1
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Wang Y, Zhang TL, Barnett EM, Sureshkumar S, Balasubramanian S, Fournier-Level A. Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 245:668-683. [PMID: 39550624 DOI: 10.1111/nph.20241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024]
Abstract
Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.
Collapse
Affiliation(s)
- Yu Wang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Tania L Zhang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | |
Collapse
|
3
|
Mérida-García R, Gálvez S, Solís I, Martínez-Moreno F, Camino C, Soriano JM, Sansaloni C, Ammar K, Bentley AR, Gonzalez-Dugo V, Zarco-Tejada PJ, Hernandez P. High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1470520. [PMID: 39649812 PMCID: PMC11620856 DOI: 10.3389/fpls.2024.1470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
Collapse
Affiliation(s)
- Rosa Mérida-García
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Ignacio Solís
- Department of Agronomy, ETSIA (University of Seville), Seville, Spain
| | | | - Carlos Camino
- European Commission (EC), Joint Research Centre (JRC), Ispra, Italy
| | - Jose Miguel Soriano
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - AGROTECNIO, Lleida, Spain
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Alison R. Bentley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Victoria Gonzalez-Dugo
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pablo J. Zarco-Tejada
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), and Faculty of Engineering, and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
4
|
Zu Y, Jiang M, Zhan Z, Li X, Piao Z. Orphan gene BR2 positively regulates bolting resistance through the vernalization pathway in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhae216. [PMID: 39398948 PMCID: PMC11469923 DOI: 10.1093/hr/uhae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024]
Abstract
Orphan genes (OGs) are unique to the specific species or lineage, and whose homologous sequences cannot be found in other species or lineages. Furthermore, these genes lack recognizable domains or functional motifs, which make their characterization difficult. Here, we identified a Brassica rapa OG named BOLTING RESISTANCE 2 (BR2) that could positively modulate bolting resistance. The expression of BR2 was developmentally regulated and the BR2 protein was localized to the cell membrane. BR2 overexpression not only markedly delayed flowering time in Arabidopsis transgenic plants, but substantially affected the development of leaves and flower organs. Flowering repressor AtFLC gene was significantly up-regulated transcribed in Arabidopsis BR2 overexpression lines, while AtFT and AtSOC1 expression was decreased. In addition, the BR2 expression was enhanced in bolting-resistant type Chinese cabbage and was reduced in non-resistant type. Moreover, chilling stress inhibited the BR2 expression levels. Overexpression of BR2 also delayed flowering time in Chinese cabbage. In vernalized Chinese cabbage BR2 overexpression plants, BrVIN3.b and BrFRI were significantly down-regulated, while BrFLC5 was substantially up-regulated. Key floral factors, including three BrSOC1s, two BrLFYs, and four BrFTs were down-regulated. The expression changes of these key genes were consistent with the delayed flowering phenotype of Chinese cabbage BR2 overexpressing plants. Thus, we predicted that BR2 may predominantly function via the vernalization pathway. Our findings propose that the OG BR2 acts as a novel modulator of flowering time in Chinese cabbage, which provides a new insight on the breeding of varieties that are resistant to bolting.
Collapse
Affiliation(s)
- Ye Zu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Luo Y, Liu H, Han Y, Li W, Wei W, He N. Alternative splicing of the FLOWERING LOCUS C-like gene MaMADS33 is associated with endodormancy in mulberry. FORESTRY RESEARCH 2024; 4:e029. [PMID: 39524424 PMCID: PMC11524320 DOI: 10.48130/forres-0024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional process that generates multiple mRNA isoforms. FLOWERING LOCUS C (FLC) is a pivotal gene in both the vernalization and autonomous pathways of flowering plants, and MaMADS33 is one of the FLC homologs in white mulberry (Morus alba). Recent studies have revealed that MaMADS33 is involved in endodormancy, but the underlying molecular mechanism remains to be characterized. Here, a comparison of MaMADS33 expression among three mulberry cultivars with different degrees of dormancy revealed a positive association between MaMADS33 expression and dormancy. Further 3' and 5' rapid amplification of cDNA ends (RACE) analyses led to identifying four MaMADS33 isoforms derived from AS and designated MaMADS33-AS1-4. Analysis of their coding potential revealed that MaMADS33-AS1 was a long non-coding RNA. Expression profiling and splicing-efficiency analyses showed that cold stress during endodormancy induced AS of MaMADS33, resulting in a predominance of truncated isoforms, especially MaMADS33-AS1. MaMADS33-AS2 expression was upregulated during both endodormancy and ecodormancy, whereas MaMADS33-AS3 and MaMADS33-AS4 were endodormancy-associated isoforms that were upregulated during endodormancy and then downregulated during ecodormancy. MaMADS33-AS4 was used as bait for a yeast two-hybrid screen because its gene expression was higher than that of MaMADS33-AS3, and mulberry winter-accumulating 18 kDa protein (MaWAP18) was identified as an MaMADS33-AS4 interaction partner. The interaction between MaWAP18 and MaMADS33-AS4 was confirmed by a bimolecular fluorescence complementation assay. These findings offer insight into the role of FLC homologs in the endodormancy of woody plants.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongjiang Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Yuanxiang Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wei Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
6
|
DeLeo VL, Marais DLD, Juenger TE, Lasky JR. Genetic variation in phenology of wild Arabidopsis thaliana plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610887. [PMID: 39282395 PMCID: PMC11398302 DOI: 10.1101/2024.09.02.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Phenology and the timing of development are often under selection, but at the same time influence selection on other traits by controlling how traits are expressed across seasons. Plants often exhibit high natural genetic variation in phenology when grown in controlled environments, and many genetic and molecular mechanisms underlying phenology have been dissected. There remains considerable diversity of germination and flowering time within populations in the wild and the contribution of genetics to phenological variation of wild plants is largely unknown. We obtained collection dates of naturally inbred Arabidopsis thaliana accessions from nature and compared them to experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same inbred lines in nature. We found that genetic variation in phenology from controlled experiments significantly, but weakly, predicts day of collection from the wild, even when measuring collection date with accumulated photothermal units. We found that experimental flowering time breeding values were correlated to wild flowering time at location of origin estimated from herbarium collections. However, local variation in collection dates within a region was not explained by genetic variation in experiments, suggesting high plasticity across small-scale environmental gradients. This apparent low heritability in natural populations may suggest strong selection or many generations are required for phenological adaptation and the emergence of genetic clines in phenology.
Collapse
Affiliation(s)
| | - David L. Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
| | | | | |
Collapse
|
7
|
Godineau C, Theodorou K, Spigler RB. Effect of the Seed Bank on Evolutionary Rescue in Small Populations: Univariate and Multivariate Demogenetic Dynamics. Am Nat 2024; 204:221-241. [PMID: 39179238 DOI: 10.1086/731402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractUnder global change, the impact of seed banks on evolutionary rescue is uncertain. They buffer plant populations from demographic and genetic stochasticity but extend generation time and can become a reservoir of maladapted alleles. We built analytical and individual-based models to predict the effect of seed banks on the persistence of small annual plant populations facing an abrupt or sustained directional change in uni- or multivariate trait optima. Demogenetic dynamics predict that under most scenarios seed banks increase the lag yet enhance persistence to 200-250 years by absorbing demographic losses. Simulations indicate that the seed bank has a minimal impact on the genetic skew, although we suggest that this result could depend on the fitness component under selection. Our multivariate model reveals that by enlarging and reshaping the G matrix, seed banks can diminish the impact of mutational correlation and even accelerate adaptation under antagonistic pleiotropy relative to populations without a bank. We illustrate how the magnitude of optimum fluctuations, type and degree of optimum change, selection strength, and vital rates are weights that tip the scales determining persistence. Finally, our work highlights that migration from the past is not maladaptative when optimum fluctuations are large enough to create stepping stones to the new optimum.
Collapse
|
8
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
9
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
Ali A, Zareen S, Park J, Khan HA, Lim CJ, Bader ZE, Hussain S, Chung WS, Gechev T, Pardo JM, Yun DJ. ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2481-2493. [PMID: 38280208 PMCID: PMC11016836 DOI: 10.1093/jxb/erae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024]
Abstract
The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Zein Eddin Bader
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Shah Hussain
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Woo Sik Chung
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Tsanko Gechev
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla-41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
12
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
13
|
Liu T, Wu Q, Zhou S, Xia J, Yin W, Deng L, Song B, He T. Molecular Insights into the Accelerated Sprouting of and Apical Dominance Release in Potato Tubers Subjected to Post-Harvest Heat Stress. Int J Mol Sci 2024; 25:1699. [PMID: 38338975 PMCID: PMC10855572 DOI: 10.3390/ijms25031699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change-induced heat stress (HS) increasingly threatens potato (Solanum tuberosum L.) production by impacting tuberization and causing the premature sprouting of tubers grown during the hot season. However, the effects of post-harvest HS on tuber sprouting have yet to be explored. This study aims to investigate the effects of post-harvest HS on tuber sprouting and to explore the underlying transcriptomic changes in apical bud meristems. The results show that post-harvest HS facilitates potato tuber sprouting and negates apical dominance. A meticulous transcriptomic profiling of apical bud meristems unearthed a spectrum of differentially expressed genes (DEGs) activated in response to HS. During the heightened sprouting activity that occurred at 15-18 days of HS, the pathways associated with starch metabolism, photomorphogenesis, and circadian rhythm were predominantly suppressed, while those governing chromosome organization, steroid biosynthesis, and transcription factors were markedly enhanced. The critical DEGs encompassed the enzymes pivotal for starch metabolism, the genes central to gibberellin and brassinosteroid biosynthesis, and influential developmental transcription factors, such as SHORT VEGETATIVE PHASE, ASYMMETRIC LEAVES 1, SHOOT MERISTEMLESS, and MONOPTEROS. These findings suggest that HS orchestrates tuber sprouting through nuanced alterations in gene expression within the meristematic tissues, specifically influencing chromatin organization, hormonal biosynthesis pathways, and the transcription factors presiding over meristem fate determination. The present study provides novel insights into the intricate molecular mechanisms whereby post-harvest HS influences tuber sprouting. The findings have important implications for developing strategies to mitigate HS-induced tuber sprouting in the context of climate change.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China;
| | - Qiaoyu Wu
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Shuai Zhou
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Junhui Xia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (B.S.)
| | - Wang Yin
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Lujun Deng
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Potato Engineering and Technology Research Center of Hubei Province, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (B.S.)
| | - Tianjiu He
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountainous Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China; (Q.W.); (S.Z.); (W.Y.); (L.D.)
| |
Collapse
|
14
|
Guo X, Liang R, Lou S, Hou J, Chen L, Liang X, Feng X, Yao Y, Liu J, Liu H. Natural variation in the SVP contributes to the pleiotropic adaption of Arabidopsis thaliana across contrasted habitats. J Genet Genomics 2023; 50:993-1003. [PMID: 37633338 DOI: 10.1016/j.jgg.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Coordinated plant adaptation involves the interplay of multiple traits driven by habitat-specific selection pressures. Pleiotropic effects, wherein genetic variants of a single gene control multiple traits, can expedite such adaptations. Until present, only a limited number of genes have been reported to exhibit pleiotropy. Here, we create a recombinant inbred line (RIL) population derived from two Arabidopsis thaliana (A. thaliana) ecotypes originating from divergent habitats. Using this RIL population, we identify an allelic variation in a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP), which exerts a pleiotropic effect on leaf size and drought-versus-humidity tolerance. Further investigation reveals that a natural null variant of the SVP protein disrupts its normal regulatory interactions with target genes, including GRF3, CYP707A1/3, and AtBG1, leading to increased leaf size, enhanced tolerance to humid conditions, and changes in flowering time of humid conditions in A. thaliana. Remarkably, polymorphic variations in this gene have been traced back to early A. thaliana populations, providing a genetic foundation and plasticity for subsequent colonization of diverse habitats by influencing multiple traits. These findings advance our understanding of how plants rapidly adapt to changing environments by virtue of the pleiotropic effects of individual genes on multiple trait alterations.
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruyun Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Hou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liyang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Huanhuan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
15
|
Baruah PM, Bordoloi KS, Gill SS, Agarwala N. CircRNAs responsive to winter dormancy and spring flushing conditions of tea leaf buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111828. [PMID: 37586421 DOI: 10.1016/j.plantsci.2023.111828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) are important regulators of diverse biological processes of plants. However, the evolution and potential functions of circRNAs during winter dormancy and spring bud flushing of tea plant is largely unknown. Using RNA-seq data, a total of 1184 circRNAs were identified in the winter dormant and spring bud flushing leaf samples of tea plants in two different cultivars exhibiting different duration of winter dormancy. A total of 156 circRNAs are found to be differentially expressed and the weighted gene co-expression network (WGCNA) analysis revealed that 22 and 20 differentially expressed-circRNAs (DE-circRNAs) positively correlated with the flushing and dormant leaf traits, respectively, in both the tea cultivars used. Some transcription factors (TFs) viz. MYB, WRKY, ERF, bHLH and several genes related to secondary metabolite biosynthetic pathways are found to co-express with circRNAs. DE-circRNAs also predicted to interact with miRNAs and can regulate phytohormone biosynthesis and various signalling pathways in tea plant. This study uncovers the potential roles of circRNAs to determine winter dormancy and spring bud flushing conditions in tea plants.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kuntala Sarma Bordoloi
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India; Mangaldai College, Upahupara, Mangaldai 784125, Assam, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
16
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
17
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
18
|
Henderson-Carter A, Kinmonth-Schultz H, Hileman L, Ward JK. FLOWERING LOCUS C drives delayed flowering in Arabidopsis grown and selected at elevated CO 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545149. [PMID: 37398485 PMCID: PMC10312727 DOI: 10.1101/2023.06.15.545149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Altered flowering time at elevated [CO 2 ] is well documented, although mechanisms are not well understood. An Arabidopsis genotype previously selected for high fitness at elevated [CO 2 ] (SG) showed delayed flowering and larger size at flowering when grown at elevated (700 ppm) versus current (380 ppm) [CO 2 ]. This response was correlated with prolonged expression of FLOWERING LOCUS C ( FLC ), a vernalization-responsive floral repressor gene. To determine if FLC directly delays flowering at elevated [CO 2 ] in SG, we used vernalization (extended cold) to downregulate FLC expression. We hypothesized that vernalization would eliminate delayed flowering at elevated [CO 2 ] through the direct reduction of FLC expression, eliminating differences in flowering time between current and elevated [CO 2 ]. We found that with downregulation of FLC expression via vernalization, SG plants grown at elevated [CO 2 ] no longer delayed flowering compared to current [CO 2 ]. Thus, vernalization returned the earlier flowering phenotype, counteracting effects of elevated [CO 2 ] on flowering. This study indicates that elevated [CO 2 ] can delay flowering directly through FLC , and downregulation of FLC under elevated [CO 2 ] reverses this effect. Moreover, this study demonstrates that increasing [CO 2 ] may potentially drive major changes in development through FLC .
Collapse
|
19
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
20
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
21
|
Weng X, Haque T, Zhang L, Razzaque S, Lovell JT, Palacio-Mejía JD, Duberney P, Lloyd-Reilley J, Bonnette J, Juenger TE. A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Mol Biol Evol 2022; 39:msac203. [PMID: 36149808 PMCID: PMC9550986 DOI: 10.1093/molbev/msac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Diego Palacio-Mejía
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá. Kilómetro 14 vía Mosquera-Bogotá, Mosquera. Código postal 250047, Colombia
| | - Perla Duberney
- Kika de la Garza Plant Materials Center, USDA-NRCS, Kingsville, TX, USA
| | | | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Winter warming post floral initiation delays flowering via bud dormancy activation and affects yield in a winter annual crop. Proc Natl Acad Sci U S A 2022; 119:e2204355119. [PMID: 36122201 PMCID: PMC9522361 DOI: 10.1073/pnas.2204355119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In temperate climates many plant species use long-term detection of winter chilling as a seasonal cue. Previously the timing of flowering in winter annual plants has been shown to be controlled by the promotion of the floral transition by chilling, known as vernalization. In contrast, many temperate perennial species produce flower buds prior to winter and require winter chilling to break bud dormancy to enable bud break and flowering in the following spring. Here we show that flowering time in winter annuals can be controlled by bud dormancy and that in winter oilseed rape–reduced chilling during flower bud dormancy is associated with yield declines. Winter annual life history is conferred by the requirement for vernalization to promote the floral transition and control the timing of flowering. Here we show using winter oilseed rape that flowering time is controlled by inflorescence bud dormancy in addition to vernalization. Winter warming treatments given to plants in the laboratory and field increase flower bud abscisic acid levels and delay flowering in spring. We show that the promotive effect of chilling reproductive tissues on flowering time is associated with the activity of two FLC genes specifically silenced in response to winter temperatures in developing inflorescences, coupled with activation of a BRANCHED1-dependent bud dormancy transcriptional module. We show that adequate winter chilling is required for normal inflorescence development and high yields in addition to the control of flowering time. Because warming during winter flower development is associated with yield losses at the landscape scale, our work suggests that bud dormancy activation may be important for effects of climate change on winter arable crop yields.
Collapse
|
23
|
Xu G, Tao Z, He Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. THE PLANT CELL 2022; 34:2205-2221. [PMID: 35234936 PMCID: PMC9134069 DOI: 10.1093/plcell/koac077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many over-wintering plants grown in temperate climate acquire competence to flower upon prolonged cold exposure in winter, through vernalization. In Arabidopsis thaliana, prolonged cold exposure induces the silencing of the potent floral repressor FLOWERING LOCUS C (FLC) through repressive chromatin modifications by Polycomb proteins. This repression is maintained to enable flowering after return to warmth, but is reset during seed development. Here, we show that embryonic FLC reactivation occurs in two phases: resetting of cold-induced FLC silencing during embryogenesis and further FLC activation during embryo maturation. We found that the B3 transcription factor (TF) ABSCISIC ACID-INSENSITIVE 3 (ABI3) mediates both FLC resetting in embryogenesis and further activation of FLC expression in embryo maturation. ABI3 binds to the cis-acting cold memory element at FLC and recruits a scaffold protein with active chromatin modifiers to reset FLC chromatin into an active state in late embryogenesis. Moreover, in response to abscisic acid (ABA) accumulation during embryo maturation, ABI3, together with the basic leucine zipper TF ABI5, binds to an ABA-responsive cis-element to further activate FLC expression to high level. Therefore, we have uncovered the molecular circuitries underlying embryonic FLC reactivation following parental vernalization, which ensures that each generation must experience winter cold prior to flowering.
Collapse
|
24
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Doody E, Zha Y, He J, Poethig RS. The genetic basis of natural variation in the timing of vegetative phase change in Arabidopsis thaliana. Development 2022; 149:275256. [PMID: 35502761 DOI: 10.1242/dev.200321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
The juvenile-to-adult transition in plants is known as vegetative phase change and is marked by changes in the expression of leaf traits in response to a decrease in the level of miR156 and miR157. To determine whether this is the only mechanism of vegetative phase change, we measured the appearance of phase-specific leaf traits in 70 natural accessions of Arabidopsis thaliana. We found that leaf shape was poorly correlated with abaxial trichome production (two adult traits), that variation in these traits was not necessarily correlated with the level of miR156, and that there was little to no correlation between the appearance of adult-specific vegetative traits and flowering time. We identified eight quantitative trait loci controlling phase-specific vegetative traits from a cross between the Columbia (Col-0) and Shakdara (Sha) accessions. Only one of these quantitative trait loci includes genes known to regulate vegetative phase change (MIR156A and TOE1), which were expressed at levels consistent with the precocious phenotype of Sha. Our results suggest that vegetative phase change is regulated both by the miR156/SPL module and by genes specific to different vegetative traits, and that natural variation in vegetative phase change can arise from either source.
Collapse
Affiliation(s)
- Erin Doody
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuqi Zha
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jia He
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Ma L, Wang C, Hu Y, Dai W, Liang Z, Zou C, Pan G, Lübberstedt T, Shen Y. GWAS and transcriptome analysis reveal MADS26 involved in seed germination ability in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1717-1730. [PMID: 35247071 DOI: 10.1007/s00122-022-04065-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 05/09/2023]
Abstract
MADS26 affecting maize seed germination was identified by GWAS and transcriptomics. Gene-based association analyses revealed three variations within MADS26 regulating seed germination traits. Overexpressed MADS26 in Arabidopsis improved seed germination. Seed germination ability is extremely important for maize production. Exploring the genetic control of seed germination ability is useful for improving maize yield. In this study, a genome-wide association study (GWAS) was conducted to excavate the significant SNPs involved in seed germination ability based on an association panel consisting of 300 lines. A total of 11 SNPs and 75 candidate genes were significantly associated with the seed germination traits. In addition, we constructed 24 transcriptome libraries from maize seeds at four germination stages using two inbred lines with contrasting germination rates. In total, 15,865 differentially expressed genes were induced during seed germination. Integrating the results of GWAS and transcriptome analysis uncovered four prioritized genes underlying maize seed germination. The variations located in the promoter of Zm00001d017932, a MADS-transcription factor 26 (MADS26), were verified to affect the seed germination, and the haplotype TAT was determined as a favorable haplotype for high-germination capability. MADS26 was induced to express by ethylene during seed germination in maize and overexpressing MADS26 increased the seed germination ability in Arabidopsis. These findings will contribute to understanding of the genetic and molecular mechanisms on seed germination and the genetic modification of seed germination ability in maize.
Collapse
Affiliation(s)
- Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Hu
- Zigong Research Institute of Agricultural Sciences, Zigong, 643002, China
| | - Wei Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenjuan Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
de Pedro M, Mayol M, González-Martínez SC, Regalado I, Riba M. Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness-related traits. AMERICAN JOURNAL OF BOTANY 2022; 109:602-615. [PMID: 35067917 DOI: 10.1002/ajb2.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short-lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route. METHODS We assessed the phenological patterns of variation, and their effect on fitness-related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level. RESULTS We found significant within-species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect. CONCLUSIONS Our results show the crucial role of phenological patterns in shaping adaptive clines for major life-history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.
Collapse
Affiliation(s)
| | - Maria Mayol
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | | | | | - Miquel Riba
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
28
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
29
|
Helal MMU, Gill RA, Tang M, Yang L, Hu M, Yang L, Xie M, Zhao C, Cheng X, Zhang Y, Zhang X, Liu S. SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112475. [PMID: 34834840 PMCID: PMC8619824 DOI: 10.3390/plants10112475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Traits related to flowering time are the most promising agronomic traits that directly impact the seed yield and oil quality of rapeseed (Brassica napus L.). Developing early flowering and maturity rapeseed varieties is an important breeding objective in B. napus. Many studies have reported on days to flowering, but few have reported on budding, bolting, and the interval between bolting and DTF. Therefore, elucidating the genetic architecture of QTLs and genes regulating flowering time, we presented an integrated investigation on SNP and haplotype-based genome-wide association study of 373 diverse B. napus germplasm, which were genotyped by the 60K SNP array and were phenotyped in the four environments. The results showed that a total of 15 and 37 QTLs were detected from SNP and haplotype-based GWAS, respectively. Among them, seven QTL clusters were identified by haplotype-based GWAS. Moreover, three and eight environmentally stable QTLs were detected by SNP-GWAS and haplotype-based GWAS, respectively. By integrating the above two approaches and by co-localizing the four traits, ten (10) genomic regions were under selection on chromosomes A03, A07, A08, A10, C06, C07, and C08. Interestingly, the genomic regions FT.A07.1, FT.A08, FT.C06, and FT.C07 were identified as novel. In these ten regions, a total of 197 genes controlling FT were detected, of which 14 highly expressed DEGs were orthologous to 13 Arabidopsis thaliana genes after integration with transcriptome results. In a nutshell, the above results uncovered the genetic architecture of important agronomic traits related to flowering time and provided a basis for multiple molecular marker-trait associations in B. napus.
Collapse
Affiliation(s)
- MMU Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Minqiang Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Key Laboratory of Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Yuanyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| |
Collapse
|
30
|
Kinmonth-Schultz H, Lewandowska-Sabat A, Imaizumi T, Ward JK, Rognli OA, Fjellheim S. Flowering Times of Wild Arabidopsis Accessions From Across Norway Correlate With Expression Levels of FT, CO, and FLC Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:747740. [PMID: 34790213 PMCID: PMC8591261 DOI: 10.3389/fpls.2021.747740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joy K. Ward
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
31
|
Penfield S, Warner S, Wilkinson L. Molecular responses to chilling in a warming climate and their impacts on plant reproductive development and yield. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab375. [PMID: 34409451 DOI: 10.1093/jxb/erab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Responses to prolonged winter chilling are universal in temperate plants which use seasonal temperature cues in the seed, vegetative and reproductive phases to align development with the earth's orbit. Climate change is driving a decline in reliable winter chill and affecting the sub-tropical extent of cultivation for temperate over-wintering crops. Here we explore molecular aspects of plant responses to winter chill including seasonal bud break and flowering, and how variation in the intensity of winter chilling or de-vernalisation can lead to effects on post-chilling plant development, including that of structures necessary for crop yields.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Samuel Warner
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Laura Wilkinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
32
|
Chen F, Li Y, Li X, Li W, Xu J, Cao H, Wang Z, Li Y, Soppe WJJ, Liu Y. Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T in seeds enhances seed dormancy via the GA and DOG1 pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:909-924. [PMID: 34037275 DOI: 10.1111/tpj.15354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 05/13/2021] [Indexed: 05/27/2023]
Abstract
Ectopic expression of specific genes in seeds could be a tool for molecular design of crops to alter seed dormancy and germination, thereby improving production. Here, a seed-specific vector, 12S-pLEELA, was applied to study the roles of genes in Arabidopsis seeds. Transgenic lines containing FLOWERING LOCUS T (FT) driven by the 12S promoter exhibited significantly increased seed dormancy and earlier flowering. Mutated FT(Y85H) and TERMINAL FLOWER1 (TFL1) transgenic lines also showed increased seed dormancy but without altered flowering time. FT(Y85H) and TFL1 caused weaker seed dormancy enhancement compared to FT. The FT and TFL1 transgenic lines showed hypersensitivity to paclobutrazol, but not to abscisic acid in seed germination. The levels of bioactive gibberellin 3 (GA3 ) and GA4 were significantly reduced, consistent with decreased expression of COPALYL DIPHOSPHATE SYNTHASE (CPS), KAURENE OXIDASE (KO), GIBBERELLIN 3-OXIDASE2 (GA3ox2), and GA20ox1 in p12S::FT lines. Exogenous GA4+7 could recover the germination ability of FT transgenic lines. These results revealed that FT regulates GA biosynthesis. A genetic analysis indicated that the GA signaling regulator SPINDLY (SPY) is epistatic to FT in GA-mediated seed germination. Furthermore, DELAY OF GERMINATION1 (DOG1) showed significantly higher transcript levels in p12S::FT lines. Seed dormancy analysis of dog1-2 spy-3 p12S::FT-2 indicated that the combination of SPY and DOG1 is epistatic to FT in the regulation of dormancy. Overall, we showed that ectopic expression of FT and TFL1 in seeds enhances dormancy through affecting GA and DOG1 pathways.
Collapse
Affiliation(s)
- Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenlong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Science and Technology Daily, Beijing, China
| | - Jimei Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Centre - University of Freiburg, Freiburg, Germany
| | | | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Zhou C, Feng Y, Li G, Wang M, Jian J, Wang Y, Zhang W, Song Z, Li L, Lu B, Yang J. The New Is Old: Novel Germination Strategy Evolved From Standing Genetic Variation in Weedy Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:699464. [PMID: 34234803 PMCID: PMC8256273 DOI: 10.3389/fpls.2021.699464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 06/01/2023]
Abstract
Feralization of crop plants has aroused an increasing interest in recent years, not only for the reduced yield and quality of crop production caused by feral plants but also for the rapid evolution of novel traits that facilitate the evolution and persistence of weedy forms. Weedy rice (Oryza sativa f. spontanea) is a conspecific weed of cultivated rice, with separate and independent origins. The weedy rice distributed in eastern and northeastern China did not diverge from their cultivated ancestors by reverting to the pre-domestication trait of seed dormancy during feralization. Instead, they developed a temperature-sensing mechanism to control the timing of seed germination. Subsequent divergence in the minimum critical temperature for germination has been detected between northeastern and eastern populations. An integrative analysis was conducted using combinations of phenotypic, genomic and transcriptomic data to investigate the genetic mechanism underlying local adaptation and feralization. A dozen genes were identified, which showed extreme allele frequency differences between eastern and northeastern populations, and high correlations between allele-specific gene expression and feral phenotypes. Trancing the origin of potential adaptive alleles based on genomic sequences revealed the presence of most selected alleles in wild and cultivated rice genomes, indicating that weedy rice drew upon pre-existing, "conditionally neutral" alleles to respond to the feral selection regimes. The cryptic phenotype was exposed by activating formerly silent alleles to facilitate the transition from cultivation to wild existence, promoting the evolution and persistence of weedy forms.
Collapse
Affiliation(s)
- Chengchuan Zhou
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Yang Feng
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Gengyun Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Mengli Wang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Jinjing Jian
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Yuguo Wang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Wenju Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Zhiping Song
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Linfeng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Baorong Lu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
34
|
Lee ON, Fukushima K, Park HY, Kawabata S. QTL Analysis of Stem Elongation and Flowering Time in Lettuce Using Genotyping-by-Sequencing. Genes (Basel) 2021; 12:947. [PMID: 34205694 PMCID: PMC8234873 DOI: 10.3390/genes12060947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Lettuce plants tend to undergo floral initiation by elongation of flower stalks (bolting) under high-temperature and long-day conditions, which is a serious problem for summer lettuce production. Our objective was to generate a high-density genetic map using SNPs obtained from genotyping-by-sequencing (GBS) analysis of F5 recombinant inbred lines (RILs) and to map QTLs involved in stem growth and flowering time in lettuce. A set of 127 intra-specific RIL mapping populations derived from a cross between two varieties, green and red leaf lettuce, were used to identify QTLs related to the number of days from sowing to bolting (DTB), to flowering of the first flower (DTF), to seed-setting of the first flower (DTS), and the total number of leaves (LN), plant height (PH), and total number of branches of main inflorescence (BN) for two consecutive years. Of the 15 QTLs detected, one that controls DTB, DTF, DTS, LN, and PH detected on LG 7, and another QTL that controls DTF, DTS, and PH detected on LG 1. Analysis of the genomic sequence corresponding to the QTL detected on LG 7 led to the identification of 22 putative candidate genes. A consistent QTL related to bolting and flowering time, and corresponding candidate genes has been reported. This study will be valuable in revealing the genetic basis of stem growth and flowering time in lettuce.
Collapse
Affiliation(s)
- O New Lee
- Department of Bio-Industrial and Bioresource, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Korea;
- Graduate School of Agricultural & Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (S.K.)
| | - Keita Fukushima
- Graduate School of Agricultural & Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (S.K.)
| | - Han Yong Park
- Department of Bio-Industrial and Bioresource, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Korea;
| | - Saneyuki Kawabata
- Graduate School of Agricultural & Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (S.K.)
| |
Collapse
|
35
|
Wang G, Li X, Ye N, Huang M, Feng L, Li H, Zhang J. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. THE NEW PHYTOLOGIST 2021; 230:1925-1939. [PMID: 33629374 DOI: 10.1111/nph.17300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Seed germination is essential for direct seeding in rice. It has been demonstrated that trehalose-6-phosphate phosphatase 1 (OsTPP1) plays roles in improving yield and stress tolerance in rice. In this study, the roles of OsTPP1 on seed germination in rice were investigated. The tpp1 mutant germinated slower than the wild-type (WT), which can be restored by exogenous trehalose. tpp1 seeds showed higher ABA content compared with WT seeds. The tpp1 mutant was hypersensitive to ABA and ABA catabolism inhibitor (Dinicozanole). Furthermore, two ABA catabolism genes were downregulated in the tpp1 mutant which were responsible for increased ABA concentrations, and exogenous trehalose increased transcripts of ABA catabolism genes, suggesting that OsTPP1 and ABA catabolism genes acted in the same signaling pathway. Further analysis showed that a transcription factor of OsGAMYB was an activator of OsTPP1, and expression of OsGAMYB was decreased by both the exogenous and endogenous ABA, subsequently reducing the expression of OsTPP1, which suggested a new signaling pathway required for seed germination in rice. In addition, ABA-responsive genes, especially OsABI5, were invoved in OsTPP1-mediated seed germination. Overall, our study provided new pathways in seed germination that OsTPP1 controlled seed germination through crosstalk with the ABA catabolism pathway.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Mingkun Huang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
36
|
Nishiyama E, Nonogaki M, Yamazaki S, Nonogaki H, Ohshima K. Ancient and recent gene duplications as evolutionary drivers of the seed maturation regulators DELAY OF GERMINATION1 family genes. THE NEW PHYTOLOGIST 2021; 230:889-901. [PMID: 33454982 DOI: 10.1111/nph.17201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The DELAY OF GERMINATION1 (DOG1) family genes (DFGs) in Arabidopsis thaliana are involved in seed dormancy, reserve accumulation, and desiccation tolerance. Decoding the molecular evolution of DFGs is key to understanding how these seed programs evolved. This article demonstrates that DFGs have diverged in the four lineages DOG1, DOG1-LIKE4 (DOGL4), DOGL5 and DOGL6, whereas DOGL1, DOGL2 and DOGL3 arose separately within the DOG1 lineage. The systematic DFG nomenclature proposed in this article addresses the current issues of inconsistent DFG annotation and highlights DFG genomic synteny in angiosperms. DFG pseudogenes, or collapsed coding sequences, hidden in the genomes of early-diverging angiosperms are documented here. They suggest ancient birth and loss of DFGs over the course of angiosperm evolution. The proposed models suggest that the origin of DFG diversification dates back to the most recent common ancestor of living angiosperms. The presence of a single form of DFG in nonflowering plants is discussed. Phylogenetic analysis of gymnosperm, lycophyte, and liverwort DFGs and similar genes found in mosses and algae suggests that DFGs diverged from the TGACG motif-binding transcription factor genes before the divergence of the bryophyte lineage.
Collapse
Affiliation(s)
- Eri Nishiyama
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Satoru Yamazaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Kazuhiko Ohshima
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
37
|
Mohanty B. Promoter Architecture and Transcriptional Regulation of Genes Upregulated in Germination and Coleoptile Elongation of Diverse Rice Genotypes Tolerant to Submergence. Front Genet 2021; 12:639654. [PMID: 33796132 PMCID: PMC8008075 DOI: 10.3389/fgene.2021.639654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
39
|
Miryeganeh M. Senescence: The Compromised Time of Death That Plants May Call on Themselves. Genes (Basel) 2021; 12:143. [PMID: 33499161 PMCID: PMC7912376 DOI: 10.3390/genes12020143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
Plants synchronize their life history events with proper seasonal conditions, and as the fitness consequences of each life stage depend on previous and/or subsequent one, changes in environmental cues create cascading effects throughout their whole life cycle. For monocarpic plants, proper senescence timing is very important as the final production of plants depends on it. Citing available literatures, this review discusses how plants not only may delay senescence until after they reproduce successfully, but they may also bring senescence time forward, in order to reproduce in favored conditions. It demonstrates that even though senescence is part of aging, it does not necessarily mean plants have to reach a certain age to senesce. Experiments using different aged plants have suggested that in interest of their final outcome and fitness, plants carefully weigh out environmental cues and transit to next developmental phase at proper time, even if that means transiting to terminal senescence phase earlier and shortening their lifespan. How much plants have control over senescence timing and how they balance internal and external signals for that is not well understood. Future studies are needed to identify processes that trigger senescence timing in response to environment and investigate genetic/epigenetic mechanisms behind it.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
40
|
Footitt S, Hambidge AJ, Finch-Savage WE. Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared with summer annual arabidopsis ecotypes. ANNALS OF BOTANY 2021; 127:111-122. [PMID: 32722794 PMCID: PMC7750725 DOI: 10.1093/aob/mcaa141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively. METHODS Using a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle. KEY RESULTS In a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C-1 in the winter annual and 4.9 d °C-1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle. CONCLUSIONS Seedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.
Collapse
Affiliation(s)
- Steven Footitt
- School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwickshire, UK
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Angela J Hambidge
- School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwickshire, UK
| | | |
Collapse
|
41
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
42
|
Verhage L. Flowering time gene or jack of all trades? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:5-6. [PMID: 33617081 DOI: 10.1111/tpj.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
43
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
44
|
Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat Commun 2020; 11:4140. [PMID: 32811829 PMCID: PMC7435183 DOI: 10.1038/s41467-020-17896-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects. FLOWERING LOCUS M (FLM) is known as a repressor of Arabidopsis flowering. Here, the authors show that a single intronic substitution of FLM modulates leaf color and plant growth strategy along the leaf economics spectrum, as well as plays a role in plant adaptation.
Collapse
|
45
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
46
|
Lin JH, Yu LH, Xiang CB. ARABIDOPSIS NITRATE REGULATED 1 acts as a negative modulator of seed germination by activating ABI3 expression. THE NEW PHYTOLOGIST 2020; 225:835-847. [PMID: 31491809 DOI: 10.1111/nph.16172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Seed germination is a crucial transition point in plant life and is tightly regulated by environmental conditions through the coordination of two phytohormones, gibberellin and abscisic acid (ABA). To avoid unfavorable conditions, plants have evolved safeguard mechanisms for seed germination. The present contribution reports a novel function of the Arabidopsis MCM1/AGAMOUS/DEFICIENS/SRF(MADS)-box transcription factor ARABIDOPSIS NITRATE REGULATED 1 (ANR1) in seed germination. ANR1 knockout mutant is insensitive to ABA, salt and osmotic stress during the seed germination and early seedling development stages, whereas ANR1-overexpressing lines are hypersensitive. ANR1 is responsive to ABA and abiotic stresses and upregulates the expression of ABA Intolerant (ABI)3 to suppress seed germination. ANR1 and ABI3 have similar expression pattern during seed germination. Genetically, ABI3 acts downstream of ANR1. Chromatin immunoprecipitation and yeast-one-hybrid assays showed that ANR1 could bind to the ABI3 promoter to regulate its expression. In addition, ANR1 acts synergistically with AGL21 to suppress seed germination in response to ABA as evidenced by anr1 agl21 double mutant. Taken together, the results herein demonstrate that the ANR1 plays an important role in regulating seed germination and early postgermination growth. ANR1 and AGL21 together constitutes a safeguard mechanism for seed germination to avoid unfavorable conditions.
Collapse
Affiliation(s)
- Jia-Hui Lin
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Lin-Hui Yu
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| |
Collapse
|
47
|
Kennedy A, Geuten K. The Role of FLOWERING LOCUS C Relatives in Cereals. FRONTIERS IN PLANT SCIENCE 2020; 11:617340. [PMID: 33414801 PMCID: PMC7783157 DOI: 10.3389/fpls.2020.617340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 05/12/2023]
Abstract
FLOWERING LOCUS C (FLC) is one of the best characterized genes in plant research and is integral to vernalization-dependent flowering time regulation. Yet, despite the abundance of information on this gene and its relatives in Arabidopsis thaliana, the role FLC genes play in other species, in particular cereal crops and temperate grasses, remains elusive. This has been due in part to the comparative reduced availability of bioinformatic and mutant resources in cereals but also on the dominant effect in cereals of the VERNALIZATION (VRN) genes on the developmental process most associated with FLC in Arabidopsis. The strong effect of the VRN genes has led researchers to believe that the entire process of vernalization must have evolved separately in Arabidopsis and cereals. Yet, since the confirmation of the existence of FLC-like genes in monocots, new light has been shed on the roles these genes play in both vernalization and other mechanisms to fine tune development in response to specific environmental conditions. Comparisons of FLC gene function and their genetic and epigenetic regulation can now be made between Arabidopsis and cereals and how they overlap and diversify is coming into focus. With the advancement of genome editing techniques, further study on these genes is becoming increasingly easier, enabling us to investigate just how essential FLC-like genes are to modulating flowering time behavior in cereals.
Collapse
|
48
|
Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim HU. Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E592. [PMID: 31835863 PMCID: PMC6963649 DOI: 10.3390/plants8120592] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Plants are immobile and, to overcome harsh environmental conditions such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation is investigated. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | | | - Asjad Ali
- Southern Cross Plant Science, Southern Cross University, East Lismore NSW 2480, Australia;
| | | | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| |
Collapse
|
49
|
Auge GA, Penfield S, Donohue K. Pleiotropy in developmental regulation by flowering-pathway genes: is it an evolutionary constraint? THE NEW PHYTOLOGIST 2019; 224:55-70. [PMID: 31074008 DOI: 10.1111/nph.15901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/28/2019] [Indexed: 05/11/2023]
Abstract
Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits. Arabidopsis thaliana flowering-time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering-time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.
Collapse
Affiliation(s)
- Gabriela A Auge
- Fundación Instituto Leloir, IIBBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1405BWE3, Argentina
| | - Steven Penfield
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kathleen Donohue
- Department of Biology, Duke University, Box 90338, Durham , NC 27708-0338, USA
| |
Collapse
|
50
|
Sangi S, Santos MLC, Alexandrino CR, Da Cunha M, Coelho FS, Ribeiro GP, Lenz D, Ballesteros H, Hemerly AS, Venâncio TM, Oliveira AEA, Grativol C. Cell wall dynamics and gene expression on soybean embryonic axes during germination. PLANTA 2019; 250:1325-1337. [PMID: 31273443 DOI: 10.1007/s00425-019-03231-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.
Collapse
Affiliation(s)
- Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Maria L C Santos
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fernanda S Coelho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gabrielly P Ribeiro
- Departmento de Ciências Farmacêuticas, Universidade de Vila Velha, Vila Velha, Brazil
| | - Dominik Lenz
- Departmento de Ciências Farmacêuticas, Universidade de Vila Velha, Vila Velha, Brazil
| | - Helkin Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago M Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia E A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|