1
|
Fogg LG, Isari S, Barnes JE, Patel JS, Marshall NJ, Salzburger W, Cortesi F, de Busserolles F. Deep-sea fish reveal alternative pathway for vertebrate visual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617579. [PMID: 39416096 PMCID: PMC11483065 DOI: 10.1101/2024.10.10.617579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Vertebrate vision is accomplished by two phenotypically distinct types of photoreceptors in the retina: the saturation-resistant cones for the detection of bright light and the highly sensitive rods for dim light conditions [1]. The current dogma is that, during development, all vertebrates initially feature a cone-dominated retina, and rods are added later [2, 3]. By studying the ontogeny of vision in three species of deep-sea fishes, we show that their larvae express cone-specific genes in photoreceptors with rod-like morphologies. Through development, these fishes either retain this rod-like cone retina (Maurolicus mucronatus) or switch to a retina with true rod photoreceptors with expression of rod-specific genes and transcription factors (Vinciguerria mabahiss and Benthosema pterotum). In contrast to the larvae of most marine fishes, which inhabit the bright upper layer of the open ocean, the larvae of deep-sea fishes occur deeper, exposing them to a dimmer light environment [4-7]. Spectral maxima predictions from molecular dynamics simulations and environmental light estimations suggest that using transmuted photoreceptors that combine the characteristics of both cones and rods maximises visual performance in these dimmer light conditions. Our findings provide molecular, morphological, and functional evidence for the evolution of an alternative developmental pathway for vertebrate vision.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Stamatina Isari
- Institute of Marine Research, Bergen, 5005, Norway
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- The School of The Environment, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Salehi S, Schallmayer E, Bandomir N, Kärcher A, Güth JF, Heitel P. Screening of Chelidonium majus isoquinoline alkaloids reveals berberine and chelidonine as selective ligands for the nuclear receptors RORβ and HNF4α, respectively. Arch Pharm (Weinheim) 2024; 357:e2300756. [PMID: 38501877 DOI: 10.1002/ardp.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-β (RORβ) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORβ inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.
Collapse
Affiliation(s)
- Sohrab Salehi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nils Bandomir
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annette Kärcher
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Frederik Güth
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet 2024; 20:e1011036. [PMID: 38968323 PMCID: PMC11253941 DOI: 10.1371/journal.pgen.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/17/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
4
|
Loell KJ, Friedman RZ, Myers CA, Corbo JC, Cohen BA, White MA. Transcription factor interactions explain the context-dependent activity of CRX binding sites. PLoS Comput Biol 2024; 20:e1011802. [PMID: 38227575 PMCID: PMC10817189 DOI: 10.1371/journal.pcbi.1011802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.
Collapse
Affiliation(s)
- Kaiser J. Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan Z. Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Michael A. White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice ( Mus musculus domesticus) from the Americas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564674. [PMID: 37961195 PMCID: PMC10634997 DOI: 10.1101/2023.10.30.564674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| |
Collapse
|
6
|
Murray GC, Bubier JA, Zinder OJ, Harris B, Clark J, Christopher MC, Hanley C, Tjong H, Li M, Ngan CY, Reinholdt L, Burgess RW, Tadenev ALD. An allelic series of spontaneous Rorb mutant mice exhibit a gait phenotype, changes in retina morphology and behavior, and gene expression signatures associated with the unfolded protein response. G3 (BETHESDA, MD.) 2023; 13:jkad131. [PMID: 37300435 PMCID: PMC10411600 DOI: 10.1093/g3journal/jkad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The Retinoid-related orphan receptor beta (RORβ) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORβ belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORβ causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors. Hyperflexion or "high-stepping" of rear limbs caused by reduced presynaptic inhibition by Rorb-expressing inhibitory interneurons of the spinal cord is evident in RORβ-deficient mice. RORβ variants in patients are associated with susceptibility to various neurodevelopmental conditions, primarily generalized epilepsies, but including intellectual disability, bipolar, and autism spectrum disorders. The mechanisms by which RORβ variants confer susceptibility to these neurodevelopmental disorders are unknown but may involve aberrant neural circuit formation and hyperexcitability during development. Here we report an allelic series in 5 strains of spontaneous Rorb mutant mice with a high-stepping gait phenotype. We show retinal abnormalities in a subset of these mutants and demonstrate significant differences in various behavioral phenotypes related to cognition. Gene expression analyses in all 5 mutants reveal a shared over-representation of the unfolded protein response and pathways related to endoplasmic reticulum stress, suggesting a possible mechanism of susceptibility relevant to patients.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | | | - James Clark
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Harianto Tjong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Meihong Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | |
Collapse
|
7
|
Yemanyi F, Bora K, Blomfield AK, Chen J. Retinoic Acid Receptor-Related Orphan Receptors (RORs) in Eye Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:327-332. [PMID: 37440052 DOI: 10.1007/978-3-031-27681-1_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The retinoic acid receptor-related orphan receptors (RORs) are ligand-mediated transcription factors with important biological roles in regulating circadian rhythms, metabolism, immunity, angiogenesis, inflammation, and development. They belong to the superfamily of nuclear receptors and include three family members: RORα, RORβ, and RORγ. Currently identified ROR ligands include cholesterol and cholesterol derivatives for RORα and RORγ, and stearic acid and all-trans retinoic acid for RORβ. Aberrant signaling of the RORs is involved in the pathogenesis of several human diseases including autoimmune diseases, metabolic disorders, and certain cancers. In the eye, RORs regulate normal development of the lens and the retina, and also contribute to potentially blinding eye diseases, especially retinal vascular diseases. Here, we review the role of RORs in eye development and disease to highlight their potential as druggable targets for therapeutic development in retinal vascular and degenerative diseases.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra K Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Bunker J, Bashir M, Bailey S, Boodram P, Perry A, Delaney R, Tsachaki M, Sprecher SG, Nelson E, Call GB, Rister J. Blimp-1/PRDM1 and Hr3/RORβ specify the blue-sensitive photoreceptor subtype in Drosophila by repressing the hippo pathway. Front Cell Dev Biol 2023; 11:1058961. [PMID: 36960411 PMCID: PMC10027706 DOI: 10.3389/fcell.2023.1058961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
During terminal differentiation of the mammalian retina, transcription factors control binary cell fate decisions that generate functionally distinct subtypes of photoreceptor neurons. For instance, Otx2 and RORβ activate the expression of the transcriptional repressor Blimp-1/PRDM1 that represses bipolar interneuron fate and promotes rod photoreceptor fate. Moreover, Otx2 and Crx promote expression of the nuclear receptor Nrl that promotes rod photoreceptor fate and represses cone photoreceptor fate. Mutations in these four transcription factors cause severe eye diseases such as retinitis pigmentosa. Here, we show that a post-mitotic binary fate decision in Drosophila color photoreceptor subtype specification requires ecdysone signaling and involves orthologs of these transcription factors: Drosophila Blimp-1/PRDM1 and Hr3/RORβ promote blue-sensitive (Rh5) photoreceptor fate and repress green-sensitive (Rh6) photoreceptor fate through the transcriptional repression of warts/LATS, the nexus of the phylogenetically conserved Hippo tumor suppressor pathway. Moreover, we identify a novel interaction between Blimp-1 and warts, whereby Blimp-1 represses a warts intronic enhancer in blue-sensitive photoreceptors and thereby gives rise to specific expression of warts in green-sensitive photoreceptors. Together, these results reveal that conserved transcriptional regulators play key roles in terminal cell fate decisions in both the Drosophila and the mammalian retina, and the mechanistic insights further deepen our understanding of how Hippo pathway signaling is repurposed to control photoreceptor fates for Drosophila color vision.
Collapse
Affiliation(s)
- Joseph Bunker
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Mhamed Bashir
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Sydney Bailey
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Pamela Boodram
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- NYU Langone Medical Center, New York, NY, United States
| | - Alexis Perry
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Rory Delaney
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Maria Tsachaki
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Erik Nelson
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Gerald B. Call
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- *Correspondence: Jens Rister,
| |
Collapse
|
9
|
RORβ modulates a gene program that is protective against articular cartilage damage. PLoS One 2022; 17:e0268663. [PMID: 36227956 PMCID: PMC9560479 DOI: 10.1371/journal.pone.0268663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease which increases in frequency with age eventually impacting most people over the age of 65. OA is the leading cause of disability and impaired mobility, yet the pathogenesis of OA remains unclear. Treatments have focused mainly on pain relief and reducing joint swelling. Currently there are no effective treatments to slow the progression of the disease and to prevent irreversible loss of cartilage. Here we demonstrate that stable expression of RORβ in cultured cells results in alteration of a gene program that is supportive of chondrogenesis and is protective against development of OA. Specifically, we determined that RORβ alters the ratio of expression of the FGF receptors FGFR1 (associated with cartilage destruction) and FGFR3 (associated with cartilage protection). Additionally, ERK1/2-MAPK signaling was suppressed and AKT signaling was enhanced. These results suggest a critical role for RORβ in chondrogenesis and suggest that identification of mechanisms that control the expression of RORβ in chondrocytes could lead to the development of disease modifying therapies for the treatment of OA.
Collapse
|
10
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression. J Exp Biol 2022; 225:jeb244513. [PMID: 35929500 PMCID: PMC9482368 DOI: 10.1242/jeb.244513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
Abstract
Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
12
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
13
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
14
|
Lyu P, Hoang T, Santiago CP, Thomas ED, Timms AE, Appel H, Gimmen M, Le N, Jiang L, Kim DW, Chen S, Espinoza DF, Telger AE, Weir K, Clark BS, Cherry TJ, Qian J, Blackshaw S. Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep 2021; 37:109994. [PMID: 34788628 PMCID: PMC8642835 DOI: 10.1016/j.celrep.2021.109994] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siqi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David F Espinoza
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel E Telger
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA
| | - Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian S Clark
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information content differentiates enhancers from silencers in mouse photoreceptors. eLife 2021; 10:67403. [PMID: 34486522 PMCID: PMC8492058 DOI: 10.7554/elife.67403] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhancers and silencers often depend on the same transcription factors (TFs) and are conflated in genomic assays of TF binding or chromatin state. To identify sequence features that distinguish enhancers and silencers, we assayed massively parallel reporter libraries of genomic sequences targeted by the photoreceptor TF cone-rod homeobox (CRX) in mouse retinas. Both enhancers and silencers contain more TF motifs than inactive sequences, but relative to silencers, enhancers contain motifs from a more diverse collection of TFs. We developed a measure of information content that describes the number and diversity of motifs in a sequence and found that, while both enhancers and silencers depend on CRX motifs, enhancers have higher information content. The ability of information content to distinguish enhancers and silencers targeted by the same TF illustrates how motif context determines the activity of cis-regulatory sequences. Different cell types are established by activating and repressing the activity of specific sets of genes, a process controlled by proteins called transcription factors. Transcription factors work by recognizing and binding short stretches of DNA in parts of the genome called cis-regulatory sequences. A cis-regulatory sequence that increases the activity of a gene when bound by transcription factors is called an enhancer, while a sequence that causes a decrease in gene activity is called a silencer. To establish a cell type, a particular transcription factor will act on both enhancers and silencers that control the activity of different genes. For example, the transcription factor cone-rod homeobox (CRX) is critical for specifying different types of cells in the retina, and it acts on both enhancers and silencers. In rod photoreceptors, CRX activates rod genes by binding their enhancers, while repressing cone photoreceptor genes by binding their silencers. However, CRX always recognizes and binds to the same DNA sequence, known as its binding site, making it unclear why some cis-regulatory sequences bound to CRX act as silencers, while others act as enhancers. Friedman et al. sought to understand how enhancers and silencers, both bound by CRX, can have different effects on the genes they control. Since both enhancers and silencers contain CRX binding sites, the difference between the two must lie in the sequence of the DNA surrounding these binding sites. Using retinas that have been explanted from mice and kept alive in the laboratory, Friedman et al. tested the activity of thousands of CRX-binding sequences from the mouse genome. This showed that both enhancers and silencers have more copies of CRX-binding sites than sequences of the genome that are inactive. Additionally, the results revealed that enhancers have a diverse collection of binding sites for other transcription factors, while silencers do not. Friedman et al. developed a new metric they called information content, which captures the diverse combinations of different transcription binding sites that cis-regulatory sequences can have. Using this metric, Friedman et al. showed that it is possible to distinguish enhancers from silencers based on their information content. It is critical to understand how the DNA sequences of cis-regulatory regions determine their activity, because mutations in these regions of the genome can cause disease. However, since every person has thousands of benign mutations in cis-regulatory sequences, it is a challenge to identify specific disease-causing mutations, which are relatively rare. One long-term goal of models of enhancers and silencers, such as Friedman et al.’s information content model, is to understand how mutations can affect cis-regulatory sequences, and, in some cases, lead to disease.
Collapse
Affiliation(s)
- Ryan Z Friedman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - David M Granas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Michael A White
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
16
|
Ogawa Y, Corbo JC. Partitioning of gene expression among zebrafish photoreceptor subtypes. Sci Rep 2021; 11:17340. [PMID: 34462505 PMCID: PMC8405809 DOI: 10.1038/s41598-021-96837-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate photoreceptors are categorized into two broad classes, rods and cones, responsible for dim- and bright-light vision, respectively. While many molecular features that distinguish rods and cones are known, gene expression differences among cone subtypes remain poorly understood. Teleost fishes are renowned for the diversity of their photoreceptor systems. Here, we used single-cell RNA-seq to profile adult photoreceptors in zebrafish, a teleost. We found that in addition to the four canonical zebrafish cone types, there exist subpopulations of green and red cones (previously shown to be located in the ventral retina) that express red-shifted opsin paralogs (opn1mw4 or opn1lw1) as well as a unique combination of cone phototransduction genes. Furthermore, the expression of many paralogous phototransduction genes is partitioned among cone subtypes, analogous to the partitioning of the phototransduction paralogs between rods and cones seen across vertebrates. The partitioned cone-gene pairs arose via the teleost-specific whole-genome duplication or later clade-specific gene duplications. We also discovered that cone subtypes express distinct transcriptional regulators, including many factors not previously implicated in photoreceptor development or differentiation. Overall, our work suggests that partitioning of paralogous gene expression via the action of differentially expressed transcriptional regulators enables diversification of cone subtypes in teleosts.
Collapse
Affiliation(s)
- Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
17
|
Shams Najafabadi H, Sadeghi M, Zibaii MI, Soheili ZS, Samiee S, Ghasemi P, Hosseini M, Gholami Pourbadie H, Ahmadieh H, Taghizadeh S, Ranaei Pirmardan E. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem 2021; 122:851-869. [PMID: 33847009 DOI: 10.1002/jcb.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto-mGluR6-engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal-specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell-specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE-specific marker, RPE65, and epithelial cell marker, ZO-1. mRPE cells and BMSCs were transduced with AAV-MCS-IRES-EGFP-Opto-mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto-mGluR6 were verified. Optogenetic stimulation-induced elevated intracellular Ca2+ levels in mRPE- and BMS-treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE- and BMSCs-treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal-specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs-treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto-mGluR6-engineered BMSCs. It seems that optogenetic stimulation of mRPE- and BMSCs-engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad I Zibaii
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Carneiro M, Vieillard J, Andrade P, Boucher S, Afonso S, Blanco-Aguiar JA, Santos N, Branco J, Esteves PJ, Ferrand N, Kullander K, Andersson L. A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS Genet 2021; 17:e1009429. [PMID: 33764968 PMCID: PMC7993613 DOI: 10.1371/journal.pgen.1009429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d'Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.
Collapse
Affiliation(s)
- Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- * E-mail: (MC); (LA)
| | | | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Samuel Boucher
- Labovet Conseil (Réseau Cristal), Les Herbiers Cedex, France
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - José A. Blanco-Aguiar
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Nuno Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - João Branco
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro J. Esteves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland, South Africa
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail: (MC); (LA)
| |
Collapse
|
19
|
Core-clock genes Period 1 and 2 regulate visual cascade and cell cycle components during mouse eye development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194623. [PMID: 32795630 DOI: 10.1016/j.bbagrm.2020.194623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The retinas from Period 1 (Per1) and Period 2 (Per2) double-mutant mice (Per1-/-Per2Brdm1) display abnormal blue-cone distribution associated with a reduction in cone opsin mRNA and protein levels, up to 1 year of age. To reveal the molecular mechanisms by which Per1 and Per2 control retina development, we analyzed genome-wide gene expression differences between wild-type (WT) and Per1-/-Per2Brdm1 mice across ocular developmental stages (E15, E18 and P3). All clock genes displayed changes in transcript levels along with normal eye development. RNA-Seq data show major gene expression changes between WT and mutant eyes, with the number of differentially expressed genes (DEG) increasing with developmental age. Functional annotation of the genes showed that the most significant changes in expression levels in mutant mice involve molecular pathways relating to circadian rhythm signaling at E15 and E18. At P3, the visual cascade and the cell cycle were respectively higher and lower expressed compared to WT eyes. Overall, our study provides new insights into signaling pathways -phototransduction and cell cycle- controlled by the circadian clock in the eye during development.
Collapse
|
20
|
Mahato B, Kaya KD, Fan Y, Sumien N, Shetty RA, Zhang W, Davis D, Mock T, Batabyal S, Ni A, Mohanty S, Han Z, Farjo R, Forster MJ, Swaroop A, Chavala SH. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 2020; 581:83-88. [PMID: 32376950 PMCID: PMC7469946 DOI: 10.1038/s41586-020-2201-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision1,2. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-κB and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.
Collapse
Affiliation(s)
- Biraj Mahato
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Koray Dogan Kaya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Fan
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wei Zhang
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Delaney Davis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Mock
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Aiguo Ni
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Zongchao Han
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sai H Chavala
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
- CIRC Therapeutics, Inc., Dallas, TX, USA.
| |
Collapse
|
21
|
Sadleir LG, de Valles-Ibáñez G, King C, Coleman M, Mossman S, Paterson S, Nguyen J, Berkovic SF, Mullen S, Bahlo M, Hildebrand MS, Mefford HC, Scheffer IE. Inherited RORB pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy. Epilepsia 2020; 61:e23-e29. [PMID: 32162308 DOI: 10.1111/epi.16475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023]
Abstract
Variants in RORB have been reported in eight individuals with epilepsy, with phenotypes ranging from eyelid myoclonia with absence epilepsy to developmental and epileptic encephalopathies. We identified novel RORB variants in 11 affected individuals from four families. One was from whole genome sequencing and three were from RORB screening of three epilepsy cohorts: developmental and epileptic encephalopathies (n = 1021), overlap of generalized and occipital epilepsy (n = 84), and photosensitivity (n = 123). Following interviews and review of medical records, individuals' seizure and epilepsy syndromes were classified. Three novel missense variants and one exon 3 deletion were predicted to be pathogenic by in silico tools, not found in population databases, and located in key evolutionary conserved domains. Median age at seizure onset was 3.5 years (0.5-10 years). Generalized, predominantly absence and myoclonic, and occipital seizures were seen in all families, often within the same individual (6/11). All individuals with epilepsy were photosensitive, and seven of 11 had cognitive abnormalities. Electroencephalograms showed generalized spike and wave and/or polyspike and wave. Here we show a striking RORB phenotype of overlap of photosensitive generalized and occipital epilepsy in both individuals and families. This is the first report of a gene associated with this overlap of epilepsy syndromes.
Collapse
Affiliation(s)
- Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Chontelle King
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Matthew Coleman
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Mossman
- Department of Neurology, Wellington Hospital, Capital and Coast District Health Board, Wellington, New Zealand
| | - Sarah Paterson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - John Nguyen
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Saul Mullen
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael S Hildebrand
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Departments of Paediatrics, Austin Health and Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Petrov AM, Astafev AA, Mast N, Saadane A, El-Darzi N, Pikuleva IA. The Interplay between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina. Biomolecules 2019; 9:biom9120867. [PMID: 31842366 PMCID: PMC6995521 DOI: 10.3390/biom9120867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
In mammalian retina, cholesterol excess is mainly metabolized to oxysterols by cytochromes P450 27A1 (CYP27A1) and 46A1 (CYP46A1) or removed on lipoprotein particles containing apolipoprotein E (APOE). In contrast, esterification by sterol-O-acyltransferase 1 (SOAT) plays only a minor role in this process. Accordingly, retinal cholesterol levels are unchanged in Soat1-/- mice but are increased in Cyp27a1-/-Cyp46a1-/- and Apoe-/- mice. Herein, we characterized Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- mice. In the former, retinal cholesterol levels, anatomical gross structure, and vasculature were normal, yet the electroretinographic responses were impaired. Conversely, in Cyp27a1-/-Cyp46a1-/-Apoe-/- mice, retinal cholesterol levels were increased while anatomical structure and vasculature were unaffected with only male mice showing a decrease in electroretinographic responses. Sterol profiling, qRT-PCR, proteomics, and transmission electron microscopy mapped potential compensatory mechanisms in the Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- retina. These included decreased cholesterol biosynthesis along with enhanced formation of intra- and extracellular vesicles, possibly a reserve mechanism for lowering retinal cholesterol. In addition, there was altered abundance of proteins in Cyp27a1-/-Cyp46a1-/-Soat1-/- mice that can affect photoreceptor function, survival, and retinal energy homeostasis (glucose and fatty acid metabolism). Therefore, the levels of retinal cholesterol do not seem to predict retinal abnormalities, and it is rather the network of compensatory mechanisms that appears to determine retinal phenotype.
Collapse
|
23
|
Xiao M, Liu Y, Wang L, Liang J, Wang T, Zhai Y, Wang Y, Liu S, Liu W, Luo X, Wang F, Sun X. Intraocular VEGF deprivation induces degeneration and fibrogenic response in retina. FASEB J 2019; 33:13920-13934. [DOI: 10.1096/fj.201901283rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyu Wang
- GloriousMed Technology Company, Limited, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Tianjun Wang
- School of Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yafang Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
24
|
Kaya KD, Chen HY, Brooks MJ, Kelley RA, Shimada H, Nagashima K, de Val N, Drinnan CT, Gieser L, Kruczek K, Erceg S, Li T, Lukovic D, Adlakha YK, Welby E, Swaroop A. Transcriptome-based molecular staging of human stem cell-derived retinal organoids uncovers accelerated photoreceptor differentiation by 9-cis retinal. Mol Vis 2019; 25:663-678. [PMID: 31814692 PMCID: PMC6857775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Retinal organoids generated from human pluripotent stem cells exhibit considerable variability during differentiation. Our goals are to assess developmental maturity of the neural retina in vitro and design improved protocols based on objective criteria. METHODS We performed transcriptome analyses of developing retinal organoids from human embryonic and induced pluripotent stem cell lines and utilized multiple bioinformatic tools for comparative analysis. Immunohistochemistry, immunoblotting and electron microscopy were employed for validation. RESULTS We show that the developmental variability in organoids was reflected in gene expression profiles and could be evaluated by molecular staging with the human fetal and adult retinal transcriptome data. We also demonstrate that the addition of 9-cis retinal, instead of the widely used all-trans retinoic acid, accelerated rod photoreceptor differentiation in organoid cultures, with higher rhodopsin expression and more mature mitochondrial morphology evident by day 120. CONCLUSION Our studies provide an objective transcriptome-based modality for determining the differentiation state of retinal organoids and for comparisons across different stem cell lines and platforms, which should facilitate disease modeling and evaluation of therapies in vitro.
Collapse
Affiliation(s)
- Koray D. Kaya
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Holly Y. Chen
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Matthew J. Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Ryan A. Kelley
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Hiroko Shimada
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kunio Nagashima
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD
| | - Natalia de Val
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD
| | - Charles T. Drinnan
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kamil Kruczek
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Slaven Erceg
- Stem Cell Therapies for Neurodegenerative Diseases Lab and National Stem Cell Bank – Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Tiansen Li
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Dunja Lukovic
- Retinal Degeneration Lab and National Stem Cell Bank – Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Yogita K. Adlakha
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD,Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Emily Welby
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Musilova Z, Indermaur A, Bitja‐Nyom AR, Omelchenko D, Kłodawska M, Albergati L, Remišová K, Salzburger W. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol 2019; 28:5010-5031. [DOI: 10.1111/mec.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Zuzana Musilova
- Department of Zoology Charles University in Prague Prague Czech Republic
- Zoological Institute University of Basel Basel Switzerland
| | | | - Arnold Roger Bitja‐Nyom
- Department of Biological Sciences University of Ngaoundéré Ngaoundéré Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems University of Douala Douala Cameroon
| | - Dmytro Omelchenko
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Monika Kłodawska
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Lia Albergati
- Zoological Institute University of Basel Basel Switzerland
| | - Kateřina Remišová
- Department of Physiology Charles University in Prague Prague Czech Republic
| | | |
Collapse
|
26
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
27
|
Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat Ecol Evol 2019; 3:657-667. [PMID: 30833758 DOI: 10.1038/s41559-019-0814-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
Abstract
Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets-a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.
Collapse
|
28
|
Doebelin C, Patouret R, Garcia-Ordonez RD, Chang MR, Dharmarajan V, Novick S, Ciesla A, Campbell S, Solt LA, Griffin PR, Kamenecka TM. Identification of potent RORβ modulators: Scaffold variation. Bioorg Med Chem Lett 2018; 28:3210-3215. [PMID: 30143422 PMCID: PMC6238650 DOI: 10.1016/j.bmcl.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
We sought to develop RORβ-selective probe molecules in order to investigate the function of the receptor in vitro and in vivo and its role in the pathophysiology of disease. To accomplish this, we modified a potent dual RORβ/RORγ inverse agonist from the primary literature with the goal of improving selectivity for RORβ vs RORγ. Truncation of the Western portion of the molecule ablated activity at RORγ and led to a potent series of RORβ modulators. Continued exploration of this series investigated alternate replacement cores for the aminothiazole ring. Numerous suitable replacements were found during the course of our SAR investigations and are reported herein.
Collapse
Affiliation(s)
- Christelle Doebelin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Rémi Patouret
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Ruben D Garcia-Ordonez
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Venkatasubramanian Dharmarajan
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Scott Novick
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Anthony Ciesla
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Sean Campbell
- The Scripps Research Institute, Scripps Florida, Department of Immunology and Microbiology, 130 Scripps Way #C2A, Jupiter, FL 33458, USA
| | - Laura A Solt
- The Scripps Research Institute, Scripps Florida, Department of Immunology and Microbiology, 130 Scripps Way #C2A, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
Gege C, Cummings MD, Albers M, Kinzel O, Kleymann G, Schlüter T, Steeneck C, Nelen MI, Milligan C, Spurlino J, Xue X, Leonard K, Edwards JP, Fourie A, Goldberg SD, Hoffmann T. Identification and biological evaluation of thiazole-based inverse agonists of RORγt. Bioorg Med Chem Lett 2018; 28:1446-1455. [DOI: 10.1016/j.bmcl.2018.03.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
|
30
|
Patouret R, Doebelin C, Garcia-Ordonez RD, Chang MR, Ruiz C, Cameron MD, Griffin PR, Kamenecka TM. Identification of an aminothiazole series of RORβ modulators. Bioorg Med Chem Lett 2018; 28:1178-1181. [PMID: 29534930 PMCID: PMC5859951 DOI: 10.1016/j.bmcl.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
Crystallography has identified stearic acid, ALRT 1550 and ATRA as ligands that bind RORβ, however, none of these molecules represent good starting points to develop optimized small molecule modulators. Recently, Compound 1 was identified as a potent dual RORβ and RORγ inverse agonist with no activity towards RORα (Fig. 1). To our knowledge, this is one of only two small molecule RORβ inverse agonists identified in the primary literature from a tractable chemical series and represents an ideal starting point from which to design RORβ-selective modulators. Herein we describe our SAR optimization efforts that led to a series of potent neutral antagonists of RORβ.
Collapse
Affiliation(s)
- Rémi Patouret
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Christelle Doebelin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Ruben D Garcia-Ordonez
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Claudia Ruiz
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Michael D Cameron
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA.
| |
Collapse
|
31
|
Choi SW, Shin JH, Kim JJ, Shin TH, Seo Y, Kim HS, Kang KS. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203. Oncotarget 2018; 7:42139-42149. [PMID: 27283900 PMCID: PMC5173122 DOI: 10.18632/oncotarget.9882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) treated with a retina differentiation cocktail induced gene expressions of retina development-relevant genes. Furthermore, microRNA-203 (miR-203) is abundantly expressed in human AESCs and human UCB-MSCs. This miR-203 is predicted to target multiple retina development-relevant genes, particularly DKK1, CRX, RORβ, NEUROD1, NRL and THRB. The inhibition of miR-203 induced a retina differentiation of AESCs and UCB-MSCs. Moreover, successive treatments of anti-miR-203 led to the expression of both mature photoreceptor (PR) markers, rhodopsin and opsin. In addition, we determined that CRX, NRL and DKK1 are direct targets of miR-203 using a luciferase assay. Thus, the work presented here suggests that somatic stem cells can potentially differentiate into neural retina cell types when treated with anti-miR-203. They may prove to be a source of both PR subtypes for future allogeneic stem cell-based therapies of non-regenerative retina diseases.
Collapse
Affiliation(s)
- Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Hee Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Pusan National University School of Medicine, Busan 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Sreekanth S, Rasheed VA, Soundararajan L, Antony J, Saikia M, Sivakumar KC, Das AV. miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development. Mol Neurobiol 2017; 54:8033-8049. [PMID: 27878762 DOI: 10.1007/s12035-016-0237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Retinal histogenesis requires coordinated and temporal functioning of factors by which different cell types are generated from multipotent progenitors. Development of rod photoreceptors is regulated by multiple transcription factors, and Nrl is one of the major factors involved in their fate specification. Presence or absence of Nrl at the postnatal stages decides the generation of cone photoreceptors or other later retinal cells. This suggests the need for regulated expression of Nrl in order to accelerate the generation of other cell types during retinal development. We found that miR cluster 143/145, comprising miR-143 and miR-145, targets and imparts a posttranscriptional inhibition of Nrl. Expression of both miRNAs was differentially regulated during retinal development and showed least expression at PN1 stage in which most of the rod photoreceptors are generated. Downregulation of rod photoreceptor regulators and markers upon miR cluster 143/145 overexpression demonstrated that this cluster indeed negatively regulates rod photoreceptors. Further, we prove that Nrl positively regulates miR cluster 143/145, thus establishing a feedback loop regulatory mechanism. This may be one possible mechanism by which Nrl is posttranscriptionally regulated to facilitate the generation of other cell types in retina.
Collapse
Affiliation(s)
- Sreekumaran Sreekanth
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Vazhanthodi A Rasheed
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Lalitha Soundararajan
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Jayesh Antony
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Minakshi Saikia
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Ani V Das
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
33
|
Kim JW, Yang HJ, Brooks MJ, Zelinger L, Karakülah G, Gotoh N, Boleda A, Gieser L, Giuste F, Whitaker DT, Walton A, Villasmil R, Barb JJ, Munson PJ, Kaya KD, Chaitankar V, Cogliati T, Swaroop A. NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Rep 2017; 17:2460-2473. [PMID: 27880916 DOI: 10.1016/j.celrep.2016.10.074] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/29/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023] Open
Abstract
Gene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors. We identified a large-scale, sharp transition in the transcriptome landscape between postnatal days 6 and 10 concordant with rod morphogenesis. Rod-specific temporal DNA methylation corroborated gene expression patterns. De novo assembly and alternative splicing analyses revealed previously unannotated rod-enriched transcripts and the role of NRL in transcript maturation. Furthermore, we defined the relationship of NRL with other transcriptional regulators and downstream cognate effectors. Our studies provide the framework for comprehensive system-level analysis of the GRN underlying the development of a single sensory neuron, the rod photoreceptor.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jin Yang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew John Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina Zelinger
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Gökhan Karakülah
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Alexis Boleda
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Giuste
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Dustin Thad Whitaker
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ashley Walton
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core, NEI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Joanna Barb
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Jonathan Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray Dogan Kaya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Vijender Chaitankar
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Nakamura PA, Shimchuk AA, Tang S, Wang Z, DeGolier K, Ding S, Reh TA. Small molecule Photoregulin3 prevents retinal degeneration in the RhoP23H mouse model of retinitis pigmentosa. eLife 2017; 6. [PMID: 29148976 PMCID: PMC5693111 DOI: 10.7554/elife.30577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Regulation of rod gene expression has emerged as a potential therapeutic strategy to treat retinal degenerative diseases like retinitis pigmentosa (RP). We previously reported on a small molecule modulator of the rod transcription factor Nr2e3, Photoregulin1 (PR1), that regulates the expression of photoreceptor-specific genes. Although PR1 slows the progression of retinal degeneration in models of RP in vitro, in vivo analyses were not possible with PR1. We now report a structurally unrelated compound, Photoregulin3 (PR3) that also inhibits rod photoreceptor gene expression, potentially though Nr2e3 modulation. To determine the effectiveness of PR3 as a potential therapy for RP, we treated RhoP23H mice with PR3 and assessed retinal structure and function. PR3-treated RhoP23H mice showed significant structural and functional photoreceptor rescue compared with vehicle-treated littermate control mice. These results provide further support that pharmacological modulation of rod gene expression provides a potential strategy for the treatment of RP. There are several diseases that cause people to lose their eyesight and become blind. One of these diseases, called retinitis pigmentosa, kills cells at the back of the eye known as rod cells. At first, it affects vision in low light and peripheral vision, but later it affects vision during the daytime as well. There are no effective treatments for patients with retinitis pigmentosa. Yet previous genetic studies have shown that disrupting the activity of genes in rod cells can slow the progression of the disease and preserve vision in mice. As for all genes, proteins called transcription factors regulate the activity of rod cell genes. Nakamura et al. now report the discovery of a small drug-like molecule, that they name Photoregulin3, which alters the activity of a transcription factor that regulates rod genes. In follow-up experiments, mice with a mutation that replicates many of the features of retinitis pigmentosa were given Photoregulin3 to see if it could slow the progression of the disease. Indeed, Photoregulin3 could stop many of the rod cells from degenerating in the treated mice. At the end of the experiment, the mice treated with this small molecule had about twice as many rods as the control mice. The treated mice also responded better to flashes of light. Nakamura et al. hope that the findings will one day benefit patients with retinitis pigmentosa. But first more research needs to be done before testing Photoregulin3 in humans. For example, the drug-like molecule needs to be made more potent, and if possible adapted to work when given orally, meaning patients could take it as a pill.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Andy A Shimchuk
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Shibing Tang
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, University of California, San Francisco, San Francisco, United States
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Kole DeGolier
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| | - Sheng Ding
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, University of California, San Francisco, San Francisco, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, United States
| |
Collapse
|
35
|
Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity. Proc Natl Acad Sci U S A 2017; 114:E8264-E8273. [PMID: 28900001 DOI: 10.1073/pnas.1707021114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.
Collapse
|
36
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|
37
|
Nakamura PA, Tang S, Shimchuk AA, Ding S, Reh TA. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2017; 57:6407-6415. [PMID: 27893103 PMCID: PMC5134355 DOI: 10.1167/iovs.16-20177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in rod photoreceptor genes can cause retinitis pigmentosa (RP). Rod gene expression is regulated by the nuclear hormone receptor, Nr2e3. Genetic deletion of Nr2e3 reprograms rods into cells that resemble cone photoreceptors, and might therefore prevent their death from some forms of RP. There are no identified ligands for Nr2e3; however, reverse agonists might mimic the genetic rescue effect and may be therapeutically useful for the treatment of RP. Methods We screened for small molecule modulators of Nr2e3 using primary retinal cell cultures and characterized the most potent, which we have named photoregulin1 (PR1), in vitro and in vivo. We also tested the ability of PR1 to slow the progression of photoreceptor degeneration in two common mouse models of autosomal dominant RP, the RhoP23H and the Pde6brd1 mutations. Results In developing retina, PR1 causes a decrease in rod gene expression and an increase in S opsin+ cones. Photoregulin1 continues to inhibit rod gene expression in adult mice. When applied to two mouse models of RP, PR1 slows the degeneration of photoreceptors. Conclusions Chemical compounds identified as modulators of Nr2e3 activity may be useful for the treatment of RP through their effects on expression of disease-causing mutant genes.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Shibing Tang
- University of California-San Francisco, UCSF School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco California, United States
| | - Andy A Shimchuk
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Sheng Ding
- University of California-San Francisco, UCSF School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco California, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington, United States
| |
Collapse
|
38
|
Abstract
Photoreceptors are highly specialized primary sensory neurons that sense light and initiate vision. This critical role is well demonstrated by the fact that visual impairment accompanies photoreceptor loss or dysfunction in many human diseases. With the remarkable advances in stem cell research, one therapeutic approach is to use stem cells to generate photoreceptors and then engraft them into diseased eyes. Knowledge of the molecular mechanisms that control photoreceptor genesis during normal development can greatly aid in the production of photoreceptor cells for this approach. This article will discuss advances in our understanding of the molecular mechanisms that regulate photoreceptor fate determination during development. Recent lineage studies have shown that there are distinct retinal progenitor cells (RPCs) that produce specific combinations of daughter cell types, including photoreceptors and other types of retinal cells. Gene regulatory networks, in which transcription factors interact via cis-regulatory DNA elements, have been discovered that operate within distinct RPCs, and/or newly postmitotic cells, to direct the choice of photoreceptor fate.
Collapse
Affiliation(s)
- Sui Wang
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| | - Constance L Cepko
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| |
Collapse
|
39
|
Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr Patterns 2017; 23-24:32-44. [PMID: 28288836 DOI: 10.1016/j.gep.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
Rod and cone photoreceptors are photosensitive cells in the retina that convert light to electrical signals that are transmitted to visual processing centres in the brain. During development, cones and rods are generated from a common pool of multipotent retinal progenitor cells (RPCs) that also give rise to other retinal cell types. Cones and rods differentiate in two distinct waves, peaking in mid-embryogenesis and the early postnatal period, respectively. As RPCs transition from making cones to generating rods, there are changes in the expression profiles of genes involved in photoreceptor cell fate specification and differentiation. To better understand the temporal transition from cone to rod genesis, we assessed the timing of onset and offset of expression of a panel of 11 transcription factors and 7 non-transcription factors known to function in photoreceptor development, examining their expression between embryonic day (E) 12.5 and postnatal day (P) 60. Transcription factor expression in the photoreceptor layer was observed as early as E12.5, beginning with Crx, Otx2, Rorb, Neurod1 and Prdm1 expression, followed at E15.5 with the expression of Thrb, Neurog1, Sall3 and Rxrg expression, and at P0 by Nrl and Nr2e3 expression. Of the non-transcription factors, peanut agglutinin lectin staining and cone arrestin protein were observed as early as E15.5 in the developing outer nuclear layer, while transcripts for the cone opsins Opn1mw and Opn1sw and Recoverin protein were detected in photoreceptors by P0. In contrast, Opn1mw and Opn1sw protein were not observed in cones until P7, when rod-specific Gnat1 transcripts and rhodopsin protein were also detected. We have thus identified four transitory stages during murine retina photoreceptor differentiation marked by the period of onset of expression of new photoreceptor lineage genes. By characterizing these stages, we have clarified the dynamic nature of gene expression during the period when photoreceptor identities are progressively acquired during development.
Collapse
|
40
|
Wen Z, Pan T, Yang S, Liu J, Tao H, Zhao Y, Xu D, Shao W, Wu J, Liu X, Wang Y, Mao J, Zhu Y. Up-regulated NRIP2 in colorectal cancer initiating cells modulates the Wnt pathway by targeting RORβ. Mol Cancer 2017; 16:20. [PMID: 28137278 PMCID: PMC5282884 DOI: 10.1186/s12943-017-0590-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/17/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor β (RORβ) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORβ and investigated the effect of RORβ on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORβ, and HBP1. RESULTS NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORβ was a key target through which NRIP2 regulated Wnt pathway activity. RORβ was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORβ to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORβ, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China.,Present address: Department of Gastroenterology, Sir Run Run Shaw Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Tianhui Pan
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Saisai Yang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Haiying Tao
- People's Hospital of Huangyan district, Taizhou, Zhejiang, 318020, China
| | - Yiming Zhao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Dingting Xu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Wei Shao
- People's Hospital of Putuo district, Zhoushan, Zhejiang, 316100, China
| | - Jia Wu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA, 62232, USA
| | - Yongjiang Wang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China
| | - Jianshan Mao
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88#, Hangzhou, Zhejiang, 310009, China. .,Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
41
|
Homma K, Usui S, Kaneda M. Knock-in strategy at 3′-end ofCrxgene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation. Genes Cells 2017; 22:250-264. [DOI: 10.1111/gtc.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Kohei Homma
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| | - Sumiko Usui
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| | - Makoto Kaneda
- Department of Physiology; Nippon Medical School; 1-25-16 Nezu Bunkyo-ku Tokyo 113-0031 Japan
| |
Collapse
|
42
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
43
|
Liu H, Aramaki M, Fu Y, Forrest D. Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation. Curr Top Dev Biol 2016; 125:227-255. [PMID: 28527573 DOI: 10.1016/bs.ctdb.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Michihiko Aramaki
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
44
|
Yang MG, West AE. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:457-470. [PMID: 28018138 PMCID: PMC5168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo, and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.
Collapse
Affiliation(s)
| | - Anne E. West
- Anne West, Department of Neurobiology, DUMC Box 3209, 311 Research Drive, Bryan Research 301D, Durham, NC 27710, Phone: 919-681-1909, Fax: 919-668-4431,
| |
Collapse
|
45
|
Tideman JWL, Fan Q, Polling JR, Guo X, Yazar S, Khawaja A, Höhn R, Lu Y, Jaddoe VWV, Yamashiro K, Yoshikawa M, Gerhold-Ay A, Nickels S, Zeller T, He M, Boutin T, Bencic G, Vitart V, Mackey DA, Foster PJ, MacGregor S, Williams C, Saw SM, Guggenheim JA, Klaver CCW. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genet Epidemiol 2016; 40:756-766. [PMID: 27611182 DOI: 10.1002/gepi.21999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 01/10/2023]
Abstract
Previous studies have identified many genetic loci for refractive error and myopia. We aimed to investigate the effect of these loci on ocular biometry as a function of age in children, adolescents, and adults. The study population consisted of three age groups identified from the international CREAM consortium: 5,490 individuals aged <10 years; 5,000 aged 10-25 years; and 16,274 aged >25 years. All participants had undergone standard ophthalmic examination including measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 39 currently known genetic loci for refractive error identified from genome-wide association studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for association between SNP genotype or GRS versus AL/CR was compared across the three age groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. In the age group <10 years, three loci (GJD2, CHRNG, ZIC2) were associated with AL/CR. In the age group 10-25 years, four loci (BMP2, KCNQ5, A2BP1, CACNA1D) were associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 0.0016 per risk allele (P = 2 × 10-8 ) in <10 years, 0.0033 (P = 5 × 10-15 ) in 10- to 25-year-olds, and 0.0048 (P = 1 × 10-72 ) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect that increased with age. Our results provide insights on the age span during which myopia genes exert their effect. These insights form the basis for understanding the mechanisms underlying high and pathological myopia.
Collapse
Affiliation(s)
- J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Qiao Fan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jan Roelof Polling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthoptics, School of Applied Science Utrecht, Rotterdam, The Netherlands
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics & Computational Science, Sun Yat-Sen University, Guangzhou, GD, China
- SYSU-CMU Shunde International Joint Research Institute, Guangzhou, GD, China
- Southern China Research Center of Statistical Science, Sun Yat-Sen University, Guangzhou, GD, China
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony Khawaja
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - René Höhn
- Department of Ophthalmology, University Medical Center, Mainz, Germany
- Department of Ophthalmology, Inselspital, Bern, Switzerland
| | - Yi Lu
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemitsu Yoshikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aslihan Gerhold-Ay
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Stefan Nickels
- Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Mingguang He
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Thibaud Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Seang Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- National University of Singapore Saw Swee Hock School of Public Health, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
47
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Sawant O, Horton AM, Shukla M, Rayborn ME, Peachey NS, Hollyfield JG, Rao S. Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina. Invest Ophthalmol Vis Sci 2016; 56:8248-57. [PMID: 26720479 DOI: 10.1167/iovs.15-17743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Ambient light is both a stimulus for visual function and a regulator of photoreceptor physiology. However, it is not known if light can regulate any aspect of photoreceptor development. The purpose of this study was to investigate whether ambient light is required for the development of mouse rod photoreceptors. METHODS Newborn mouse pups (C57BL/6) were reared in either cyclic light (LD) or constant dark (DD). Pups were collected at postnatal day (P)5, P10, P17, or P24. We performed retinal morphometric and cell death analysis at P5, P10, and P17. Rhodopsin expression was assessed using immunofluorescence, Western blot, and quantitative RT-PCR analysis. Electroretinograms were performed at P17 and P24. Radioimmunoassay and ELISA were used to follow changes in thyroid hormone levels in the serum and vitreous. RESULTS In the DD pups, the outer nuclear layer was significantly thinner at P10 and there were higher numbers of apoptotic cells at P5 compared to the LD pups. Rhodopsin expression was lower at P10 and P17 in DD pups. Electroretinogram a-waves were reduced in amplitude at P17 in the DD pups. The DD animals had lower levels of circulating thyroid hormones at P10. Light-mediated changes in thyroid hormones occur as early as P5, as we detected lower levels of total triiodothyronine in the vitreous from the DD animals. Drug-induced developmental hypothyroidism resulted in lower rhodopsin expression at P10. CONCLUSIONS Our data demonstrate that light exposure during postnatal development is required for rod photoreceptor development and that this effect could be mediated by thyroid hormone signaling.
Collapse
Affiliation(s)
- Onkar Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Amanda M Horton
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Meenal Shukla
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Mary E Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States 2Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States 3Louis Sto
| | - Joe G Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States 2Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States 2Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
49
|
Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells. PLoS One 2016; 11:e0150758. [PMID: 26985665 PMCID: PMC4795653 DOI: 10.1371/journal.pone.0150758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.
Collapse
|
50
|
Barabino A, Plamondon V, Abdouh M, Chatoo W, Flamier A, Hanna R, Zhou S, Motoyama N, Hébert M, Lavoie J, Bernier G. Loss of Bmi1 causes anomalies in retinal development and degeneration of cone photoreceptors. Development 2016; 143:1571-84. [PMID: 26965367 DOI: 10.1242/dev.125351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Abstract
Retinal development occurs through the sequential but overlapping generation of six types of neuronal cells and one glial cell type. Of these, rod and cone photoreceptors represent the functional unit of light detection and phototransduction and are frequently affected in retinal degenerative diseases. During mouse development, the Polycomb group protein Bmi1 is expressed in immature retinal progenitors and differentiated retinal neurons, including cones. We show here that Bmi1 is required to prevent post natal degeneration of cone photoreceptors and bipolar neurons and that inactivation of Chk2 or p53 could improve but not overcome cone degeneration in Bmi1(-/-) mice. The retinal phenotype of Bmi1(-/-) mice was also characterized by loss of heterochromatin, activation of tandem repeats, oxidative stress and Rip3-associated necroptosis. In the human retina, BMI1 was preferentially expressed in cones at heterochromatic foci. BMI1 inactivation in human embryonic stem cells was compatible with retinal induction but impaired cone terminal differentiation. Despite this developmental arrest, BMI1-deficient cones recapitulated several anomalies observed in Bmi1(-/-) photoreceptors, such as loss of heterochromatin, activation of tandem repeats and induction of p53, revealing partly conserved biological functions between mouse and man.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Vicky Plamondon
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Mohamed Abdouh
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Wassim Chatoo
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Shufeng Zhou
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Noboru Motoyama
- Department of Cognitive Brain Science, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | - Marc Hébert
- Department of Ophthalmology, Otorhinolaryngology and Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Laval, Canada G1V 0A6
| | - Joëlle Lavoie
- Department of Ophthalmology, Otorhinolaryngology and Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Laval, Canada G1V 0A6
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4 Department of Neurosciences, Université de Montréal, Montréal, Canada H3T 1J4 Department of Ophthalmology, Université de Montréal, Montréal, Canada H3T 1J4
| |
Collapse
|