohammad F. Kabir
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Muhammad K. Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Samir K. Patra
- Laboratory of epigenetics, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Birija S. Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Han J. Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
10
|
Heinz JL, Hinke DM, Maimaitili M, Wang J, Sabli IKD, Thomsen M, Farahani E, Ren F, Hu L, Zillinger T, Grahn A, von Hofsten J, Verjans GMGM, Paludan SR, Viejo-Borbolla A, Sancho-Shimizu V, Mogensen TH. Varicella zoster virus-induced autophagy in human neuronal and hematopoietic cells exerts antiviral activity. J Med Virol 2024; 96:e29690. [PMID: 38804180 DOI: 10.1002/jmv.29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.
Collapse
Affiliation(s)
- Johanna L Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Daniëla M Hinke
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ira K D Sabli
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Michelle Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lili Hu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Zillinger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Anna Grahn
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Georges M G M Verjans
- Department of Viroscience, HerpeslabNL, Erasmus University MC, Rotterdam, The Netherlands
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Vanessa Sancho-Shimizu
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple Unfolded Protein Response pathways cooperate to link cytosolic dsDNA release to Stimulator of Interferon Gene (STING) activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593557. [PMID: 38798499 PMCID: PMC11118346 DOI: 10.1101/2024.05.10.593557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
|
13
|
Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol 2024; 15:1390263. [PMID: 38799433 PMCID: PMC11116615 DOI: 10.3389/fimmu.2024.1390263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts. Therefore, gaining a deeper understanding of ICD and its evolution is crucial for developing more effective cancer therapeutic strategies. This review focuses exclusively on both historical and recent discoveries related to ICD modes and their mechanistic insights, particularly within the context of cancer immunotherapy. Our recent findings are also highlighted, revealing a mode of ICD induction facilitated by atypical interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2), during hyperactive type I IFN signaling. The review concludes by discussing the therapeutic potential of ICD, with special attention to its relevance in both preclinical and clinical settings within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kei-ichiro Arimoto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Sayuri Miyauchi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Yang K, Bai B, Lei J, Yu X, Qi S, Wang Y, Huang F, Tong Z, Yu G. Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines. J Am Chem Soc 2024; 146:11679-11693. [PMID: 38482849 DOI: 10.1021/jacs.3c14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics have emerged with promising potentials in the fields of infectious diseases, cancer vaccines, and protein replacement therapies; however, their therapeutic efficacy and safety can still be promoted by the optimization of LNPs formulations. Unfortunately, current LNPs suffer from increased production of reactive oxygen species during translation, which leads to a decreased translation efficiency and the onset of inflammation and other side effects. Herein, we synthesize a lipid-modified poly(guanidine thioctic acid) polymer to fabricate novel LNPs for mRNA vaccines. The acquired G-LNPs significantly promote the translation efficiency of loaded mRNA and attenuate inflammation after vaccination through the elimination of reactive oxygen species that are responsible for translational inhibition and inflammatory responses. In vivo studies demonstrate the excellent antitumor efficacy of the G-LNPs@mRNA vaccine, and two-dose vaccination dramatically increases the population and infiltration of cytotoxic T cells due to the intense antitumor immune responses, thus generating superior antitumor outcomes compared with the mRNA vaccine prepared from traditional LNPs. By synergy with immune checkpoint blockade, the tumor inhibition of G-LNPs@mRNA is further boosted, indicating that G-LNPs-based mRNA vaccines will be powerful and versatile platforms to combat cancer.
Collapse
Affiliation(s)
- Kai Yang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bing Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiaqi Lei
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinyang Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaolong Qi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yangfan Wang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, People's Republic of China
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guocan Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
15
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
Farahani E, Reinert LS, Narita R, Serrero MC, Skouboe MK, van der Horst D, Assil S, Zhang B, Iversen MB, Gutierrez E, Hazrati H, Johannsen M, Olagnier D, Kunze R, Denham M, Mogensen TH, Lappe M, Paludan SR. The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation. Cell Rep 2024; 43:113792. [PMID: 38363679 PMCID: PMC10915869 DOI: 10.1016/j.celrep.2024.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.
Collapse
Affiliation(s)
- Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Demi van der Horst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutierrez
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Hossein Hazrati
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Mark Denham
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Lappe
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark; CONNECT - Center for Clinical and Genomic Data, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
17
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
18
|
Jin X, You L, Qiao J, Han W, Pan H. Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. Autophagy 2024; 20:242-258. [PMID: 37723664 PMCID: PMC10813649 DOI: 10.1080/15548627.2023.2259214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
ABBREVIATIONS A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.
Collapse
Affiliation(s)
- Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
20
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
21
|
Son K, Jeong S, Eom E, Kwon D, Kang S. MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING. EMBO Rep 2023; 24:e57496. [PMID: 37916870 PMCID: PMC10702817 DOI: 10.15252/embr.202357496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Stimulator of interferon genes (STING) is a core DNA sensing adaptor in innate immune signaling. STING activity is regulated by a variety of post-translational modifications (PTMs), including phosphorylation, ubiquitination, sumoylation, palmitoylation, and oxidation, as well as the balance between active and inactive polymer formation. It remains unclear, though, how different PTMs and higher order structures cooperate to regulate STING activity. Here, we report that the mitochondrial ubiquitin ligase MARCH5 (Membrane Associated Ring-CH-type Finger 5, also known as MITOL) ubiquitinates STING and enhances its activation. A long-term MARCH5 deficiency, in contrast, leads to the production of reactive oxygen species, which then facilitate the formation of inactive STING polymers by oxidizing mouse STING cysteine 205. We show that MARCH5-mediated ubiquitination of STING prevents the oxidation-induced STING polymer formation. Our findings highlight that MARCH5 balances STING ubiquitination and polymer formation and its control of STING activation is contingent on oxidative conditions.
Collapse
Affiliation(s)
- Kyungpyo Son
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Seokhwan Jeong
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Eunchong Eom
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Dohyeong Kwon
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Present address:
BOOSTIMMUNE, IncSeoulRepublic of Korea
| | - Suk‐Jo Kang
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
22
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
23
|
Lv X, Wang B, Dong M, Wang W, Tang W, Qin J, Gao Y, Wei Y. The crosstalk between ferroptosis and autophagy in cancer. Autoimmunity 2023; 56:2289362. [PMID: 38069487 DOI: 10.1080/08916934.2023.2289362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND In order to better understand the interplay between ferroptosis and autophagy, enhance the interpretation of the crosstalk between these two forms of regulated cell death, develop the effective pharmacological mechanisms for cancer treatment, discover novel biomarkers for better diagnostic, and envisage the future hotspots of the research on ferroptosis and autophagy, we harnessed bibliometric tools to study the articles published from 2012 to 2022 on the relationship between ferroptosis and autophagy. METHODS Web of Science Core Collection (WOSCC) database was used to conduct a comprehensive search and analysis of articles in this field from January 1, 2012, to September 1, 2022. The Citespace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes or pivot points, and pathways. RESULTS A total of 756 articles associated with the crosstalk between ferroptosis and autophagy were published in 512 journals by 4183 authors in 980 organizations from 55 countries or regions. The distribution of countries and organizations was demonstrated using CiteSpace and VOS viewer. The top three countries with the most articles were China (n = 511), United States (n = 166), and Germany (n = 37). The most productive institutions were Guangzhou Medical University and Central South University (n = 42), but their centralities were relatively low, which values were respective 0.04 and 0.03. Kang and Tang published the most articles related to ferroptosis and autophagy (n = 49), followed by Jiao Liu (n = 22), Guido Kroemer (n = 20), and Daniel Klionsky (n = 12). Published studies on ferroptosis and asthma have the most cited counts. The top three keywords with the highest frequencies were autophagy (n = 283), cell death (n = 243), and oxidative stress (n = 165). CONCLUSION Our results provide insights into the development of recognition related to the crosstalk between ferroptosis and autophagy, and the current molecular crosslinked mechanisms in the context of common signal transduction pathways or affecting cellular environment to induce the adaptive stress response and to activate the particular form of regulated cell death (RCD), and the development of cancer treatment based on novel targets and signaling regulatory networks provided by ferroptosis and autophagy.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Bin Wang
- Medicine School of Hexi College, Zhangye, Gansu, China
| | - Ming Dong
- Gumei community Health center of Minhang district of Shanghai, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yanglai Gao
- Medicine School of Hexi College, Zhangye, Gansu, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Lee JS, Dittmar M, Miller J, Li M, Ayyanathan K, Ferretti M, Hulahan J, Whig K, Etwebi Z, Griesman T, Schultz DC, Cherry S. Evolutionary arms race between SARS-CoV-2 and interferon signaling via dynamic interaction with autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566859. [PMID: 38014114 PMCID: PMC10680587 DOI: 10.1101/2023.11.13.566859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
SARS-CoV-2 emerged, and is evolving to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling activated only in bystander cells. This balance of innate activation and viral evasion has important consequences, but the pathways involved are incompletely understood. Here we find that autophagy genes regulate innate immune signaling, impacting the basal set point of interferons, and thus permissivity to infection. Mechanistically, autophagy genes negatively regulate MAVS, and this low basal level of MAVS is efficiently antagonized by SARS-CoV-2 ORF9b, blocking interferon activation in infected cells. However, upon loss of autophagy increased MAVS overcomes ORF9b-mediated antagonism suppressing infection. This has led to the evolution of SARS-CoV-2 variants to express higher levels of ORF9b, allowing SARS-CoV-2 to replicate under conditions of increased MAVS signaling. Altogether, we find a critical role of autophagy in the regulation of innate immunity and uncover an evolutionary trajectory of SARS-CoV-2 ORF9b to overcome host defenses.
Collapse
|
25
|
Tian G, Huang C, Li Z, Lu Z, Feng C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick. Vet Microbiol 2023; 286:109891. [PMID: 37866328 DOI: 10.1016/j.vetmic.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1β, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| |
Collapse
|
26
|
Barros JAS, Chatt EC, Augustine RC, McLoughlin F, Li F, Otegui MS, Vierstra RD. Autophagy during maize endosperm development dampens oxidative stress and promotes mitochondrial clearance. PLANT PHYSIOLOGY 2023; 193:1395-1415. [PMID: 37335933 PMCID: PMC10517192 DOI: 10.1093/plphys/kiad340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
The selective turnover of macromolecules by autophagy provides a critical homeostatic mechanism for recycling cellular constituents and for removing superfluous and damaged organelles, membranes, and proteins. To better understand how autophagy impacts seed maturation and nutrient storage, we studied maize (Zea mays) endosperm in its early and middle developmental stages via an integrated multiomic approach using mutants impacting the core macroautophagy factor AUTOPHAGY (ATG)-12 required for autophagosome assembly. Surprisingly, the mutant endosperm in these developmental windows accumulated normal amounts of starch and Zein storage proteins. However, the tissue acquired a substantially altered metabolome, especially for compounds related to oxidative stress and sulfur metabolism, including increases in cystine, dehydroascorbate, cys-glutathione disulfide, glucarate, and galactarate, and decreases in peroxide and the antioxidant glutathione. While changes in the associated transcriptome were mild, the proteome was strongly altered in the atg12 endosperm, especially for increased levels of mitochondrial proteins without a concomitant increase in mRNA abundances. Although fewer mitochondria were seen cytologically, a heightened number appeared dysfunctional based on the accumulation of dilated cristae, consistent with attenuated mitophagy. Collectively, our results confirm that macroautophagy plays a minor role in the accumulation of starch and storage proteins during maize endosperm development but likely helps protect against oxidative stress and clears unneeded/dysfunctional mitochondria during tissue maturation.
Collapse
Affiliation(s)
- Jessica A S Barros
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Faqiang Li
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
27
|
Trishna S, Lavon A, Shteinfer-Kuzmine A, Dafa-Berger A, Shoshan-Barmatz V. Overexpression of the mitochondrial anti-viral signaling protein, MAVS, in cancers is associated with cell survival and inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:713-732. [PMID: 37662967 PMCID: PMC10468804 DOI: 10.1016/j.omtn.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial anti-viral signaling protein (MAVS) plays an important role in host defense against viral infection via coordinating the activation of NF-κB and interferon regulatory factors. The mitochondrial-bound form of MAVS is essential for its anti-viral innate immunity. Recently, tumor cells were proposed to mimic a viral infection by activating RNA-sensing pattern recognition receptors. Here, we demonstrate that MAVS is overexpressed in a panel of viral non-infected cancer cell lines and patient-derived tumors, including lung, liver, bladder, and cervical cancers, and we studied its role in cancer. Silencing MAVS expression reduced cell proliferation and the expression and nuclear translocation of proteins associated with transcriptional regulation, inflammation, and immunity. MAVS depletion reduced expression of the inflammasome components and inhibited its activation/assembly. Moreover, MAVS directly interacts with the mitochondrial protein VDAC1, decreasing its conductance, and we identified the VDAC1 binding site in MAVS. Our findings suggest that MAVS depletion, by reducing cancer cell proliferation and inflammation, represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Sweta Trishna
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Avia Lavon
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Avis Dafa-Berger
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
28
|
Lyu Y, Wang T, Huang S, Zhang Z. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J Innate Immun 2023; 15:665-679. [PMID: 37666239 PMCID: PMC10601681 DOI: 10.1159/000533602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The innate immune system, as the host's first line of defense against intruders, plays a critical role in recognizing, identifying, and reacting to a wide range of microbial intruders. There is increasing evidence that mitochondrial stress is a major initiator of innate immune responses. When mitochondria's integrity is disrupted or dysfunction occurs, the mitochondria's contents are released into the cytosol. These contents, like reactive oxygen species, mitochondrial DNA, and double-stranded RNA, among others, act as damage-related molecular patterns (DAMPs) that can bind to multiple innate immune sensors, particularly pattern recognition receptors, thereby leading to inflammation. To avoid the production of DAMPs, in addition to safeguarding organelles integrity and functionality, mitochondria may activate mitophagy or apoptosis. Moreover, mitochondrial components and specific metabolic regulations modify properties of innate immune cells. These include macrophages, dendritic cells, innate lymphoid cells, and so on, in steady state or in stimulation that are involved in processes ranging from the tricarboxylic acid cycle to oxidative phosphorylation and fatty acid metabolism. Here we provide a brief summary of mitochondrial DAMPs' initiated and potentiated inflammatory response in the innate immune system. We also provide insights into how the state of activation, differentiation, and functional polarization of innate immune cells can be influenced by alteration to the metabolic pathways in mitochondria.
Collapse
Affiliation(s)
- Yanmin Lyu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoqiang Zhang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Shoaib A, Javed S, Wahab S, Azmi L, Tabish M, Sultan MH, Abdelsalam K, Alqahtani SS, Ahmad MF. Cellular, Molecular, Pharmacological, and Nano-Formulation Aspects of Thymoquinone-A Potent Natural Antiviral Agent. Molecules 2023; 28:5435. [PMID: 37513307 PMCID: PMC10383476 DOI: 10.3390/molecules28145435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226007, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
30
|
Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol 2023; 14:1166214. [PMID: 37325622 PMCID: PMC10267745 DOI: 10.3389/fimmu.2023.1166214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondria are versatile organelles and essential components of numerous biological processes such as energy metabolism, signal transduction, and cell fate determination. In recent years, their critical roles in innate immunity have come to the forefront, highlighting impacts on pathogenic defense, tissue homeostasis, and degenerative diseases. This review offers an in-depth and comprehensive examination of the multifaceted mechanisms underlying the interactions between mitochondria and innate immune responses. We will delve into the roles of healthy mitochondria as platforms for signalosome assembly, the release of mitochondrial components as signaling messengers, and the regulation of signaling via mitophagy, particularly to cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling and inflammasomes. Furthermore, the review will explore the impacts of mitochondrial proteins and metabolites on modulating innate immune responses, the polarization of innate immune cells, and their implications on infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Hiraga H, Chinda D, Maeda T, Murai Y, Ogasawara K, Muramoto R, Ota S, Hasui K, Sakuraba H, Ishiguro Y, Yoshida S, Asano K, Nakane A, Fukuda S. Vitamin A Promotes the Fusion of Autophagolysosomes and Prevents Excessive Inflammasome Activation in Dextran Sulfate Sodium-Induced Colitis. Int J Mol Sci 2023; 24:ijms24108684. [PMID: 37240022 DOI: 10.3390/ijms24108684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin A ensures intestinal homeostasis, impacting acquired immunity and epithelial barrier function; however, its role in innate immunity is mostly unknown. Here, we studied the impact of vitamin A in different dextran sulfate sodium (DSS)-induced colitis animal models. Interestingly, more severe DSS-induced colitis was observed in vitamin A-deficient (VAD) mice than in vitamin A-sufficient (VAS) mice; the same was observed in VAD severe combined immunodeficient mice lacking T/B cells. Remarkably, IL-1β production, LC3B-II expression, and inflammasome activity in the lamina propria were significantly elevated in VAD mice. Electron microscopy revealed numerous swollen mitochondria with severely disrupted cristae. In vitro, non-canonical inflammasome signaling-induced pyroptosis, LC3B-II and p62 expression, and mitochondrial superoxide levels were increased in murine macrophages (RAW 264.7) pretreated with retinoic acid receptor antagonist (Ro41-5253). These findings suggest that vitamin A plays a crucial role in the efficient fusion of autophagosomes with lysosomes in colitis.
Collapse
Affiliation(s)
- Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Hospital, Hirosaki 036-8563, Japan
| | - Takato Maeda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yasuhisa Murai
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kohei Ogasawara
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ryutaro Muramoto
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinji Ota
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Keisuke Hasui
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yoh Ishiguro
- Division of Gastroenterology and Hematology, Hirosaki National Hospital, National Hospital Organization, Hirosaki 036-8545, Japan
| | | | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
32
|
Yao H, Li J, Liu Z, Ouyang C, Qiu Y, Zheng X, Mu J, Xie Z. Ablation of endothelial Atg7 inhibits ischemia-induced angiogenesis by upregulating Stat1 that suppresses Hif1a expression. Autophagy 2023; 19:1491-1511. [PMID: 36300763 PMCID: PMC10240988 DOI: 10.1080/15548627.2022.2139920] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022] Open
Abstract
Ischemia-induced angiogenesis is critical for blood flow restoration and tissue regeneration, but the underlying molecular mechanism is not fully understood. ATG7 (autophagy related 7) is essential for classical degradative macroautophagy/autophagy and cell cycle regulation. However, whether and how ATG7 influences endothelial cell (EC) function and regulates post-ischemic angiogenesis remain unknown. Here, we showed that in mice subjected to femoral artery ligation, EC-specific deletion of Atg7 significantly impaired angiogenesis, delayed the recovery of blood flow reperfusion, and displayed reduction in HIF1A (hypoxia inducible factor 1 subunit alpha) expression. In addition, in cultured human umbilical vein endothelial cells (HUVECs), overexpression of HIF1A prevented ATG7 deficiency-reduced tube formation. Mechanistically, we identified STAT1 (signal transducer and activator of transcription 1) as a transcription suppressor of HIF1A and demonstrated that ablation of Atg7 upregulated STAT1 in an autophagy independent pathway, increased STAT1 binding to HIF1A promoter, and suppressed HIF1A expression. Moreover, lack of ATG7 in the cytoplasm disrupted the association between ATG7 and the transcription factor ZNF148/ZFP148/ZBP-89 (zinc finger protein 148) that is required for STAT1 constitutive expression, increased the binding between ZNF148/ZFP148/ZBP-89 and KPNB1 (karyopherin subunit beta 1), which promoted ZNF148/ZFP148/ZBP-89 nuclear translocation, and increased STAT1 expression. Finally, inhibition of STAT1 by fludarabine prevented the inhibition of HIF1A expression, angiogenesis, and blood flow recovery in atg7 KO mice. Our work reveals that lack of ATG7 inhibits angiogenesis by suppression of HIF1A expression through upregulation of STAT1 independently of autophagy under ischemic conditions, and suggest new therapeutic strategies for cancer and cardiovascular diseases.Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; atg7 KO: endothelial cell-specific atg7 knockout; BECN1: beclin 1; ChIP: chromatin immunoprecipitation; CQ: chloroquine; ECs: endothelial cells; EP300: E1A binding protein p300; HEK293: human embryonic kidney 293 cells; HIF1A: hypoxia inducible factor 1 subunit alpha; HUVECs: human umbilical vein endothelial cells; IFNG/IFN-γ: Interferon gamma; IRF9: interferon regulatory factor 9; KPNB1: karyopherin subunit beta 1; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MEFs: mouse embryonic fibroblasts; MLECs: mouse lung endothelial cells; NAC: N-acetyl-l-cysteine; NFKB1/NFκB: nuclear factor kappa B subunit 1; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; SP1: Sp1 transcription factor; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; ULK1: unc-51 like autophagy activating kinase 1; ulk1 KO: endothelial cell-specific ulk1 knockout; VSMCs: mouse aortic smooth muscle cells; WT: wild type; ZNF148/ZFP148/ZBP-89: zinc finger protein 148.
Collapse
Affiliation(s)
- Hongmin Yao
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Jian Li
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Zhixue Liu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Changhan Ouyang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Yu Qiu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Xiaoxu Zheng
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Jing Mu
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Zhonglin Xie
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Lu S, Xu J, Xu Y, Liu Y, Shi D, Wang J, Qiu F. Glycyrol attenuates colon injury via promotion of SQSTM1/p62 ubiquitination and autophagy by inhibiting the ubiquitin-specific protease USP8. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
34
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
35
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Mitochondria Dysfunction at the Heart of Viral Myocarditis: Mechanistic Insights and Therapeutic Implications. Viruses 2023; 15:v15020351. [PMID: 36851568 PMCID: PMC9963085 DOI: 10.3390/v15020351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.
Collapse
|
37
|
Resveratrol protects osteocytes against oxidative stress in ovariectomized rats through AMPK/JNK1-dependent pathway leading to promotion of autophagy and inhibition of apoptosis. Cell Death Dis 2023; 9:16. [PMID: 36681672 PMCID: PMC9867734 DOI: 10.1038/s41420-023-01331-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
A large number of studies in recent years indicate that osteocytes are the orchestrators of bone remodeling by regulating both osteoblast and osteoclast activities. Oxidative stress-induced osteocyte apoptosis plays critical roles in the pathological processes of postmenopausal osteoporosis. Resveratrol is a natural polyphenolic compound that ameliorates postmenopausal osteoporosis. However, whether resveratrol regulates osteocyte apoptosis via autophagy remains largely unknown. The effects of resveratrol on regulating osteocyte apoptosis and autophagy were analyzed both in vivo and in vitro. In vitro, cultured MLO-Y4 cells were exposed to H2O2 with or without resveratrol. In vivo, an ovariectomy-induced osteoporosis model was constructed in rats with or without daily intraperitoneal injection of 10 mg/kg body weight resveratrol. It was found that resveratrol attenuated H2O2-induced apoptosis through activating autophagy in cultured MLO-Y4 cells, which was mediated by the dissociation of Beclin-1/Bcl-2 complex in AMPK/JNK1-dependent pathway, ultimately regulating osteocytes function. Furthermore, it was shown that resveratrol treatment reduced osteocytes oxidative stress, inhibited osteocytes apoptosis and promoted autophagy in ovariectomized rats. Our study suggests that resveratrol protects against oxidative stress by restoring osteocytes autophagy and alleviating apoptosis via AMPK/JNK1 activation, therefore dissociating Bcl-2 from Beclin-1.
Collapse
|
38
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
39
|
Feng K, Zhang H, Jiang Z, Zhou M, Min YQ, Deng F, Li P, Wang H, Ning YJ. SFTS bunyavirus NSs protein sequestrates mTOR into inclusion bodies and deregulates mTOR-ULK1 signaling, provoking pro-viral autophagy. J Med Virol 2023; 95:e28371. [PMID: 36458534 DOI: 10.1002/jmv.28371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Autophagy is emerging as a critical player in host defense against diverse infections, in addition to its conserved function to maintain cellular homeostasis. Strikingly, some pathogens have evolved strategies to evade, subvert or exploit different steps of the autophagy pathway for their lifecycles. Here, we present a new viral mechanism of manipulating autophagy for its own benefit with severe fever with thrombocytopenia syndrome bunyavirus (SFTSV, an emerging high-pathogenic virus) as a model. SFTSV infection triggers autophagy, leading to complete autophagic flux. Mechanistically, we show that the nonstructural protein of SFTSV (NSs) interacts with mTOR, the pivotal regulator of autophagy, by targeting its kinase domain and captures mTOR into viral inclusion bodies (IBs) induced by NSs itself. Furthermore, NSsimpairs mTOR-mediated phosphorylation of unc-51-like kinase 1 (ULK1) at Ser757, disrupting the inhibitory effect of mTOR on ULK1 activity and thus contributing to autophagy induction. Pharmacologic treatment and Beclin-1 knockout experimental results establish that, in turn, autophagy enhances SFTSV infection and propagation. Moreover, the minigenome reporter system reveals that SFTSV ribonucleoprotein (the transcription and replication machinery) activity can be bolstered by autophagy. Additionally, we found that the NSs proteins of SFTSV-related bunyaviruses have a conserved function of targeting mTOR. Taken together, we unravel a viral strategy of inducing pro-viral autophagy by interacting with mTOR, sequestering mTOR into IBs and hence provoking the downstream ULK1 pathway, which presents a new paradigm for viral manipulation of autophagy and may help inform future development of specific antiviral therapies against SFTSV and related pathogens.
Collapse
Affiliation(s)
- Kuan Feng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huijiao Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Jiang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
40
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|
41
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
42
|
Bharath LP, Hart SN, Nikolajczyk BS. T-cell Metabolism as Interpreted in Obesity-associated Inflammation. Endocrinology 2022; 163:6657752. [PMID: 35932471 PMCID: PMC9756079 DOI: 10.1210/endocr/bqac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The appreciation of metabolic regulation of T-cell function has exploded over the past decade, as has our understanding of how inflammation fuels comorbidities of obesity, including type 2 diabetes. The likelihood that obesity fundamentally alters T-cell metabolism and thus chronic obesity-associated inflammation is high, but studies testing causal relationships remain underrepresented. We searched PubMed for key words including mitochondria, obesity, T cell, type 2 diabetes, cristae, fission, fusion, redox, and reactive oxygen species to identify foundational and more recent studies that address these topics or cite foundational work. We investigated primary papers cited by reviews found in these searches and highlighted recent work with >100 citations to illustrate the state of the art in understanding mechanisms that control metabolism and thus function of various T-cell subsets in obesity. However, "popularity" of a paper over the first 5 years after publication cannot assess long-term impact; thus, some likely important work with fewer citations is also highlighted. We feature studies of human cells, supplementing with studies from animal models that suggest future directions for human cell research. This approach identified gaps in the literature that will need to be filled before we can estimate efficacy of mitochondria-targeted drugs in clinical trials to alleviate pathogenesis of obesity-associated inflammation.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA
| | - Samantha N Hart
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Correspondence: Barbara S. Nikolajczyk, PhD, Healthy Kentucky Research Bldg. Rm. 217, 760 Press Ave, Lexington, KY 40536, USA.
| |
Collapse
|
43
|
Pal A, Paripati A, Deolal P, Chatterjee A, Prasad PR, Adla P, Sepuri NBV. Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and cell death in Saccharomyces cerevisiae. J Biol Chem 2022; 298:102533. [PMID: 36162502 PMCID: PMC9619184 DOI: 10.1016/j.jbc.2022.102533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondrial morphology and dynamics maintain mitochondrial integrity by regulating its size, shape, distribution, and connectivity, thereby modulating various cellular processes. Several studies have established a functional link between mitochondrial dynamics, mitophagy, and cell death, but further investigation is needed to identify specific proteins involved in mitochondrial dynamics. Any alteration in the integrity of mitochondria has severe ramifications that include disorders like cancer and neurodegeneration. In this study, we used budding yeast as a model organism and found that Pil1, the major component of the eisosome complex, also localizes to the periphery of mitochondria. Interestingly, the absence of Pil1 causes the branched tubular morphology of mitochondria to be abnormally fused or aggregated, whereas its overexpression leads to mitochondrial fragmentation. Most importantly, pil1Δ cells are defective in mitophagy and bulk autophagy, resulting in elevated levels of reactive oxygen species and protein aggregates. In addition, we show that pil1Δ cells are more prone to cell death. Yeast two-hybrid analysis and co-immunoprecipitations show the interaction of Pil1 with two major proteins in mitochondrial fission, Fis1 and Dnm1. Additionally, our data suggest that the role of Pil1 in maintaining mitochondrial shape is dependent on Fis1 and Dnm1, but it functions independently in mitophagy and cell death pathways. Together, our data suggest that Pil1, an eisosome protein, is a novel regulator of mitochondrial morphology, mitophagy, and cell death.
Collapse
Affiliation(s)
- Amita Pal
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Arunkumar Paripati
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Pallavi Deolal
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Arpan Chatterjee
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Pushpa Rani Prasad
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Priyanka Adla
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046
| | - Naresh Babu V Sepuri
- Department of Biochemistry, University of Hyderabad, Prof. C.R Rao Road, Gachibowli, Hyderabad, TS -500046.
| |
Collapse
|
44
|
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022; 12:993437. [PMID: 36212470 PMCID: PMC9539266 DOI: 10.3389/fonc.2022.993437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most of the primary hepatocellular carcinoma (HCC) develops from Viral Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic Steatohepatitis. Herein, T cells play crucial roles combined with chronic inflammation and chronic viral infection. However, T cells are gradually exhausted under chronic antigenic stimulation, which leads to T cell exhaustion in the tumor microenvironment, and the exhaustion is associated with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a crucial role in altering T cells’ metabolism modes to achieve desirable immunological responses, wherein mitochondria maintain quality control (MQC) and promote metabolism regulation in the microenvironment. Although immune checkpoint inhibitors have been widely used in clinical practice, there are some limitations in the therapeutic effect, thus combining immune checkpoint inhibitors with targeting mitochondrial biogenesis may enhance cellular metabolic adaptation and reverse the exhausted state. At present, several studies on mitochondrial quality control in HCC have been reported, however, there are gaps in the regulation of immune cell function by mitochondrial metabolism, particularly the modulating of T cell immune function. Hence, this review summarizes and discusses existing studies on the effects of MQC on T cell populations in liver diseases induced by HCC, it would be clued by mitochondrial quality control events.
Collapse
Affiliation(s)
- Yixue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| | - Xue Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| |
Collapse
|
45
|
Carota G, Distefano A, Spampinato M, Giallongo C, Broggi G, Longhitano L, Palumbo GA, Parenti R, Caltabiano R, Giallongo S, Di Rosa M, Polosa R, Bramanti V, Vicario N, Li Volti G, Tibullo D. Neuroprotective Role of α-Lipoic Acid in Iron-Overload-Mediated Toxicity and Inflammation in In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:1596. [PMID: 36009316 PMCID: PMC9405239 DOI: 10.3390/antiox11081596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hemoglobin and iron overload is considered the major contributor to intracerebral hemorrhage (ICH)-induced brain injury. Accumulation of iron in the brain leads to microglia activation, inflammation and cell loss. Current available treatments for iron overload-mediated disorders are characterized by severe adverse effects, making such conditions an unmet clinical need. We assessed the potential of α-lipoic acid (ALA) as an iron chelator, antioxidant and anti-inflammatory agent in both in vitro and in vivo models of iron overload. ALA was found to revert iron-overload-induced toxicity in HMC3 microglia cell line, preventing cell apoptosis, reactive oxygen species generation and reducing glutathione depletion. Furthermore, ALA regulated gene expression of iron-related markers and inflammatory cytokines, such as IL-6, IL-1β and TNF. Iron toxicity also affects mitochondria fitness and biogenesis, impairments which were prevented by ALA pre-treatment in vitro. Immunocytochemistry assay showed that, although iron treatment caused inflammatory activation of microglia, ALA treatment resulted in increased ARG1 expression, suggesting it promoted an anti-inflammatory phenotype. We also assessed the effects of ALA in an in vivo zebrafish model of iron overload, showing that ALA treatment was able to reduce iron accumulation in the brain and reduced iron-mediated oxidative stress and inflammation. Our data support ALA as a novel approach for iron-overload-induced brain damage.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
46
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
47
|
Wu Y, Zhou T, Hu J, Liu Y, Jin S, Wu J, Guan X, Cui J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front Microbiol 2022; 13:889693. [PMID: 35865923 PMCID: PMC9294600 DOI: 10.3389/fmicb.2022.889693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Ailenberg M, Kapus A, Leung CH, Szaszi K, Williams P, diCiano-Oliveira C, Marshall JC, Rotstein OD. ACTIVATION OF THE MITOCHONDRIAL ANTIVIRAL SIGNALING PROTEIN (MAVS) FOLLOWING LIVER ISCHEMIA/REPERFUSION AND ITS EFFECT ON INFLAMMATION AND INJURY. Shock 2022; 58:78-89. [PMID: 35670454 PMCID: PMC9415233 DOI: 10.1097/shk.0000000000001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Resuscitation of trauma patients after hemorrhagic shock causes global I/R, which may contribute to organ dysfunction. Oxidative stress resulting from I/R is known to induce signaling pathways leading to the production of inflammatory molecules culminating in organ dysfunction/injury. Our recent work demonstrated that oxidative stress was able to induce activation of the mitochondrial antiviral signaling protein (MAVS), a protein known to be involved in antiviral immunity, in an in vitro model. We therefore hypothesized that the MAVS pathway might be involved in I/R-induced inflammation and injury. The present studies show that MAVS is activated in vivo by liver I/R and in vitro in RAW 264.7 cells by hypoxia/reoxygenation (H/R). We utilized both in vivo (liver I/R in MAVS knockout mice) and in vitro (MAVS siRNA in RAW 264.7 cells followed by H/R) models to study the role of MAVS activation on downstream events. In vivo , we demonstrated augmented injury and inflammation in MAVS knockout mice compared with wild-type animals; as shown by increased hepatocellular injury, induction of hepatocyte apoptosis augmented plasma TNF-α levels. Further, in vitro silencing of MAVS by specific siRNA in RAW 264.7 and exposure of the cells to H/R caused activation of mitophagy. This may represent a compensatory response to increased liver inflammation. We conclude that activation of MAVS by hypoxia/reoxygenation dampens inflammation, potentially suggesting a novel target for intervention.
Collapse
Affiliation(s)
- Menachem Ailenberg
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Chung Ho Leung
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Philip Williams
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Caterina diCiano-Oliveira
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital and the Departments of Surgery, St. Michael's Hospital and the University of Toronto
| |
Collapse
|
50
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|