1
|
Yeste M, Ahmad A, Viñolas E, Recuero S, Bonet S, Pinart E. Inhibition of forward and reverse transport of Ca 2+ via Na +/Ca 2+ exchangers (NCX) prevents sperm capacitation. Biol Res 2024; 57:57. [PMID: 39175101 PMCID: PMC11342557 DOI: 10.1186/s40659-024-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| | - Adeel Ahmad
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
| |
Collapse
|
2
|
Gök C, Fuller W. Rise of palmitoylation: A new trick to tune NCX1 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119719. [PMID: 38574822 DOI: 10.1016/j.bbamcr.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The cardiac Na+/Ca2+ Exchanger (NCX1) controls transmembrane calcium flux in numerous tissues. The only reversible post-translational modification established to regulate NCX1 is palmitoylation, which alters the ability of the exchanger to inactivate. Palmitoylation creates a binding site for the endogenous XIP domain, a region of the NCX1 intracellular loop established to inactivate NCX1. The binding site created by NCX1 palmitoylation sensitizes the transporter to XIP. Herein we summarize our recent knowledge on NCX1 palmitoylation and its association with cardiac pathologies, and discuss these findings in the light of the recent cryo-EM structures of human NCX1.
Collapse
Affiliation(s)
- Caglar Gök
- School of Cardiovascular and Metabolic Health (SCMH), Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - William Fuller
- School of Cardiovascular and Metabolic Health (SCMH), Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Giladi M, Fojtík L, Strauss T, Da'adoosh B, Hiller R, Man P, Khananshvili D. Structural dynamics of Na + and Ca 2+ interactions with full-size mammalian NCX. Commun Biol 2024; 7:463. [PMID: 38627576 PMCID: PMC11021524 DOI: 10.1038/s42003-024-06159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Cytosolic Ca2+ and Na+ allosterically regulate Na+/Ca2+ exchanger (NCX) proteins to vary the NCX-mediated Ca2+ entry/exit rates in diverse cell types. To resolve the structure-based dynamic mechanisms underlying the ion-dependent allosteric regulation in mammalian NCXs, we analyze the apo, Ca2+, and Na+-bound species of the brain NCX1.4 variant using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Ca2+ binding to the cytosolic regulatory domains (CBD1 and CBD2) rigidifies the intracellular regulatory loop (5L6) and promotes its interaction with the membrane domains. Either Na+ or Ca2+ stabilizes the intracellular portions of transmembrane helices TM3, TM4, TM9, TM10, and their connecting loops (3L4 and 9L10), thereby exposing previously unappreciated regulatory sites. Ca2+ or Na+ also rigidifies the palmitoylation domain (TMH2), and neighboring TM1/TM6 bundle, thereby uncovering a structural entity for modulating the ion transport rates. The present analysis provides new structure-dynamic clues underlying the regulatory diversity among tissue-specific NCX variants.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 69978, Israel.
- Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel.
| | - Lukáš Fojtík
- Division BioCeV, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova, 595, 252 50 Vestec, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Tali Strauss
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Benny Da'adoosh
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Petr Man
- Division BioCeV, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova, 595, 252 50 Vestec, Prague, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, 128 00, Prague, Czech Republic.
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
4
|
Dong Y, Yu Z, Li Y, Huang B, Bai Q, Gao Y, Chen Q, Li N, He L, Zhao Y. Structural insight into the allosteric inhibition of human sodium-calcium exchanger NCX1 by XIP and SEA0400. EMBO J 2024; 43:14-31. [PMID: 38177313 PMCID: PMC10897212 DOI: 10.1038/s44318-023-00013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.
Collapse
Affiliation(s)
- Yanli Dong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuoya Yu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingli He
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Xue J, Zeng W, Han Y, John S, Ottolia M, Jiang Y. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat Commun 2023; 14:6181. [PMID: 37794011 PMCID: PMC10550945 DOI: 10.1038/s41467-023-41885-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Na+/Ca2+ exchangers (NCX) transport Ca2+ in or out of cells in exchange for Na+. They are ubiquitously expressed and play an essential role in maintaining cytosolic Ca2+ homeostasis. Although extensively studied, little is known about the global structural arrangement of eukaryotic NCXs and the structural mechanisms underlying their regulation by various cellular cues including cytosolic Na+ and Ca2+. Here we present the cryo-EM structures of human cardiac NCX1 in both inactivated and activated states, elucidating key structural elements important for NCX ion exchange function and its modulation by cytosolic Ca2+ and Na+. We demonstrate that the interactions between the ion-transporting transmembrane (TM) domain and the cytosolic regulatory domain define the activity of NCX. In the inward-facing state with low cytosolic [Ca2+], a TM-associated four-stranded β-hub mediates a tight packing between the TM and cytosolic domains, resulting in the formation of a stable inactivation assembly that blocks the TM movement required for ion exchange function. Ca2+ binding to the cytosolic second Ca2+-binding domain (CBD2) disrupts this inactivation assembly which releases its constraint on the TM domain, yielding an active exchanger. Thus, the current NCX1 structures provide an essential framework for the mechanistic understanding of the ion transport and cellular regulation of NCX family proteins.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott John
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
8
|
Structure-Based Function and Regulation of NCX Variants: Updates and Challenges. Int J Mol Sci 2022; 24:ijms24010061. [PMID: 36613523 PMCID: PMC9820601 DOI: 10.3390/ijms24010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma-membrane homeostasis Na+/Ca2+ exchangers (NCXs) mediate Ca2+ extrusion/entry to dynamically shape Ca2+ signaling/in biological systems ranging from bacteria to humans. The NCX gene orthologs, isoforms, and their splice variants are expressed in a tissue-specific manner and exhibit nearly 104-fold differences in the transport rates and regulatory specificities to match the cell-specific requirements. Selective pharmacological targeting of NCX variants could benefit many clinical applications, although this intervention remains challenging, mainly because a full-size structure of eukaryotic NCX is unavailable. The crystal structure of the archaeal NCX_Mj, in conjunction with biophysical, computational, and functional analyses, provided a breakthrough in resolving the ion transport mechanisms. However, NCX_Mj (whose size is nearly three times smaller than that of mammalian NCXs) cannot serve as a structure-dynamic model for imitating high transport rates and regulatory modules possessed by eukaryotic NCXs. The crystal structures of isolated regulatory domains (obtained from eukaryotic NCXs) and their biophysical analyses by SAXS, NMR, FRET, and HDX-MS approaches revealed structure-based variances of regulatory modules. Despite these achievements, it remains unclear how multi-domain interactions can decode and integrate diverse allosteric signals, thereby yielding distinct regulatory outcomes in a given ortholog/isoform/splice variant. This article summarizes the relevant issues from the perspective of future developments.
Collapse
|
9
|
Ottolia M, John S, Hazan A, Goldhaber JI. The Cardiac Na + -Ca 2+ Exchanger: From Structure to Function. Compr Physiol 2021; 12:2681-2717. [PMID: 34964124 DOI: 10.1002/cphy.c200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Adina Hazan
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS. Biophys J 2021; 120:3664-3675. [PMID: 34310942 DOI: 10.1016/j.bpj.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.
Collapse
|
11
|
Abstract
All cells must control the activities of their ion channels and transporters to maintain physiologically appropriate gradients of solutes and ions. The complexity of underlying regulatory mechanisms is staggering, as exemplified by insulin regulation of transporter trafficking. Simpler strategies occur in single-cell organisms, where subsets of transporters act as solute sensors to regulate expression of their active homologues. This Viewpoint highlights still simpler mechanisms by which Na transporters use their own transport sites as sensors for regulation. The underlying principle is inherent to Na/K pumps in which aspartate phosphorylation and dephosphorylation are controlled by occupation of transport sites for Na and K, respectively. By this same principle, Na binding to transport sites can control intrinsic inactivation reactions that are in turn modified by extrinsic signaling factors. Cardiac Na/Ca exchangers (NCX1s) and Na/K pumps are the best examples. Inactivation of NCX1 occurs when cytoplasmic Na sites are fully occupied and is regulated by lipid signaling. Inactivation of cardiac Na/K pumps occurs when cytoplasmic Na-binding sites are not fully occupied, and inactivation is in turn regulated by Ca signaling. Potentially, Na/H exchangers (NHEs) and epithelial Na channels (ENaCs) are regulated similarly. Extracellular protons and cytoplasmic Na ions oppose secondary activation of NHEs by cytoplasmic protons. ENaCs undergo inactivation as cytoplasmic Na rises, and small diffusible molecules of an unidentified nature are likely involved. Multiple other ion channels have recently been shown to be regulated by transiting ions, thereby underscoring that ion permeation and channel gating need not be independent processes.
Collapse
|
12
|
Formisano L, Guida N, Mascolo L, Serani A, Laudati G, Pizzorusso V, Annunziato L. Transcriptional and epigenetic regulation of ncx1 and ncx3 in the brain. Cell Calcium 2020; 87:102194. [PMID: 32172011 DOI: 10.1016/j.ceca.2020.102194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/26/2023]
Abstract
Sodium-calcium exchanger (NCX) 1 and 3, have been demonstrated to play a relevant role in controlling the intracellular homeostasis of sodium and calcium ions in physiological and patho-physiological conditions. While NCX1 and NCX3 knocking-down have been both implicated in brain ischemia, several aspects of the epigenetic regulation of these two antiporters transcription were not yet well characterized. In response to stroke, NCX1 and NCX3 transcriptional regulation occurs from specific promoter sequences. Several evidences have shown that the expression of NCX1 and NCX3 can be determined by epigenetic modifications, consisting in changes of the histone acetylation levels on their promoter sequences. An interesting issue is that histone modifications at the NCX1 and NCX3 promoters could be linked to neurodegeneration occurring after stroke. Therefore, identifying the epigenetic regulation at the NCX1 and NCX3 promoters could permit to identify new molecular targets that can open new strategies for stroke treatment. The current review reassumes the recent knowledge of histone modifications of NCX1 and NCX3 genes in brain in physiological and patho-physiological conditions.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Natascia Guida
- IRCCS SDN Naples, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Vincenzo Pizzorusso
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Lucio Annunziato
- IRCCS SDN Naples, Via Emanuele Gianturco 113, 80143, Naples, Italy
| |
Collapse
|
13
|
Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium 2020; 85:102131. [DOI: 10.1016/j.ceca.2019.102131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/28/2022]
|
14
|
Scranton K, John S, Escobar A, Goldhaber JI, Ottolia M. Modulation of the cardiac Na +-Ca 2+ exchanger by cytoplasmic protons: Molecular mechanisms and physiological implications. Cell Calcium 2019; 87:102140. [PMID: 32070924 DOI: 10.1016/j.ceca.2019.102140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/31/2023]
Abstract
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm. The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.
Collapse
Affiliation(s)
- Kyle Scranton
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA
| | - Ariel Escobar
- Department of Bioengineering, School of Engineering, UC Merced, Merced, CA 95343, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Rodrigues T, Estevez GNN, Tersariol ILDS. Na+/Ca2+ exchangers: Unexploited opportunities for cancer therapy? Biochem Pharmacol 2019; 163:357-361. [DOI: 10.1016/j.bcp.2019.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
16
|
Yuan J, Yuan C, Xie M, Yu L, Bruschweiler-Li L, Brüschweiler R. The Intracellular Loop of the Na +/Ca 2+ Exchanger Contains an "Awareness Ribbon"-Shaped Two-Helix Bundle Domain. Biochemistry 2018; 57:5096-5104. [PMID: 29898361 DOI: 10.1021/acs.biochem.8b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Na+/Ca2+ exchanger (NCX) is a ubiquitous single-chain membrane protein that plays a major role in regulating the intracellular Ca2+ homeostasis by the counter transport of Na+ and Ca2+ across the cell membrane. Other than its prokaryotic counterpart, which contains only the transmembrane domain and is self-sufficient as an active ion transporter, the eukaryotic NCX protein possesses in addition a large intracellular loop that senses intracellular calcium signals and controls the activation of ion transport across the membrane. This provides a necessary layer of regulation for the more complex function of eukaryotic cells. The Ca2+ sensor in the intracellular loop is known as the Ca2+-binding domain (CBD12). However, how the signaling of the allosteric intracellular Ca2+ binding propagates and results in transmembrane ion transportation still lacks a detailed explanation. Further structural and dynamics characterization of the intracellular loop flanking both sides of CBD12 is therefore imperative. Here, we report the identification and characterization of another structured domain that is N-terminal to CBD12 in the intracellular loop using solution nuclear magnetic resonance (NMR) spectroscopy. The atomistic structure of this domain reveals that two tandem long α-helices, connected by a short linker, form a stable crossover two-helix bundle (THB), resembling an "awareness ribbon". Considering the highly conserved amino acid sequence of the THB domain, the detailed structural and dynamics properties of the THB domain will be common among NCXs from different species and will contribute toward the understanding of the regulatory mechanism of eukaryotic Na+/Ca2+ exchangers.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Mouzhe Xie
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Yu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States.,Department of Biological Chemistry and Pharmacology , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
17
|
John S, Kim B, Olcese R, Goldhaber JI, Ottolia M. Molecular determinants of pH regulation in the cardiac Na +-Ca 2+ exchanger. J Gen Physiol 2018; 150:245-257. [PMID: 29301861 PMCID: PMC5806679 DOI: 10.1085/jgp.201611693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/25/2017] [Accepted: 11/29/2017] [Indexed: 11/20/2022] Open
Abstract
The cardiac Na+-Ca2+ exchanger (NCX) plays a critical role in the heart by extruding Ca2+ after each contraction and thus regulates cardiac contractility. The activity of NCX is strongly inhibited by cytosolic protons, which suggests that intracellular acidification will have important effects on heart contractility. However, the mechanisms underlying this inhibition remain elusive. It has been suggested that pH regulation originates from the competitive binding of protons to two Ca2+-binding domains within the large cytoplasmic loop of NCX and requires inactivation by intracellular Na+ to fully develop. By combining mutagenesis and electrophysiology, we demonstrate that NCX pH modulation is an allosteric mechanism distinct from Na+ and Ca2+ regulation, and we show that cytoplasmic Na+ can affect the sensitivity of NCX to protons. We further identify two histidines (His 124 and His 165) that are important for NCX proton sensitivity and show that His 165 plays the dominant role. Our results reveal a complex interplay between the different allosteric mechanisms that regulate the activity of NCX. Because of the central role of NCX in cardiac function, these findings are important for our understanding of heart pathophysiology.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine and Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Brian Kim
- Cedars-Sinai Heart Institute, Los Angeles, CA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Joshua I Goldhaber
- Cedars-Sinai Heart Institute, Los Angeles, CA.,Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
18
|
Plain F, Congreve SD, Yee RSZ, Kennedy J, Howie J, Kuo CW, Fraser NJ, Fuller W. An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger. J Biol Chem 2017; 292:10745-10752. [PMID: 28432123 PMCID: PMC5481580 DOI: 10.1074/jbc.m116.773945] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/19/2017] [Indexed: 11/06/2022] Open
Abstract
The electrogenic sodium/calcium exchanger (NCX) mediates bidirectional calcium transport controlled by the transmembrane sodium gradient. NCX inactivation occurs in the absence of phosphatidylinositol 4,5-bisphosphate and is facilitated by palmitoylation of a single cysteine at position 739 within the large intracellular loop of NCX. The aim of this investigation was to identify the structural determinants of NCX1 palmitoylation. Full-length NCX1 (FL-NCX1) and a YFP fusion protein of the NCX1 large intracellular loop (YFP-NCX1) were expressed in HEK cells. Single amino acid changes around Cys-739 in FL-NCX1 and deletions on the N-terminal side of Cys-739 in YFP-NCX1 did not affect NCX1 palmitoylation, with the exception of the rare human polymorphism S738F, which enhanced FL-NCX1 palmitoylation, and D741A, which modestly reduced it. In contrast, deletion of a 21-amino acid segment enriched in aromatic amino acids on the C-terminal side of Cys-739 abolished YFP-NCX1 palmitoylation. We hypothesized that this segment forms an amphipathic α-helix whose properties facilitate Cys-739 palmitoylation. Introduction of negatively charged amino acids to the hydrophobic face or of helix-breaking prolines impaired palmitoylation of both YFP-NCX1 and FL-NCX1. Alanine mutations on the hydrophilic face of the helix significantly reduced FL-NCX1 palmitoylation. Of note, when the helix-containing segment was introduced adjacent to cysteines that are not normally palmitoylated, they became palmitoylation sites. In conclusion, we have identified an amphipathic α-helix in the NCX1 large intracellular loop that controls NCX1 palmitoylation. NCX1 palmitoylation is governed by a distal secondary structure element rather than by local primary sequence.
Collapse
Affiliation(s)
- Fiona Plain
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Samitha Dilini Congreve
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Rachel Sue Zhen Yee
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Jennifer Kennedy
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Jacqueline Howie
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Chien-Wen Kuo
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Niall J Fraser
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - William Fuller
- From the Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
19
|
Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci Rep 2017; 7:993. [PMID: 28428550 PMCID: PMC5430519 DOI: 10.1038/s41598-017-01102-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
Mammalian Na+/Ca2+ exchangers, NCX1 and NCX3, generate splice variants, whereas NCX2 does not. The CBD1 and CBD2 domains form a regulatory tandem (CBD12), where Ca2+ binding to CBD1 activates and Ca2+ binding to CBD2 (bearing the splicing segment) alleviates the Na+-induced inactivation. Here, the NCX2-CBD12, NCX3-CBD12-B, and NCX3-CBD12-AC proteins were analyzed by small-angle X-ray scattering (SAXS) and hydrogen-deuterium exchange mass-spectrometry (HDX-MS) to resolve regulatory variances in the NCX2 and NCX3 variants. SAXS revealed the unified model, according to which the Ca2+ binding to CBD12 shifts a dynamic equilibrium without generating new conformational states, and where more rigid conformational states become more populated without any global conformational changes. HDX-MS revealed the differential effects of the B and AC exons on the folding stability of apo CBD1 in NCX3-CBD12, where the dynamic differences become less noticeable in the Ca2+-bound state. Therefore, the apo forms predefine incremental changes in backbone dynamics upon Ca2+ binding. These observations may account for slower inactivation (caused by slower dissociation of occluded Ca2+ from CBD12) in the skeletal vs the brain-expressed NCX2 and NCX3 variants. This may have physiological relevance, since NCX must extrude much higher amounts of Ca2+ from the skeletal cell than from the neuron.
Collapse
|
20
|
Differential regulation of the Na +-Ca 2+ exchanger 3 (NCX3) by protein kinase PKC and PKA. Cell Calcium 2017; 65:52-62. [PMID: 28233567 DOI: 10.1016/j.ceca.2017.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 11/21/2022]
Abstract
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus.
Collapse
|
21
|
Structure-Dynamic Coupling Through Ca2+-Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:41-58. [DOI: 10.1007/978-3-319-55858-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Chu L, Greenstein JL, Winslow RL. Modeling Na +-Ca 2+ exchange in the heart: Allosteric activation, spatial localization, sparks and excitation-contraction coupling. J Mol Cell Cardiol 2016; 99:174-187. [PMID: 27377851 DOI: 10.1016/j.yjmcc.2016.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/14/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023]
Abstract
The cardiac sodium (Na+)/calcium (Ca2+) exchanger (NCX1) is an electrogenic membrane transporter that regulates Ca2+ homeostasis in cardiomyocytes, serving mainly to extrude Ca2+ during diastole. The direction of Ca2+ transport reverses at membrane potentials near that of the action potential plateau, generating an influx of Ca2+ into the cell. Therefore, there has been great interest in the possible roles of NCX1 in cardiac Ca2+-induced Ca2+ release (CICR). Interest has been reinvigorated by a recent super-resolution optical imaging study suggesting that ~18% of NCX1 co-localize with ryanodine receptor (RyR2) clusters, and ~30% of additional NCX1 are localized to within ~120nm of the nearest RyR2. NCX1 may therefore occupy a privileged position in which to modulate CICR. To examine this question, we have developed a mechanistic biophysically-detailed model of NCX1 that describes both NCX1 transport kinetics and Ca2+-dependent allosteric regulation. This NCX1 model was incorporated into a previously developed super-resolution model of the Ca2+ spark as well as a computational model of the cardiac ventricular myocyte that includes a detailed description of CICR with stochastic gating of L-type Ca2+ channels and RyR2s, and that accounts for local Ca2+ gradients near the dyad via inclusion of a peri-dyadic (PD) compartment. Both models predict that increasing the fraction of NCX1 in the dyad and PD decreases spark frequency, fidelity, and diastolic Ca2+ levels. Spark amplitude and duration are less sensitive to NCX1 spatial redistribution. On the other hand, NCX1 plays an important role in promoting Ca2+ entry into the dyad, and hence contributing to the trigger for RyR2 release at depolarized membrane potentials and in the presence of elevated local Na+ concentration. Whole-cell simulation of NCX1 tail currents are consistent with the finding that a relatively high fraction of NCX1 (~45%) resides in the dyadic and PD spaces, with a dyad-to-PD ratio of roughly 1:2. Allosteric Ca2+ activation of NCX1 helps to "functionally localize" exchanger activity to the dyad and PD by reducing exchanger activity in the cytosol thereby protecting the cell from excessive loss of Ca2+ during diastole.
Collapse
Affiliation(s)
- Lulu Chu
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
23
|
Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1). Biochem J 2016; 473:2413-23. [PMID: 27247424 PMCID: PMC4964977 DOI: 10.1042/bcj20160465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
Abstract
NCX1 (Na+/Ca2+ exchanger 1) is an important regulator of intracellular Ca2+ and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer68-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer68-PLM–NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1–PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer68-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser68.
Collapse
|
24
|
Kinetic and equilibrium properties of regulatory Ca2+-binding domains in sodium–calcium exchangers 2 and 3. Cell Calcium 2016; 59:181-8. [DOI: 10.1016/j.ceca.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
|
25
|
Abiko LA, Vitale PM, Favaro DC, Hauk P, Li DW, Yuan J, Bruschweiler-Li L, Salinas RK, Brüschweiler R. Model for the allosteric regulation of the Na+/Ca2+exchanger NCX. Proteins 2016; 84:580-90. [DOI: 10.1002/prot.25003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Layara Akemi Abiko
- Institute of Chemistry; University of São Paulo; São Paulo SP 05508-000 Brazil
| | - Phelipe M. Vitale
- Institute of Chemistry; University of São Paulo; São Paulo SP 05508-000 Brazil
| | - Denize C. Favaro
- Institute of Chemistry; University of São Paulo; São Paulo SP 05508-000 Brazil
| | - Pricila Hauk
- Institute of Chemistry; University of São Paulo; São Paulo SP 05508-000 Brazil
| | - Da-Wei Li
- Campus Chemical Instrument Center; The Ohio State University; Columbus Ohio 43210
| | - Jiaqi Yuan
- Department of Chemistry & Biochemistry; The Ohio State University; Columbus Ohio 43210
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center; The Ohio State University; Columbus Ohio 43210
| | - Roberto K. Salinas
- Institute of Chemistry; University of São Paulo; São Paulo SP 05508-000 Brazil
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center; The Ohio State University; Columbus Ohio 43210
- Department of Chemistry & Biochemistry; The Ohio State University; Columbus Ohio 43210
- Department of Biological Chemistry and Pharmacology; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
26
|
Giladi M, Tal I, Khananshvili D. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins. Front Physiol 2016; 7:30. [PMID: 26903880 PMCID: PMC4746289 DOI: 10.3389/fphys.2016.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
Na(+)/Ca(2+) exchanger (NCX) proteins extrude Ca(2+) from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na(+) and 1Ca(2+), which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca(2+)-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca(2+)-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca(2+). The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca(2+)-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca(2+) (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium (45)Ca(2+) binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca(2+) binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca(2+) binding to CBD1 rigidifies local backbone segments of CBD2, but not of CBD1. The extent and strength of Ca(2+)-dependent rigidification at CBD2 is splice-variant dependent, showing clear correlations with phenotypes of matching NCX variants. Therefore, diverse NCX variants share a common mechanism for the initial decoding of the regulatory signal upon Ca(2+) binding at the interface of CBDs, whereas the allosteric message is shaped by CBD2, the dynamic features of which are dictated by the splicing segment.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Inbal Tal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
27
|
Lee SY, Giladi M, Bohbot H, Hiller R, Chung KY, Khananshvili D. Structure‐dynamic basis of splicing‐dependent regulation in tissue‐specific variants of the sodium‐calcium exchanger. FASEB J 2015; 30:1356-66. [DOI: 10.1096/fj.15-282251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Su Youn Lee
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | - Moshe Giladi
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Hilla Bohbot
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Reuben Hiller
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Ka Young Chung
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | | |
Collapse
|
28
|
Chou AC, Ju YT, Pan CY. Calmodulin Interacts with the Sodium/Calcium Exchanger NCX1 to Regulate Activity. PLoS One 2015; 10:e0138856. [PMID: 26421717 PMCID: PMC4589332 DOI: 10.1371/journal.pone.0138856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Changes in intracellular Ca2+ concentrations ([Ca2+]i) are an important signal for various physiological activities. The Na+/Ca2+ exchangers (NCX) at the plasma membrane transport Ca2+ into or out of the cell according to the electrochemical gradients of Na+ and Ca2+ to modulate [Ca2+]i homeostasis. Calmodulin (CaM) senses [Ca2+]i changes and relays Ca2+ signals by binding to target proteins such as channels and transporters. However, it is not clear how calmodulin modulates NCX activity. Using CaM as a bait, we pulled down the intracellular loops subcloned from the NCX1 splice variants NCX1.1 and NCX1.3. This interaction requires both Ca2+ and a putative CaM-binding segment (CaMS). To determine whether CaM modulates NCX activity, we co-expressed NCX1 splice variants with CaM or CaM1234 (a Ca2+-binding deficient mutant) in HEK293T cells and measured the increase in [Ca2+]i contributed by the influx of Ca2+ through NCX. Deleting the CaMS from NCX1.1 and NCX1.3 attenuated exchange activity and decreased membrane localization. Without the mutually exclusive exon, the exchange activity was decreased and could be partially rescued by CaM1234. Point-mutations at any of the 4 conserved a.a. residues in the CaMS had differential effects in NCX1.1 and NCX1.3. Mutating the first two conserved a.a. in NCX1.1 decreased exchange activity; mutating the 3rd or 4th conserved a.a. residues did not alter exchange activity, but CaM co-expression suppressed activity. Mutating the 2nd and 3rd conserved a.a. residues in NCX1.3 decreased exchange activity. Taken together, our results demonstrate that CaM senses changes in [Ca2+]i and binds to the cytoplasmic loop of NCX1 to regulate exchange activity.
Collapse
Affiliation(s)
- Ai-Chuan Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Reilly L, Howie J, Wypijewski K, Ashford MLJ, Hilgemann DW, Fuller W. Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling. FASEB J 2015; 29:4532-43. [PMID: 26174834 PMCID: PMC4608915 DOI: 10.1096/fj.15-276493] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
Abstract
The electrogenic Na/Ca exchanger (NCX) mediates bidirectional Ca movements that are highly sensitive to changes of Na gradients in many cells. NCX1 is implicated in the pathogenesis of heart failure and a number of cardiac arrhythmias. We measured NCX1 palmitoylation using resin-assisted capture, the subcellular location of yellow fluorescent protein–NCX1 fusion proteins, and NCX1 currents using whole-cell voltage clamping. Rat NCX1 is substantially palmitoylated in all tissues examined. Cysteine 739 in the NCX1 large intracellular loop is necessary and sufficient for NCX1 palmitoylation. Palmitoylation of NCX1 occurs in the Golgi and anchors the NCX1 large regulatory intracellular loop to membranes. Surprisingly, palmitoylation does not influence trafficking or localization of NCX1 to surface membranes, nor does it strongly affect the normal forward or reverse transport modes of NCX1. However, exchangers that cannot be palmitoylated do not inactivate normally (leading to substantial activity in conditions when wild-type exchangers are inactive) and do not promote cargo-dependent endocytosis that internalizes 50% of the cell surface following strong G-protein activation or large Ca transients. The palmitoylated cysteine in NCX1 is found in all vertebrate and some invertebrate NCX homologs. Thus, NCX palmitoylation ubiquitously modulates Ca homeostasis and membrane domain function in cells that express NCX proteins.—Reilly, L., Howie, J., Wypijewski, K., Ashford, M. L. J., Hilgemann, D. W., Fuller, W. Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling.
Collapse
Affiliation(s)
- Louise Reilly
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacqueline Howie
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Krzysztof Wypijewski
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael L J Ashford
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William Fuller
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem J 2015; 465:489-501. [DOI: 10.1042/bj20141036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+ binding to CBD1 (calcium-binding domain 1) and CBD2 regulates Na+/Ca2+ exchangers (NCX). In the present study, we demonstrate that Ca2+ binding rigidifies the main chain of CBD2, but not of CBD1, in a splice variant-dependent manner. The dynamic differences account for variant-dependent responses to Ca2+.
Collapse
|
31
|
Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3. Rev Physiol Biochem Pharmacol 2015; 168:31-57. [DOI: 10.1007/112_2015_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Kim HS, Gabel F. Uniqueness of models from small-angle scattering data: the impact of a hydration shell and complementary NMR restraints. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:57-66. [PMID: 25615860 PMCID: PMC4304686 DOI: 10.1107/s1399004714013923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/13/2014] [Indexed: 01/04/2023]
Abstract
Small-angle scattering (SAS) has witnessed a breathtaking renaissance and expansion over the past 15 years regarding the determination of biomacromolecular structures in solution. While important issues such as sample quality, good experimental practice and guidelines for data analysis, interpretation, presentation, publication and deposition are increasingly being recognized, crucial topics such as the uniqueness, precision and accuracy of the structural models obtained by SAS are still only poorly understood and addressed. The present article provides an overview of recent developments in these fields with a focus on the influence of complementary NMR restraints and of a hydration shell on the uniqueness of biomacromolecular models. As a first topic, the impact of incorporating NMR orientational restraints in addition to SAS distance restraints is discussed using a quantitative visual representation that illustrates how the possible conformational space of a two-body system is reduced as a function of the available data. As a second topic, the impact of a hydration shell on modelling parameters of a two-body system is illustrated, in particular on its inter-body distance. Finally, practical recommendations are provided to take both effects into account and promising future perspectives of SAS approaches are discussed.
Collapse
Affiliation(s)
- Henry S. Kim
- Université Grenoble Alpes, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
- CNRS, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
- CEA, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
| | - Frank Gabel
- Université Grenoble Alpes, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
- CNRS, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
- CEA, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
- Institut Laue–Langevin, 38042 Grenoble CEDEX 9, France
| |
Collapse
|
33
|
Scheff NN, Yilmaz E, Gold MS. The properties, distribution and function of Na(+)-Ca(2+) exchanger isoforms in rat cutaneous sensory neurons. J Physiol 2014; 592:4969-93. [PMID: 25239455 PMCID: PMC4259538 DOI: 10.1113/jphysiol.2014.278036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 11/08/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger (NCX) appears to play an important role in the regulation of the high K(+)-evoked Ca(2+) transient in putative nociceptive dorsal root ganglion (DRG) neurons. The purpose of the present study was to (1) characterize the properties of NCX activity in subpopulations of DRG neurons, (2) identify the isoform(s) underlying NCX activity, and (3) begin to assess the function of the isoform(s) in vivo. In retrogradely labelled neurons from the glabrous skin of adult male Sprague-Dawley rats, NCX activity, as assessed with fura-2-based microfluorimetry, was only detected in putative nociceptive IB4+ neurons. There were two modes of NCX activity: one was evoked in response to relatively large and long lasting (∼325 nm for >12 s) increases in the concentration of intracellular Ca(2+) ([Ca(2+)]i), and a second was active at resting [Ca(2+)]i > ∼150 nm. There also were two modes of evoked activity: one that decayed relatively rapidly (<5 min) and a second that persisted (>10 min). Whereas mRNA encoding all three NCX isoforms (NCX1-3) was detected in putative nociceptive cutaneous neurons with single cell PCR, pharmacological analysis and small interfering RNA (siRNA) knockdown of each isoform in vivo suggested that NCX2 and 3 were responsible for NCX activity. Western blot analyses suggested that NCX isoforms were differentially distributed within sensory neurons. Functional assays of excitability, action potential propagation, and nociceptive behaviour suggest NCX activity has little influence on excitability per se, but instead influences axonal conduction velocity, resting membrane potential, and nociceptive threshold. Together these results indicate that the function of NCX in the regulation of [Ca(2+)]i in putative nociceptive neurons may be unique relative to other cells in which these exchanger isoforms have been characterized and it has the potential to influence sensory neuron properties at multiple levels.
Collapse
Affiliation(s)
- N N Scheff
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Yilmaz
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Gold
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Wanichawan P, Hafver TL, Hodne K, Aronsen JM, Lunde IG, Dalhus B, Lunde M, Kvaløy H, Louch WE, Tønnessen T, Sjaastad I, Sejersted OM, Carlson CR. Molecular basis of calpain cleavage and inactivation of the sodium-calcium exchanger 1 in heart failure. J Biol Chem 2014; 289:33984-98. [PMID: 25336645 DOI: 10.1074/jbc.m114.602581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiac sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is central to the maintenance of normal Ca(2+) homeostasis and contraction. Studies indicate that the Ca(2+)-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca(2+) binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met(369) antibody identified a novel calpain cleavage site at Met(369). Engineering NCX1-Met(369) into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met(369) inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met(369) cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.
Collapse
Affiliation(s)
- Pimthanya Wanichawan
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Tandekile Lubelwana Hafver
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Kjetil Hodne
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Jan Magnus Aronsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, Bjorknes College, 0456 Oslo, Norway
| | - Ida Gjervold Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway, the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Bjørn Dalhus
- the Departments of Microbiology and Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway, and
| | - Marianne Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Heidi Kvaløy
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - William Edward Louch
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Theis Tønnessen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the Department of Cardiothoracic Surgery, Oslo University Hospital, Ullevål, 0407 Oslo, Norway
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Ole Mathias Sejersted
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway
| | - Cathrine Rein Carlson
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0318 Oslo, Norway,
| |
Collapse
|
35
|
Michel LYM, Verkaart S, Koopman WJH, Willems PHGM, Hoenderop JGJ, Bindels RJM. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J Biol Chem 2014; 289:11293-11303. [PMID: 24616101 DOI: 10.1074/jbc.m113.529388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoform 3 of the Na(+)-Ca(2+) exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca(2+)]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca(2+) extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca(2+) imaging, we measured the capacity and regulation of the two variants during Ca(2+) extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na(+)]i), NCX3-AC has a higher [Na(+)]i sensitivity, as Ca(2+) influx is observed in the presence of extracellular Na(+). This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca(2+) extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca(2+). Strikingly, substitution of Glu(580) in NCX3-B with its NCX3-AC equivalent Lys(580) recapitulated the functional properties of NCX3-AC regarding Ca(2+) sensitivity, Lys(580) presumably acting through a structure stabilization of the Ca(2+) binding site. The higher Ca(2+) uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca(2+) levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca(2+) handling beyond that of extruding Ca(2+).
Collapse
Affiliation(s)
- Lauriane Y M Michel
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Werner J H Koopman
- Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Departments of Biochemistry, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Peter H G M Willems
- Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Departments of Biochemistry, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands
| | - René J M Bindels
- From the Departments of Physiology and Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands; Centre for System Biology and Bioenergetics, Radboud University Medical Centre, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Sharma V, O'Halloran DM. Recent structural and functional insights into the family of sodium calcium exchangers. Genesis 2013; 52:93-109. [PMID: 24376088 DOI: 10.1002/dvg.22735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/08/2023]
Abstract
Maintenance of calcium homeostasis is necessary for the development and survival of all animals. Calcium ions modulate excitability and bind effectors capable of initiating many processes such as muscular contraction and neurotransmission. However, excessive amounts of calcium in the cytosol or within intracellular calcium stores can trigger apoptotic pathways in cells that have been implicated in cardiac and neuronal pathologies. Accordingly, it is critical for cells to rapidly and effectively regulate calcium levels. The Na(+) /Ca(2+) exchangers (NCX), Na(+) /Ca(2+) /K(+) exchangers (NCKX), and Ca(2+) /Cation exchangers (CCX) are the three classes of sodium calcium antiporters found in animals. These exchanger proteins utilize an electrochemical gradient to extrude calcium. Although they have been studied for decades, much is still unknown about these proteins. In this review, we examine current knowledge about the structure, function, and physiology and also discuss their implication in various developmental disorders. Finally, we highlight recent data characterizing the family of sodium calcium exchangers in the model system, Caenorhabditis elegans, and propose that C. elegans may be an ideal model to complement other systems and help fill gaps in our knowledge of sodium calcium exchange biology.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biological Sciences, The George Washington University, Washington, DC; Institute for Neuroscience, The George Washington University, Washington, DC
| | | |
Collapse
|
37
|
Khananshvili D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch 2013; 466:43-60. [PMID: 24281864 DOI: 10.1007/s00424-013-1405-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022]
Abstract
NCX proteins explore the electrochemical gradient of Na(+) to mediate Ca(2+)-fluxes in exchange with Na(+) either in the Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, whereas the directionality depends on ionic concentrations and membrane potential. Mammalian NCX variants (NCX1-3) and their splice variants are expressed in a tissue-specific manner to modulate the heartbeat rate and contractile force, the brain's long-term potentiation and learning, blood pressure, renal Ca(2+) reabsorption, the immune response, neurotransmitter and insulin secretion, apoptosis and proliferation, mitochondrial bioenergetics, etc. Although the forward mode of NCX represents a major physiological module, a transient reversal of NCX may contribute to EC-coupling, vascular constriction, and synaptic transmission. Notably, the reverse mode of NCX becomes predominant in pathological settings. Since the expression levels of NCX variants are disease-related, the selective pharmacological targeting of tissue-specific NCX variants could be beneficial, thereby representing a challenge. Recent structural and biophysical studies revealed a common module for decoding the Ca(2+)-induced allosteric signal in eukaryotic NCX variants, although the phenotype variances in response to regulatory Ca(2+) remain unclear. The breakthrough discovery of the archaebacterial NCX structure may serve as a template for eukaryotic NCX, although the turnover rates of the transport cycle may differ ~10(3)-fold among NCX variants to fulfill the physiological demands for the Ca(2+) flux rates. Further elucidation of ion-transport and regulatory mechanisms may lead to selective pharmacological targeting of NCX variants under disease conditions.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel,
| |
Collapse
|
38
|
Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Aspects Med 2013; 34:220-35. [PMID: 23506867 DOI: 10.1016/j.mam.2012.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 03/08/2012] [Indexed: 01/12/2023]
Abstract
The SLC8 gene family encoding Na(+)/Ca(2+) exchangers (NCX) belongs to the CaCA (Ca(2+)/Cation Antiporter) superfamily. Three mammalian genes (SLC8A1, SLC8A2, and SLC8A3) and their splice variants are expressed in a tissue-specific manner to mediate Ca(2+)-fluxes across the cell-membrane and thus, significantly contribute to regulation of Ca(2+)-dependent events in many cell types. A long-wanted mitochondrial Na(+)/Ca(2+) exchanger has been recently identified as NCLX protein, representing a gene product of SLC8B1. Distinct NCX isoform/splice variants contribute to excitation-contraction coupling, long-term potentiation of the brain and learning, blood pressure regulation, immune response, neurotransmitter and insulin secretion, mitochondrial bioenergetics, etc. Altered expression and regulation of NCX proteins contribute to distorted Ca(2+)-homeostasis in heart failure, arrhythmia, cerebral ischemia, hypertension, diabetes, renal Ca(2+) reabsorption, muscle dystrophy, etc. Recently, high-resolution X-ray structures of Ca(2+)-binding regulatory domains of eukaryotic NCX and of full-size prokaryotic NCX have become available and the dynamic properties have been analyzed by advanced biophysical approaches. Molecular silencing/overexpression of NCX in cellular systems and organ-specific KO mouse models provided useful information on the contribution of distinct NCX variants to cellular and systemic functions under various pathophysiological conditions. Selective inhibition or activation of predefined NCX variants in specific diseases might have clinical relevance, although this breakthrough has not yet been realized. A better understanding of the underlying molecular mechanisms as well as the development of in vitro procedures for high-throughput screening of "drug-like" compounds may lead to selective pharmacological targeting of NCX variants.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
39
|
Giladi M, Hiller R, Hirsch JA, Khananshvili D. Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX). J Biol Chem 2013; 288:23141-9. [PMID: 23798674 DOI: 10.1074/jbc.m113.471698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic Na(+)/Ca(2+) exchangers (NCX) the Ca(2+) binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca(2+) sensor (Ca3-Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca(2+)-driven interdomain switch has been described, albeit how it couples Ca(2+) binding with signal propagation remains unclear. To resolve the dynamic features of Ca(2+)-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium (45)Ca(2+) binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg(2+)-bound forms of CBD12 are highly flexible, whereas Ca(2+) binding to the Ca3-Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca(2+) is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca(2+)]-dependent allosteric regulation occurs. Low affinity sites (Ca1-Ca2) of CBD1 do not contribute to Ca(2+)-induced population shift, but the occupancy of these sites by 1 mM Mg(2+) shifts the Ca(2+) affinity (Kd) at the neighboring Ca3-Ca4 sites from ∼ 50 nM to ∼ 200 nM and thus, keeps the primary Ca(2+) sensor (Ca3-Ca4 sites) within a physiological range. Thus, Ca(2+) binding to the Ca3-Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | |
Collapse
|
40
|
Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:175-90. [PMID: 23224879 DOI: 10.1007/978-1-4614-4756-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The Contribution of the Sodium-Calcium Exchanger (NCX) and Plasma Membrane Ca2+ ATPase (PMCA) to Cerebellar Synapse Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:251-63. [DOI: 10.1007/978-1-4614-4756-6_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
42
|
Giladi M, Khananshvili D. Molecular determinants of allosteric regulation in NCX proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:35-48. [PMID: 23224868 DOI: 10.1007/978-1-4614-4756-6_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allosteric activation of NCX involves the binding of cytosolic Ca(2+) to regulatory domains CBD1 and CBD2. Previous studies with isolated CBD12 and full-size NCX identified synergistic interactions between the two CBD domains that modify the affinity and kinetic properties of Ca(2+) sensing, although it remains unclear how the Ca(2+)-binding signal is decoded and propagates to transmembrane domains. Biophysical analyses (X-ray, SAXS, and stopped-flow techniques) of isolated preparations of CBD1, CBD2, and CBD12 have shown that Ca(2+) binding to Ca3-Ca4 sites of CBD1 results in interdomain tethering of CBDs through specific amino acids on CBD1 (Asp499 and Asp500) and CBD2 (Arg532 and Asp565). Mutant analyses of isolated CBDs suggest that the two-domain interface governs Ca(2+)-driven conformational alignment of CBDs, resulting in slow dissociation of Ca(2+) from CBD12, and thus, it mediates Ca(2+)-induced conformational transitions associated with allosteric signal transmission. Specifically, occupation of Ca3-Ca4 sites by Ca(2+) induces disorder-to-order transition owing to charge neutralization and coordination, thereby constraining CBD conformational freedom, rigidifying the NCX1 f-loop, and triggering allosteric signal transmission to the membrane domain. The newly found interdomain switch is highly conserved among NCX isoform/splice variants, although some additional structural motifs may shape the regulatory specificity of NCX variants.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
43
|
Hilge M. Ca(2+) regulation in the Na(+)/Ca (2+) exchanger features a dual electrostatic switch mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:27-33. [PMID: 23224867 DOI: 10.1007/978-1-4614-4756-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion transport performed by the Na(+)/Ca(2+) exchanger (NCX) is regulated via its cytosolic Ca(2+)-binding domains, CBD1 and CBD2, which act as sensors for intracellular Ca(2+). Striking differences in the electrostatic potential of the Ca(2+)-bound and Ca(2+)-free forms turn the CBD1 and CBD2 Ca(2+)-binding sites into electrostatic switches similar to those of C(2) domains. Binding of Ca(2+) with high affinity to CBD1 induces a conformational change that is relayed to the transmembrane domain and thereby initiates Na(+)/Ca(2+) exchange. The Ca(2+) concentration at which this conformational change occurs is determined by the Ca(2+) affinities of the strictly conserved CBD1 Ca(2+)-binding sites that are modulated by an adjacent, variable region of CBD2. In contrast, the Ca(2+)-binding properties of CBD2 depend on the isoform and the type of residues in the Ca(2+)-binding sites, encoded by a mutually exclusive exon. This second electrostatic switch, formed by CBD2, appears to be required for sustained Na(+)/Ca(2+) exchange and may allow tailored, tissue-specific exchange activities.
Collapse
|
44
|
Dixit M, Kim S, Matthews GF, Erreger K, Galli A, Cobb CE, Hustedt EJ, Beth AH. Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding. J Biol Chem 2012; 288:4194-207. [PMID: 23233681 DOI: 10.1074/jbc.m112.423293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX1.1) serves as the primary means of Ca(2+) extrusion across the plasma membrane of cardiomyocytes after the rise in intracellular Ca(2+) during contraction. The exchanger is regulated by binding of Ca(2+) to its intracellular domain, which contains two structurally homologous Ca(2+) binding domains denoted as CBD1 and CBD2. NMR and x-ray crystallographic studies have provided structures for the isolated CBD1 and CBD2 domains and have shown how Ca(2+) binding affects their structures and motional dynamics. However, structural information on the entire Ca(2+) binding domain, denoted CBD12, and how binding of Ca(2+) alters its structure and dynamics is more limited. Site-directed spin labeling has been employed in this work to address these questions. Electron paramagnetic resonance measurements on singly labeled constructs of CBD12 have identified the regions that undergo changes in dynamics as a result of Ca(2+) binding. Double electron-electron resonance (DEER) measurements on doubly labeled constructs of CBD12 have shown that the β-sandwich regions of the CBD1 and CBD2 domains are largely insensitive to Ca(2+) binding and that these two domains are widely separated at their N and C termini. Interdomain distances measured by DEER have been employed to construct structural models for CBD12 in the presence and absence of Ca(2+). These models show that there is not a major change in the relative orientation of the two Ca(2+) binding domains as a result of Ca(2+) binding in the NCX1.1 isoform. Additional measurements have shown that there are significant changes in the dynamics of the F-G loop region of CBD2 that merit further characterization with regard to their possible involvement in regulation of NCX1.1 activity.
Collapse
Affiliation(s)
- Mrinalini Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Petoukhov MV, Svergun DI. Applications of small-angle X-ray scattering to biomacromolecular solutions. Int J Biochem Cell Biol 2012; 45:429-37. [PMID: 23142499 DOI: 10.1016/j.biocel.2012.10.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 01/10/2023]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method for low-resolution structural characterization of biological macromolecules in solution. Being complementary to the high resolution methods (X-ray crystallography and NMR), SAXS is often used in combination with them. The technique provides overall three-dimensional structures using ab initio reconstructions and hybrid modeling, and allows one to quantitatively characterize equilibrium mixtures as well as flexible systems. Recent progress in SAXS instrumentation, most notably, high brilliance synchrotron sources, has paved the way for high throughput automated SAXS studies allowing screening of external conditions (pH, temperature, ligand binding etc.). The modern approaches for SAXS data analysis are presented in this review including rapid characterization of macromolecular solutions in terms of low-resolution shapes, validation of high-resolution models in close-to-native conditions, quaternary structure analysis of complexes and quantitative description of the oligomeric composition in mixtures. Practical aspects of SAXS as a standalone tool and its combinations with other structural, biophysical or bioinformatics methods are reviewed. The capabilities of the technique are illustrated by a selection of recent applications for the studies of biological molecules. Future perspectives on SAXS and its potential impact to structural molecular biology are discussed.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
46
|
Doreleijers JF, Sousa da Silva AW, Krieger E, Nabuurs SB, Spronk CAEM, Stevens TJ, Vranken WF, Vriend G, Vuister GW. CING: an integrated residue-based structure validation program suite. JOURNAL OF BIOMOLECULAR NMR 2012; 54:267-83. [PMID: 22986687 PMCID: PMC3483101 DOI: 10.1007/s10858-012-9669-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/31/2012] [Indexed: 05/03/2023]
Abstract
We present a suite of programs, named CING for Common Interface for NMR Structure Generation that provides for a residue-based, integrated validation of the structural NMR ensemble in conjunction with the experimental restraints and other input data. External validation programs and new internal validation routines compare the NMR-derived models with empirical data, measured chemical shifts, distance- and dihedral restraints and the results are visualized in a dynamic Web 2.0 report. A red-orange-green score is used for residues and restraints to direct the user to those critiques that warrant further investigation. Overall green scores below ~20 % accompanied by red scores over ~50 % are strongly indicative of poorly modelled structures. The publically accessible, secure iCing webserver ( https://nmr.le.ac.uk ) allows individual users to upload the NMR data and run a CING validation analysis.
Collapse
Affiliation(s)
- Jurgen F. Doreleijers
- CMBI, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | | | - Elmar Krieger
- YASARA Biosciences GmbH, Wagramer Strasse 25/3/45, 1220 Vienna, Austria
| | - Sander B. Nabuurs
- CMBI, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | | | - Tim J. Stevens
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Wim F. Vranken
- Department of Structural Biology, VIB, Building E, 4th Floor, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Building E, 4th Floor, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Vriend
- CMBI, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Geerten W. Vuister
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN UK
| |
Collapse
|
47
|
Giladi M, Friedberg I, Fang X, Hiller R, Wang YX, Khananshvili D. G503 is obligatory for coupling of regulatory domains in NCX proteins. Biochemistry 2012; 51:7313-20. [PMID: 22924554 DOI: 10.1021/bi300739z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multidomain proteins, interdomain linkers allow an efficient transfer of regulatory information, although it is unclear how the information encoded in the linker structure coins dynamic coupling. Allosteric regulation of NCX proteins involves Ca(2+)-driven tethering of regulatory CBD1 and CBD2 (through a salt bridge network) accompanied by alignment of CBDs and Ca(2+) occlusion at the interface of the two CBDs. Here we investigated "alanine-walk" substitutions in the CBD1-CBD2 linker (501-HAGIFT-506) and found that among all linker residues, only G503 is obligatory for Ca(2+)-induced reorientations of CBDs and slow dissociation of occluded Ca(2+). Moreover, swapping between positions A502 and G503 in the CBD1-CBD2 linker results in a complete loss of slow dissociation of occluded Ca(2+), meaning that dynamic coupling of CBDs requires an exact pose of glycine at position 503. Therefore, accumulating data revealed that position 503 occupied by glycine is absolutely required for Ca(2+)-driven tethering of CBDs, which in turn limits the linker's flexibility and, thus, restricts CBD movements. Because G503 is extremely well conserved in eukaryotic NCX proteins, the information encoded in G503 is essential for dynamic coupling of the two-domain CBD tandem and, thus, for propagation of the allosteric signal.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Breukels V, Touw WG, Vuister GW. NMR structure note: solution structure of Ca²⁺ binding domain 2B of the third isoform of the Na⁺/Ca²⁺ exchanger. JOURNAL OF BIOMOLECULAR NMR 2012; 54:115-121. [PMID: 22806131 DOI: 10.1007/s10858-012-9654-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Vincent Breukels
- Institute for Molecules and Materials, Radboud University Nijmegen, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | | | | |
Collapse
|
49
|
Abstract
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.
Collapse
Affiliation(s)
- Mark Hilge
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University Basel, CH-4058 Basel, Switzerland.
| |
Collapse
|
50
|
Giladi M, Sasson Y, Fang X, Hiller R, Buki T, Wang YX, Hirsch JA, Khananshvili D. A common Ca2+-driven interdomain module governs eukaryotic NCX regulation. PLoS One 2012; 7:e39985. [PMID: 22768191 PMCID: PMC3386913 DOI: 10.1371/journal.pone.0039985] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/30/2012] [Indexed: 11/19/2022] Open
Abstract
Na(+)/Ca(2+) exchanger (NCX) proteins mediate Ca(2+)-fluxes across the cell membrane to maintain Ca(2+) homeostasis in many cell types. Eukaryotic NCX contains Ca(2+)-binding regulatory domains, CBD1 and CBD2. Ca(2+) binding to a primary sensor (Ca3-Ca4 sites) on CBD1 activates mammalian NCXs, whereas CALX, a Drosophila NCX ortholog, displays an inhibitory response to regulatory Ca(2+). To further elucidate the underlying regulatory mechanisms, we determined the 2.7 Å crystal structure of mammalian CBD12-E454K, a two-domain construct that retains wild-type properties. In conjunction with stopped-flow kinetics and SAXS (small-angle X-ray scattering) analyses of CBD12 mutants, we show that Ca(2+) binding to Ca3-Ca4 sites tethers the domains via a network of interdomain salt-bridges. This Ca(2+)-driven interdomain switch controls slow dissociation of "occluded" Ca(2+) from the primary sensor and thus dictates Ca(2+) sensing dynamics. In the Ca(2+)-bound conformation, the interdomain angle of CBD12 is very similar in NCX and CALX, meaning that the interdomain distances cannot account for regulatory diversity in NCX and CALX. Since the two-domain interface is nearly identical among eukaryotic NCXs, including CALX, we suggest that the Ca(2+)-driven interdomain switch described here represents a general mechanism for initial conduction of regulatory signals in NCX variants.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Yehezkel Sasson
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Xianyang Fang
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States of America
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Tal Buki
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States of America
| | - Joel A. Hirsch
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
- * E-mail: (DK); (JAH)
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
- * E-mail: (DK); (JAH)
| |
Collapse
|