1
|
Olson KR, Takata T, Clear KJ, Gao Y, Ma Z, Pfaff E, Mouli K, Kent TA, Jones P, Fukuto J, Wu G, Straub KD. The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase. Antioxidants (Basel) 2024; 13:991. [PMID: 39199236 PMCID: PMC11351665 DOI: 10.3390/antiox13080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography-mass spectrometry, electron paramagnetic resonance (EPR), UV-vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2-6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV-vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karthik Mouli
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Thomas A. Kent
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Prentiss Jones
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Gang Wu
- Department of Internal Medicine, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
2
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
3
|
Tokuda E, Sakashita Y, Tokoro N, Date A, Kosuge Y, Miyasaka T. MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons. Int J Mol Sci 2024; 25:5603. [PMID: 38891791 PMCID: PMC11171496 DOI: 10.3390/ijms25115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yume Sakashita
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Naoya Tokoro
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Ayano Date
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Tomohiro Miyasaka
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| |
Collapse
|
4
|
Basith S, Manavalan B, Lee G. Unveiling local and global conformational changes and allosteric communications in SOD1 systems using molecular dynamics simulation and network analyses. Comput Biol Med 2024; 168:107688. [PMID: 37988788 DOI: 10.1016/j.compbiomed.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder affecting nerve cells in the brain and spinal cord that is caused by mutations in the superoxide dismutase 1 (SOD1) enzyme. ALS-related mutations cause misfolding, dimerisation instability, and increased formation of aggregates. The underlying allosteric mechanisms, however, remain obscure as far as details of their fundamental atomistic structure are concerned. Hence, this gap in knowledge limits the development of novel SOD1 inhibitors and the understanding of how disease-associated mutations in distal sites affect enzyme activity. METHODS We combined microsecond-scale based unbiased molecular dynamics (MD) simulation with network analysis to elucidate the local and global conformational changes and allosteric communications in SOD1 Apo (unmetallated form), Holo, Apo_CallA (mutant and unmetallated form), and Holo_CallA (mutant form) systems. To identify hotspot residues involved in SOD1 signalling and allosteric communications, we performed network centrality, community network, and path analyses. RESULTS Structural analyses showed that unmetallated SOD1 systems and cysteine mutations displayed large structural variations in the catalytic sites, affecting structural stability. Inter- and intra H-bond analyses identified several important residues crucial for maintaining interfacial stability, structural stability, and enzyme catalysis. Dynamic motion analysis demonstrated more balanced atomic displacement and highly correlated motions in the Holo system. The rationale for structural disparity observed in the disulfide bond formation and R143 configuration in Apo and Holo systems were elucidated using distance and dihedral probability distribution analyses. CONCLUSION Our study highlights the efficiency of combining extensive MD simulations with network analyses to unravel the features of protein allostery.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Sureshan M, Prabhu D, Kadhirvel S. Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti. J Biomol Struct Dyn 2023; 41:8715-8728. [PMID: 36305196 DOI: 10.1080/07391102.2022.2136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Lymphatic filariasis (LF) is a neglected mosquito-borne parasitic disease, widely caused by Wuchereria bancrofti (Wb) in tropical and sub-tropical countries. During a blood meal, the filarial nematodes are transmitted to humans by the infected mosquito. To counter attack the invaded nematodes, the human immune system produces reactive oxygen species. However, the anti-oxidant enzymes of nematodes counteract the host oxidative cytotoxicity. Cu/Zn Superoxide dismutase (SOD1), a member of antioxidant enzymes and are widely used by the nematodes to sustain the host oxidative stress across its lifecycle, hence targeting SOD1 to develop suitable drug molecules would help to overcome the problems related to efficacy and activity of drugs upon different stages of nematodes. In order to find the potent inhibitors, a three-dimensional structure of Cu/Zn WbSOD1 was modelled and the structural stability was analysed through simulation studies. The structure-guided virtual screening approach has been used to identify lead molecules from the ChemBridge based on the docking score, ADMET properties and protein-ligand complex stability analysis. The identified compounds were observed to interact with the copper, metal binding residues (His48, His63, His80 and His120) and catalytically important residue Arg146, which play a crucial role in the disproportionation of incoming superoxide radicals of Cu/Zn WbSOD1. Further, in vitro validation of the selected leads in the filarial worm Setaria digitata exhibited higher inhibition and better IC50 compared to the standard drug ivermectin. Thus, the identified leads could potentially inhibit enzyme activity, which could subsequently act as drug candidates to control LF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muthusamy Sureshan
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhamodharan Prabhu
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Department of Computational Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Sim KS, Inoue T. Structure of a superoxide dismutase from a tardigrade: Ramazzottius varieornatus strain YOKOZUNA-1. Acta Crystallogr F Struct Biol Commun 2023; 79:169-179. [PMID: 37358501 PMCID: PMC10327573 DOI: 10.1107/s2053230x2300523x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Superoxide dismutase (SOD) is an essential and ubiquitous antioxidant protein that is widely present in biological systems. The anhydrobiotic tardigrades are some of the toughest micro-animals. They have an expanded set of genes for antioxidant proteins such as SODs. These proteins are thought to play an essential role in oxidative stress resistance in critical situations such as desiccation, although their functions at the molecular level have yet to be explored. Here, crystal structures of a copper/zinc-containing SOD (RvSOD15) from an anhydrobiotic tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1, are reported. In RvSOD15, one of the histidine ligands of the catalytic copper center is replaced by a valine (Val87). The crystal structures of the wild type and the V87H mutant show that even though a histidine is placed at position 87, a nearby flexible loop can destabilize the coordination of His87 to the Cu atom. Model structures of other RvSODs were investigated and it was found that some of them are also unusual SODs, with features such as deletion of the electrostatic loop or β3 sheet and unusual metal-binding residues. These studies show that RvSOD15 and some other RvSODs may have evolved to lose the SOD function, suggesting that gene duplications of antioxidant proteins do not solely explain the high stress tolerance of anhydrobiotic tardigrades.
Collapse
Affiliation(s)
- Kee-Shin Sim
- Graduate School of Pharmaceutical Science, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
8
|
Zaji HD, Seyedalipour B, Hanun HM, Baziyar P, Hosseinkhani S, Akhlaghi M. Computational insight into in silico analysis and molecular dynamics simulation of the dimer interface residues of ALS-linked hSOD1 forms in apo/holo states: a combined experimental and bioinformatic perspective. 3 Biotech 2023; 13:92. [PMID: 36845075 PMCID: PMC9944573 DOI: 10.1007/s13205-023-03514-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The aggregation of misfolded SOD1 proteins in neurodegenerative illnesses is a key pathological hallmark in amyotrophic lateral sclerosis (ALS). SOD1 is stabilized and enzymatically activated after binding to Cu/Zn and forming intramolecular disulfide. SOD1 aggregation/oligomerization is triggered by the dissociation of Cu and/or Zn ions. Therefore, we compared the possible effects of ALS-associated point mutations of the holo/apo forms of WT/I149T/V148G SOD1 variants located at the dimer interface to determine structural characterization using spectroscopic methods, computational approaches as well as molecular dynamics (MD) simulations. Predictive results of computational analysis of single-nucleotide polymorphisms (SNPs) suggested that mutant SOD1 has a deleterious effect on activity and structure destabilization. MD data analysis indicated that changes in flexibility, stability, hydrophobicity of the protein as well as increased intramolecular interactions of apo-SOD1 were more than holo-SOD1. Furthermore, a decrease in enzymatic activity in apo-SOD1 was observed compared to holo-SOD1. Comparative intrinsic and ANS fluorescence results of holo/apo-WT-hSOD1 and mutants indicated structural alterations in the local environment of tryptophan residue and hydrophobic patches, respectively. Experimental and MD data supported that substitution effect and metal deficiency of mutants (apo forms) in the dimer interface may promote the tendency to protein mis-folding and aggregation, consequently disrupting the dimer-monomer equilibrium and increased propensity to dissociation dimer into SOD-monomer ultimately leading to loss of stability and function. Overall, data analysis of apo/holo SOD1 forms on protein structure and function using computational and experimental studies will contribute to a better understanding of ALS pathogenicity.
Collapse
Affiliation(s)
- Hamza Dakhil Zaji
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Haider Munzer Hanun
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Akhlaghi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Basith S, Manavalan B, Lee G. Amyotrophic lateral sclerosis disease-related mutations disrupt the dimerization of superoxide dismutase 1 - A comparative molecular dynamics simulation study. Comput Biol Med 2022; 151:106319. [PMID: 36446187 DOI: 10.1016/j.compbiomed.2022.106319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
More than 150 genes are involved in amyotrophic lateral sclerosis (ALS), with superoxide dismutase 1 (SOD1) being one of the most studied. Mutations in SOD1 gene, which encodes the enzyme SOD1 is the second most prevalent and studied cause of familial ALS. SOD1 is a ubiquitous, homodimeric metalloenzyme that forms a critical component of the cellular defense against reactive oxygen species. Several mutations in the SOD1 enzyme cause misfolding, dimerization instability, and increased aggregate formation in ALS. However, there is a lack of information on the dimerization of SOD1 monomers and the mechanistic underpinnings on how the pathogenic mutations disrupt the dimerization mechanism. Here, we presented microsecond-scale molecular dynamics (MD) simulations to unravel how interface-based mutations compromise SOD1 dimerization and provide mechanistic understanding into the corresponding process using WT and three interface-based mutant systems (A4V, T54R, and I113T). Structural stability analysis showed that the mutant systems displayed disparate variations in the catalytic sites which may directly alter the stability and activity of the SOD1 enzyme. Based on the dynamic network analysis and principal component analysis, it has been identified that the mutations weakened the correlated motions along the dimer interface and altered the protein conformational behavior, thus weakening the stability of dimer formation. Moreover, the simulation results identified crucial residues such as G51, D52, G114, I151, and Q153 in establishing the dimerization interaction network, which were weakened or absent in the presence of interfacial mutants. Surface potential analysis on mutant systems also displayed changes in the dimerization potential, thus showing the unfavorable dimer formation. Furthermore, network analysis identified the hotspot residues necessary for SOD1 signal transduction which were surprisingly found in the catalytic sites rather than the anticipated dimerization interface.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
10
|
Ruff KM, Choi YH, Cox D, Ormsby AR, Myung Y, Ascher DB, Radford SE, Pappu RV, Hatters DM. Sequence grammar underlying the unfolding and phase separation of globular proteins. Mol Cell 2022; 82:3193-3208.e8. [PMID: 35853451 PMCID: PMC10846692 DOI: 10.1016/j.molcel.2022.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022]
Abstract
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yoon Hee Choi
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dezerae Cox
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yoochan Myung
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sheena E Radford
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Garg P, Semmler S, Baudouin C, Velde CV, Plotkin SS. Misfolding-Associated Exposure of Natively Buried Residues in Mutant SOD1 Facilitates Binding to TRAF6. J Mol Biol 2022; 434:167697. [PMID: 35753527 DOI: 10.1016/j.jmb.2022.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily impacting motor neurons. Mutations in superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS. Several of these mutations lead to misfolding or toxic gain of function in the SOD1 protein. Recently, we reported that misfolded SOD1 interacts with TNF receptor-associated factor 6 (TRAF6) in the SOD1G93A rat model of ALS. Further, we showed in cultured cells that several mutant SOD1 proteins, but not wildtype SOD1 protein, interact with TRAF6 via the MATH domain. Here, we sought to uncover the structural details of this interaction through molecular dynamics (MD) simulations of a dimeric model system, coarse grained using the AWSEM force field. We used direct MD simulations to identify buried residues, and predict binding poses by clustering frames from the trajectories. Metadynamics simulations were also used to deduce preferred binding regions on the protein surfaces from the potential of the mean force in orientation space. Well-folded SOD1 was found to bind TRAF6 via co-option of its native homodimer interface. However, if loops IV and VII of SOD1 were disordered, as typically occurs in the absence of stabilizing Zn2+ ion binding, these disordered loops now participated in novel interactions with TRAF6. On TRAF6, multiple interaction hot-spots were distributed around the equatorial region of the MATH domain beta barrel. Expression of TRAF6 variants with mutations in this region in cultured cells demonstrated that TRAF6T475 facilitates interaction with different SOD1 mutants. These findings contribute to our understanding of the disease mechanism and uncover potential targets for the development of therapeutics.
Collapse
Affiliation(s)
- Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada; Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
12
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High-Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022; 61:e202112645. [PMID: 35316563 DOI: 10.1002/anie.202112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/16/2023]
Abstract
Protein aggregation is central to aging, disease and biotechnology. While there has been recent progress in defining structural features of cellular protein aggregates, many aspects remain unclear due to heterogeneity of aggregates presenting obstacles to characterization. Here we report high-resolution analysis of cellular inclusion bodies (IBs) of immature human superoxide dismutase (SOD1) mutants using NMR quenched amide hydrogen/deuterium exchange (qHDX), FTIR and Congo red binding. The extent of aggregation is correlated with mutant global stability and, notably, the free energy of native dimer dissociation, indicating contributions of native-like monomer associations to IB formation. This is further manifested by a common pattern of extensive protection against H/D exchange throughout nine mutant SOD1s despite their diverse characteristics. These results reveal multiple aggregation-prone regions in SOD1 and illuminate how aggregation may occur via an ensemble of pathways.
Collapse
Affiliation(s)
- Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bruna Siebeneichler
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Johnathan Almey
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Susan Kelso
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Gyana G Mishra
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hilary Simon
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
13
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
14
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High‐Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalia Naser
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Michael V. Tarasca
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | | - Anna Schaefer
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Harmeen K. Deol
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Tyler G. B. Soule
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Clinical Neurosciences University of Calgary Calgary, AB T2N 1N4 Canada
| | - Johnathan Almey
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Susan Kelso
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Molecular Genetics University of Toronto Toronto, ON M5S 1A1 Canada
| | - Gyana G. Mishra
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Biology University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Hilary Simon
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | |
Collapse
|
15
|
Ji ZS, Gao GB, Ma YM, Luo JX, Zhang GW, Yang H, Li N, He QY, Lin HS. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials 2022; 284:121481. [DOI: 10.1016/j.biomaterials.2022.121481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
16
|
Naganathan AN, Dani R, Gopi S, Aranganathan A, Narayan A. Folding Intermediates, Heterogeneous Native Ensembles and Protein Function. J Mol Biol 2021; 433:167325. [PMID: 34695380 DOI: 10.1016/j.jmb.2021.167325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Single domain proteins fold via diverse mechanisms emphasizing the intricate relationship between energetics and structure, which is a direct consequence of functional constraints and demands imposed at the level of sequence. On the other hand, elucidating the interplay between folding mechanisms and function is challenging in large proteins, given the inherent shortcomings in identifying metastable states experimentally and the sampling limitations associated with computational methods. Here, we show that free energy profiles and surfaces of large systems (>150 residues), as predicted by a statistical mechanical model, display a wide array of folding mechanisms with ubiquitous folding intermediates and heterogeneous native ensembles. Importantly, residues around the ligand binding or enzyme active site display a larger tendency to partially unfold and this manifests as intermediates or excited states along the folding coordinate in ligand binding domains, transcription repressors, and representative enzymes from all the six classes, including the SARS-CoV-2 receptor binding domain (RBD) of the spike protein and the protease Mpro. It thus appears that it is relatively easier to distill the imprints of function on the folding landscape of larger proteins as opposed to smaller systems. We discuss how an understanding of energetic-entropic features in ordered proteins can pinpoint specific avenues through which folding mechanisms, populations of partially structured states and function can be engineered.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Rahul Dani
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India. https://twitter.com/Soundha
| | - Akashnathan Aranganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
17
|
Samanta N, Ribeiro SS, Becker M, Laborie E, Pollak R, Timr S, Sterpone F, Ebbinghaus S. Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability. J Am Chem Soc 2021; 143:19909-19918. [PMID: 34788540 DOI: 10.1021/jacs.1c09589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) are among the most studied membraneless organelles that form upon heat stress (HS) to sequester unfolded, misfolded, or aggregated protein, supporting protein quality control (PQC) clearance. The folding states that are primarily associated with SGs, as well as the function of the phase separated environment in adjusting the energy landscapes, remain unknown. Here, we investigate the association of superoxide dismutase 1 (SOD1) proteins with different folding stabilities and aggregation propensities with condensates in cells, in vitro and by simulation. We find that irrespective of aggregation the folding stability determines the association of SOD1 with SGs in cells. In vitro and in silico experiments however suggest that the increased flexibility of the unfolded state constitutes only a minor driving force to associate with the dynamic biomolecular network of the condensate. Specific protein-protein interactions in the cytoplasm in comparison to SGs determine the partitioning of folding states between the respective phases during HS.
Collapse
Affiliation(s)
- Nirnay Samanta
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Sara S Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Mailin Becker
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Emeline Laborie
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Roland Pollak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Stepan Timr
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France.,J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, Prague 8 182 23, Czech Republic
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| |
Collapse
|
18
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Sörensen T, Leeb S, Danielsson J, Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021; 60:735-746. [PMID: 33635054 PMCID: PMC8028048 DOI: 10.1021/acs.biochem.0c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Indexed: 12/25/2022]
Abstract
The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.
Collapse
Affiliation(s)
- Therese Sörensen
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Jahan I, Nayeem SM. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. RSC Adv 2020; 10:27598-27614. [PMID: 35516947 PMCID: PMC9055598 DOI: 10.1039/d0ra02151b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the misfolding of Cu, Zn superoxide dismutase (SOD1). Several earlier studies have shown that monomeric apo SOD1 undergoes significant local unfolding dynamics and is the predecessor for aggregation. Here, we have employed atomistic molecular dynamics (MD) simulations to study the structure and dynamics of monomeric apo and holo SOD1 in water, aqueous urea and aqueous urea-TMAO (trimethylamine oxide) solutions. Loop IV (zinc-binding loop) and loop VII (electrostatic loop) of holo SOD1 are considered as functionally important loops as they are responsible for the structural stability of holo SOD1. We found larger local unfolding of loop IV and VII of apo SOD1 as compared to holo SOD1 in water. Urea induced more unfolding in holo SOD1 than apo SOD1, whereas the stabilization of both the form of SOD1 was observed in ternary solution (i.e. water/urea/TMAO solution) but the extent of stabilization was higher in holo SOD1 than apo SOD1. The partially unfolded structures of apo SOD1 in water, urea and holo SOD1 in urea were identified by the exposure of the hydrophobic cores, which are highly dynamic and these may be the initial events of aggregation in SOD1. Our simulation studies support the formation of aggregates by means of the local unfolding of monomeric apo SOD1 as compared to holo SOD1 in water.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| |
Collapse
|
21
|
Yang JL, Li XL, Jiang FL, Gong T, Chen JJ, Chen TJ, Zhu P. High-level soluble expression of human Cu,Zn superoxide dismutase with high activity in Escherichia coli. World J Microbiol Biotechnol 2020; 36:106. [DOI: 10.1007/s11274-020-02883-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
|
22
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
23
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
24
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
25
|
Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
26
|
Chowdhury S, Sen S, Banerjee A, Uversky VN, Maulik U, Chattopadhyay K. Network mapping of the conformational heterogeneity of SOD1 by deploying statistical cluster analysis of FTIR spectra. Cell Mol Life Sci 2019; 76:4145-4154. [PMID: 31011770 PMCID: PMC11105373 DOI: 10.1007/s00018-019-03108-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
Abstract
A crucial contribution to the heterogeneity of the conformational landscape of a protein comes from the way an intermediate relates to another intermediate state in its journey from the unfolded to folded or misfolded form. Unfortunately, it is extremely hard to decode this relatedness in a quantifiable manner. Here, we developed an application of statistical cluster analyses to explore the conformational heterogeneity of a metalloenzyme, human cytosolic copper-zinc superoxide dismutase (SOD1), using the inputs from infrared spectroscopy. This study provides a quantifiable picture of how conformational information at one particular site (for example, the copper-binding pocket) is related to the information at the second site (for example, the zinc-binding pocket), and how this relatedness is transferred to the global conformational information of the protein. The distance outputs were used to quantitatively generate a network capturing the folding sub-stages of SOD1.
Collapse
Affiliation(s)
- Sourav Chowdhury
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Sagnik Sen
- Department of Computer Science, Jadavpur University, Kolkata, 700 032, India
| | - Amrita Banerjee
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Department of Chemistry, Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata, 700035, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia
| | - Ujjwal Maulik
- Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
27
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
28
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
29
|
Huai J, Zhang Z. Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Front Neurol 2019; 10:527. [PMID: 31164862 PMCID: PMC6536575 DOI: 10.3389/fneur.2019.00527] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron degenerative disease in adults and has also been proven to be a type of conformational disease associated with protein misfolding and dysfunction. To date, more than 150 distinct genes have been found to be associated with ALS, among which Superoxide Dismutase 1 (SOD1) is the first and the most extensively studied gene. It has been well-established that SOD1 mutants-mediated toxicity is caused by a gain-of-function rather than the loss of the detoxifying activity of SOD1. Compared with the clear autosomal dominant inheritance of SOD1 mutants in ALS, the potential toxic mechanisms of SOD1 mutants in motor neurons remain incompletely understood. A large body of evidence has shown that SOD1 mutants may adopt a complex profile of conformations and interact with a wide range of client proteins. Here, in this review, we summarize the fundamental conformational properties and the gained interaction partners of the soluble forms of the SOD1 mutants which have been published in the past decades. Our goal is to find clues to the possible internal links between structural and functional anomalies of SOD1 mutants, as well as the relationships between their exposed epitopes and interaction partners, in order to help reveal and determine potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jisen Huai
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Cristóvão JS, Henriques BJ, Gomes CM. Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation. Methods Mol Biol 2019; 1873:3-18. [PMID: 30341600 DOI: 10.1007/978-1-4939-8820-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins exhibit a remarkable structural plasticity and may undergo conformational changes resulting in protein misfolding both in a biological context and upon perturbing physiopathological conditions. Such nonfunctional protein conformers, including misfolded states and aggregates, are often associated to protein folding diseases. Understanding the biology of protein folding diseases thus requires tools that allow the structural characterization of nonnative conformations of proteins and their interconversions. Here we present detailed procedures to monitor protein conformational changes and aggregation based on spectroscopic and biophysical methods that include circular dichroism, ATR-Fourier-transformed infrared spectroscopy, fluorescence spectroscopy and dynamic light scattering. To illustrate the application of these methods we report to our previous studies on misfolding, aggregation and amyloid fibril formation by superoxide dismutase 1 (SOD1), a protein whose toxic deposition is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Joana S Cristóvão
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Bárbara J Henriques
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal. .,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
31
|
Yang F, Wang H, Logan DT, Mu X, Danielsson J, Oliveberg M. The Cost of Long Catalytic Loops in Folding and Stability of the ALS-Associated Protein SOD1. J Am Chem Soc 2018; 140:16570-16579. [PMID: 30359015 DOI: 10.1021/jacs.8b08141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A conspicuous feature of the amyotrophic lateral sclerosis (ALS)-associated protein SOD1 is that its maturation into a functional enzyme relies on local folding of two disordered loops into a catalytic subdomain. To drive the disorder-to-order transition, the protein employs a single Zn2+ ion. The question is then if the entropic penalty of maintaining such disordered loops in the immature apoSOD1 monomer is large enough to explain its unusually low stability, slow folding, and pathological aggregation in ALS. To find out, we determined the effects of systematically altering the SOD1-loop lengths by protein redesign. The results show that the loops destabilize the apoSOD1 monomer by ∼3 kcal/mol, rendering the protein marginally stable and accounting for its aggregation behavior. Yet the effect on the global folding kinetics remains much smaller with a transition-state destabilization of <1 kcal/mol. Notably, this 1/3 transition-state to folded-state stability ratio provides a clear-cut example of the enigmatic disagreement between the Leffler α value from loop-length alterations (typically 1/3) and the "standard" reaction coordinates based on solvent perturbations (typically >2/3). Reconciling the issue, we demonstrate that the disagreement disappears when accounting for the progressive loop shortening that occurs along the folding pathway. The approach assumes a consistent Flory loop entropy scaling factor of c = 1.48 for both equilibrium and kinetic data and has the added benefit of verifying the tertiary interactions of the folding nucleus as determined by phi-value analysis. Thus, SOD1 not only represents a case where evolution of key catalytic function has come with the drawback of a destabilized apo state but also stands out as a well-suited model system for exploring the physicochemical details of protein self-organization.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Huabing Wang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Derek T Logan
- Division of Biochemistry & Structural Biology, Department of Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| |
Collapse
|
32
|
Peng X, Cashman NR, Plotkin SS. Prediction of Misfolding-Specific Epitopes in SOD1 Using Collective Coordinates. J Phys Chem B 2018; 122:11662-11676. [PMID: 30351123 DOI: 10.1021/acs.jpcb.8b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a global, collective coordinate bias into molecular dynamics simulations that partially unfolds a protein, in order to predict misfolding-specific epitopes based on the regions that locally unfold. Several metrics are used to measure local disorder, including solvent exposed surface area (SASA), native contacts ( Q), and root mean squared fluctuations (RMSF). The method is applied to Cu, Zn superoxide dismutase (SOD1). For this protein, the processes of monomerization, metal loss, and conformational unfolding due to microenvironmental stresses are all separately taken into account. Several misfolding-specific epitopes are predicted, and consensus epitopes are calculated. These predicted epitopes are consistent with the "lower-resolution" peptide sequences used to raise disease-specific antibodies, but the epitopes derived from collective coordinates contain shorter, more refined sequences for the key residues constituting the epitope.
Collapse
Affiliation(s)
- Xubiao Peng
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada.,Center for Quantum Technology Research, School of Physics , Beijing Institute of Technology , Haidian, Beijing 100081 , China
| | - Neil R Cashman
- Brain Research Centre , University of British Columbia , Vancouver , British Columbia V6T 2B5 , Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, and Genome Sciences and Technology Program , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
33
|
TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies. Biochem J 2018; 475:1701-1719. [DOI: 10.1042/bcj20180085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation.
Collapse
|
34
|
Goyal VD, Magliery TJ. Phylogenetic spread of sequence data affects fitness of SOD1 consensus enzymes: Insights from sequence statistics and structural analyses. Proteins 2018; 86:609-620. [PMID: 29490429 DOI: 10.1002/prot.25486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Non-natural protein sequences with native-like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease-causing aggregation of human SOD1.
Collapse
Affiliation(s)
- Venuka Durani Goyal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210.,Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
35
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
36
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
37
|
Kumar V, Rahman S, Choudhry H, Zamzami MA, Sarwar Jamal M, Islam A, Ahmad F, Hassan MI. Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations. Sci Rep 2017; 7:4678. [PMID: 28680046 PMCID: PMC5498623 DOI: 10.1038/s41598-017-04950-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient's data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
38
|
Habibi M, Rottler J, Plotkin SS. The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28629863 DOI: 10.1016/j.bbapap.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical unfolding of mutated apo, disulfide-reduced, monomeric superoxide dismutase 1 protein (SOD1) has been simulated via force spectroscopy techniques, using both an all-atom (AA), explicit solvent model and a coarse-grained heavy-atom Gō (HA-Gō) model. The HA-Gō model was implemented at two different pulling speeds for comparison. The most-common sequence of unfolding in the AA model agrees well with the most-common unfolding sequence of the HA-Gō model, when the same normalized pulling rate was used. Clustering of partially-native structures as the protein unfolds shows that the AA and HA-Gō models both exhibit a dominant pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches after the protein is about half-unfolded. The force-extension curve exhibits multiple force drops, which are concomitant with jumps in the local interaction potential energy between specific β-strands in the protein. These sudden jumps in the potential energy coincide with the dissociation of specific pairs of β-strands, and thus intermediate unfolding events. The most common sequence of β-strand dissociation in the unfolding pathway of the AA model is β-strands 5, 4, 8, 7, 1, 2, then finally β-strands 3 and 6. The observation that β-strand 5 is among the first to unfold here, but the last to unfold in simulations of loop-truncated SOD1, could imply the existence of an evolutionary compensation mechanism, which would stabilize β-strands flanking long loops against their entropic penalty by strengthening intramolecular interactions. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
39
|
Li H, Sheng Y, McGee W, Cammarata M, Holden D, Loo JA. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry. Anal Chem 2017; 89:2731-2738. [PMID: 28192979 DOI: 10.1021/acs.analchem.6b02377] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yuewei Sheng
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - William McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael Cammarata
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Dustin Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Wang H, Lang L, Logan DT, Danielsson J, Oliveberg M. Tricking a Protein To Swap Strands. J Am Chem Soc 2016; 138:15571-15579. [DOI: 10.1021/jacs.6b05151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huabing Wang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Lisa Lang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Derek T. Logan
- Division
of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| | - Jens Danielsson
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
41
|
Leal SS, Cristóvão JS, Biesemeier A, Cardoso I, Gomes CM. Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Metallomics 2015; 7:333-46. [PMID: 25554447 DOI: 10.1039/c4mt00278d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored, even though Zn(2+) levels are upregulated in ALS motor neurons. Here we use complementary biophysical methods to investigate Zn(2+) binding and its effects on the aggregation of three immature metal-free SOD1 conformers that represent biogenesis intermediates: dimeric, monomeric and reduced monomeric SOD1. Using isothermal titration calorimetry we determined that Zn(2+) binds to all conformers both at the zinc- as well as to the copper-site; however Zn(2+) binding mechanisms to the zinc-site have distinct characteristics across immature conformers. We show that this 'zinc overload' of immature SOD1 promotes intermolecular interactions, as evidenced by dynamic light scattering and ThT fluorescence kinetic studies. Analysis of aged zinc-induced aggregates by energy-dispersive X-ray and electron energy-loss spectroscopy shows that aggregates integrate some Zn(2+). In addition, electron diffraction analysis identifies nano-scaled crystalline materials and amyloid fibril-like reflections. Transmission electron microscopy reveals that Zn(2+) diverts the SOD1 aggregation pathway from fibrils to amorphous aggregate, and electrophoretic analysis evidences an increase in insoluble materials. Overall, we provide evidence that aberrant zinc coordination to immature conformers broadens the population of SOD1 misfolded species at early aggregation stages and provide evidence for a high structural polymorphism and heterogeneity of SOD1 aggregates.
Collapse
Affiliation(s)
- Sónia S Leal
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
42
|
Broom HR, Rumfeldt JAO, Vassall KA, Meiering EM. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Sci 2015; 24:2081-9. [PMID: 26362407 DOI: 10.1002/pro.2803] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022]
Abstract
Neurotoxic misfolding of Cu, Zn-superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease-linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein-protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
43
|
Abstract
Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.
Collapse
|
44
|
Hennig J, Andrésen C, Museth AK, Lundström P, Tibell LAE, Jonsson BH. Local Destabilization of the Metal-Binding Region in Human Copper–Zinc Superoxide Dismutase by Remote Mutations Is a Possible Determinant for Progression of ALS. Biochemistry 2015; 54:323-33. [DOI: 10.1021/bi500606j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Janosch Hennig
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Institute
of Structural Biology, Helmholtz Zentrum München GmbH, DE-85764 Neuherberg, Germany
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, DE-85748 Garching, Germany
| | - Cecilia Andrésen
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - A. Katrine Museth
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Patrik Lundström
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Lena A. E. Tibell
- Department
of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Bengt-Harald Jonsson
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|
45
|
Szpryngiel S, Oliveberg M, Mäler L. Diffuse binding of Zn(2+) to the denatured ensemble of Cu/Zn superoxide dismutase 1. FEBS Open Bio 2015; 5:56-63. [PMID: 25685664 PMCID: PMC4309841 DOI: 10.1016/j.fob.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Nearly complete backbone assignments for monomeric SOD1 were obtained. Monomeric SOD1 is unstructured in 9 M urea. Zn2+-binding to monomeric SOD1 occurs through diffuse coordination to most His residues. The binding geometry of Zn2+ is different than in the native, folded SOD1.
The stability and structural properties of the metalloprotein superoxide dismutase 1 (SOD1) are found to depend critically on metal ions. Native SOD1 monomers coordinate one structural Zn2+ and one redox-active Cu2+/1+ to the active site. To do this, the Zn2+ ions need to interact with the SOD1 protein on the denatured side of the folding barrier, prior to the formation of the folding nucleus. In this study, we have examined at residue level the nature of this early Zn2+ binding by NMR studies on the urea denatured-state of SOD1. Nearly complete backbone chemical shift assignments were obtained in 9 M urea at physiological pH, conditions at which NMR studies are scarce. Our results demonstrate that SOD1 is predominantly unstructured under these conditions. Chemical-shift changes upon Zn2+ titration show that denatured SOD1 retains a significant affinity to Zn2+ ions, even in 9 M urea. However, the Zn2+ interactions are not limited to the native metal-binding ligands in the two binding sites, but are seen for all His residues. Moreover, the native Cu2+/1+ ligand H46 seems not to bind as well as the other His residues, while the nearby non-native H43 does bind, indicating that the binding geometry is relaxed. The result suggests that the Zn2+-binding observed to catalyze folding of SOD1 in physiological buffer is initiated by diffuse, non-specific coordination to the coil, which subsequently funnels by ligand exchange into the native coordination geometry of the folded monomer. Altogether, this diffuse binding is a result with fundamental implications for folding of metalloproteins in general.
Collapse
Affiliation(s)
- Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
46
|
Joyce PI, Mcgoldrick P, Saccon RA, Weber W, Fratta P, West SJ, Zhu N, Carter S, Phatak V, Stewart M, Simon M, Kumar S, Heise I, Bros-Facer V, Dick J, Corrochano S, Stanford MJ, Luong TV, Nolan PM, Meyer T, Brandner S, Bennett DLH, Ozdinler PH, Greensmith L, Fisher EMC, Acevedo-Arozena A. A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Hum Mol Genet 2014; 24:1883-97. [PMID: 25468678 PMCID: PMC4355022 DOI: 10.1093/hmg/ddu605] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1D83G/D83G mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1D83G/D83G mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1−/−). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Philip Mcgoldrick
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Rachele A Saccon
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - William Weber
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pietro Fratta
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Steven J West
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ning Zhu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah Carter
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Vinaya Phatak
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | - Michelle Simon
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Virginie Bros-Facer
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - James Dick
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Macdonnell J Stanford
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Patrick M Nolan
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Timothy Meyer
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Sebastian Brandner
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Linda Greensmith
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK,
| | - Elizabeth M C Fisher
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK,
| | | |
Collapse
|
47
|
Gianni S, Camilloni C, Giri R, Toto A, Bonetti D, Morrone A, Sormanni P, Brunori M, Vendruscolo M. Understanding the frustration arising from the competition between function, misfolding, and aggregation in a globular protein. Proc Natl Acad Sci U S A 2014; 111:14141-6. [PMID: 25228761 PMCID: PMC4191818 DOI: 10.1073/pnas.1405233111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Folding and function may impose different requirements on the amino acid sequences of proteins, thus potentially giving rise to conflict. Such a conflict, or frustration, can result in the formation of partially misfolded intermediates that can compromise folding and promote aggregation. We investigate this phenomenon by studying frataxin, a protein whose normal function is to facilitate the formation of iron-sulfur clusters but whose mutations are associated with Friedreich's ataxia. To characterize the folding pathway of this protein we carry out a Φ-value analysis and use the resulting structural information to determine the structure of the folding transition state, which we then validate by a second round of rationally designed mutagenesis. The analysis of the transition-state structure reveals that the regions involved in the folding process are highly aggregation-prone. By contrast, the regions that are functionally important are partially misfolded in the transition state but highly resistant to aggregation. Taken together, these results indicate that in frataxin the competition between folding and function creates the possibility of misfolding, and that to prevent aggregation the amino acid sequence of this protein is optimized to be highly resistant to aggregation in the regions involved in misfolding.
Collapse
Affiliation(s)
- Stefano Gianni
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rajanish Giri
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and
| | - Daniela Bonetti
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and
| | - Angela Morrone
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Università di Roma La Sapienza, 00185 Rome, Italy; and
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
48
|
Ming LJ, Valentine JS. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. J Biol Inorg Chem 2014; 19:647-57. [PMID: 24692094 PMCID: PMC4109160 DOI: 10.1007/s00775-014-1126-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
The dimeric Cu-Zn superoxide dismutase (SOD1) is a particularly interesting system for biological inorganic chemical studies because substitutions of the native Cu and/or Zn ions by a nonnative metal ion cause minimal structural changes and result in high enzymatic activity for those derivatives with Cu remaining in the Cu site. The pioneering NMR studies of the magnetically coupled derivative Cu2Co2SOD1 by Ivano Bertini and coworkers are of particular importance in this regard. In addition to Co(2+), Ni(2+) is a versatile metal ion for substitution into SOD1, showing very little disturbance of the structure in Cu2Ni2SOD1 and acting as a very good mimic of the native Cu ion in Ni2Zn2SOD1. The NMR studies presented here were inspired by and are indebted to Ivano Bertini's paramagnetic NMR pursuits of metalloproteins. We report Ni(2+) binding to apo wild-type SOD1 and a time-dependent Ni(2+) migration from the Zn site to the Cu site, and the preparation and characterization of Ni2Ni2SOD1, which shows coordination properties similar to those of Cu2Cu2SOD1, namely, an anion-binding property different from that of the wild type and a possibly broken bridging His. Mutations in the human SOD1 gene can cause familial amyotrophic lateral sclerosis (ALS), and mutant SOD1 proteins with significantly altered metal-binding behaviors are implicated in causing the disease. We conclude by discussing the effects of the ALS mutations on the remarkable stabilities and metal-binding properties of wild-type SOD1 proteins and the implications concerning the causes of SOD1-linked ALS.
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
- Department of Bioinspired Science, Ewha Womans University, 120-750, Seoul, Republic of Korea
| |
Collapse
|
49
|
Zhang Q, Zhang R, Zhao Y, Li H, Gao YQ, Zhuang W. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation. J Chem Phys 2014; 140:184504. [DOI: 10.1063/1.4874255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
50
|
Solid-state NMR studies of metal-free SOD1 fibrillar structures. J Biol Inorg Chem 2014; 19:659-66. [PMID: 24719206 DOI: 10.1007/s00775-014-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Copper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90%) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV-VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.
Collapse
|