1
|
Dewey JB. Tonic sound-evoked motility of cochlear outer hair cells in mice with impaired mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629412. [PMID: 39763721 PMCID: PMC11702648 DOI: 10.1101/2024.12.19.629412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Cochlear outer hair cells (OHCs) transduce sound-induced vibrations of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to underlie an amplification process required for sensitive hearing, OHCs also exhibit large tonic length changes. The origins and functional significance of this tonic motility are unclear. Here, in vivo cochlear vibration measurements reveal tonic, sound-induced OHC motility in mice with stereociliary defects that impair mechanotransduction and eliminate cochlear amplification. Tonic motility in impaired mice was physiologically vulnerable but weakly related to any residual phasic motility, possibly suggesting a dissociation between the underlying mechanisms. Nevertheless, a simple model demonstrates how tonic responses in both normal and impaired mice can result from asymmetric mechanotransduction currents and be large even when phasic motility is undetectable. Tonic OHC responses are therefore not unique to sensitive ears, though their potential functional role remains uncertain.
Collapse
Affiliation(s)
- James B Dewey
- Caruso Department of Otolaryngology - Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
3
|
Ikäheimo K, Leinonen S, Lankinen T, Lindahl M, Saarma M, Pirvola U. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level. J Physiol 2024; 602:3995-4025. [PMID: 39037943 DOI: 10.1113/jp286318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Saija Leinonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
de Guimaraes TAC, Robson AG, de Guimaraes IMC, Laich Y, Aychoua N, Wright G, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. CDH23-Associated Usher Syndrome: Clinical Features, Retinal Imaging, and Natural History. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39017633 PMCID: PMC11262472 DOI: 10.1167/iovs.65.8.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Purpose The purpose of this study was to analyze the clinical spectrum and natural history of CDH23-associated Usher syndrome type ID (USH1D). Methods Molecularly-confirmed individuals had data extracted from medical records. Retinal imaging was extracted from an in-house database. The main outcome measurements were retinal imaging and electroretinography (ERG) and clinical findings, including age of onset, symptoms, best-corrected visual acuity (BCVA), outer nuclear layer (ONL) thickness, ellipsoid zone width (EZW), and hyperautofluorescent ring area. Results Thirty-one patients were identified, harboring 40 variants in CDH23 (10 being novel). The mean (range, ±SD) age of symptom onset was 10.1 years (range = 1-18, SD = ±4.1). The most common visual symptoms at presentation were nyctalopia (93.5%) and peripheral vision difficulties (61.3%). The mean BCVA at baseline was 0.25 ± 0.22 in the right eyes and 0.35 ± 0.58 LogMAR in the left eyes. The mean annual loss rate in BCVA was 0.018 LogMAR/year over a mean follow-up of 9.5 years. Individuals harboring the c.5237G>A p.(Arg1746Gln) allele had retinitis pigmentosa (RP) sparing the superior retina. Seventy-seven percent of patients had hyperautofluorescent rings in fundus autofluorescence. Full-field and pattern ERGs indicated moderate-severe rod-cone or photoreceptor dysfunction with relative sparing of macular function in most patients tested. Optical coherence tomography (OCT) revealed intraretinal cysts in the transfoveal B-scan of 13 individuals (43.3%). The rate of EZW and ONL thickness loss was mild and suggestive of a wide window of macular preservation. Conclusions Despite the early onset of symptoms, USH1D has a slowly progressive phenotype. There is high interocular symmetry across all parameters, making it an attractive target for novel therapies.
Collapse
Affiliation(s)
- Thales A. C. de Guimaraes
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony G. Robson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Yannik Laich
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Eye Center, Faculty of Medicine, University Freiburg, Germany
| | - Nancy Aychoua
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Genevieve Wright
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Andrew R. Webster
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Polesskaya O, Boussaty E, Cheng R, Lamonte O, Zhou T, Du E, Sanches TM, Nguyen KM, Okamoto M, Palmer AA, Friedman R. Genome-wide association study for age-related hearing loss in CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598304. [PMID: 38915500 PMCID: PMC11195089 DOI: 10.1101/2024.06.10.598304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Age-related hearing impairment is the most common cause of hearing loss and is one of the most prevalent conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors. The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic basis of age-related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of 1, 6, and 10 months. We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with ARHL that contained potential candidate genes, including Dnah11, Rapgef5, Cpne4, Prkag2, and Nek11. We confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in mice; this makes Prkag2 a candidate gene for further studies. This work helps to identify genetic risk factors for ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.
Collapse
Affiliation(s)
- Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Lamonte
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Thomas Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Du
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mika Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Tsukada K, Nishio SY, Takumi Y, Usami SI. Comparison of vestibular function in hereditary hearing loss patients with GJB2, CDH23, and SLC26A4 variants. Sci Rep 2024; 14:10596. [PMID: 38720048 PMCID: PMC11078969 DOI: 10.1038/s41598-024-61442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otorhinolaryngology Head and Neck Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yutaka Takumi
- Department of Otorhinolaryngology Head and Neck Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
7
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
8
|
Jung J, Müller U. Mechanoelectrical transduction-related genetic forms of hearing loss. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100632. [PMID: 36936795 PMCID: PMC10022594 DOI: 10.1016/j.cophys.2023.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hair cells of the mammalian cochlea are specialized mechanosensory cells that convert mechanical stimuli into electrical signals to initiate the neuronal responses that lead to the perception of sound. The mechanoelectrical transduction (MET) machinery of cochlear hair cells is a multimeric protein complex that consists of the pore forming subunits of the MET channel and several essential accessory subunits that are crucial to regulate channel function and render the channel mechanically sensitive. Mutations have been discovered in the genes that encode all known components of the MET machinery. These mutations cause hearing loss with or without vestibular dysfunction. Some mutations also affect other tissues such as the retina. In this brief review, we will summarize gene mutations that affect the MET machinery of hair cells and how the study of the affected genes has illuminated our understanding of the physiological role of the encoded proteins.
Collapse
Affiliation(s)
- Jinsei Jung
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Lukasz D, Beirl A, Kindt K. Chronic neurotransmission increases the susceptibility of lateral-line hair cells to ototoxic insults. eLife 2022; 11:77775. [PMID: 36047587 PMCID: PMC9473691 DOI: 10.7554/elife.77775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.
Collapse
Affiliation(s)
- Daria Lukasz
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
Yoshimura H, Nishio S, Usami S. Milestones toward cochlear gene therapy for patients with hereditary hearing loss. Laryngoscope Investig Otolaryngol 2021; 6:958-967. [PMID: 34693000 PMCID: PMC8513455 DOI: 10.1002/lio2.633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
A number of genes are reportedly responsible for hereditary hearing loss, which accounts for over 50% of all congenital hearing loss cases. Recent advances in genetic testing have enabled the identification of pathogenic variants in many cases, and systems have been developed to provide personalized treatment based on etiology. Gene therapy is expected to become an unprecedented curative treatment. Several reports have demonstrated the successful use of cochlear gene therapy to restore auditory function in mouse models of genetic deafness; however, many hurdles remain to its clinical application in humans. Herein, we focus on the frequency of deafness genes in patients with congenital and late-onset progressive hearing loss and discuss the following points regarding which genes need to be targeted to efficiently proceed with clinical application: (a) which cells' genes are expressed within the cochlea, (b) whether gene transfer to the targeted cells is possible using vectors such as adeno-associated virus, (c) what phenotype of hearing loss in patients is exhibited, and (d) whether mouse models exist to verify the effectiveness of treatment. Moreover, at the start of clinical application, gene therapy in combination with cochlear implantation may be useful for cases of progressive hearing loss.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of OtorhinolaryngologyShinshu University School of MedicineMatsumotoNaganoJapan
| | - Shin‐Ya Nishio
- Department of Hearing Implant SciencesShinshu University School of MedicineMatsumotoNaganoJapan
| | - Shin‐Ichi Usami
- Department of Hearing Implant SciencesShinshu University School of MedicineMatsumotoNaganoJapan
| |
Collapse
|
12
|
Roman-Naranjo P, Moleon MDC, Aran I, Escalera-Balsera A, Soto-Varela A, Bächinger D, Gomez-Fiñana M, Eckhard AH, Lopez-Escamez JA. Rare coding variants involving MYO7A and other genes encoding stereocilia link proteins in familial meniere disease. Hear Res 2021; 409:108329. [PMID: 34391192 DOI: 10.1016/j.heares.2021.108329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
The MYO7A gene encodes a motor protein with a key role in the organization of stereocilia in auditory and vestibular hair cells. Rare variants in the MYO7A (myosin VIIA) gene may cause autosomal dominant (AD) or autosomal recessive (AR) sensorineural hearing loss (SNHL) accompanied by vestibular dysfunction or retinitis pigmentosa (Usher syndrome type 1B). Familial Meniere's disease (MD) is a rare inner ear syndrome mainly characterized by low-frequency sensorineural hearing loss and episodic vertigo associated with tinnitus. Familial aggregation has been found in 6-8% of sporadic cases, and most of the reported genes were involved in single families. Thus, this study aimed to search for relevant genes not previously linked to familial MD. Through exome sequencing and segregation analysis in 62 MD families, we have found a total of 1 novel and 8 rare heterozygous variants in the MYO7A gene in 9 non-related families. Carriers of rare variants in MYO7A showed autosomal dominant or autosomal recessive SNHL in familial MD. Additionally, some novel and rare variants in other genes involved in the organization of the stereocilia links such as CDH23, PCDH15 or ADGRV1 co-segregated in the same patients. Our findings reveal a co-segregation of rare variants in the MYO7A gene and other structural myosin VIIA binding proteins involved in the tip and ankle links of the hair cell stereocilia. We suggest that recessive digenic inheritance involving these genes could affect the ultrastructure of the stereocilia links in familial MD.
Collapse
Affiliation(s)
- P Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - M D C Moleon
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - I Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - A Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - A Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - D Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - M Gomez-Fiñana
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almeria, Spain
| | - A H Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - J A Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain; Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain.
| |
Collapse
|
13
|
Zhao T, Ma P, Zhao F, Zheng T, Yan B, Zhang Q, Yuan J, Hu B, Yang Y, Hu J, Geng R, Hu BH, Sun T, Zheng QY, Li B. Phenotypic differences in the inner ears of CBA/CaJ and C57BL/6J mice carrying missense and single base pair deletion mutations in the Cdh23 gene. J Neurosci Res 2021; 99:2743-2758. [PMID: 34133797 DOI: 10.1002/jnr.24905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/30/2021] [Indexed: 11/11/2022]
Abstract
Different mutations in the cadherin 23 (CDH23) gene in different genetic backgrounds have been linked to either syndromic or nonsyndromic forms of deafness in humans. We previously reported a progressive hearing loss (HL) mouse model, the Cdh23erl/erl mouse, which carries a 208T > C mutation causing an amino acid substitution at S70P in C57BL/6J mice. To investigate the differences in Cdh23 mutation-related HL in different genetic backgrounds, we used the CRISPR/Cas9 system to generate homozygous mice in the CBA/CaJ background that have the same base pair missense mutation (208T > C) (Cdh23erl2/erl2 ) as Cdh23erl/erl mice in the C57BL/6J background or a single base pair deletion (235G) (Cdh23V2J2/V2J2 ) in the Cdh23 gene at exon 5. The two mutant mice exhibit hearing impairment across a broad range of frequencies. The progression of HL in Cdh23erl2/erl2 mice is slower than that in Cdh23erl/erl mice. We also found structural abnormalities in the stereocilia of cochlear hair cells in Cdh23erl2/erl2 and Cdh23V2J2/V2J2 mice. Cdh23V2J2/V2J2 mice show signs of vestibular dysfunction in open field behavior and swimming tests. In addition, we observed hair bundle defects in vestibular hair cells in Cdh23V2J2/V2J2 mice. Our results suggest an interaction between the erl locus and the C57BL/6J background that exacerbates HL in Cdh23erl/erl mice. Moreover, our study confirms that the Cdh23 gene is essential for normal hearing and balance. These two novel mutant mouse strains provide excellent models for studying CDH23 mutation-related deafness in humans.
Collapse
Affiliation(s)
- Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China
| | - Fangfang Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qiang Zhang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Jing Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Hu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Juan Hu
- Department of Otolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Hua Hu
- Centre for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Tengyang Sun
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Farhadi M, Razmara E, Balali M, Hajabbas Farshchi Y, Falah M. How Transmembrane Inner Ear (TMIE) plays role in the auditory system: A mystery to us. J Cell Mol Med 2021; 25:5869-5883. [PMID: 33987950 PMCID: PMC8256367 DOI: 10.1111/jcmm.16610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Different cellular mechanisms contribute to the hearing sense, so it is obvious that any disruption in such processes leads to hearing impairment that greatly influences the global economy and quality of life of the patients and their relatives. In the past two decades, transmembrane inner ear (TMIE) protein has received a great deal of research interest because its impairments cause hereditary deafness in humans. This evolutionarily conserved membrane protein contributes to a fundamental complex that plays role in the maintenance and function of the sensory hair cells. Although the critical roles of the TMIE in mechanoelectrical transduction or hearing procedures have been discussed, there are little to no review papers summarizing the roles of the TMIE in the auditory system. In order to fill this gap, herein, we discuss the important roles of this protein in the auditory system including its role in mechanotransduction, olivocochlear synapse, morphology and different signalling pathways; we also review the genotype-phenotype correlation that can per se show the possible roles of this protein in the auditory system.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Maryam Balali
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Yeganeh Hajabbas Farshchi
- Department of Cellular and Molecular BiologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Identification of Novel CDH23 Variants Causing Moderate to Profound Progressive Nonsyndromic Hearing Loss. Genes (Basel) 2020; 11:genes11121474. [PMID: 33316915 PMCID: PMC7764456 DOI: 10.3390/genes11121474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Mutant alleles of CDH23, a gene that encodes a putative calcium-dependent cell-adhesion glycoprotein with multiple cadherin-like domains, are responsible for both recessive DFNB12 nonsyndromic hearing loss (NSHL) and Usher syndrome 1D (USH1D). The encoded protein cadherin 23 (CDH23) plays a vital role in maintaining normal cochlear and retinal function. The present study’s objective was to elucidate the role of DFNB12 allelic variants of CDH23 in Saudi Arabian patients. Four affected offspring of a consanguineous family with autosomal recessive moderate to profound NSHL without any vestibular or retinal dysfunction were investigated for molecular exploration of genes implicated in hearing impairment. Parallel to this study, we illustrate some possible pitfalls that resulted from unexpected allelic heterogeneity during homozygosity mapping due to identifying a shared homozygous region unrelated to the disease locus. Compound heterozygous missense variants (p.(Asp918Asn); p.(Val1670Asp)) in CDH23 were identified in affected patients by exome sequencing. Both the identified missense variants resulted in a substitution of the conserved residues and evaluation by multiple in silico tools predicted their pathogenicity and variable disruption of CDH23 domains. Three-dimensional structure analysis of human CDH23 confirmed that the residue Asp918 is located at a highly conserved DXD peptide motif and is directly involved in “Ca2+” ion contact. In conclusion, our study identifies pathogenic CDH23 variants responsible for isolated moderate to profound NSHL in Saudi patients and further highlights the associated phenotypic variability with a genotypic hierarchy of CDH23 mutations. The current investigation also supports the application of molecular testing in the clinical diagnosis and genetic counseling of hearing loss.
Collapse
|
16
|
Pyott SJ, van Tuinen M, Screven LA, Schrode KM, Bai JP, Barone CM, Price SD, Lysakowski A, Sanderford M, Kumar S, Santos-Sacchi J, Lauer AM, Park TJ. Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats. Curr Biol 2020; 30:4329-4341.e4. [PMID: 32888484 DOI: 10.1016/j.cub.2020.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are highly vocal, eusocial, subterranean rodents with, counterintuitively, poor hearing. The causes underlying their altered hearing are unknown. Moreover, whether altered hearing is degenerate or adaptive to their unique lifestyles is controversial. We used various methods to identify the factors contributing to altered hearing in naked and the related Damaraland mole-rats and to examine whether these alterations result from relaxed or adaptive selection. Remarkably, we found that cochlear amplification was absent from both species despite normal prestin function in outer hair cells isolated from naked mole-rats. Instead, loss of cochlear amplification appears to result from abnormal hair bundle morphologies observed in both species. By exploiting a well-curated deafness phenotype-genotype database, we identified amino acid substitutions consistent with abnormal hair bundle morphology and reduced hearing sensitivity. Amino acid substitutions were found in unique groups of six hair bundle link proteins. Molecular evolutionary analyses revealed shifts in selection pressure at both the gene and the codon level for five of these six hair bundle link proteins. Substitutions in three of these proteins are associated exclusively with altered hearing. Altogether, our findings identify the likely mechanism of altered hearing in African mole-rats, making them the only identified mammals naturally lacking cochlear amplification. Moreover, our findings suggest that altered hearing in African mole-rats is adaptive, perhaps tailoring hearing to eusocial and subterranean lifestyles. Finally, our work reveals multiple, unique evolutionary trajectories in African mole-rat hearing and establishes species members as naturally occurring disease models to investigate human hearing loss.
Collapse
Affiliation(s)
- Sonja J Pyott
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands.
| | - Marcel van Tuinen
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands
| | - Laurel A Screven
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Jun-Ping Bai
- Yale University School of Medicine, Department of Neurology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Catherine M Barone
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| | - Steven D Price
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Maxwell Sanderford
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA; King Abdulaziz University, Center for Excellence in Genome Medicine and Research, Jeddah, Saudi Arabia
| | - Joseph Santos-Sacchi
- Yale University School of Medicine, Department of Surgery (Otolaryngology) and Department of Neuroscience and Cellular and Molecular Physiology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Amanda M Lauer
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Thomas J Park
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Burwood GWS, Dziennis S, Wilson T, Foster S, Zhang Y, Liu G, Yang J, Elkins S, Nuttall AL. The mechanoelectrical transducer channel is not required for regulation of cochlear blood flow during loud sound exposure in mice. Sci Rep 2020; 10:9229. [PMID: 32514013 PMCID: PMC7280509 DOI: 10.1038/s41598-020-66192-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023] Open
Abstract
The mammalian cochlea possesses unique acoustic sensitivity due to a mechanoelectrical ‘amplifier’, which requires the metabolic support of the cochlear lateral wall. Loud sound exposure sufficient to induce permanent hearing damage causes cochlear blood flow reduction, which may contribute to hearing loss. However, sensory epithelium involvement in the cochlear blood flow regulation pathway is not fully described. We hypothesize that genetic manipulation of the mechanoelectrical transducer complex will abolish sound induced cochlear blood flow regulation. We used salsa mice, a Chd23 mutant with no mechanoelectrical transduction, and deafness before p56. Using optical coherence tomography angiography, we measured the cochlear blood flow of salsa and wild-type mice in response to loud sound (120 dB SPL, 30 minutes low-pass filtered noise). An expected sound induced decrease in cochlear blood flow occurred in CBA/CaJ mice, but surprisingly the same sound protocol induced cochlear blood flow increases in salsa mice. Blood flow did not change in the contralateral ear. Disruption of the sympathetic nervous system partially abolished the observed wild-type blood flow decrease but not the salsa increase. Therefore sympathetic activation contributes to sound induced reduction of cochlear blood flow. Additionally a local, non-sensory pathway, potentially therapeutically targetable, must exist for cochlear blood flow regulation.
Collapse
Affiliation(s)
- George W S Burwood
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Suzan Dziennis
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Teresa Wilson
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah Foster
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Yuan Zhang
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Gangjun Liu
- Shenzhen Bay laboratory, 5F, No.9 Duxue Rd., Nanshan District, Shenzhen, Guangdong, China
| | - Jianlong Yang
- Ningbo Institute of Materials Technology and Engineering, No. 1219 Zhongguan West Road Zhenhai District, Ningbo City, Zhejiang Province, 315201, P.R. China
| | - Sean Elkins
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Alfred L Nuttall
- Oregon Hearing Research Center, Dept. of Otolaryngology / HNS, Oregon Health & Science University, 3250S.W. Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
18
|
Rogalla MM, Hildebrandt KJ. Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice. eNeuro 2020; 7:ENEURO.0511-19.2020. [PMID: 32327469 PMCID: PMC7210488 DOI: 10.1523/eneuro.0511-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Alterations in inhibitory circuits of the primary auditory cortex (pAC) have been shown to be an aspect of aging and age-related hearing loss (AHL). Several studies reported a decline in parvalbumin (PV) immunoreactivity in aged rodent pAC of animals displaying AHL and conclude a relationship between reduced sensitivity and declined PV immunoreactivity. However, it remains elusive whether AHL or a general molecular aging is causative for decreased PV immunoreactivity. In this study, we aimed to disentangle the effects of AHL and general aging on PV immunoreactivity patterns in inhibitory interneurons of mouse pAC. We compared young and old animals of a mouse line with AHL (C57BL/6) and a mutant (C57B6.CAST-Cdh23Ahl+ ) that is not vulnerable to AHL according to their hearing status by measuring auditory brainstem responses (ABRs) and by an immunohistochemical evaluation of the PV immunoreactivity patterns in two dimensions (rostro-caudal and layer) in the pAC. Although AHL could be confirmed by ABR measurements for the C57BL/6 mice, both aged strains showed a similar reduction of PV+ positive interneurons in both, number and density. The pattern of reduction across the rostro-caudal axis and across cortical layers was similar for both aged lines. Our results demonstrate that a reduced PV immunoreactivity is a sign of general, molecular aging and not related to AHL.
Collapse
Affiliation(s)
- Meike M Rogalla
- Department of Neuroscience, Division of Auditory Neuroscience, and Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - K Jannis Hildebrandt
- Department of Neuroscience, Division of Auditory Neuroscience, and Cluster of Excellence, Hearing4all, Carl von Ossietzky University, Oldenburg 26129, Germany
| |
Collapse
|
19
|
Suzuki J, Inada H, Han C, Kim MJ, Kimura R, Takata Y, Honkura Y, Owada Y, Kawase T, Katori Y, Someya S, Osumi N. "Passenger gene" problem in transgenic C57BL/6 mice used in hearing research. Neurosci Res 2019; 158:6-15. [PMID: 31622631 DOI: 10.1016/j.neures.2019.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Despite recent advances in genome engineering technologies, traditional transgenic mice generated on a mixed genetic background of C57BL/6 and 129/Sv mice remain widely used in age-related hearing loss (AHL) research, since C57BL/6 mice exhibit early onset and progression of AHL due to a mutation in cadherin 23-encoding gene (Cdh23753G>A). In these transgenic mice, backcrossing for more than 10 generations results in replacement of the donor background (129/Sv) with that of the recipient (C57BL/6), so that approximately 99.9% of genes are C57BL/6-derived and are considered congenic. However, the regions flanking the target gene may still be of 129/Sv origin, creating a so-called "passenger gene problem" where the normal 129/Sv-derived Cdh23753G allele can travel with the target gene. In this study, we investigated the role of fatty acid-binding protein 7 (Fabp7), which is important for cellular uptake and intracellular trafficking of fatty acids in the cochlea, using traditional Fabp7 knockout (KO) mice on the C57BL/6 background. We found that Fabp7 KO mice showed delayed AHL progression and milder cochlear degeneration. However, the genotype of the Cdh23 region flanking Fabp7 was still that of 129/Sv origin (Cdh23753GG). Our findings reveal the potential risk of contamination for traditional transgenic mice generated on the C57BL/6 background.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Chul Han
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA; Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Takata
- Department of Otolaryngology, Tokyo Women's Medical University Medical Center East, Arakawa, Tokyo 116-8567, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
20
|
Abstract
Hearing and balance rely on the transduction of mechanical stimuli arising from sound waves or head movements into electrochemical signals. This archetypal mechanoelectrical transduction process occurs in the hair-cell stereocilia of the inner ear, which experience continuous oscillations driven by undulations in the endolymph in which they are immersed. The filamentous structures called tip links, formed by an intertwined thread composed of an heterotypic complex of cadherin 23 and protocadherin 15 ectodomain dimers, connect each stereocilium to the tip of the lower sterocilium, and must maintain their integrity against continuous stimulatory deflections. By using single molecule force spectroscopy, here we demonstrate that in contrast to the case of classical cadherins, tip-link cadherins are mechanoresilient structures even at the exceptionally low Ca2+ concentration of the endolymph. We also show that the D101G deafness point mutation in cadherin 23, which affects a Ca2+ coordination site, exhibits an altered mechanical phenotype at the physiological Ca2+ concentration. Our results show a remarkable case of functional adaptation of a protein’s nanomechanics to extremely low Ca2+ concentrations and pave the way to a full understanding of the mechanotransduction mechanism mediated by auditory cadherins.
Collapse
|
21
|
Broken force dispersal network in tip-links by the mutations at the Ca 2+-binding residues induces hearing-loss. Biochem J 2019; 476:2411-2425. [PMID: 31399498 PMCID: PMC6717114 DOI: 10.1042/bcj20190453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022]
Abstract
Tip-link as force-sensor in hearing conveys the mechanical force originating from sound to ion-channels while maintaining the integrity of the entire sensory assembly in the inner ear. This delicate balance between structure and function of tip-links is regulated by Ca2+-ions present in endolymph. Mutations at the Ca2+-binding sites of tip-links often lead to congenital deafness, sometimes syndromic defects impairing vision along with hearing. Although such mutations are already identified, it is still not clear how the mutants alter the structure-function properties of the force-sensors associated with diseases. With an aim to decipher the differences in force-conveying properties of the force-sensors in molecular details, we identified the conformational variability of mutant and wild-type tip-links at the single-molecule level using FRET at the endolymphatic Ca2+ concentrations and subsequently measured the force-responsive behavior using single-molecule force spectroscopy with an Atomic Force Microscope (AFM). AFM allowed us to mimic the high and wide range of force ramps (103-106 pN s-1) as experienced in the inner ear. We performed in silico network analysis to learn that alterations in the conformations of the mutants interrupt the natural force-propagation paths through the sensors and make the mutant tip-links vulnerable to input forces from sound stimuli. We also demonstrated that a Ca2+ rich environment can restore the force-response of the mutant tip-links which may eventually facilitate the designing of better therapeutic strategies to the hearing loss.
Collapse
|
22
|
Bortolozzi M, Mammano F. PMCA2 pump mutations and hereditary deafness. Neurosci Lett 2019; 663:18-24. [PMID: 29452611 DOI: 10.1016/j.neulet.2017.09.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/21/2023]
Abstract
Hair cells of the inner ear detect sound stimuli, inertial or gravitational forces by deflection of their apical stereocilia. A small number of stereociliary cation-selective mechanotransduction (MET) channels admit K+ and Ca2+ ions into the cytoplasm promoting hair cell membrane depolarization and, consequently, neurotransmitter release at the cell basolateral pole. Ca2+ influx into the stereocilia compartment is counteracted by the unusual w/a splicing variant of plasma-membrane calcium-pump isoform 2 (PMCA2) which, unlike other PMCA2 variants, increases only marginally its activity in response to a rapid variation of the cytoplasmic free Ca2+ concentration ([Ca2+]c). Missense mutations of PMCA2w/a cause deafness and loss of balance in humans. Mouse models in which the pump is genetically ablated or mutated show hearing and balance impairment, which correlates with defects in homeostatic regulation of stereociliary [Ca2+]c, decreased sensitivity of mechanotransduction channels to hair bundle displacement and progressive degeneration of the organ of Corti. These results highlight a critical role played by the PMCA2w/a pump in the control of hair cell function and survival, and provide mechanistic insight into the etiology of deafness and vestibular disorders.
Collapse
Affiliation(s)
- Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Protein Biochemistry, Naples, Italy.
| | - Fabio Mammano
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
23
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
24
|
Jaiganesh A, De-la-Torre P, Patel AA, Termine DJ, Velez-Cortes F, Chen C, Sotomayor M. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of Inherited Deafness. Structure 2018; 26:1210-1225.e4. [PMID: 30033219 DOI: 10.1016/j.str.2018.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Cadherin-23 (CDH23) is an essential component of hair-cell tip links, fine filaments that mediate inner-ear mechanotransduction. The extracellular domain of CDH23 forms about three-fourths of the tip link with 27 extracellular cadherin (EC) repeats that are structurally similar but not identical to each other. Calcium (Ca2+) coordination at the EC linker regions is key for tip-link elasticity and function. There are ∼116 sites in CDH23 affected by deafness-causing mutations, many of which alter conserved Ca2+-binding residues. Here we present crystal structures showing 18 CDH23 EC repeats, including the most and least conserved, a fragment carrying disease mutations, and EC repeats with non-canonical Ca2+-binding motif sequences and unusual secondary structure. Complementary experiments show deafness mutations' effects on stability and affinity for Ca2+. Additionally, a model of nine contiguous CDH23 EC repeats reveals helicity and potential parallel dimerization faces. Overall, our studies provide detailed structural insight into CDH23 function in mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Aniket A Patel
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Domenic J Termine
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Florencia Velez-Cortes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Conghui Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Dewey JB, Xia A, Müller U, Belyantseva IA, Applegate BE, Oghalai JS. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea. Cell Rep 2018; 23:2915-2927. [PMID: 29874579 PMCID: PMC6309882 DOI: 10.1016/j.celrep.2018.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023] Open
Abstract
The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo.
Collapse
Affiliation(s)
- James B Dewey
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Anping Xia
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
26
|
Zhao M, Li P, Xie Y, Liu X, Cheng L, Liu T, Kong L, Wang O, Han F. Recombinant protein of the first two ectodomains of cadherin 23 from erl mice shows impairment in Ca 2+-dependent proteolysis protection. Protein Expr Purif 2018; 147:55-60. [PMID: 29486248 DOI: 10.1016/j.pep.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/18/2022]
Abstract
The erl mouse is a mouse model of nonsyndromic autosomal recessive deafness (DFNB12) on the C57BL/6J background. This project was carried out to express the first two ectodomains of cadherin 23 (CDH23 EC1+2) of erl mice in Escherichia coli and identify the Ca2+-binding ability of the recombinant protein. DNA sequences of CDH23 EC1+2 from wild type and erl mice were synthesized and cloned into pBV220 plasmids. Recombinant plasmids were transformed into Escherichia coli and expression of CDH23 EC1+2 was induced by increasing the temperature from 30 °C to 42 °C. The proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and antigenicity of proteins was identified by Western Blotting. Inclusion bodies were denatured in 8 M urea, purified by ion-exchange and gel filtration chromatography and refolded with dialysis in buffer containing 0.1% sarkosyl. The Ca2+-binding ability of CDH23 EC1+2 was determined by Ca2+-dependent proteolysis protection. The results showed that the sizes and sequences of inserts in recombinant plasmids were consistent with expectation and that the recombinant proteins were found mainly in the form of inclusion bodies which maintain antigenicity. After refolding, the secondary structures of recombinant proteins were measured by circular dichroism (CD) spectra. Moreover, CDH23 EC1+2 from the erl mice showed less Ca2+-dependent proteolysis protection comparing with that of the wild type control. We therefore concluded that impairment of Ca2+-dependent protein interaction was likely involved in the progressive hearing loss in erl mice. The results may aid in understanding the mechanism of hearing loss in DFNB12.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Xiang Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Lin Cheng
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Tingyan Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Lijun Kong
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
27
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
28
|
Abstract
Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.
Collapse
Affiliation(s)
- Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, Tel: 503-494-3693,
| |
Collapse
|
29
|
Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci Rep 2017; 7:44450. [PMID: 28287619 PMCID: PMC5347380 DOI: 10.1038/srep44450] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 11/11/2022] Open
Abstract
A single nucleotide variant (SNV) of the cadherin 23 gene (Cdh23c.753A), common to many inbred mouse strains, accelerates age-related hearing loss (AHL) and can worsen auditory phenotypes of other mutations. We used homologous recombination in C57BL/6 NJ (B6N) and 129S1/SvImJ (129S1) embryonic stem cells to engineer mouse strains with reciprocal single base pair substitutions (B6-Cdh23c.753A>G and 129S1-Cdh23c.753G>A). We compared ABR thresholds and cochlear pathologies of these SNV mice with those of congenic (B6.129S1-Cdh23Ahl+ and 129S1.B6-Cdh23ahl) and parental (B6N and 129S1) strain mice. Results verified the protective effect of the Cdh23c.753G allele, which prevented high frequency hearing loss in B6 mice to at least 18 months of age, and the AHL-inducing effect of the Cdh23c.753A allele, which worsened hearing loss in 129S1 mice. ABR thresholds differed between 129S-Cdh23c.753A SNV and 129S1.B6-Cdh23ahl congenic mice, and a linkage backcross involving these strains localized a Chr 10 QTL contributing to the difference. These results illustrate the large effects that strain background and congenic regions have on the hearing loss associated with Cdh23c.753alleles. Importantly, the B6-Cdh23c.753Gstrain can be used to eliminate the confounding influence of the Cdh23c.753Avariant in hearing studies of B6 mice and mutant mice on the B6 background.
Collapse
|
30
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
31
|
ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23 erl/erl mutant mice. Cell Death Dis 2016; 7:e2485. [PMID: 27882946 PMCID: PMC5260868 DOI: 10.1038/cddis.2016.386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.
Collapse
|
32
|
Chen R, Schwander M, Barbe MF, Chan MM. Ossicular Bone Damage and Hearing Loss in Rheumatoid Arthritis: A Correlated Functional and High Resolution Morphometric Study in Collagen-Induced Arthritic Mice. PLoS One 2016; 11:e0164078. [PMID: 27690307 PMCID: PMC5045188 DOI: 10.1371/journal.pone.0164078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023] Open
Abstract
Globally, a body of comparative case-control studies suggests that rheumatoid arthritis (RA) patients are more prone to developing hearing loss (HL). However, experimental evidence that supports this hypothesis is still lacking because the human auditory organ is not readily accessible. The aim of this study was to determine the association between bone damage to the ossicles of the middle ear and HL, using a widely accepted murine model of collagen-induced arthritis (RA mice). Diarthrodial joints in the middle ear were examined with microcomputer tomography (microCT), and hearing function was assessed by auditory brainstem response (ABR). RA mice exhibited significantly decreased hearing sensitivity compared to age-matched controls. Additionally, a significant narrowing of the incudostapedial joint space and an increase in the porosity of the stapes were observed. The absolute latencies of all ABR waves were prolonged, but mean interpeak latencies were not statistically different. The observed bone defects in the middle ear that were accompanied by changes in ABR responses were consistent with conductive HL. This combination suggests that conductive impairment is at least part of the etiology of RA-induced HL in a murine model. Whether the inner ear sustains bone erosion or other pathology, and whether the cochlear nerve sustains pathology await subsequent studies. Considering the fact that certain anti-inflammatories are ototoxic in high doses, monitoring RA patients’ auditory function is advisable as part of the effort to ensure their well-being.
Collapse
Affiliation(s)
- Rensa Chen
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Martin Schwander
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, United States of America
| | - Mary F. Barbe
- Department of Anatomy, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Marion M. Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
- * E-mail:
| |
Collapse
|
33
|
Han F, Wang O, Cai Q. Anti-apoptotic treatment in mouse models of age-related hearing loss. J Otol 2016; 11:7-12. [PMID: 29937804 PMCID: PMC6002598 DOI: 10.1016/j.joto.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Corresponding author. Key Laboratory for Genetic Hearing Disorders in Shandong, and Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Quanxiang Cai
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| |
Collapse
|
34
|
Mock BE, Vijayakumar S, Pierce J, Jones TA, Jones SM. Differential effects of Cdh23(753A) on auditory and vestibular functional aging in C57BL/6J mice. Neurobiol Aging 2016; 43:13-22. [PMID: 27255811 DOI: 10.1016/j.neurobiolaging.2016.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/04/2016] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
The C57BL/6J (B6) mouse strain carries a cadherin 23 mutation (Cdh23(753A), also known as Ahl), which affects inner ear structures and results in age-related hearing loss. The B6.CAST strain harbors the wild type Cdh23 gene, and hence, the influence of Ahl is absent. The purpose of the present study was to characterize the effect of age and gender on gravity receptor function in B6 and B6.CAST strains and to compare functional aging between auditory and vestibular modalities. Auditory sensitivity declined at significantly faster rates than gravity receptor sensitivity for both strains. Indeed, vestibular functional aging was minimal for both strains. The comparatively smaller loss of macular versus cochlear sensitivity in both the B6 and B6.CAST strains suggests that the contribution of Ahl to the aging of the vestibular system is minimal, and thus very different than its influence on aging of the auditory system. Alternatively, there exist unidentified genes or gene modifiers that serve to slow the degeneration of gravity receptor structures and maintain gravity receptor sensitivity into advanced age.
Collapse
Affiliation(s)
- Bruce E Mock
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Sarath Vijayakumar
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Jessica Pierce
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Timothy A Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Sherri M Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
35
|
Miyasaka Y, Shitara H, Suzuki S, Yoshimoto S, Seki Y, Ohshiba Y, Okumura K, Taya C, Tokano H, Kitamura K, Takada T, Hibino H, Shiroishi T, Kominami R, Yonekawa H, Kikkawa Y. Heterozygous mutation of Ush1g/Sans in mice causes early-onset progressive hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23. Hum Mol Genet 2016; 25:2045-2059. [PMID: 26936824 DOI: 10.1093/hmg/ddw078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Most clinical reports have suggested that patients with congenital profound hearing loss have recessive mutations in deafness genes, whereas dominant alleles are associated with progressive hearing loss (PHL). Jackson shaker (Ush1gjs) is a mouse model of recessive deafness that exhibits congenital profound deafness caused by the homozygous mutation of Ush1g/Sans on chromosome 11. We found that C57BL/6J-Ush1gjs/+ heterozygous mice exhibited early-onset PHL (ePHL) accompanied by progressive degeneration of stereocilia in the cochlear outer hair cells. Interestingly, ePHL did not develop in mutant mice with the C3H/HeN background, thus suggesting that other genetic factors are required for ePHL development. Therefore, we performed classical genetic analyses and found that the occurrence of ePHL in Ush1gjs/+ mice was associated with an interval in chromosome 10 that contains the cadherin 23 gene (Cdh23), which is also responsible for human deafness. To confirm this mutation effect, we generated C57BL/6J-Ush1gjs/+, Cdh23c.753A/G double-heterozygous mice by using the CRISPR/Cas9-mediated Cdh23c.753A>G knock-in method. The Cdh23c.753A/G mice harbored a one-base substitution (A for G), and the homozygous A allele caused moderate hearing loss with aging. Analyses revealed the complete recovery of ePHL and stereocilia degeneration in C57BL/6J-Ush1gjs/+ mice. These results clearly show that the development of ePHL requires at least two mutant alleles of the Ush1g and Cdh23 genes. Our results also suggest that because the SANS and CDH23 proteins form a complex in the stereocilia, the interaction between these proteins may play key roles in the maintenance of stereocilia and the prevention of ePHL.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Sachi Yoshimoto
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences
| | - Kazuhiro Okumura
- Division of Oncogenomics, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba 260-0801, Japan
| | - Choji Taya
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisashi Tokano
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Ken Kitamura
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan and
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Hiromichi Yonekawa
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Graduate School of Medical and Dental Sciences,
| |
Collapse
|
36
|
Hu J, Xu M, Yuan J, Li B, Entenman S, Yu H, Zheng QY. Tauroursodeoxycholic acid prevents hearing loss and hair cell death in Cdh23(erl/erl) mice. Neuroscience 2015; 316:311-20. [PMID: 26748055 DOI: 10.1016/j.neuroscience.2015.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Sensorineural hearing loss has long been the subject of experimental and clinical research for many years. The recently identified novel mutation of the Cadherin23 (Cdh23) gene, Cdh23(erl/erl), was proven to be a mouse model of human autosomal recessive nonsyndromic deafness (DFNB12). Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated bile acid, has been used in experimental research and clinical applications related to liver disease, diabetes, neurodegenerative diseases, and other diseases associated with apoptosis. Because hair cell apoptosis was implied to be the cellular mechanism leading to hearing loss in Cdh23(erl/erl) mice (erl mice), this study investigated TUDCA's otoprotective effects in erl mice: preventing hearing impairment and protecting against hair cell death. Our results showed that systemic treatment with TUDCA significantly alleviated hearing loss and suppressed hair cell death in erl mice. Additionally, TUDCA inhibited apoptotic genes and caspase-3 activation in erl mouse cochleae. The data suggest that TUDCA could be a potential therapeutic agent for human DFNB12.
Collapse
Affiliation(s)
- J Hu
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China; Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - M Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China
| | - J Yuan
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - B Li
- Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - S Entenman
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - H Yu
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Q Y Zheng
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China; Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| |
Collapse
|
37
|
|
38
|
Han X, Ge R, Xie G, Li P, Zhao X, Gao L, Zhang H, Wang O, Huang F, Han F. Caspase-mediated apoptosis in the cochleae contributes to the early onset of hearing loss in A/J mice. ASN Neuro 2015; 7:7/1/1759091415573985. [PMID: 25732708 PMCID: PMC4366423 DOI: 10.1177/1759091415573985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A/J and C57BL/6 J (B6) mice share a mutation in Cdh23 (ahl allele) and are characterized by age-related hearing loss. However, hearing loss occurs much earlier in A/J mice at about four weeks of age. Recent study has revealed that a mutation in citrate synthase (Cs) is one of the main contributors, but the mechanism is largely unknown. In the present study, we showed that A/J mice displayed more severe degeneration of hair cells, spiral ganglion neurons, and stria vascularis in the cochleae compared with B6 mice. Moreover, messenger RNA accumulation levels of caspase-3 and caspase-9 in the inner ears of A/J mice were significantly higher than those in B6 mice at 2 and 8 weeks of age. Immunohistochemistry localized caspase-3 expression mainly to the hair cells, spiral ganglion neurons, and stria vascularis in cochleae. In vitro transfection with Cs short hairpin RNA (shRNA) alone or cotransfection with Cs shRNA and Cdh23 shRNA significantly increased the levels of caspase-3 in an inner ear cell line (HEI-OC1). Finally, a pan-caspase inhibitor Z-VAD-FMK could preserve the hearing of A/J mice by lowering about 15 decibels of the sound pressure level for the auditory-evoked brainstem response thresholds. In conclusion, our results suggest that caspase-mediated apoptosis in the cochleae, which may be related to a Cs mutation, contributes to the early onset of hearing loss in A/J mice.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Ruli Ge
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- Department of Neurology, University Hospital of Binzhou Medical University, Binzhou, P. R. China
| | - Gang Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Xin Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Lixiang Gao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Heng Zhang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Fei Huang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- § Fengchan Han, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China. ; Fei Huang, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- § Fengchan Han, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China. ; Fei Huang, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China.
| |
Collapse
|
39
|
High-resolution genetic mapping of complex traits from a combined analysis of F2 and advanced intercross mice. Genetics 2015; 198:103-16. [PMID: 25236452 DOI: 10.1534/genetics.114.167056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross (n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of "realized relatedness." QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chromosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and 12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL.
Collapse
|
40
|
Gorski M, Tin A, Garnaas M, McMahon GM, Chu AY, Tayo BO, Pattaro C, Teumer A, Chasman DI, Chalmers J, Hamet P, Tremblay J, Woodward M, Aspelund T, Eiriksdottir G, Gudnason V, Harris TB, Launer LJ, Smith AV, Mitchell BD, O'Connell JR, Shuldiner AR, Coresh J, Li M, Freudenberger P, Hofer E, Schmidt H, Schmidt R, Holliday EG, Mitchell P, Wang JJ, de Boer IH, Li G, Siscovick DS, Kutalik Z, Corre T, Vollenweider P, Waeber G, Gupta J, Kanetsky PA, Hwang SJ, Olden M, Yang Q, de Andrade M, Atkinson EJ, Kardia SLR, Turner ST, Stafford JM, Ding J, Liu Y, Barlassina C, Cusi D, Salvi E, Staessen JA, Ridker PM, Grallert H, Meisinger C, Müller-Nurasyid M, Krämer BK, Kramer H, Rosas SE, Nolte IM, Penninx BW, Snieder H, Fabiola Del Greco M, Franke A, Nöthlings U, Lieb W, Bakker SJL, Gansevoort RT, van der Harst P, Dehghan A, Franco OH, Hofman A, Rivadeneira F, Sedaghat S, Uitterlinden AG, Coassin S, Haun M, Kollerits B, Kronenberg F, Paulweber B, Aumann N, Endlich K, Pietzner M, Völker U, Rettig R, Chouraki V, Helmer C, Lambert JC, Metzger M, Stengel B, Lehtimäki T, Lyytikäinen LP, Raitakari O, Johnson A, Parsa A, Bochud M, Heid IM, Goessling W, Köttgen A, Kao WHL, Fox CS, Böger CA. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int 2015; 87:1017-29. [PMID: 25493955 PMCID: PMC4425568 DOI: 10.1038/ki.2014.361] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022]
Abstract
Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.
Collapse
Affiliation(s)
- Mathias Gorski
- 1] Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany [2] Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maija Garnaas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gearoid M McMahon
- 1] Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA [2] NHLBI's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bamidele O Tayo
- Department of Public Health Services, Loyola Medical Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Cristian Pattaro
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), affiliated to the University of Lübeck, Bolzano, Italy
| | - Alexander Teumer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John Chalmers
- George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
| | - Pavel Hamet
- Centre de recherche du Centre hospitalier de l'Université de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Johanne Tremblay
- CHUM Research Center- Technopôle Angus, Montreal, Québec, Canada
| | - Marc Woodward
- George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
| | - Thor Aspelund
- 1] Icelandic Heart Association, Research Institute, Kopavogur, Iceland [2] University of Iceland, Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- 1] Icelandic Heart Association, Research Institute, Kopavogur, Iceland [2] University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Lenore J Launer
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Albert V Smith
- 1] Icelandic Heart Association, Research Institute, Kopavogur, Iceland [2] University of Iceland, Reykjavik, Iceland
| | - Braxton D Mitchell
- 1] Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA [2] Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey R O'Connell
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan R Shuldiner
- 1] Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA [2] Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Josef Coresh
- 1] Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA [2] Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland, USA
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul Freudenberger
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Edith Hofer
- Department of Neurology, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | | | - Elizabeth G Holliday
- Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, CReDITSS, HMRI, Callaghan, New South Wales, Australia
| | - Paul Mitchell
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Westmead Hospital, Sydney, New South Wales, Australia
| | | | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - David S Siscovick
- 1] Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA [2] New York Academy of Medicine, New York, New York, USA
| | - Zoltan Kutalik
- 1] Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland [2] Department of Medical Genetics, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Internal Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Gérard Waeber
- Internal Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Jayanta Gupta
- Perelman School of Medicine at the University of Pennsylvania, Center for Clinical Epidemiology and Biostatistics
| | - Peter A Kanetsky
- Perelman School of Medicine at the University of Pennsylvania, Center for Clinical Epidemiology and Biostatistics
| | - Shih-Jen Hwang
- NHLBI's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Matthias Olden
- 1] Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany [2] NHLBI's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Qiong Yang
- 1] NHLBI's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA [2] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | - Jeanette M Stafford
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Daniele Cusi
- 1] Department of Health Science, University of Milano, Milano, Italy [2] Division of Nephrology, San Paolo Hospital, Milano, Italy
| | - Erika Salvi
- Department of Health Science, University of Milano, Milano, Italy
| | - Jan A Staessen
- 1] Department of Epidemiology, Maastricht University, Maastricht, The Netherlands [2] Studies Coordinating Centre, Division of Hypertension and Cardiovascular Rehabilitation, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Harald Grallert
- 1] Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany [2] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany [3] German Center for Diabetes Research, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- 1] DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany [2] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany [3] Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany [4] Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Department of Medicine, University of Heidelberg, Mannheim, Germany
| | - Holly Kramer
- Department of Public Health Services, Loyola Medical Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Sylvia E Rosas
- Joslin Diabetes Center and Beth Israel Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ilja M Nolte
- 1] Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands [2] Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology (FA40), University Medical Center Groningen, Groningen, The Netherlands
| | - Brenda W Penninx
- 1] Department of Psychiatry/EMGO Institute/Neuroscience Campus, VU University Medical Centre, Amsterdam, The Netherlands [2] EMGO Institute Vumc, NESDA, Amsterdam, The Netherlands
| | - Harold Snieder
- 1] Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands [2] Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology (FA40), University Medical Center Groningen, Groningen, The Netherlands
| | - M Fabiola Del Greco
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), affiliated to the University of Lübeck, Bolzano, Italy
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel, Germany
| | - Ute Nöthlings
- 1] Popgen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany [2] Section for Epidemiology, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank popgen, Christian-Albrechts University, Kiel, Germany
| | - Stephan J L Bakker
- University Medical Center Groningen, Department of Nephrology, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- University Medical Center Groningen, Department of Nephrology, University of Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Groningen, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Stefan Coassin
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Margot Haun
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Kollerits
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | - Nicole Aumann
- Department SHIP/KEF, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Mike Pietzner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Rainer Rettig
- Institute of Physiology, University of Greifswald, Greifswald-Karlsburg, Germany
| | - Vincent Chouraki
- Inserm, U744, Institut Pasteur de Lille, Université Lille-Nord de France, CHR&U de Lille, Service d'épidémiologie régional, CHRU, Lille, France
| | - Catherine Helmer
- Inserm, U897, Université Bordeaux 2, ISPED, ISPED, Université Bordeaux 2, Bordeaux, France
| | - Jean-Charles Lambert
- Inserm, U744, Institut Pasteur de Lille, Université Lille-Nord de France, Institut Pasteur, Lille, France
| | - Marie Metzger
- Inserm, U1018, University Paris-Sud, CESP Team 10, Villejuif, France
| | - Benedicte Stengel
- Inserm, U1018, University Paris-Sud, CESP Team 10, Villejuif, France
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | | | - Olli Raitakari
- 1] Department of Clinical Physiology, Turku University Hospital, Turku, Finland [2] Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andrew Johnson
- NHLBI Cardiovascular Epidemiology and Human Genomics Branch, Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Afshin Parsa
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Murielle Bochud
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Epalinges, Switzerland
| | - Iris M Heid
- 1] Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany [2] Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfram Goessling
- 1] Divisions of Genetics and Gastroenterology, Department of Medicine, Brigham and Women's Hospital, and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA [2] Harvard Stem Cell Institute, Harvard University and Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anna Köttgen
- 1] Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA [2] Renal Division, Freiburg University Clinic, Germany, Freiburg, Germany
| | - W H Linda Kao
- 1] Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA [2] Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland, USA
| | - Caroline S Fox
- 1] NHLBI's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA [2] Department of Endocrinology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Narayanan P, Chatterton P, Ikeda A, Ikeda S, Corey DP, Ervasti JM, Perrin BJ. Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nat Commun 2015; 6:6855. [PMID: 25897778 PMCID: PMC4523390 DOI: 10.1038/ncomms7855] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of cross-linked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here, we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically-gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Together, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length.
Collapse
Affiliation(s)
- Praveena Narayanan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Paul Chatterton
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46022, USA
| |
Collapse
|
42
|
|
43
|
Miyasaka Y, Suzuki S, Ohshiba Y, Watanabe K, Sagara Y, Yasuda SP, Matsuoka K, Shitara H, Yonekawa H, Kominami R, Kikkawa Y. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice. Exp Anim 2014; 62:333-46. [PMID: 24172198 PMCID: PMC4160959 DOI: 10.1538/expanim.62.333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The waltzer (v) mouse mutant harbors a mutation in Cadherin 23
(Cdh23) and is a model for Usher syndrome type 1D, which is
characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of
progressive retinitis pigmentosa. In mice, functionally null Cdh23
mutations affect stereociliary morphogenesis and the polarity of both cochlear and
vestibular hair cells. In contrast, the murine Cdh23ahl
allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to
age-related hearing loss in many inbred strains. We produced congenic mice by crossing
mice carrying the v niigata (Cdh23v-ngt) null
allele with mice carrying the hypomorphic Cdh23ahl allele on
the C57BL/6J background, and we then analyzed the animals’ balance and hearing phenotypes.
Although the
Cdh23v-ngt/ahl
compound heterozygous mice exhibited normal vestibular function, their hearing ability was
abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and
rapid age-dependent elevation of ABR thresholds compared with
Cdh23ahl/ahl
homozygous mice. We found that the stereocilia developed normally but were progressively
disrupted in
Cdh23v-ngt/ahl mice.
In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate
the mechanoelectrical transduction channels in hair cells. We hypothesize that the
reduction of Cdh23 gene dosage in
Cdh23v-ngt/ahl mice
leads to the degeneration of stereocilia, which consequently reduces tip link tension.
These findings indicate that CDH23 plays an important role in the maintenance of tip links
during the aging process.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Collapse
|
45
|
Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci 2013; 36:519-46. [DOI: 10.1146/annurev-neuro-062012-170412] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Kathryn Quick
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| |
Collapse
|
46
|
Noddy, a mouse harboring a missense mutation in protocadherin-15, reveals the impact of disrupting a critical interaction site between tip-link cadherins in inner ear hair cells. J Neurosci 2013; 33:4395-404. [PMID: 23467356 DOI: 10.1523/jneurosci.4514-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In hair cells of the inner ear, sound or head movement increases tension in fine filaments termed tip links, which in turn convey force to mechanosensitive ion channels to open them. Tip links are formed by a tetramer of two cadherin proteins: protocadherin 15 (PCDH15) and cadherin 23 (CDH23), which have 11 and 27 extracellular cadherin (EC) repeats, respectively. Mutations in either protein cause inner ear disorders in mice and humans. We showed recently that these two cadherins bind tip-to-tip in a "handshake" mode that involves the EC1 and EC2 repeats of both proteins. However, a paucity of appropriate animal models has slowed our understanding both of the interaction and of how mutations of residues within the predicted interface compromise tip link integrity. Here, we present noddy, a new mouse model for hereditary deafness. Identified in a forward genetic screen, noddy homozygotes lack inner ear function. Mapping and sequencing showed that noddy mutant mice harbor an isoleucine-to-asparagine (I108N) mutation in the EC1 repeat of PCDH15. Residue I108 interacts with CDH23 EC2 in the handshake and its mutation impairs the interaction in vitro. The noddy mutation allowed us to determine the consequences of blocking the handshake in vivo: tip link formation and bundle morphology are disrupted, and mechanotransduction channels fail to remain open at rest. These results offer new insights into the interaction between PCDH15 and CDH23 and help explain the etiology of human deafness linked to mutations in the tip-link interface.
Collapse
|
47
|
Xiong W, Grillet N, Elledge HM, Wagner TFJ, Zhao B, Johnson KR, Kazmierczak P, Müller U. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 2013; 151:1283-95. [PMID: 23217710 DOI: 10.1016/j.cell.2012.10.041] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 01/02/2023]
Abstract
Hair cells are mechanosensors for the perception of sound, acceleration, and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here, we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cell's mechanotransduction machinery that functionally couples PCDH15 to the transduction channel.
Collapse
Affiliation(s)
- Wei Xiong
- The Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Han F, Yu H, Zheng T, Ma X, Zhao X, Li P, Le L, Su Y, Zheng QY. Otoprotective effects of erythropoietin on Cdh23erl/erl mice. Neuroscience 2013; 237:1-6. [PMID: 23384607 DOI: 10.1016/j.neuroscience.2013.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The Cdh23(erl/erl) mice are a novel mouse model for DFNB12 and are characterized by progressive hearing loss. In this study, erythropoietin (EPO) was given to the Cdh23(erl/erl) mice by intraperitoneal injection every other day from P7 for 7 weeks. Phosphate-buffered saline-treated or untreated Cdh23(erl/erl) mice were used as controls. Auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) were measured in the mouse groups at the age of 4, 6 and 8 weeks. The results show that EPO can significantly decrease the ABR thresholds in the Cdh23(erl/erl) mice as compared with those of the untreated mice at stimulus frequencies of click, 8-, 16- and 32-kHz at three time points. Meanwhile, DPOAE amplitudes in the EPO-treated Cdh23(erl/erl) mouse group were significantly higher than those of the untreated groups at f2 frequency of 15383 Hz at the three time points. Furthermore, the mean percentage of outer hair cell loss at middle through basal turns of cochleae was significantly lower in EPO-treated Cdh23(erl/erl) mice than in the untreated mice (P<0.05). This is the first report that EPO acts as an otoprotectant in a DFNB12 mouse model with progressive hearing loss.
Collapse
Affiliation(s)
- F Han
- Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hackney CM, Furness DN. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells. J Cell Sci 2013; 126:1721-31. [DOI: 10.1242/jcs.106120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The key components of acousticolateralis systems (lateral line, hearing and balance) are sensory hair cells. At their apex, these cells have a bundle of specialized cellular protrusions, which are modified actin-containing microvilli, connected together by extracellular filaments called cross links. Stereociliary deflections open nonselective cation channels allowing ions from the extracellular environment into the cell, a process called mechanoelectrical transduction. This produces a receptor potential that causes the release of the excitatory neurotransmitter glutamate onto the terminals of the sensory nerve fibres, which connect to the cell base, causing nerve signals to be sent to the brain. Identification of the cellular mechanisms underlying mechanoelectrical transduction and of some of the proteins involved has been assisted by research into the genetics of deafness, molecular biology and mechanical measurements of function. It is thought that one type of cross link, the tip link, is composed of cadherin 23 and protocadherin 15, and gates the transduction channel when the bundle is deflected. Another type of link, called lateral (or horizontal) links, maintains optimal bundle cohesion and stiffness for transduction. This Commentary summarizes the information currently available about the structure, function and composition of the links and how they might be relevant to human hearing impairment.
Collapse
|
50
|
Characterization of Highper, an ENU-induced mouse mutant with abnormal psychostimulant and stress responses. Psychopharmacology (Berl) 2013; 225:407-19. [PMID: 22948668 PMCID: PMC3536991 DOI: 10.1007/s00213-012-2827-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 11/05/2022]
Abstract
RATIONALE Chemical mutagenesis in the mouse is a forward genetics approach that introduces random mutations into the genome, thereby providing an opportunity to annotate gene function and characterize phenotypes that have not been previously linked to a given gene. OBJECTIVES We report on the behavioral characterization of Highper, an N-ethyl-N-nitrosourea (ENU)-induced mutant mouse line. METHODS Highper and B6 control mice were assessed for locomotor activity in the open field and home cage environments. Basal and acute restraint stress-induced corticosterone levels were measured. Mice were tested for locomotor response to cocaine (5, 20, 30, and 45 mg/kg), methylphenidate (30 mg/kg), and ethanol (0.75, 1.25, and 1.75 g/kg). The rewarding and reinforcing effects of cocaine were assessed using conditioned place preference and self-administration paradigms. RESULTS Highper mice are hyperactive during behavioral tests but show normal home cage locomotor behavior. Highper mice also exhibit a twofold increase in locomotor response to cocaine, methylphenidate, and ethanol and prolonged activation of the hypothalamic-pituitary-adrenal axis in response to acute stress. Highper mice are more sensitive to the rewarding and reinforcing effects of cocaine, although place preference in Highper mice appears to be significantly influenced by the environment in which the drug is administered. CONCLUSIONS Altogether, our findings indicate that Highper mice may provide important insights into the genetic, molecular, and biological mechanisms underlying stress and the drug reward pathway.
Collapse
|