1
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Calcium-sensor proteins but not bicarbonate ion activate retinal photoreceptor membrane guanylyl cyclase in photoreceptors. Front Mol Neurosci 2024; 17:1509366. [PMID: 39717564 PMCID: PMC11663931 DOI: 10.3389/fnmol.2024.1509366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Retinal membrane guanylyl cyclase (RetGC), regulated by guanylyl cyclase activating proteins (GCAPs) via negative calcium-feedback, is one of the most critically important enzymes in vertebrate rod and cone physiology, enabling their sensitivity to light. It was also reported that, similarly to olfactory receptor guanylyl cyclase, bicarbonate anion directly stimulates RetGC activity in photoreceptors as a novel phototransduction-linked regulating factor. We directly tested whether or not RetGC is a bicarbonate-activated enzyme using recombinant human RetGC expressed in HEK293 cells and the native RetGC in mouse retinas. Whereas RetGC in all cases was activated by GCAPs, we found no evidence indicating that bicarbonate can produce direct stimulating effect on RetGC catalytic activity, either basal or GCAP-activated, even at concentrations as high as 100 mM. Instead, near-physiological concentrations of bicarbonate only slightly reduced RetGC activity, whereas concentrations substantially exceeding physiological levels caused a more pronounced reduction of RetGC activity measured in mouse retinas. Our results argue that photoreceptor guanylyl cyclase is not a bicarbonate-stimulated enzyme and rule out the possibility that effects of bicarbonate on photoreceptor physiology are mediated by a direct stimulation of retinal guanylyl cyclase by HCO3 -.
Collapse
Affiliation(s)
- Igor V. Peshenko
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
| | - Elena V. Olshevskaya
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
| | - Alexander M. Dizhoor
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Bouyer PG, Salameh AI, Zhou Y, Kolba TN, Boron WF. Effects of extracellular metabolic acidosis and out-of-equilibrium CO 2/HCO 3 - solutions on intracellular pH in cultured rat hippocampal neurons. Front Physiol 2024; 15:1434359. [PMID: 39444753 PMCID: PMC11496273 DOI: 10.3389/fphys.2024.1434359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic acidosis (MAc)-an extracellular pH (pHo) decrease caused by a [HCO3 -]o decrease at constant [CO2]o-usually causes intracellular pH (pHi) to fall. Here we determine the extent to which the pHi decrease depends on the pHo decrease vs the concomitant [HCO3 -]o decrease. We use rapid-mixing to generate out-of-equilibrium CO2/HCO3 - solutions in which we stabilize [CO2]o and [HCO3 -]o while decreasing pHo (pure acidosis, pAc), or stabilize [CO2]o and pHo while decreasing [HCO3 -]o (pure metabolic/down, pMet↓). Using the fluorescent dye 2',7'-bis-2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) to monitor pHi in rat hippocampal neurons in primary culture, we find that-in naïve neurons-the pHi decrease caused by MAc is virtually the sum of those caused by pAc (∼70%) + pMet↓ (∼30%). However, if we impose a first challenge (MAc1, pAc1, or pMet↓1), allow the neurons to recover, and then impose a second challenge (MAc2, pAc2, or pMet↓2), we find that pAc/pMet↓ additivity breaks down. In a twin-challenge protocol in which challenge #2 is MAc, the pHo and [HCO3 -]o decreases during challenge #1 must be coincident in order to mimic the effects of MAc1 on MAc2. Conversely, if challenge #1 is MAc, then the pHo and [HCO3 -]o decreases during challenge #2 must be coincident in order for MAc1 to produce its physiological effects during the challenge #2 period. We conclude that the history of challenge #1 (MAc1, pAc1, or pMet↓1)-presumably as detected by one or more acid-base sensors-has a major impact on the pHi response during challenge #2 (MAc2, pAc2, or pMet↓2).
Collapse
Affiliation(s)
- Patrice G. Bouyer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biology, Valparaiso University, Valparaiso, IN, United States
| | - Ahlam I. Salameh
- Preclinical Sciences Division, Kent State University College of Podiatric Medicine, Independence, OH, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Yuehan Zhou
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tiffany N. Kolba
- Department of Mathematics & Statistics, Valparaiso University, Valparaiso, IN, United States
| | - Walter F. Boron
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Physiology & Biophysics Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Jiang HC, Park SJ, Wang IH, Bear DM, Nowlan A, Greer PL. CD20/MS4A1 is a mammalian olfactory receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators. Nat Commun 2024; 15:3360. [PMID: 38637611 PMCID: PMC11026480 DOI: 10.1038/s41467-024-47698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.
Collapse
Affiliation(s)
- Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Alexandra Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Serafin EK, Yoo JJ, Li J, Dong X, Baccei ML. Development and characterization of a Gucy2d-cre mouse to selectively manipulate a subset of inhibitory spinal dorsal horn interneurons. PLoS One 2024; 19:e0300282. [PMID: 38483883 PMCID: PMC10939219 DOI: 10.1371/journal.pone.0300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Elizabeth K. Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Judy J. Yoo
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Li
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Xinzhong Dong
- Departments of Neuroscience, Neurosurgery and Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark L. Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Lu S, Qian CS, Grueber WB. Mechanisms of gas sensing by internal sensory neurons in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576342. [PMID: 38293088 PMCID: PMC10827222 DOI: 10.1101/2024.01.20.576342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the central nervous system for maintaining homeostasis and survival. A population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, elaborate dendrites along respiratory organs and may serve as a model for elucidating the cellular and molecular basis of chemosensation by internal neurons. We find that td neurons respond to decreases in O2 levels and increases in CO2 levels. We assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. We found that Gyc88E/Gyc89Db were necessary for responses to hypoxia, and that Gr28b was necessary for responses to CO2. Targeted expression of Gr28b isoform c in td neurons rescued responses to CO2 in mutant larvae and also induced ectopic sensitivity to CO2 in the td network. Gas-sensitive td neurons were activated when larvae burrowed for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. Together, our work identifies two gaseous stimuli that are detected by partially overlapping subsets of internal sensory neurons, and establishes roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b in the detection of CO2.
Collapse
Affiliation(s)
- Shan Lu
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Biological Sciences, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Cheng Sam Qian
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Wesley B. Grueber
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Neuroscience, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| |
Collapse
|
7
|
Ziemba PM, Mueck A, Gisselmann G, Stoertkuhl KF. Functional expression and ligand identification of homo- and heteromeric Drosophila melanogaster CO2 receptors in the Xenopus laevis oocyte system. PLoS One 2023; 18:e0295404. [PMID: 38157355 PMCID: PMC10756536 DOI: 10.1371/journal.pone.0295404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Carbon dioxide (CO2) is an important olfactory cue in Drosophila melanogaster and can elicit both attractive and aversive behaviors. It is detected by gustatory receptors, Gr21a and Gr63a, found in the ab1C neuron in basiconic sensilla on the third antennal segment. Volatile substances that modulate the receptors' function are of interest for pest control. While several substances block ab1C neurons or mimic the activating effect of carbon dioxide, it is not known if these substances are indeed ligands of the CO2 receptor or might act on other proteins in the receptor neuron. In this study, we used the recombinant Xenopus laevis expression system and two-electrode voltage-clamp technology to investigate the receptor function. We found that application of sodium bicarbonate evokes large inward currents in oocytes co-expressing Gr21a and Gr63a. The receptors most likely form hetromultimeric complexes. Homomultimeric receptors of Gr21a or Gr63a are sufficient for receptor functionality, although oocytes gave significantly lower current responses compared to the probable heteromultimeric receptor. We screened for putative blockers of the sodium bicarbonate response and confirmed that some of the substances identified by spike recordings of olfactory receptor neurons, such as 1-hexanol, are also blockers in the Xenopus oocyte system. We also identified a new blocking substance, citronellol, which is related to insect repellents. Many substances that activate receptor neurons were inactive in the Xenopus oocyte system, indicating that they may not be ligands for the receptor, but may act on other proteins. However, methyl pyruvate and n-hexylamine were found to be activators of the recombinant Gr21a/Gr63a receptor.
Collapse
Affiliation(s)
- Paul M. Ziemba
- AG Physiology of Senses, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Alina Mueck
- AG Physiology of Senses, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Klemens F. Stoertkuhl
- AG Physiology of Senses, Ruhr-University Bochum, Bochum, North Rhine-Westphalia, Germany
| |
Collapse
|
8
|
Jiang HC, Park SJ, Wang IH, Bear DM, Nowlan A, Greer PL. CD20 is a mammalian odorant receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators. RESEARCH SQUARE 2023:rs.3.rs-3290152. [PMID: 37790559 PMCID: PMC10543371 DOI: 10.21203/rs.3.rs-3290152/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.
Collapse
Affiliation(s)
- Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current Affiliation: Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Alexandra Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation: Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Jiang HC, Park SJ, Wang IH, Bear DM, Nowlan A, Greer PL. CD20 is a mammalian odorant receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552498. [PMID: 37609248 PMCID: PMC10441374 DOI: 10.1101/2023.08.08.552498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.
Collapse
|
10
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
11
|
Bose A, Visweswariah SS. The pseudokinase domain in receptor guanylyl cyclases. Methods Enzymol 2022; 667:535-574. [PMID: 35525553 DOI: 10.1016/bs.mie.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic GMP is produced by enzymes called guanylyl cyclases, of which the membrane-associated forms contain an intracellular pseudokinase domain that allosterically regulates the C-terminal guanylyl cyclase domain. Ligand binding to the extracellular domain of these single transmembrane-spanning domain receptors elicits an increase in cGMP levels in the cell. The pseudokinase domain (or kinase-homology domain) in these receptors appears to be critical for ligand-mediated activation. While the pseudokinase domain does not possess kinase activity, biochemical evidence indicates that the domain can bind ATP and thereby allosterically regulate the catalytic activity of these receptors. The pseudokinase domain also appears to be the site of interaction of regulatory proteins, as seen in the retinal guanylyl cyclases that are involved in visual signal transduction. In the absence of structural information on the pseudokinase-guanylyl cyclase domain organization of any member of this family of receptors, biochemical evidence has provided clues to the physical interaction of the pseudokinase and guanylyl cyclase domain. An α-helical linker region between the pseudokinase domain and the guanylyl cyclase domain regulates the basal activity of these receptors in the absence of a stimulatory ligand and is important for stabilizing the structure of the pseudokinase domain that can bind ATP. Here, we present an overview of salient features of ATP-mediated regulation of receptor guanylyl cyclases and describe biochemical approaches that allow a clearer understanding of the intricate interplay between the pseudokinase domain and catalytic domain in these proteins.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
12
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
13
|
Gucy2d selectively marks inhibitory dynorphin neurons in the spinal dorsal horn but is dispensable for pain and itch sensitivity. Pain Rep 2021; 6:e947. [PMID: 34296052 PMCID: PMC8291471 DOI: 10.1097/pr9.0000000000000947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Inhibitory neurons in the spinal dorsal horn can be classified based on expression of neurochemical marker genes. However, these marker genes are often expressed throughout the central nervous system, which poses challenges for manipulating genetically identified spinal neurons without undesired off-target effects. Objectives We investigated whether Gucy2d, previously identified as a highly selective marker of dynorphin-lineage neurons in the dorsal horn, is expressed in other locations within the adult mouse spinal cord, dorsal root ganglia (DRG), or brain. In addition, we sought to molecularly characterize Gucy2d-expressing dorsal horn neurons and investigate whether the disruption of Gucy2d gene expression affects sensitivity to itch or pain. Methods In situ hybridization experiments assessed Gucy2d mRNA expression in the adult mouse spinal cord, DRG, and brain, and its colocalization with Pax2, Bhlhb5, and Pde2a in dorsal horn neurons. Knockout mice lacking Gucy2d expression were compared with littermate controls to assess sensitivity to chloroquine-induced itch and dry skin-mediated chronic itch, as well as heat, cold, or mechanical stimuli. Results Gucy2d is selectively expressed in dynorphin-lineage neurons in lamina I-III of the adult mouse spinal cord but not in the brain or DRG. Spinal Gucy2d-expressing neurons are inhibitory neurons that also express the transcription factor Bhlhb5 and the cGMP-dependent phosphodiesterase Pde2a. Gucy2d knockout mice did not exhibit altered responses to itch or pain. Conclusions The selective expression of Gucy2d within a subpopulation of inhibitory dorsal horn neurons may yield a means to selectively manipulate inhibitory signaling at the level of the spinal cord without effects on the brain.
Collapse
|
14
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Fei A, Wu W, Tan L, Tang C, Xu Z, Huo X, Bao H, Kong Y, Johnson M, Hartmann G, Talay M, Yang C, Riegler C, Herrera KJ, Engert F, Xie XS, Barnea G, Liberles SD, Yang H, Li Q. Coordination of two enhancers drives expression of olfactory trace amine-associated receptors. Nat Commun 2021; 12:3798. [PMID: 34145235 PMCID: PMC8213717 DOI: 10.1038/s41467-021-23823-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Olfactory sensory neurons (OSNs) are functionally defined by their expression of a unique odorant receptor (OR). Mechanisms underlying singular OR expression are well studied, and involve a massive cross-chromosomal enhancer interaction network. Trace amine-associated receptors (TAARs) form a distinct family of olfactory receptors, and here we find that mechanisms regulating Taar gene choice display many unique features. The epigenetic signature of Taar genes in TAAR OSNs is different from that in OR OSNs. We further identify that two TAAR enhancers conserved across placental mammals are absolutely required for expression of the entire Taar gene repertoire. Deletion of either enhancer dramatically decreases the expression probabilities of different Taar genes, while deletion of both enhancers completely eliminates the TAAR OSN populations. In addition, both of the enhancers are sufficient to drive transgene expression in the partially overlapped TAAR OSNs. We also show that the TAAR enhancers operate in cis to regulate Taar gene expression. Our findings reveal a coordinated control of Taar gene choice in OSNs by two remote enhancers, and provide an excellent model to study molecular mechanisms underlying formation of an olfactory subsystem.
Collapse
Affiliation(s)
- Aimei Fei
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Wu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhi Tan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengrong Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Huo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongqiang Bao
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalei Kong
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Johnson
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Griffin Hartmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Cheng Yang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clemens Riegler
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brian-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| |
Collapse
|
16
|
Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 2021; 383:549-557. [PMID: 33404845 DOI: 10.1007/s00441-020-03388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 01/27/2023]
Abstract
The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA.
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, PO Box 100266, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Kalra S, Mittal A, Bajoria M, Mishra T, Maryam S, Sengupta D, Ahuja G. Challenges and possible solutions for decoding extranasal olfactory receptors. FEBS J 2020; 288:4230-4241. [PMID: 33085840 DOI: 10.1111/febs.15606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Olfactory receptors are primarily known to be expressed in the olfactory epithelium of the nasal cavity and therefore assist in odor perception. With the advent of high-throughput omics technologies such as tissue microarray or RNA sequencing, a large number of olfactory receptors have been reported to be expressed in the nonolfactory tissues. Although these technologies uncovered the expression of these olfactory receptors in the nonchemosensory tissues, unfortunately, they failed to reveal the information about their cell type of origin. Accurate characterization of the cell types should be the first step towards devising cell type-specific assays for their functional evaluation. Single-cell RNA-sequencing technology resolved some of these apparent limitations and opened new means to interrogate the expression of these extranasal olfactory receptors at the single-cell resolution. Moreover, the availability of large-scale, multi-organ/species single-cell expression atlases offer ample resources for the systematic reannotation of these receptors in a cell type-specific manner. In this Viewpoint article, we discuss some of the technical limitations that impede the in-depth understanding of these extranasal olfactory receptors, with a special focus on odorant receptors. Moreover, we also propose a list of single cell-based omics technologies that could further promulgate the opportunity to decipher the regulatory network that drives the odorant receptors expression at atypical locations.
Collapse
Affiliation(s)
- Siddhant Kalra
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Manisha Bajoria
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Tripti Mishra
- Pathfinder Research and Training Foundation, Greater Noida, India
| | - Sidrah Maryam
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India.,Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India, India.,Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi, India.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| |
Collapse
|
18
|
Koudrina N, Perry SF, Gilmour KM. The role of TASK-2 channels in CO 2 sensing in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2020; 319:R329-R342. [PMID: 32697653 DOI: 10.1152/ajpregu.00132.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral chemosensitivity in fishes is thought to be mediated by serotonin-enriched neuroepithelial cells (NECs) that are localized to the gills of adults and the integument of larvae. In adult zebrafish (Danio rerio), branchial NECs are presumed to mediate the cardiorespiratory reflexes associated with hypoxia or hypercapnia, whereas in larvae, there is indirect evidence linking cutaneous NECs to hypoxic hyperventilation and hypercapnic tachycardia. No study yet has examined the ventilatory response of larval zebrafish to hypercapnia, and regardless of developmental stage, the signaling pathways involved in CO2 sensing remain unclear. In the mouse, a background potassium channel (TASK-2) contributes to the sensitivity of chemoreceptor cells to CO2. Zebrafish possess two TASK-2 channel paralogs, TASK-2 and TASK-2b, encoded by kcnk5a and kcnk5b, respectively. The present study aimed to determine whether TASK-2 channels are expressed in NECs of larval zebrafish and whether they are involved in CO2 sensing. Using immunohistochemical approaches, TASK-2 protein was observed on the surface of NECs in larvae. Exposure of larvae to hypercapnia caused cardiac and breathing frequencies to increase, and these responses were blunted in fish experiencing TASK-2 and/or TASK-2b knockdown. The results of these experiments suggest that TASK-2 channels are involved in CO2 sensing by NECs and contribute to the initiation of reflex cardiorespiratory responses during exposure of larvae to hypercapnia.
Collapse
Affiliation(s)
- N Koudrina
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Transcriptional profile of spinal dynorphin-lineage interneurons in the developing mouse. Pain 2020; 160:2380-2397. [PMID: 31166300 DOI: 10.1097/j.pain.0000000000001636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence suggests that the spinal dorsal horn (SDH) contains multiple subpopulations of inhibitory interneurons that play distinct roles in somatosensory processing, as exemplified by the importance of spinal dynorphin-expressing neurons for the suppression of mechanical pain and chemical itch. Although it is clear that GABAergic transmission in the SDH undergoes significant alterations during early postnatal development, little is known about the maturation of discrete inhibitory "microcircuits" within the region. As a result, the goal of this study was to elucidate the gene expression profile of spinal dynorphin (pDyn)-lineage neurons throughout life. We isolated nuclear RNA specifically from pDyn-lineage SDH interneurons at postnatal days 7, 21, and 80 using the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) technique, followed by RNA-seq analysis. Over 650 genes were ≥2-fold enriched in adult pDyn nuclei compared with non-pDyn spinal cord nuclei, including targets with known relevance to pain such as galanin (Gal), prepronociceptin (Pnoc), and nitric oxide synthase 1 (Nos1). In addition, the gene encoding a membrane-bound guanylate cyclase, Gucy2d, was identified as a novel and highly selective marker of the pDyn population within the SDH. Differential gene expression analysis comparing pDyn nuclei across the 3 ages revealed sets of genes that were significantly upregulated (such as Cartpt, encoding cocaine- and amphetamine-regulated transcript peptide) or downregulated (including Npbwr1, encoding the receptor for neuropeptides B/W) during postnatal development. Collectively, these results provide new insight into the potential molecular mechanisms underlying the known age-dependent changes in spinal nociceptive processing and pain sensitivity.
Collapse
|
20
|
Modes of Accessing Bicarbonate for the Regulation of Membrane Guanylate Cyclase (ROS-GC) in Retinal Rods and Cones. eNeuro 2019; 6:eN-NWR-0393-18. [PMID: 30783616 PMCID: PMC6378327 DOI: 10.1523/eneuro.0393-18.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
The membrane guanylate cyclase, ROS-GC, that synthesizes cyclic GMP for use as a second messenger for visual transduction in retinal rods and cones, is stimulated by bicarbonate. Bicarbonate acts directly on ROS-GC1, because it enhanced the enzymatic activity of a purified, recombinant fragment of bovine ROS-GC1 consisting solely of the core catalytic domain. Moreover, recombinant ROS-GC1 proved to be a true sensor of bicarbonate, rather than a sensor for CO2. Access to bicarbonate differed in rods and cones of larval salamander, Ambystoma tigrinum, of unknown sex. In rods, bicarbonate entered at the synapse and diffused to the outer segment, where it was removed by Cl--dependent exchange. In contrast, cones generated bicarbonate internally from endogenous CO2 or from exogenous CO2 that was present in extracellular solutions of bicarbonate. Bicarbonate production from both sources of CO2 was blocked by the carbonic anhydrase inhibitor, acetazolamide. Carbonic anhydrase II expression was verified immunohistochemically in cones but not in rods. In addition, cones acquired bicarbonate at their outer segments as well as at their inner segments. The multiple pathways for access in cones may support greater uptake of bicarbonate than in rods and buffer changes in its intracellular concentration.
Collapse
|
21
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
22
|
The regulatory role of the kinase-homology domain in receptor guanylyl cyclases: nothing 'pseudo' about it! Biochem Soc Trans 2018; 46:1729-1742. [PMID: 30420416 DOI: 10.1042/bst20180472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
The availability of genome sequence information and a large number of protein structures has allowed the cataloging of genes into various families, based on their function and predicted biochemical activity. Intriguingly, a number of proteins harbor changes in the amino acid sequence at residues, that from structural elucidation, are critical for catalytic activity. Such proteins have been categorized as 'pseudoenzymes'. Here, we review the role of the pseudokinase (or kinase-homology) domain in receptor guanylyl cyclases. These are multidomain single-pass, transmembrane proteins harboring an extracellular ligand-binding domain, and an intracellular domain composed of a kinase-homology domain that regulates the activity of the associated guanylyl cyclase domain. Mutations that lie in the kinase-homology domain of these receptors are associated with human disease, and either abolish or enhance cGMP production by these receptors to alter downstream signaling events. This raises the interesting possibility that one could identify molecules that bind to the pseudokinase domain and regulate the activities of these receptors, in order to alleviate symptoms in patients harboring these mutations.
Collapse
|
23
|
Russwurm M, Koesling D. Measurement of cGMP-generating and -degrading activities and cGMP levels in cells and tissues: Focus on FRET-based cGMP indicators. Nitric Oxide 2018; 77:44-52. [PMID: 29684551 DOI: 10.1016/j.niox.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
The intracellular messenger molecule cGMP has an established function in the regulation of numerous physiological events. Yet for the identification of further biological cGMP-mediated functions, precise information whether a cGMP response exists in a certain cell type or tissue is mandatory. In this review, the techniques to measure cGMP i.e. cGMP-formation, -degradation or levels are outlined and discussed. As a superior method to measure cGMP, the article focusses on FRET-based cGMP indicators, describes the different cGMP indicators and discusses their advantages and drawbacks. Finally, the successful applications of these cGMP indicators to measure cGMP responses in cells and tissues are outlined and summarized. Hopefully, with the availability of the FRET-based cGMP indicators, the knowledge about the cGMP responses in special cells or tissues is going to increase thereby allowing to assess further cGMP-mediated functional responses and possibly to address their pathophysiology with the available guanylyl cyclase activators, stimulators and PDE inhibitors.
Collapse
Affiliation(s)
- Michael Russwurm
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany.
| | - Doris Koesling
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
24
|
Kandasamy M, Aigner L. Reactive Neuroblastosis in Huntington's Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain. Front Cell Neurosci 2018; 12:37. [PMID: 29593498 PMCID: PMC5854998 DOI: 10.3389/fncel.2018.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/31/2018] [Indexed: 01/19/2023] Open
Abstract
The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington’s disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term “reactive astrogliosis”, we propose to name the observed cellular event “reactive neuroblastosis”. Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.,Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
25
|
Zhou T, Matsunami H. Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell Tissue Res 2017; 372:403-415. [PMID: 28887696 DOI: 10.1007/s00441-017-2682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.,Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
26
|
An Adenosine Receptor for Olfaction in Fish. Curr Biol 2017; 27:1437-1447.e4. [PMID: 28502661 DOI: 10.1016/j.cub.2017.04.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/14/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022]
Abstract
Nucleotides released from food sources into environmental water are supposed to act as feeding cues for many fish species. However, it remains unknown how fish can sensitively detect those nucleotides. Here we discover a novel olfactory mechanism for ATP sensing in zebrafish. Upon entering into the nostril, ATP is efficiently converted into adenosine through enzymatic reactions of two ecto-nucleotidases expressed in the olfactory epithelium. Adenosine subsequently activates a small population of olfactory sensory neurons expressing a novel adenosine receptor A2c that is unique to fishes and amphibians. The information is then transmitted to a single glomerulus in the olfactory bulb and further to four regions in higher olfactory centers. These results provide conclusive evidence for a sophisticated enzyme-linked receptor mechanism underlying detection of ATP as a food-derived attractive odorant linking to foraging behavior that is crucial and common to aquatic lower vertebrates.
Collapse
|
27
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
28
|
Olender T, Keydar I, Pinto JM, Tatarskyy P, Alkelai A, Chien MS, Fishilevich S, Restrepo D, Matsunami H, Gilad Y, Lancet D. The human olfactory transcriptome. BMC Genomics 2016; 17:619. [PMID: 27515280 PMCID: PMC4982115 DOI: 10.1186/s12864-016-2960-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Olfaction is a versatile sensory mechanism for detecting thousands of volatile odorants. Although molecular basis of odorant signaling is relatively well understood considerable gaps remain in the complete charting of all relevant gene products. To address this challenge, we applied RNAseq to four well-characterized human olfactory epithelial samples and compared the results to novel and published mouse olfactory epithelium as well as 16 human control tissues. RESULTS We identified 194 non-olfactory receptor (OR) genes that are overexpressed in human olfactory tissues vs. CONTROLS The highest overexpression is seen for lipocalins and bactericidal/permeability-increasing (BPI)-fold proteins, which in other species include secreted odorant carriers. Mouse-human discordance in orthologous lipocalin expression suggests different mammalian evolutionary paths in this family. Of the overexpressed genes 36 have documented olfactory function while for 158 there is little or no previous such functional evidence. The latter group includes GPCRs, neuropeptides, solute carriers, transcription factors and biotransformation enzymes. Many of them may be indirectly implicated in sensory function, and ~70 % are over expressed also in mouse olfactory epithelium, corroborating their olfactory role. Nearly 90 % of the intact OR repertoire, and ~60 % of the OR pseudogenes are expressed in the olfactory epithelium, with the latter showing a 3-fold lower expression. ORs transcription levels show a 1000-fold inter-paralog variation, as well as significant inter-individual differences. We assembled 160 transcripts representing 100 intact OR genes. These include 1-4 short 5' non-coding exons with considerable alternative splicing and long last exons that contain the coding region and 3' untranslated region of highly variable length. Notably, we identified 10 ORs with an intact open reading frame but with seemingly non-functional transcripts, suggesting a yet unreported OR pseudogenization mechanism. Analysis of the OR upstream regions indicated an enrichment of the homeobox family transcription factor binding sites and a consensus localization of a specific transcription factor binding site subfamily (Olf/EBF). CONCLUSIONS We provide an overview of expression levels of ORs and auxiliary genes in human olfactory epithelium. This forms a transcriptomic view of the entire OR repertoire, and reveals a large number of over-expressed uncharacterized human non-receptor genes, providing a platform for future discovery.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ifat Keydar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Pavlo Tatarskyy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Alkelai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell 2016; 165:1734-1748. [PMID: 27238024 DOI: 10.1016/j.cell.2016.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.
Collapse
Affiliation(s)
- Paul L Greer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Marc Lassance
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | | - Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francis Kei Masuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | |
Collapse
|
31
|
Derby CD, Kozma MT, Senatore A, Schmidt M. Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chem Senses 2016; 41:381-98. [PMID: 27107425 DOI: 10.1093/chemse/bjw057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level.
Collapse
Affiliation(s)
| | | | - Adriano Senatore
- Present address: Biology Department, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
32
|
Zhou Y, Skelton LA, Xu L, Chandler MP, Berthiaume JM, Boron WF. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3. J Am Soc Nephrol 2016; 27:2616-21. [PMID: 26839367 DOI: 10.1681/asn.2015040439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lara A Skelton
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lumei Xu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jessica M Berthiaume
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
33
|
|
34
|
Saraiva LR, Ahuja G, Ivandic I, Syed AS, Marioni JC, Korsching SI, Logan DW. Molecular and neuronal homology between the olfactory systems of zebrafish and mouse. Sci Rep 2015; 5:11487. [PMID: 26108469 PMCID: PMC4480006 DOI: 10.1038/srep11487] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
Studies of the two major olfactory organs of rodents, the olfactory mucosa (OM) and the vomeronasal organ (VNO), unraveled the molecular basis of smell in vertebrates. However, some vertebrates lack a VNO. Here we generated and analyzed the olfactory transcriptome of the zebrafish and compared it to the olfactory transcriptomes of mouse to investigate the evolutionary and molecular relationship between single and dual olfactory systems. Our analyses revealed a high degree of molecular conservation, with orthologs of mouse olfactory cell-specific markers and all but one of their chemosensory receptor classes expressed in the single zebrafish olfactory organ. Zebrafish chemosensory receptor genes are expressed across a large dynamic range and their RNA abundance correlates positively with the number of neurons expressing that RNA. Thus we estimate the relative proportions of neuronal sub-types expressing different chemosensory receptors. Receptor repertoire size drives the absolute abundance of different classes of neurons, but we find similar underlying patterns in both species. Finally, we identified novel marker genes that characterize rare neuronal populations in both mouse and zebrafish. In sum, we find that the molecular and cellular mechanisms underpinning olfaction in teleosts and mammals are similar despite 430 million years of evolutionary divergence.
Collapse
Affiliation(s)
- Luis R Saraiva
- 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom [2] European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Gaurav Ahuja
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - Ivan Ivandic
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - Adnan S Syed
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - John C Marioni
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | | | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
35
|
Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proc Natl Acad Sci U S A 2015; 112:E3525-34. [PMID: 26100886 DOI: 10.1073/pnas.1423808112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called "BAG," "AFD," and "ASE" that respond to CO2 stimuli. Using in vivo Ca(2+) imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca(2+). In contrast, glial sheath cells harboring the sensory endings of C. elegans' major chemosensory neurons exhibit strong and sustained decreases in Ca(2+) in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.
Collapse
|
36
|
Xu Y, Sui X, Guan S, Zhai J, Gao L. Olfactory sensory neuron-mimetic CO2 activated nanofluidic diode with fast response rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1851-1855. [PMID: 25649041 DOI: 10.1002/adma.201405564] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/07/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Yanglei Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Key Laboratory of Beijing Energy, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Duda T, Wen XH, Isayama T, Sharma RK, Makino CL. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity. J Biol Chem 2015; 290:11052-60. [PMID: 25767116 DOI: 10.1074/jbc.m115.650408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 01/13/2023] Open
Abstract
By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.
Collapse
Affiliation(s)
- Teresa Duda
- From the Research Divisions of Biochemistry and Molecular Biology, Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, Pennsylvania 19027 and
| | - Xiao-Hong Wen
- the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114
| | - Tomoki Isayama
- the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114
| | - Rameshwar K Sharma
- From the Research Divisions of Biochemistry and Molecular Biology, Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, Pennsylvania 19027 and
| | - Clint L Makino
- the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
38
|
Affiliation(s)
- Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
39
|
Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H, Bai F, Zhang P, Zhu H, He Y, Luo S, Li L, Luan S. A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 2015; 6:6057. [DOI: 10.1038/ncomms7057] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022] Open
|
40
|
Jiang H, Wang E, Wang J. Gas-breathing polymer film for constructing switchable ionic diodes. RSC Adv 2015. [DOI: 10.1039/c5ra04712a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluidic diode is constructed based on nanopore supported gas-responsive polymer film, which exhibits on/off ratio more than 10 000 under asymmetrical stimulation with pH or gas pairs.
Collapse
Affiliation(s)
- Hong Jiang
- National Engineering Research Center for Colloidal Materials
- Shandong University
- Jinan 250100
- People’s Republic China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jiahai Wang
- National Engineering Research Center for Colloidal Materials
- Shandong University
- Jinan 250100
- People’s Republic China
| |
Collapse
|
41
|
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2535-47. [DOI: 10.1016/j.bbadis.2014.08.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
|
42
|
A novel role for the zinc-finger transcription factor EGL-46 in the differentiation of gas-sensing neurons in Caenorhabditis elegans. Genetics 2014; 199:157-63. [PMID: 25395666 DOI: 10.1534/genetics.114.172049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oxygen (O2) and carbon dioxide (CO2) provoke distinct olfactory behaviors via specialized sensory neurons across metazoa. In the nematode C. elegans, the BAG sensory neurons are specialized to sense changes in both O2 and CO2 levels in the environment. The precise functionality of these neurons is specified by the coexpression of a membrane-bound receptor-type guanylyl cyclase GCY-9 that is required for responses to CO2 upshifts and the soluble guanylyl cyclases GCY-31 and GCY-33 that mediate responses to downshifts in O2. Expression of these gas-sensing molecules in the BAG neurons is partially, although not completely, controlled by ETS-5, an ETS-domain-containing transcription factor, and EGL-13, a Sox transcription factor. We report here the identification of EGL-46, a zinc-finger transcription factor, which regulates BAG gas-sensing fate in partially parallel pathways to ETS-5 and EGL-13. Thereby, three conserved transcription factors collaborate to ensure neuron type-specific identity features of the BAG gas-sensing neurons.
Collapse
|
43
|
Rahman MM, Kerskens CM, Chattarji S, O'Mara SM. Chronic immobilization stress occludes in vivo cortical activation in an animal model of panic induced by carbon dioxide inhalation. Front Behav Neurosci 2014; 8:311. [PMID: 25278852 PMCID: PMC4165356 DOI: 10.3389/fnbeh.2014.00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
Breathing high concentrations of carbon dioxide (CO2) can trigger panic and anxiety in humans. CO2 inhalation has been hypothesized to activate neural systems similar to those underlying fear learning, especially those involving the amygdala. Amygdala activity is also upregulated by stress. Recently, however, a separate pathway has been proposed for interoceptive panic and anxiety signals, as patients exhibited CO2-inhalation induced panic responses despite bilateral lesions of the amygdala. This paradoxical observation has raised the possibility that cortical circuits may underlie these responses. We sought to examine these divergent models by comparing in vivo brain activation in unstressed and chronically-stressed rats breathing CO2. Regional cerebral blood flow measurements using functional Magnetic Resonance Imaging (fMRI) in lightly-anaesthetized rats showed especially strong activation of the somatosensory cortex by CO2 inhalation in the unstressed group. Strikingly, prior exposure to chronic stress occluded this effect on cortical activity. This lends support to recent clinical observations and highlights the importance of looking beyond the traditional focus on limbic structures, such as the hippocampus and amygdala, to investigate a role for cortical areas in panic and anxiety in humans.
Collapse
Affiliation(s)
| | - Christian M Kerskens
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Sumantra Chattarji
- National Center for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
44
|
Pichlo M, Bungert-Plümke S, Weyand I, Seifert R, Bönigk W, Strünker T, Kashikar ND, Goodwin N, Müller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trötschel C, Poetsch A, Kremmer E, Kaupp UB, Körschen HG, Collienne U. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J Cell Biol 2014; 206:541-57. [PMID: 25135936 PMCID: PMC4137060 DOI: 10.1083/jcb.201402027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3',5'-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 10(5) GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces "molecule noise." Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.
Collapse
Affiliation(s)
- Magdalena Pichlo
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Stefanie Bungert-Plümke
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ingo Weyand
- Marine Biological Laboratory, Woods Hole, MA 02543 Institute of Complex Systems (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Timo Strünker
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | - Nachiket Dilip Kashikar
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, England, UK
| | - Normann Goodwin
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543 Babraham Institute, Cambridge CB22 3AT, England, UK
| | - Astrid Müller
- Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Patric Pelzer
- Marine Biological Laboratory, Woods Hole, MA 02543 Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Qui Van
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| | - Clementine Klemm
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum. 44801 Bochum, Germany
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, 81377 München, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, 53175 Bonn, Germany Marine Biological Laboratory, Woods Hole, MA 02543
| | | | | |
Collapse
|
45
|
Sharabi K, Charar C, Friedman N, Mizrahi I, Zaslaver A, Sznajder JI, Gruenbaum Y. The response to high CO2 levels requires the neuropeptide secretion component HID-1 to promote pumping inhibition. PLoS Genet 2014; 10:e1004529. [PMID: 25101962 PMCID: PMC4125093 DOI: 10.1371/journal.pgen.1004529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Carbon dioxide (CO2) is a key molecule in many biological processes; however, mechanisms by which organisms sense and respond to high CO2 levels remain largely unknown. Here we report that acute CO2 exposure leads to a rapid cessation in the contraction of the pharynx muscles in Caenorhabditis elegans. To uncover the molecular mechanisms underlying this response, we performed a forward genetic screen and found that hid-1, a key component in neuropeptide signaling, regulates this inhibition in muscle contraction. Surprisingly, we found that this hid-1-mediated pathway is independent of any previously known pathways controlling CO2 avoidance and oxygen sensing. In addition, animals with mutations in unc-31 and egl-21 (neuropeptide secretion and maturation components) show impaired inhibition of muscle contraction following acute exposure to high CO2 levels, in further support of our findings. Interestingly, the observed response in the pharynx muscle requires the BAG neurons, which also mediate CO2 avoidance. This novel hid-1-mediated pathway sheds new light on the physiological effects of high CO2 levels on animals at the organism-wide level.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Friedman
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Mizrahi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Zaslaver
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
46
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
47
|
Smith ESJ, Martinez-Velazquez L, Ringstad N. A chemoreceptor that detects molecular carbon dioxide. J Biol Chem 2013; 288:37071-81. [PMID: 24240097 DOI: 10.1074/jbc.m113.517367] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animals from diverse phyla possess neurons that are activated by the product of aerobic respiration, CO2. It has long been thought that such neurons primarily detect the CO2 metabolites protons and bicarbonate. We have determined the chemical tuning of isolated CO2 chemosensory BAG neurons of the nematode Caenorhabditis elegans. We show that BAG neurons are principally tuned to detect molecular CO2, although they can be activated by acid stimuli. One component of the BAG transduction pathway, the receptor-type guanylate cyclase GCY-9, suffices to confer cellular sensitivity to both molecular CO2 and acid, indicating that it is a bifunctional chemoreceptor. We speculate that in other animals, receptors similarly capable of detecting molecular CO2 might mediate effects of CO2 on neural circuits and behavior.
Collapse
Affiliation(s)
- Ewan St John Smith
- From the Skirball Institute of Biomolecular Medicine, Molecular Neurobiology Program and Department of Cell Biology, New York University Medical Center, New York, New York 10016 and
| | | | | |
Collapse
|
48
|
Skelton LA, Boron WF. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules. Am J Physiol Renal Physiol 2013; 305:F1747-64. [PMID: 24133121 DOI: 10.1152/ajprenal.00307.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.
Collapse
Affiliation(s)
- Lara A Skelton
- Dept. of Physiology and Biophysics, Case Western Reserve Univ. School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970.
| | | |
Collapse
|
49
|
Kenemuth JK, Hennessy SP, Hanson RJ, Hensler AJ, Coates EL. Investigation of nasal CO₂ receptor transduction mechanisms in wild-type and GC-D knockout mice. Chem Senses 2013; 38:769-81. [PMID: 24122319 DOI: 10.1093/chemse/bjt044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mice. Electro-olfactograms (EOGs) were recorded before and after inhibiting specific steps in the CO₂ transduction pathway with topically applied inhibitors. Inhibition of extracellular carbonic anhydrase (CA) did not significantly affect EOG responses to CO₂ but did decrease EOG responses to several control odorants. Inhibition of intracellular CA or cyclic nucleotide-gated channels attenuated EOG responses to CO₂, confirming the role of these components in CO₂ sensing in mice. We also show that, like canonical OSNs, CO₂-sensitive OSNs depend on Ca²⁺-activated Cl⁻ channels for depolarization of receptor neurons. Lastly, we found that guanylyl cyclase-D knockout mice were still able to respond to CO₂, indicating that other pathways may exist for the detection of low concentrations of nasal CO₂. We discuss these findings as they relate to previous studies on CO₂-sensitive OSNs in mice and other animals.
Collapse
Affiliation(s)
- Jessica K Kenemuth
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335, USA.
| | | | | | | | | |
Collapse
|
50
|
Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT. Carbon dioxide-sensing in organisms and its implications for human disease. Cell Mol Life Sci 2013; 71:831-45. [PMID: 24045706 DOI: 10.1007/s00018-013-1470-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|