1
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Hunt A, Qian V, Olds H, Daveluy S. The Current Clinical Trial Landscape for Hidradenitis Suppurativa: A Narrative Review. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00935-x. [PMID: 37261652 DOI: 10.1007/s13555-023-00935-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a skin disease resulting from chronic, recurrent inflammation around hair follicles, characterized by proinflammatory cytokines such as IL-1, IL-17, IL-23, and TNF-α. While adalimumab, a TNF-α targeting human IgG monoclonal antibody, is the only approved treatment for HS, there are many other therapies being investigated now targeting other key players in inflammatory pathways such as the cytokines listed above, C5a in the complement pathway, and Janus kinase (JAK). This review discusses current clinical trials for biologics and small molecules, procedures, and wound dressings undergoing study in hidradenitis suppurativa.
Collapse
Affiliation(s)
- Amanda Hunt
- Western Michigan University Homer Stryker M.D. School of Medicine, 300 Portage Street, Kalamazoo, MI, 49007, USA.
| | - Victoria Qian
- Wayne State University School of Medicine, Detroit, MI, USA.
| | - Hailey Olds
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven Daveluy
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
4
|
Jarzebska NT, Tusup M, Frei J, Weiss T, Holzinger T, Mellett M, Diken M, Bredl S, Weller M, Speck RF, Kündig TM, Sahin U, Pascolo S. RNA with chemotherapeutic base analogues as a dual-functional anti-cancer drug. Oncoimmunology 2022; 11:2147665. [DOI: 10.1080/2162402x.2022.2147665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Tim Holzinger
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Roberto F. Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
7
|
Sudan R, Fernandes S, Srivastava N, Pedicone C, Meyer ST, Chisholm JD, Engelman RW, Kerr WG. LRBA Deficiency Can Lead to Lethal Colitis That Is Diminished by SHIP1 Agonism. Front Immunol 2022; 13:830961. [PMID: 35603158 PMCID: PMC9116273 DOI: 10.3389/fimmu.2022.830961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Humans homozygous for inactivating LRBA (lipopolysaccharide (LPS)-responsive beige-like anchor) mutations or with compound heterozygous mutations exhibit a spectrum of immune-related pathologies including inflammatory bowel disease (IBD). The cause of this pathology remains undefined. Here we show that disruption of the colon epithelial barrier in LRBA-deficient mice by dextran sulfate sodium (DSS) consumption leads to severe and uniformly lethal colitis. Analysis of bone marrow (BM) chimeras showed that susceptibility to lethal colitis is primarily due to LRBA deficiency in the immune compartment and not the gut epithelium. Further dissection of the immune defect in LRBA-deficient hosts showed that LRBA is essential for the expression of CTLA4 by Treg cells and IL22 and IL17 expression by ILC3 cells in the large intestine when the gut epithelium is compromised by DSS. We further show that SHIP1 agonism partially abrogates the severity and lethality of DSS-mediated colitis. Our findings indicate that enteropathy induced by LRBA deficiency has multiple causes and that SHIP1 agonism can partially abrogate the inflammatory milieu in the gut of LRBA-deficient hosts.
Collapse
Affiliation(s)
- Raki Sudan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chiara Pedicone
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Shea T Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - Robert W Engelman
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, United States.,Department of Pediatrics, University of South Florida, Tampa, FL, United States.,H. Lee Moffitt Comprehensive Cancer Center & Research Institute, University of South Florida, Tampa, FL, United States
| | - William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Chemistry, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|
9
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Leuti A, Talamonti E, Gentile A, Tiberi M, Matteocci A, Fresegna D, Centonze D, Chiurchiù V. Macrophage Plasticity and Polarization Are Altered in the Experimental Model of Multiple Sclerosis. Biomolecules 2021; 11:biom11060837. [PMID: 34200023 PMCID: PMC8229971 DOI: 10.3390/biom11060837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS is characterized by infiltrations of leukocytes such as T and B lymphocytes and macrophages. Macrophages have been identified as major effectors of inflammation and demyelination in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the activation and heterogeneity of macrophages in MS has been poorly investigated. Thus, in this study, we evaluated M1 and M2 macrophages immunophenotype from EAE and control mice by analyzing over 30 surface and intracellular markers through polychromatic flow cytometry, qRT-PCR, and ELISA assay. We showed that M1 macrophages possessed a higher proinflammatory profile in EAE compared to control mice, since they expressed higher levels of activation/co-stimulatory markers (iNOS, CD40, and CD80) and cytokines/chemokines (IL-6, IL-12, CCL2, and CXCL10), whereas M2 lost their M2-like phenotype by showing a decreased expression of their signature markers CD206 and CCL22, as well as a concomitant upregulation of several M1 makers. Furthermore, immunization of M1 and M2 macrophages with MOG35-55 led to a significant hyperactivation of M1 and a concomitant shift of anti-inflammatory M2 to pro-inflammatory M1 macrophages. Overall, we provide evidence for a phenotypic alteration of M1/M2 balance during MS, which can be of crucial importance not only for a better understanding of the immunopathology of this neurodegenerative disease but also to potentially develop new macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuela Talamonti
- Department of Molecular Biosciences, The Wenner-Gren Institute, University of Stockholm, 114 Stockholm, Sweden;
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.G.); (D.F.)
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.G.); (D.F.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (M.T.); (A.M.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: or ; Tel.: +39-06-501703210
| |
Collapse
|
11
|
Wang Q, Kim SY, Matsushita H, Wang Z, Pandyarajan V, Matsuda M, Ohashi K, Tsuchiya T, Roh YS, Kiani C, Zhao Y, Chan M, Devkota S, Lu SC, Hayashi T, Carson DA, Seki E. Oral administration of PEGylated TLR7 ligand ameliorates alcohol-associated liver disease via the induction of IL-22. Proc Natl Acad Sci U S A 2021; 118:e2020868118. [PMID: 33443222 PMCID: PMC7817133 DOI: 10.1073/pnas.2020868118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective therapies for alcohol-associated liver disease (ALD) are limited; therefore, the discovery of new therapeutic agents is greatly warranted. Toll-like receptor 7 (TLR7) is a pattern recognition receptor for single-stranded RNA, and its activation prevents liver fibrosis. We examined liver and intestinal damage in Tlr7-/- mice to determine the role of TLR7 in ALD pathogenesis. In an alcoholic hepatitis (AH) mouse model, hepatic steatosis, injury, and inflammation were induced by chronic binge ethanol feeding in mice, and Tlr7 deficiency exacerbated these effects. Because these results demonstrated that endogenous TLR7 signaling activation is protective in the AH mouse model, we hypothesized that TLR7 activation may be an effective therapeutic strategy for ALD. Therefore, we investigated the therapeutic effect of TLR7 agonistic agent, 1Z1, in the AH mouse model. Oral administration of 1Z1 was well tolerated and prevented intestinal barrier disruption and bacterial translocation, which thus suppressed ethanol-induced hepatic injury, steatosis, and inflammation. Furthermore, 1Z1 treatment up-regulated the expression of antimicrobial peptides, Reg3b and Reg3g, in the intestinal epithelium, which modulated the microbiome by decreasing and increasing the amount of Bacteroides and Lactobacillus, respectively. Additionally, 1Z1 up-regulated intestinal interleukin (IL)-22 expression. IL-22 deficiency abolished the protective effects of 1Z1 in ethanol-induced liver and intestinal damage, suggesting intestinal IL-22 as a crucial mediator for 1Z1-mediated protection in the AH mouse model. Collectively, our results indicate that TLR7 signaling exerts protective effects in the AH mouse model and that a TLR7 ligand, 1Z1, holds therapeutic potential for the treatment of AH.
Collapse
Affiliation(s)
- Qinglan Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Hiroshi Matsushita
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Zhijun Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Vijay Pandyarajan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Koichiro Ohashi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Yoon Seok Roh
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Calvin Kiani
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Yutong Zhao
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Michael Chan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Suzanne Devkota
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Dennis A Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
| |
Collapse
|
12
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving H. Analysis of interleukin-1 receptor associated kinase-3 (IRAK3) function in modulating expression of inflammatory markers in cell culture models: A systematic review and meta-analysis. PLoS One 2020; 15:e0244570. [PMID: 33382782 PMCID: PMC7774834 DOI: 10.1371/journal.pone.0244570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND IRAK3 is a critical modulator of inflammation in innate immunity. IRAK3 is associated with many inflammatory diseases, including sepsis, and is required in endotoxin tolerance to maintain homeostasis of inflammation. The impact of IRAK3 on inflammatory markers such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell culture models remains controversial. OBJECTIVE To analyse temporal effects of IRAK3 on inflammatory markers after one- or two-challenge interventions in cell culture models. METHODS A systematic search was performed to identify in vitro cell studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data were available. Comparisons of outcome measures were performed between different cell lines and human and mouse primary cells. RESULTS The literature search identified 7766 studies for screening. After screening titles, abstracts and full-texts, a total of 89 studies were included in the systematic review. CONCLUSIONS The review identifies significant effects of IRAK3 on decreasing NF-κB DNA binding activity in cell lines, TNF-α protein level at intermediate time intervals (4h-15h) in cell lines or at long term intervals (16h-48h) in mouse primary cells following one-challenge. The patterns of TNF-α protein expression in human cell lines and human primary cells in response to one-challenge are more similar than in mouse primary cells. Meta-analyses confirm a negative correlation between IRAK3 and inflammatory cytokine (IL-6 and TNF-α) expression after two-challenges.
Collapse
Affiliation(s)
- Trang Hong Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
13
|
Abdelwahab A, Palosaari S, Abdelwahab SA, Rifaai RA, El-Tahawy NF, Saber EA, Nousiainen T, Valkealahti M, Huhtakangas J, Karttunen TJ, Lehenkari P. Differential synovial tissue expression of TLRs in seropositive and seronegative rheumatoid arthritis: A preliminary report. Autoimmunity 2020; 54:23-34. [PMID: 33377396 DOI: 10.1080/08916934.2020.1864729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are known to have an important role in triggering the innate immune response and in priming antigen-specific adaptive immunity and inflammation. The differences in synovial tissue expression of the TLRs between seronegative and seropositive rheumatoid arthritis (RA) were examined from 9 seropositive RA, 5 seronegative RA and 4 osteoarthritis (OA) patients. Synovitis status was assessed using Krenn's scoring and TLR 1-9 expression by immunohistochemistry. Tissue citrulline content was analysed by HPLC method. In RA TLR expression was generally higher than in OA. TLR2 expression was higher in both seronegative and seropositive RA compared to OA. TLR 1, 4 and 8 expressions were higher in seropositive RA than in seronegative RA or in OA. For TLRs 3, 5, 6, 7 and 9 local differences of expression were found between groups. TLR 1-9 expression correlated with the synovitis grade. No statistical difference was found in synovial tissue citrulline content between the groups. In seropositive RA, the TLR repertoire in the synovial tissue differs from seronegative RA and could explain differences in disease outcomes. The high expression of protein sensing (TLR1, TLR2 and TLR4) and nucleic acid sensing TLRs (TLR7, TLR8 and TLR9) in the seropositive RA could make the synovium primed for reacting to citrullinated proteins and nucleic acids that could be released to extracellular space in formation of neutrophil extracellular traps. This reactivity could be augmented by Fc receptor activation by anti-citrullinated protein antibody immunocomplexes associated with seropositive RA.
Collapse
Affiliation(s)
- Alzahraa Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt.,Anatomy and Cell Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Soha Abdelkawy Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, delegated to Deraya University, New Minia, Egypt
| | - Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nashwa Fathy El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, delegated to Deraya University, New Minia, Egypt
| | - Tomi Nousiainen
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | | | - Johanna Huhtakangas
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland.,Rheumatology Unit, Department of Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, Cancer and Translational Medicine Medical Research Unit, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
15
|
Vohidov F, Milling LE, Chen Q, Zhang W, Bhagchandani S, Nguyen HVT, Irvine DJ, Johnson JA. ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. Chem Sci 2020; 11:5974-5986. [PMID: 34094088 PMCID: PMC8159417 DOI: 10.1039/d0sc02611e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/29/2022] Open
Abstract
Bottlebrush copolymers are a versatile class of macromolecular architectures with broad applications in the fields of drug delivery, self-assembly, and polymer networks. Here, the modular nature of graft-through ring-opening metathesis polymerization (ROMP) is exploited to synthesize "ABC" triblock bottlebrush copolymers (TBCs) from polylactic acid (PLA), polyethylene glycol (PEG), and poly(N-isopropylacrylamide) (PNIPAM) macromonomers. Due to the hydrophobicity of their PLA domains, these TBCs self-assemble in aqueous media at room temperature to yield uniform ∼100 nm micelles that can encapsulate a wide range of therapeutic agents. Heating these micellar solutions above the lower critical solution temperature (LCST) of PNIPAM (∼32 °C) induces the rapid formation of multi-compartment hydrogels with PLA and PNIPAM domains acting as physical crosslinks. Following the synthesis and characterization of these materials in vitro, TBC micelles loaded with various biologically active small molecules were investigated as injectable hydrogels for sustained drug release in vivo. Specifically, intratumoral administration of TBCs containing paclitaxel and resiquimod-the latter a potent Toll-like receptor (TLR) 7/8 agonist-into mice bearing subcutaneous CT26 tumors resulted in a significantly enhanced therapeutic index compared to the administration of these two drugs alone. This effect is attributed to the TBC hydrogel maintaining a high local drug concentration, thus reducing systemic immune activation and local inflammation. Collectively, this work represents, to our knowledge, the first example of thermally-responsive TBCs designed for multi-compartment hydrogel formation, establishing these materials as versatile scaffolds for self-assembly and drug delivery.
Collapse
Affiliation(s)
- Farrukh Vohidov
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
| | - Lauren E Milling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Qixian Chen
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
| | - Sachin Bhagchandani
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
| | - Hung V-T Nguyen
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology Massachusetts 02139 USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
16
|
When rubber meets the road: how innate features of adaptive immune cells play critical roles in transplant alloimmunity. Curr Opin Organ Transplant 2020; 24:659-663. [PMID: 31577597 DOI: 10.1097/mot.0000000000000706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Studies on adaptive cells have largely focused on features that are specific to adaptive immunity. However, adaptive cells utilize innate cell features to modulate their responses, and this area of T and B-cell biology is understudied. This review will highlight recent work done to understand how innate features of adaptive immune cells modulate alloimmunity. RECENT FINDINGS Over the past year, research has shown that T-cell-expressed danger-associated molecular patterns, Toll-like receptors, complement receptors, and Fc receptors regulate T-cell alloimmunity in a cell-intrinsic manner. Further, IL-17 and p40 of IL-12 have been implicated in the migration of T cells into allografts. Lastly, innate B cells, specifically B1 cells, have been shown to produce clinically relevant autoantibody associated with poor graft outcome. SUMMARY These data provide evidence that innate features are utilized by adaptive immune cells to control adaptive alloimmunity.
Collapse
|
17
|
Cho KHT, Zeng N, Anekal PV, Xu B, Fraser M. Effects of delayed intraventricular TLR7 agonist administration on long-term neurological outcome following asphyxia in the preterm fetal sheep. Sci Rep 2020; 10:6904. [PMID: 32327682 PMCID: PMC7181613 DOI: 10.1038/s41598-020-63770-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the preterm brain, accumulating evidence suggests toll-like receptors (TLRs) are key mediators of the downstream inflammatory pathways triggered by hypoxia-ischemia (HI), which have the potential to exacerbate or ameliorate injury. Recently we demonstrated that central acute administration of the TLR7 agonist Gardiquimod (GDQ) confers neuroprotection in the preterm fetal sheep at 3 days post-asphyxial recovery. However, it is unknown whether GDQ can afford long-term protection. To address this, we examined the long-term effects of GDQ. Briefly, fetal sheep (0.7 gestation) received sham asphyxia or asphyxia induced by umbilical cord occlusion, and were studied for 7 days recovery. Intracerebroventricular (ICV) infusion of GDQ (total dose 3.34 mg) or vehicle was performed from 1-4 hours after asphyxia. GDQ was associated with a robust increase in concentration of tumor necrosis factor-(TNF)-α in the fetal plasma, and interleukin-(IL)-10 in both the fetal plasma and cerebrospinal fluid. GDQ did not significantly change the number of total and immature/mature oligodendrocytes within the periventricular and intragyral white matter. No changes were observed in astroglial and microglial numbers and proliferating cells in both white matter regions. GDQ increased neuronal survival in the CA4 region of the hippocampus, but was associated with exacerbated neuronal injury within the caudate nucleus. In conclusion, our data suggest delayed acute ICV administration of GDQ after severe HI in the developing brain may not support long-term neuroprotection.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Praju V Anekal
- Biomedical Imaging Research Unit, The University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- The Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518000, People's Republic of China
| | - Mhoyra Fraser
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc Natl Acad Sci U S A 2019; 116:26779-26787. [PMID: 31822606 PMCID: PMC6936674 DOI: 10.1073/pnas.1910072116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sex differences are naturally occurring disease modifiers that, if understood, could lead to novel targets for drug development. Autoimmune diseases are more prevalent in women than in men, and sex differences in immune responses have been shown in humans and mice. Here, we discover a global parent-of-origin difference in DNA methylation on the X chromosome that affects gene expression in activated CD4+ T lymphocytes. The paternal X has more methylation than the maternal X, with higher expression of X genes in XY cells since they only express from the maternal X. Thus, parent-of-origin differences in DNA methylation of X genes can play a role in sex differences in immune responses. Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the “four core genotypes” model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.
Collapse
|
19
|
Emami J, Ansarypour Z. Receptor targeting drug delivery strategies and prospects in the treatment of rheumatoid arthritis. Res Pharm Sci 2019; 14:471-487. [PMID: 32038727 PMCID: PMC6937749 DOI: 10.4103/1735-5362.272534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, is characterized by cartilage damage, bone tissue destruction, morphological changes in synovial fluids, and synovial joint inflammation. The inflamed synovial tissue has potential for passive and active targeting because of enhanced permeability and retention effect and the existence of RA synovial macrophages and fibroblasts that selectively express surface receptors such as folate receptor β, CD44 and integrin αVβ. Although there are numerous interventions in RA treatment, they are not safe and effective. Therefore, it is important to develop new drug or drug delivery systems that specifically targets inflamed/swollen joints but attenuates other possible damages to healthy tissues. Recently some receptors such as toll-like receptors (TLRs), the nucleotide-binding oligomerization domain-like receptors, and Fc-γ receptor have been identified in synovial tissue and immune cells that are involved in induction or suppression of arthritis. Analysis of the TLR pathway has moreover suggested new insights into the pathogenesis of RA. In the present paper, we have reviewed drug delivery strategies based on receptor targeting with novel ligand-anchored carriers exploiting CD44, folate and integrin αVβ as well as TLRs expressed on synovial monocytes and macrophages and antigen presenting cells, for possible active targeting in RA. TLRs could not only open a new horizon for developing new drugs but also their antagonists or humanized monoclonal antibodies that block TLRS specially TLR4 and TLR9 signaling could be used as targeting agents to antigen presenting cells and dendritic cells. As a conclusion, common conventional receptors and multifunctional ligands that arte involved in targeting receptors or developing nanocarriers with appropriate ligands for TLRs can provide profoundly targeting drug delivery systems for the effective treatment of RA.
Collapse
Affiliation(s)
- Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Zahra Ansarypour
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
20
|
Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol 2019; 10:2450. [PMID: 31681325 PMCID: PMC6804373 DOI: 10.3389/fimmu.2019.02450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The elimination of both cellular and tissue latent reservoirs is a challenge toward a successful HIV cure. "Shock and Kill" are among the therapeutic strategies that have been more extensively studied to target these reservoirs. These strategies are aimed toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune system, including NK and CD8 T cells, or by viral cytopathic mechanisms. Numerous LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR) agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that recognize different pathogen-associated molecular patterns. TLRs are present in several cell types, including CD4 T cells, the cell compartment that harbors the majority of the latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase immune activation and promote an antiviral response. These combined properties make TLR agonists unique among the different LRAs characterized to date. Additionally, some of these agonists have shown promise toward finding an HIV cure in animal models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are FDA-approved TLR agonists that are currently being investigated for cancer therapy and other diseases. All these has prompted clinical trials using TLR agonists either alone or in combination toward HIV eradication approaches. In this review, we provide an extensive characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication strategies and the mechanism behind how TLR agonists target both cellular and tissue HIV reservoirs.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, The University of Utah, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
21
|
Excessive CD11c +Tbet + B cells promote aberrant T FH differentiation and affinity-based germinal center selection in lupus. Proc Natl Acad Sci U S A 2019; 116:18550-18560. [PMID: 31451659 DOI: 10.1073/pnas.1901340116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response-a process critical for antibody affinity maturation-is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+ age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ ABCs and deregulated TFH cell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ ABC differentiation, and blocking CD11c+Tbet+ ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFH cell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.
Collapse
|
22
|
Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep. Sci Rep 2019; 9:9562. [PMID: 31267031 PMCID: PMC6606639 DOI: 10.1038/s41598-019-45872-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Preterm brain injury is highly associated with inflammation, which is likely related in part to sterile responses to hypoxia-ischemia. We have recently shown that neuroprotection with inflammatory pre-conditioning in the immature brain is associated with induction of toll-like receptor 7 (TLR7). We therefore tested the hypothesis that central administration of a synthetic TLR7 agonist, gardiquimod (GDQ), after severe hypoxia-ischemia in preterm-equivalent fetal sheep would improve white and gray matter recovery. Fetal sheep at 0.7 of gestation received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 minutes, followed by a continuous intracerebroventricular infusion of GDQ or vehicle from 1 to 4 hours (total dose 1.8 mg/kg). Sheep were killed 72 hours after asphyxia for histology. GDQ significantly improved survival of immature and mature oligodendrocytes (2′,3′-cyclic-nucleotide 3′-phosphodiesterase, CNPase) and total oligodendrocytes (oligodendrocyte transcription factor 2, Olig-2) within the periventricular and intragyral white matter. There were reduced numbers of cells showing cleaved caspase-3 positive apoptosis and astrogliosis (glial fibrillary acidic protein, GFAP) in both white matter regions. Neuronal survival was increased in the dentate gyrus, caudate and medial thalamic nucleus. Central infusion of GDQ was associated with a robust increase in fetal plasma concentrations of the anti-inflammatory cytokines, interferon-β (IFN-β) and interleukin-10 (IL-10), with no significant change in the concentration of the pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α). In conclusion, delayed administration of the TLR7 agonist, GDQ, after severe hypoxia-ischemia in the developing brain markedly ameliorated white and gray matter damage, in association with upregulation of anti-inflammatory cytokines. These data strongly support the hypothesis that modulation of secondary inflammation may be a viable therapeutic target for injury of the preterm brain.
Collapse
|
23
|
Rohani MG, Dimitrova E, Beppu A, Wang Y, Jefferies CA, Parks WC. Macrophage MMP10 Regulates TLR7-Mediated Tolerance. Front Immunol 2018; 9:2817. [PMID: 30564235 PMCID: PMC6288447 DOI: 10.3389/fimmu.2018.02817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Using an in vivo model of tolerance to TLR7-induced skin inflammation, we found a critical role for macrophage-derived MMP10 in mediating immune hypo-responsiveness. Cutaneous exposure to Imiquimod (IMQ), a TLR7 agonist, induced acute expression of pro-inflammatory factors (IL1β, IL6, CXCL1) and neutrophil influx equally in both wildtype and Mmp10 -/- mice. However, whereas subsequent exposure (11 and 12 days later) to IMQ led to marked abrogation of pro-inflammatory factor expression in wildtype mice, Mmp10 -/- mice responded similarly as they did to the first application. In addition, the second exposure led to increased expression of negative regulators of TLR signaling (TNFAIP3, IRAK3) and immunosuppressive cytokines (IL10, TGFβ1) in wildtype mice but not in Mmp10 -/- mice. In vitro studies demonstrated that prior exposure of IMQ to bone marrow-derived macrophages (BMDM) made wildtype cells refractory to subsequent stimulation but did not for Mmp10 -/- macrophages. These findings expand the critical roles MMP10 plays in controlling macrophage activation to indicate that the development of immune tolerance to TLR7 ligand is dependent on this macrophage-derived proteinase.
Collapse
Affiliation(s)
- Maryam G Rohani
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Elizabeth Dimitrova
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Andrew Beppu
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ying Wang
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline A Jefferies
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
24
|
Salvi V, Gianello V, Busatto S, Bergese P, Andreoli L, D'Oro U, Zingoni A, Tincani A, Sozzani S, Bosisio D. Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7. JCI Insight 2018; 3:98204. [PMID: 29769437 DOI: 10.1172/jci.insight.98204] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 12/28/2022] Open
Abstract
The excessive production of type I IFNs is a hallmark and a main pathogenic mechanism of many autoimmune diseases, including systemic lupus erythematosus (SLE). In these pathologies, the sustained secretion of type I IFNs is dependent on the improper activation of plasmacytoid DCs (pDCs) by self-nucleic acids. However, the nature and origin of pDC-activating self-nucleic acids is still incompletely characterized. Here, we report that exosomes isolated from the plasma of SLE patients can activate the secretion of IFN-α by human blood pDCs in vitro. This activation requires endosomal acidification and is recapitulated by microRNAs isolated from exosomes, suggesting that exosome-delivered microRNAs act as self-ligands of innate single-stranded endosomal RNA sensors. By using synthetic microRNAs, we identified an IFN induction motif that is responsible for the TLR7-dependent activation, maturation, and survival of human pDCs. These findings identify exosome-delivered microRNAs as potentially novel TLR7 endogenous ligands able to induce pDC activation in SLE patients. Therefore, microRNAs may represent novel pathogenic mediators in the onset of autoimmune reactions and potential therapeutic targets in the treatment of type I IFN-mediated diseases.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Italian Center for Colloid and Surface Science - CSGI, Firenze, Italy
| | - Laura Andreoli
- Rheumatology and Clinical Immunology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Alessandra Zingoni
- Department of Molecular Medicine-Pasteur Italia Laboratory, Sapienza University of Rome, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Nishii N, Tachinami H, Kondo Y, Xia Y, Kashima Y, Ohno T, Nagai S, Li L, Lau W, Harada H, Azuma M. Systemic administration of a TLR7 agonist attenuates regulatory T cells by dendritic cell modification and overcomes resistance to PD-L1 blockade therapy. Oncotarget 2018; 9:13301-13312. [PMID: 29568358 PMCID: PMC5862579 DOI: 10.18632/oncotarget.24327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/19/2018] [Indexed: 12/30/2022] Open
Abstract
Research on immune checkpoint blockade therapy has made great progress in cancer immunotherapy, but the number of patients who benefit from this therapy remains limited. In this study, we examined the effects of monotherapy with systemic low-dose resiquimod, a synthesized TLR7 agonist, and examined its combined effects with PD-L1 blockade in two PD-L1 blockade-resistant tumor models (SCCVII and Colon 26). Resiquimod monotherapy in SCCVII tumors, representing impaired CD8+ T cell function and accelerated regulatory T cells (Tregs) within the tumors, efficiently reduced tumor growth with more recruitment of CD8+ T cells and a reduction of Treg. The results of resiquimod monotherapy in Colon 26, representing impaired Treg recruitment, were inferior to that in SCCVII. Combined resiquimod treatment with PD-L1 blockade exerted clear additional effects, as it was associated with reduced tumor size, attenuation of Tregs, and an increased ratio of CD8+ T cells/Tregs in both tumors. Systemic administration of low-dose resiquimod induced a transient and rapid activation of plasmacytoid and conventional dendritic cells, resulting in enhanced priming of T cells in regional lymph nodes. Experiments with more limited doses of resiquimod that did not yield beneficial effects after single treatment, showed additional effects to PD-L1 blockade and comparable antitumor effects when the frequency of anti-PD-L1 therapy was decreased. Our results suggest that systemic administration of low-dose resiquimod is useful as a companion drug to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Naoto Nishii
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidetake Tachinami
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Kondo
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yulong Xia
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihisa Kashima
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigenori Nagai
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Lixin Li
- Birdie Biopharmaceuticals Inc., Iselin, NJ, USA
| | - Walter Lau
- Birdie Biopharmaceuticals Inc., Iselin, NJ, USA
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
26
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Chartrand K, Lebel MÈ, Tarrab E, Savard P, Leclerc D, Lamarre A. Efficacy of a Virus-Like Nanoparticle As Treatment for a Chronic Viral Infection Is Hindered by IRAK1 Regulation and Antibody Interference. Front Immunol 2018; 8:1885. [PMID: 29354118 PMCID: PMC5758502 DOI: 10.3389/fimmu.2017.01885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
Although vaccination has been an effective way of preventing infections ever since the eighteenth century, the generation of therapeutic vaccines and immunotherapies is still a work in progress. A number of challenges impede the development of these therapeutic approaches such as safety issues related to the administration of whole pathogens whether attenuated or inactivated. One safe alternative to classical vaccination methods gaining recognition is the use of nanoparticles, whether synthetic or naturally derived. We have recently demonstrated that the papaya mosaic virus (PapMV)-like nanoparticle can be used as a prophylactic vaccine against various viral and bacterial infections through the induction of protective humoral and cellular immune responses. Moreover, PapMV is also very efficient when used as an immune adjuvant in an immunotherapeutic setting at slowing down the growth of aggressive mouse melanoma tumors in a type I interferon (IFN-I)-dependent manner. In the present study, we were interested in exploiting the capacity of PapMV of inducing robust IFN-I production as treatment for the chronic viral infection model lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl13). Treatment of LCMV Cl13-infected mice with two systemic administrations of PapMV was ineffective, as shown by the lack of changes in viral titers and immune response to LCMV following treatment. Moreover, IFN-α production following PapMV administration was almost completely abolished in LCMV-infected mice. To better isolate the mechanisms at play, we determined the influence of a pretreatment with PapMV on secondary PapMV administration, therefore eliminating potential variables emanating from the infection. Pretreatment with PapMV led to the same outcome as an LCMV infection in that IFN-α production following secondary PapMV immunization was abrogated for up to 50 days while immune activation was also dramatically impaired. We showed that two distinct and overlapping mechanisms were responsible for this outcome. While short-term inhibition was partially the result of interleukin-1 receptor-associated kinase 1 degradation, a crucial component of the toll-like receptor 7 signaling pathway, long-term inhibition was mainly due to interference by PapMV-specific antibodies. Thus, we identified a possible pitfall in the use of virus-like particles for the systemic treatment of chronic viral infections and discuss mitigating alternatives to circumvent these potential problems.
Collapse
Affiliation(s)
- Karine Chartrand
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Marie-Ève Lebel
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Esther Tarrab
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Pierre Savard
- Infectious Disease Research Center, Department of Microbiology, Infectiology and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Denis Leclerc
- Infectious Disease Research Center, Department of Microbiology, Infectiology and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| |
Collapse
|
28
|
Zogas N, Karponi G, Iordanidis F, Malasidis S, Paraskevas V, Papadopoulou A, Scouras ZG, Anagnostopoulos A, Yannaki E. The ex vivo toll-like receptor 7 tolerance induction in donor lymphocytes prevents murine acute graft-versus-host disease. Cytotherapy 2017; 20:149-164. [PMID: 29150086 DOI: 10.1016/j.jcyt.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Acute graft-versus-host disease (aGVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation, mediated by alloreactive donor T cells. Toll-like receptors (TLRs), a family of conserved pattern-recognition receptors (PRRs), represent key players in donors' T-cell activation during aGVHD; however, a regulatory, tolerogenic role for certain TLRs has been recognized in a different context. We investigated whether the ex vivo-induced TLR-2,-4,-7 tolerance in donor cells could prevent alloreactivity in a mismatched transplantation model. METHODS TLR-2,-4,-7 tolerance was induced in mouse splenocytes, after stimulation with low doses of corresponding ligands. Cellular and molecular changes of the TLR-tolerant splenocytes and purified T cells were assessed by immunophenotypic and gene expression analyses. Incidence of aGVHD was evaluated by the clinical score and survival as well as histopathology of target tissues. RESULTS Only the R848-induced TLR7 tolerance prevented aGVHD. The TLR7 ligand-induced tolerance lasted for a critical post-transplant period and was associated with distinct cellular and molecular signatures characterized by induction of regulatory T cells, reduced alloreactivity and balanced regulation of inflammatory signaling and innate immune responses. The TLR7-tolerant T cells preserved the immunological memory and generated in vitro virus-specific T cells upon antigen stimulation. The anti-aGVHD tolerization effect was direct and specific to TLR7 and required the receptor-ligand interaction; TLR7-/- T cells isolated from B6 TLR7-/- mice presented a distinct gene expression profile but failed to prevent aGVHD. DISCUSSION We propose an effective and clinically applicable ex vivo approach for aGVHD prevention through a transient and reversible immune reprogramming exerted by TLR7-tolerant donor lymphocytes.
Collapse
Affiliation(s)
- Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Fotios Iordanidis
- Cellular Pathology Laboratory, Cheltenham General Hospital, Cheltenham, United Kingdom
| | - Stylianos Malasidis
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Vasilios Paraskevas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Zaharias George Scouras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
29
|
Schmidt T, Lorenz N, Raker VK, Schmidgen MI, Mahnke K, Enk A, Roth J, Steinbrink K. Allergen-Specific Low Zone Tolerance Is Independent of MRP8/14-, TLR4-, TLR7-, and TLR9-Mediated Immune Processes. J Invest Dermatol 2017; 138:452-455. [PMID: 28947357 DOI: 10.1016/j.jid.2017.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/19/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Talkea Schmidt
- Division of Experimental and Translational Immunodermatology, Department of Dermatology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany; Institute for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Nadine Lorenz
- Division of Experimental and Translational Immunodermatology, Department of Dermatology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany; Institute for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Verena K Raker
- Division of Experimental and Translational Immunodermatology, Department of Dermatology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany; Institute for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Maria I Schmidgen
- Division of Experimental and Translational Immunodermatology, Department of Dermatology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany; Institute for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Kerstin Steinbrink
- Division of Experimental and Translational Immunodermatology, Department of Dermatology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany; Institute for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| |
Collapse
|
30
|
Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J Virol 2017; 91:JVI.01050-17. [PMID: 28724768 DOI: 10.1128/jvi.01050-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic murine challenge models. Combining the TLR4 and TLR7 ligands balances Th1 and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. Here, we demonstrate that the protective response induced in mice by this combined adjuvant is dependent upon TLR4 and TLR7 signaling via myeloid differentiation primary response gene 88 (MyD88), indicating that the adjuvants function in vivo via their known receptors, with negligible off-target effects, to induce protective immunity. The combined adjuvant acts via MyD88 in both bone marrow-derived and non-bone marrow-derived radioresistant cells to induce hemagglutinin-specific antibodies and protect mice against influenza virus challenge. The protective efficacy generated by immunization with this adjuvant and recombinant hemagglutinin antigen is transferable with serum from immunized mice to recipient mice in a homologous, but not a heterologous, H1N1 viral challenge model. Depletion of CD4+ cells after an established humoral response in immunized mice does not impair protection from a homologous challenge; however, it does significantly impair recovery from a heterologous challenge virus, highlighting an important role for vaccine-induced CD4+ cells in cross-protective vaccine efficacy. The combination of the two TLR agonists allows for significant dose reductions of each component to achieve a level of protection equivalent to that afforded by either single agent at its full dose.IMPORTANCE Development of novel adjuvants is needed to enhance immunogenicity to provide better protection from seasonal influenza virus infection and improve pandemic preparedness. We show here that several dose combinations of synthetic TLR4 and TLR7 ligands are potent adjuvants for recombinant influenza virus hemagglutinin antigen induction of humoral and cellular immunity against viral challenges. The components of the combined adjuvant work additively to enable both antigen and adjuvant dose sparing while retaining efficacy. Understanding an adjuvant's mechanism of action is a critical component for preclinical safety evaluation, and we demonstrate here that a combined TLR4 and TLR7 adjuvant signals via the appropriate receptors and the MyD88 adaptor protein. This novel adjuvant combination contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
|
31
|
Petes C, Odoardi N, Gee K. The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome. Front Immunol 2017; 8:1075. [PMID: 28928743 PMCID: PMC5591332 DOI: 10.3389/fimmu.2017.01075] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptor (TLR)-7 is an endosomal innate immune sensor capable of detecting single-stranded ribonucleic acid. TLR7-mediated induction of type I interferon and other inflammatory cytokine production is important in antiviral immune responses. Furthermore, altered TLR7 expression levels are implicated in various autoimmune disorders, indicating a key role for this receptor in modulating inflammation. This review is focused on the regulation of TLR7 expression and localization compared to that of the other endosomal TLRs: TLR3, 8, and 9. Endosomal TLR localization is a tightly controlled and intricate process with some shared components among various TLRs. However, TLR-specific mechanisms must also be in place in order to regulate the induction of pathogen- and cell-specific responses. It is known that TLR7 is shuttled from the endoplasmic reticulum to the endosome via vesicles from the Golgi. Several chaperone proteins are required for this process, most notably uncoordinated 93 homolog B1 (Caenorhabditis elegans), recently identified to also be involved in the localization of the other endosomal TLRs. Acidification of the endosome and proteolytic cleavage of TLR7 are essential for TLR7 signaling in response to ligand binding. Cleavage of TLR7 has been demonstrated to be accomplished by furin peptidases in addition to cathepsins and asparagine endopeptidases. Moreover, triggering receptor expressed on myeloid cells like 4, a protein associated with antigen presentation and apoptosis in immune cells, has been implicated in the amplification of TLR7 signaling. Understanding these and other molecular mechanisms controlling TLR7 expression and trafficking will give insight into the specific control of TLR7 activity compared to the other endosomal TLRs.
Collapse
Affiliation(s)
- Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
32
|
Maerz JK, Steimle A, Lange A, Bender A, Fehrenbacher B, Frick JS. Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes 2017; 9:1-12. [PMID: 28686482 PMCID: PMC5914909 DOI: 10.1080/19490976.2017.1344810] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Gram negative intestinal symbiont Bacteroides vulgatus mpk is able to prevent from induction of colonic inflammation in Rag1-/- mice and promotes immune balance in Il2-/- mice. These inflammation-silencing effects are associated with B. vulgatus mpk-mediated induction of semi-mature dendritic cells, especially in the colonic lamina propria (cLP). However the beneficial interaction of bacteria with host immune cells is limited due to the existence of a large mucus layer covering the intestinal epithelium. How can intestinal bacteria overcome this physical barrier and contact the host immune system? One mechanism is the production of outer membrane vesicles (OMVs) via ubiquitous blebbing of the outer membrane. These proteoliposomes have the ability to traverse the mucus layer. Hence, OMVs play an important role in immunomodulation and the maintenance of a balanced gut microbiota. Here we demonstrate that the stimulation of bone marrow derived dendritic cells (BMDCs) with isolated OMVs originated from B. vulgatus mpk leads to the induction of a tolerant semi-mature phenotype. Thereby, microbe- associated molecular patterns (MAMPs) delivered by OMVs are crucial for the interaction and the resulting maturation of immune cells. Additional to the binding to host TLR4, a yet unknown ligand to TLR2 is indispensable for the conversion of immature BMDCs into a semi-mature state. Thus, crossing the epithelial mucus layer and directly contact host cells, OMV mediate cross-tolerance via the transport of various Toll-like receptor antigens. These features make OMVs to a key attribute of B. vulgatus mpk for a vigorous acellular prevention and treatment of systemic diseases.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Annika Bender
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- University Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany,CONTACT Prof. Dr. Julia-Stefanie Frick , Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str.6, D-72076 Tübingen, Germany
| |
Collapse
|
33
|
Ye J, Wang Y, Liu X, Li L, Opejin A, Hsueh EC, Luo H, Wang T, Hawiger D, Peng G. TLR7 Signaling Regulates Th17 Cells and Autoimmunity: Novel Potential for Autoimmune Therapy. THE JOURNAL OF IMMUNOLOGY 2017; 199:941-954. [PMID: 28652396 DOI: 10.4049/jimmunol.1601890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023]
Abstract
Innate regulation through TLR signaling has been shown to be important for promoting T cell subset development and function. However, limited information is known about whether differential TLR signaling can selectively inhibit Th17 and/or Th1 cells, which are important for controlling excessive inflammation and autoimmune responses. In this article, we demonstrate that activation of TLR7 signaling in T cells can inhibit Th17 cell differentiation from naive T cells and IL-17 production in established Th17 cells. We further report that downregulation of STAT3 signaling is responsible for TLR7-mediated inhibition of Th17 cells due to induction of suppressor of cytokine signaling 3 and 5. TLR7-mediated suppression of Th17 cells does not require dendritic cell involvement. In addition, we show that TLR7 signaling can suppress Th1 cell development and function through a mechanism different from Th17 cell suppression. Importantly, our complementary in vivo studies demonstrate that treatment with the TLR7 ligand imiquimod can inhibit Th1 and Th17 cells, resulting in the prevention of, and an immunotherapeutic reduction in, experimental autoimmune encephalomyelitis. These studies identify a new strategy to manipulate Th17/Th1 cells through TLR7 signaling, with important implications for successful immunotherapy against autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Yadan Wang
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Xia Liu
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Lingyun Li
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Eddy C Hsueh
- Division of General Surgery, Department of Surgery, Saint Louis University School of Medicine, St. Louis, MO 63110; and
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104; .,Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
34
|
The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. Int J Inflam 2017; 2017:8391230. [PMID: 28553556 PMCID: PMC5434307 DOI: 10.1155/2017/8391230] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs), part of the innate immune system that recognises molecular signatures, are important in the recognition of pathogenic components. However, when specific cellular contexts develop in which TLRs are inappropriately activated by self-components, this may lead to sterile inflammation and result in the occurrence of autoimmunity. This review analyses the available data regarding TLR biochemistry, the specific mechanisms which are brought about by TLR activation, and the importance of these mechanisms in the light of any existing and potential therapies in the field of autoimmunity.
Collapse
|
35
|
Arthritis models: usefulness and interpretation. Semin Immunopathol 2017; 39:469-486. [PMID: 28349194 DOI: 10.1007/s00281-017-0622-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Animal models of arthritis are used to better understand pathophysiology of a disease or to seek potential therapeutic targets or strategies. Focusing on models currently used for studying rheumatoid arthritis, we show here in which extent models were invaluable to enlighten different mechanisms such as the role of innate immunity, T and B cells, vessels, or microbiota. Moreover, models were the starting point of in vivo application of cytokine-blocking strategies such as anti-TNF or anti-IL-6 treatments. The most popular models are the different types of collagen-induced arthritis and arthritis in KBN mice. As spontaneous arthritides, human TNF-α transgenic mice are a reliable model. It is mandatory to use animal models in the respect of ethical procedure, particularly regarding the number of animals and the control of pain. Moreover, design of experiments should be of the highest level, animal models of arthritis being dedicated to exploration of well-based novelties, and never used for confirmation or replication of already proven concepts. The best interpretations of data in animal models of arthritis suppose integrated research, including translational studies from animals to humans.
Collapse
|
36
|
Suzuki R, Katakura K, Fujiwara T, Gunji N, Watanabe H, Ohira H. Imiquimod-induced CCR9 Ameliorates murine TNBS Colitis. Fukushima J Med Sci 2016; 62:90-100. [PMID: 27829595 DOI: 10.5387/fms.2015-28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS To investigate whether Imiquimod (IMQ) as TLR7 ligand protects mice from colonic inflammation and the mechanisms underlying in such immunoregulatory conditions. METHODS: Murine colitis was induced to Balb/c mice by administration of trinitrobenzene sulfonic acid (TNBS) with or without daily intraperitoneal administration of IMQ. Colitis was evaluated by body weight decreases and by histological score. Also colonic mRNA expression was measured by RT-PCR. To confirm the induction of Regulatory T cells (Tregs) by type-1 IFN from pDCs, we generated mouse bone marrow-derived pDCs and co-cultured these with CD4+ T cells isolated from mouse spleen with or without IMQ stimulation. Cytokine production in the culture supernatant was measured by ELISA and the number of Tregs were analyzed by flow cytometry. Spleen and mesenteric lymph nodes (MLN) from IMQ-treated mice were collected, and mRNA expressions of cytokine were measured by RT-PCR and cytokine productions were measured by ELISA. Tregs and chemokine expressions were analyzed in colon of TNBS-induced colitis mouse by immunohistochemistry. RESULTS: Administration of IMQ significantly suppressed colonic inflammation of TNBS-induced colitis. In the colons of IMQ-treated mice, mRNA expression of TNF-α was decreased, and strong expressions of IL-6, IFN-β and TGF-β were detected. IL-10 and TGF-β productions were increased in the supernatant of co-cultured cells stimulated with IMQ, although we were unable to detect Treg differentiaton in IMQ-stimulated co-cultured cells. In MLN of IMQ-treated mice, strong expressions of TLR7, IFN-β, TGF-β and Foxp3 mRNA were detected. IL-10 production from MLN cells was also increased in the IMQ-treated group. Finally, Tregs in the inflamed colon and CCR9 in MLN of IMQ-treated mice were detected. CONCLUSION: These results suggest that IMQ protects mice from TNBS colitis through induction of CCR9, which regulates accumulation of Tregs in the inflamed colon.
Collapse
|
37
|
Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB. TLR Tolerance as a Treatment for Central Nervous System Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:2110-8. [PMID: 27503211 DOI: 10.4049/jimmunol.1600876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The role of TLR signaling in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is unclear. This role is especially controversial in models of adoptive transfer EAE in which no adjuvant and no TLR ligands are administered. We recently reported that a microbiome-derived TLR2 ligand, Lipid 654 (L654), is present in healthy human serum but significantly decreased in the serum of MS patients. This suggested that microbiome products that gain access to the systemic circulation, rather than being proinflammatory, may normally play an immune-regulatory role by maintaining a state of relative TLR tolerance. Therefore, a loss of microbiome-mediated TLR tolerance, as suggested by lower serum levels of L654, may play a role in the pathogenesis of MS. As proof of concept we asked whether administering low-level TLR2 ligands in adoptive transfer EAE induces TLR2 tolerance and attenuates disease. We administered low-level Pam2CSK4 or L654 to mice receiving encephalitogenic cells and in doing so induced both TLR2 tolerance and attenuation of EAE. Disease attenuation was accompanied in the CNS by a decrease in macrophage activation, a decrease in a specific proinflammatory macrophage population, and a decrease in Th17 cells. In addition, disease attenuation was associated with an increase in splenic type 1 regulatory T cells. Kinetic tolerance induction studies revealed a critical period for TLR2 involvement in adoptive transfer EAE. Overall, these results suggest that inducing TLR tolerance may offer a new approach to treating CNS autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Emily J Anstadt
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Mai Fujiwara
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Nicholas Wasko
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Frank Nichols
- School of Dental Medicine, University of Connecticut School of Medicine, Farmington, CT 06032
| | - Robert B Clark
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| |
Collapse
|
38
|
Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 2016; 12:344-57. [PMID: 27170508 DOI: 10.1038/nrrheum.2016.61] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.
Collapse
|
39
|
Close Encounters of the First Kind: Innate Sensors and Multiple Sclerosis. Mol Neurobiol 2016; 54:101-114. [PMID: 26732593 DOI: 10.1007/s12035-015-9665-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Although autoimmune diseases by definition imply adaptive immune system pathologies, growing evidence points to the relevance of innate receptors in modulating the initiation and progression of the autoreactive response. Multiple sclerosis (MS) is a chronic autoimmune disease characterised by central nervous system (CNS) demyelination, inflammation and axonal damage, in which the role of several pathogens such as herpes viruses have long been described as potential triggers. Encounters of these pathogens with altered innate receptors in susceptible individuals might drive pathological autoreactivity and inflammation, overcoming tolerance and causing subsequent CNS damage. In particular, functional and genetic studies reveal that Toll-like receptor (TLR) 2 and the Nod-like receptor (NLR) P3 could be involved in MS pathogenesis, whereas TLR3, the triggering receptor expressed on myeloid cells (TREM)-2 and the C-type lectin receptors (CLRs) MBL and MASP-3 would have a putative protective role. A better understanding of these interactions will provide important insights into the aetiopathogenesis of MS and could help design potential targets for novel therapies.
Collapse
|
40
|
Piccinini AM, Williams L, McCann FE, Midwood KS. Investigating the Role of Toll-Like Receptors in Models of Arthritis. Methods Mol Biol 2016; 1390:351-81. [PMID: 26803640 DOI: 10.1007/978-1-4939-3335-8_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation leading to tissue destruction and progressive loss of joint function. Here we describe two methods that can be used to assess the contribution of toll-like receptors (TLRs), and their potential ligands, to RA pathogenesis. We focus on the antigen-induced model of murine arthritis and human synovial tissue explant models. Both enable detection of TLR, and TLR ligand, expression, as well as investigation of the effect of inhibition of these molecules. Each offers a unique insight into disease; with murine models allowing kinetic analysis in live animals and explant models allowing examination of inflamed human tissue, which together can help us to dissect the role of TLRs in the onset and progression of RA.
Collapse
Affiliation(s)
- Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Fiona E McCann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| |
Collapse
|
41
|
Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv Pharm Bull 2015; 5:605-14. [PMID: 26793605 DOI: 10.15171/apb.2015.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application.
Collapse
Affiliation(s)
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Tsitoura D, Ambery C, Price M, Powley W, Garthside S, Biggadike K, Quint D. Early clinical evaluation of the intranasal TLR7 agonist GSK2245035: Use of translational biomarkers to guide dosing and confirm target engagement. Clin Pharmacol Ther 2015; 98:369-80. [PMID: 26044169 DOI: 10.1002/cpt.157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
Modulation of the airways' immune milieu is a key therapeutic goal for remission from respiratory allergies. To explore this hypothesis, GSK2245035, a selective Toll-like receptor 7 (TLR7) agonist with preferential Type-1 interferon (IFN)-stimulating properties, was developed for intranasal application. Doses for clinical assessment were extrapolated from translational biomarker studies in primates. Randomized, double-blind, placebo-controlled trials in healthy volunteers and patients with allergic rhinitis demonstrated that intranasal GSK2245035 doses <100 ng were tolerated and did not cause nasal inflammation. Higher doses were not tested due to considerable cytokine release syndrome-related symptoms observed at 100 ng. Clear target engagement, reflected by local and peripheral increase of IFN-gamma-inducible protein-10, was observed at 20 ng, indicating IFN-stimulated immune changes at tolerated doses. Repeat intranasal administration at weekly intervals did not tolerize or amplify the pharmacological response. Intranasal GSK2245035 has an acceptable safety profile at doses that induce local TLR7-mediated immune responses.
Collapse
Affiliation(s)
- D Tsitoura
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - C Ambery
- GlaxoSmithKline, Uxbridge, Middlesex, UK
| | - M Price
- GlaxoSmithKline, Ware, Hertfordshire, UK
| | - W Powley
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | - K Biggadike
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - D Quint
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| |
Collapse
|
43
|
Gianchecchi E, Fierabracci A. Gene/environment interactions in the pathogenesis of autoimmunity: new insights on the role of Toll-like receptors. Autoimmun Rev 2015; 14:971-983. [PMID: 26184547 DOI: 10.1016/j.autrev.2015.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
Abstract
Autoimmune disorders are increasing worldwide. Although their pathogenesis has not been elucidated yet, a complex interaction of genetic and environmental factors is involved in their onset. Toll-like receptors (TLRs) represent a family of pattern recognition receptors involved in the recognition and in the defense of the host from invading microorganisms. They sense a wide range of pathogen associated molecular patterns (PAMPs) deriving from metabolic pathways selective of bacterial, viral, fungal and protozoan microorganisms. TLR activation plays a critical role in the activation of the downstream signaling pathway by interacting and recruiting several adaptor molecules. Although TLRs are involved in the protection of the host, several studies suggest that, in certain conditions, they play a critical role in the pathogenesis of autoimmune diseases. We review the most recent advances showing a correlation between some single nucleotide polymorphisms or copy number variations in TLR genes or in adaptor molecules involved in TLR signaling and the onset of several autoimmune conditions, such as Type I diabetes, autoimmune polyendocrinopathy candidiasis-ectodermal dystrophy, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In light of the foregoing we finally propose that molecules involved in TLR pathway may represent the targets for novel therapeutic treatments in order to stop autoimmune processes.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Vismederi Srl, Siena, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
44
|
Koga-Yamakawa E, Murata M, Dovedi SJ, Wilkinson RW, Ota Y, Umehara H, Sugaru E, Hirose Y, Harada H, Jewsbury PJ, Yamamoto S, Robinson DT, Li CJ. TLR7 tolerance is independent of the type I IFN pathway and leads to loss of anti-tumor efficacy in mice. Cancer Immunol Immunother 2015; 64:1229-39. [PMID: 26091797 PMCID: PMC11029383 DOI: 10.1007/s00262-015-1730-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
Systemic administration of small molecule toll-like receptor (TLR)-7 agonists leads to potent activation of innate immunity and to the generation of anti-tumor immune responses. However, activation of TLRs with small molecule agonists may lead to the induction of TLR tolerance, defined as a state of hyporesponsiveness to subsequent agonism, which may limit immune activation, the generation of anti-tumor responses and clinical response. Our data reveal that dose scheduling impacts on the efficacy of systemic therapy with the selective TLR7 agonist, 6-amino-2-(butylamino)-9-((6-(2-(dimethylamino)ethoxy)pyridin-3-yl)methyl)-7,9-dihydro-8H-purin-8-one (DSR-6434). In a preclinical model of renal cell cancer, systemic administration of DSR-6434 dosed once weekly resulted in a significant anti-tumor response. However, twice weekly dosing of DSR-6434 led to the induction of TLR tolerance, and no anti-tumor response was observed. We show that TLR7 tolerance was independent of type I interferon (IFN) negative feedback because induction of TLR7 tolerance was also observed in IFN-α/β receptor knockout mice treated with DSR-6434. Moreover, our data demonstrate that treatment of bone marrow-derived plasmacytoid dendritic cells (BM-pDC) with DSR-6434 led to downregulation of TLR7 expression. From our data, dose scheduling of systemically administered TLR7 agonists can impact on anti-tumor activity through the induction of TLR tolerance. Furthermore, TLR7 expression on pDC may be a useful biomarker of TLR7 tolerance and aid in the optimization of dosing schedules involving systemically administered TLR7 agonists.
Collapse
Affiliation(s)
- Erina Koga-Yamakawa
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Masashi Murata
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Simon J. Dovedi
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
- Present Address: Manchester Cancer Research Centre, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Robert W. Wilkinson
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
- Present Address: MedImmune Ltd, Milstein Building, Granta Park, Cambridge, UK
| | - Yosuke Ota
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Hiroki Umehara
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
- Boston Biomedical, Inc., 640 Memorial Drive, Cambridge, MA USA
| | - Eiji Sugaru
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Yuko Hirose
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Hideyuki Harada
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94, Enoki-cho, Suita, Osaka 564-0053 Japan
| | - Philip J. Jewsbury
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Setsuko Yamamoto
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - David T. Robinson
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Chiang J. Li
- Boston Biomedical, Inc., 640 Memorial Drive, Cambridge, MA USA
| |
Collapse
|
45
|
Hayashi T, Yao S, Crain B, Promessi VJ, Shyu L, Sheng C, Kang M, Cottam HB, Carson DA, Corr M. Induction of Tolerogenic Dendritic Cells by a PEGylated TLR7 Ligand for Treatment of Type 1 Diabetes. PLoS One 2015; 10:e0129867. [PMID: 26076454 PMCID: PMC4468074 DOI: 10.1371/journal.pone.0129867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/23/2023] Open
Abstract
Autoimmune diabetes mellitus (DM) results from the destruction of pancreatic islet cells by activated T lymphocytes, which have been primed by activated dendritic cells (DC). Individualized therapy with ex vivo DC manipulation and reinfusion has been proposed as a treatment for DM, but this treatment is limited by cost, and requires specialized facilities. A means of in situ modulation of the DC phenotype in the host would be more accessible. Here we report a novel innate immune modulator, 1Z1, generated by conjugating a TLR7 ligand to six units of polyethylene glycol (PEG), which skews DC phenotype in vivo. 1Z1 was less potent in inducing cytokine production by DC than the parent ligand in vitro and in vivo. In addition, this drug only modestly increased DC surface expression of activation markers such as MHC class II, CD80, and CD86; however, the expression of negative regulatory molecules, such as programmed death ligand 1 (PD-L1), and interleukin-1 receptor-associated kinase M (IRAK-M) were markedly increased. In vivo transfer of 1Z1 treated DC into prediabetic NOD mice delayed pancreatic insulitis. Daily administration of 1Z1 effectively prevented the clinical onset of hyperglycemia and reduced histologic islet inflammation. Daily treatment with 1Z1 increased PD-L1 expression in the CD11c+ population in peri-pancreatic lymph nodes; however, it did not induce an increase in regulatory T cells. Pharmaceutical modulation of DC maturation and function in situ, thus represents an opportunity to treat autoimmune disease.
Collapse
Affiliation(s)
- Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Brian Crain
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Victor J Promessi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Luke Shyu
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Caroline Sheng
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - McNancy Kang
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0695, United States of America
| | - Maripat Corr
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, United States of America
| |
Collapse
|
46
|
|
47
|
Zannetti C, Parroche P, Panaye M, Roblot G, Gruffat H, Manet E, Debaud AL, Plumas J, Vey N, Caux C, Bendriss-Vermare N, Hasan UA. TLR9 transcriptional regulation in response to double-stranded DNA viruses. THE JOURNAL OF IMMUNOLOGY 2014; 193:3398-408. [PMID: 25194054 DOI: 10.4049/jimmunol.1400249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The stimulation of TLRs by pathogen-derived molecules leads to the production of proinflammatory cytokines. Because uncontrolled inflammation can be life threatening, TLR regulation is important; however, few studies have identified the signaling pathways that contribute to the modulation of TLR expression. In this study, we examined the relationship between activation and the transcriptional regulation of TLR9. We demonstrate that infection of primary human epithelial cells, B cells, and plasmacytoid dendritic cells with dsDNA viruses induces a regulatory temporary negative-feedback loop that blocks TLR9 transcription and function. TLR9 transcriptional downregulation was dependent on TLR9 signaling and was not induced by TLR5 or other NF-κB activators, such as TNF-α. Engagement of the TLR9 receptor induced the recruitment of a suppressive complex, consisting of NF-κBp65 and HDAC3, to an NF-κB cis element on the TLR9 promoter. Knockdown of HDAC3 blocked the transient suppression in which TLR9 function was restored. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR9, immune induction, and inflammation against viruses.
Collapse
Affiliation(s)
- Claudia Zannetti
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France; Oncovirus et l'immunité innée, Hospices Civils de Lyon Sud, Pierre Benite, 69495 France
| | - Peggy Parroche
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France; Oncovirus et l'immunité innée, Hospices Civils de Lyon Sud, Pierre Benite, 69495 France
| | - Marine Panaye
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France; Oncovirus et l'immunité innée, Hospices Civils de Lyon Sud, Pierre Benite, 69495 France
| | - Guillaume Roblot
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France; Oncovirus et l'immunité innée, Hospices Civils de Lyon Sud, Pierre Benite, 69495 France
| | - Henri Gruffat
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France
| | - Evelyne Manet
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France
| | - Anne Laure Debaud
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France
| | - Joel Plumas
- Etablissement Français du Sang-Université Joseph Fourier-Inserm U823, Immunobiologie et Immunothérapie des cancers, Grenoble 38000, France; and
| | - Nelly Vey
- Centre de recherche en cancérologie, Unité Mixte de Recherche, Inserm 1052, Centre National de la Recherche Scientifique 5286, Centre Léon Bérard, Lyon 69008, France
| | - Christophe Caux
- Centre de recherche en cancérologie, Unité Mixte de Recherche, Inserm 1052, Centre National de la Recherche Scientifique 5286, Centre Léon Bérard, Lyon 69008, France
| | - Nathalie Bendriss-Vermare
- Centre de recherche en cancérologie, Unité Mixte de Recherche, Inserm 1052, Centre National de la Recherche Scientifique 5286, Centre Léon Bérard, Lyon 69008, France
| | - Uzma Ayesha Hasan
- International Center for Infectiology Research, University of Lyon, Lyon 69007, France; Inserm, U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69100, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, Lyon 69007, France; Oncovirus et l'immunité innée, Hospices Civils de Lyon Sud, Pierre Benite, 69495 France;
| |
Collapse
|
48
|
Gooshe M, Aleyasin AR, Abdolghaffari AH, Rezaei N. Toll like receptors: a new hope on the horizon to treat multiple sclerosis. Expert Rev Clin Immunol 2014; 10:1277-9. [DOI: 10.1586/1744666x.2014.953061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Abstract
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Siobhán Smith
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Caroline Jefferies
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
50
|
Inhibition of keratinocyte proliferation by phospholipid-conjugates of a TLR7 ligand in a Myc-induced hyperplastic actinic keratosis model in the absence of systemic side effects. Eur J Dermatol 2014; 23:618-28. [PMID: 24225049 DOI: 10.1684/ejd.2013.2155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The Toll-like receptor 7 (TLR7) activator imiquimod (IMQ) is safe and effective in treating actinic keratosis; however, an intermittent treatment regimen is necessary because of excessive local reactions. OBJECTIVES To evaluate in vitro potency, pharmacodynamics/pharmacokinetics, toxicity and efficacy in vivo of the newly developed TLR7 ligand-phospholipid conjugate, TMX-202, in a gel formulation. MATERIAL AND METHODS The effects of TMX-202 were assessed both in vitro on a murine macrophage cell line and in primary bone marrow-derived dendritic cells and in vivo on mice (C57BL/6-wild type, Myd88(-/-) and Tlr7(-/-)). RESULTS TMX-202 was more potent than IMQ in vitro using murine and human cells. In contrast, in vivo it showed less systemic pro-inflammatory activity and better safety than IMQ. Moreover, the TMX-202 gel formulation exhibited at least comparable efficacy to Aldara in a mouse model for skin proliferative diseases. CONCLUSION TMX-202 is safe and efficacious without causing excessive adverse effects, suggesting that it may be an alternative to Aldara for the treatment of proliferative skin conditions.
Collapse
|