1
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zheng R, He Y, Yang L, Chen Y, Wang R, Xie S. Nischarin inhibits the epithelial-mesenchymal transition process and angiogenesis in breast cancer cells by inactivating FAK/ERK signaling pathway via EGF like repeats and discoidin domains 3. Mol Biol Rep 2024; 51:821. [PMID: 39023636 DOI: 10.1007/s11033-024-09776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Ruzhen Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Yibo He
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China
| | - Lingrong Yang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Yidan Chen
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Rui Wang
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China
| | - Shangnao Xie
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China.
| |
Collapse
|
3
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Echavidre W, Durivault J, Gotorbe C, Blanchard T, Pagnuzzi M, Vial V, Raes F, Broisat A, Villeneuve R, Amblard R, Garnier N, Ortholan C, Faraggi M, Serrano B, Picco V, Montemagno C. Integrin-αvβ3 is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. CANCER RESEARCH COMMUNICATIONS 2023; 3:2483-2496. [PMID: 38009896 PMCID: PMC10702273 DOI: 10.1158/2767-9764.crc-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Medulloblastoma is one of the most prevalent solid tumors found in children, occurring in the brain's posterior fossa. The standard treatment protocol involves maximal resection surgery followed by craniospinal irradiation and chemotherapy. Despite a long-term survival rate of 70%, wide disparities among patients have been observed. The identification of pertinent targets for both initial and recurrent medulloblastoma cases is imperative. Both primary and recurrent medulloblastoma are marked by their aggressive infiltration into surrounding brain tissue, robust angiogenesis, and resistance to radiotherapy. While the significant role of integrin-αvβ3 in driving these characteristics has been extensively documented in glioblastoma, its impact in the context of medulloblastoma remains largely unexplored. Integrin-αvβ3 was found to be expressed in a subset of patients with medulloblastoma. We investigated the role of integrin-αvβ3 using medulloblastoma-derived cell lines with β3-subunit depletion or overexpression both in vitro and in vivo settings. By generating radioresistant medulloblastoma cell lines, we uncovered an increased integrin-αvβ3 expression, which correlated with increased susceptibility to pharmacologic integrin-αvβ3 inhibition with cilengitide, a competitive ligand mimetic. Finally, we conducted single-photon emission computed tomography (SPECT)/MRI studies on orthotopic models using a radiolabeled integrin-αvβ3 ligand (99mTc-RAFT-RGD). This innovative approach presents the potential for a novel predictive imaging technique in the realm of medulloblastoma. Altogether, our findings lay the foundation for employing SPECT/MRI to identify a specific subset of patients with medulloblastoma eligible for integrin-αvβ3-directed therapies. This breakthrough offers a pathway toward more targeted and effective interventions in the treatment of medulloblastoma. SIGNIFICANCE This study demonstrates integrin-αvβ3's fundamental role in medulloblastoma tumorigenicity and radioresistance and the effect of its expression on cilengitide functional activity.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Célia Gotorbe
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Thays Blanchard
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Marina Pagnuzzi
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Florian Raes
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Alexis Broisat
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Rémy Villeneuve
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Régis Amblard
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Nicolas Garnier
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Cécile Ortholan
- Radiotherapy Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | | |
Collapse
|
5
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
6
|
Terceiro LEL, Ikeogu NM, Lima MF, Edechi CA, Nickel BE, Fischer G, Leygue E, McManus KJ, Myal Y. Navigating the Blood-Brain Barrier: Challenges and Therapeutic Strategies in Breast Cancer Brain Metastases. Int J Mol Sci 2023; 24:12034. [PMID: 37569410 PMCID: PMC10418424 DOI: 10.3390/ijms241512034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Matheus F. Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Chidalu A. Edechi
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Barbara E. Nickel
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Gabor Fischer
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Yvonne Myal
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
7
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Palange AL, Mascolo DD, Ferreira M, Gawne PJ, Spanò R, Felici A, Bono L, Moore TL, Salerno M, Armirotti A, Decuzzi P. Boosting the Potential of Chemotherapy in Advanced Breast Cancer Lung Metastasis via Micro-Combinatorial Hydrogel Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205223. [PMID: 36683230 PMCID: PMC10074128 DOI: 10.1002/advs.202205223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer cell colonization of the lungs is associated with a dismal prognosis as the distributed nature of the disease and poor permeability of the metastatic foci challenge the therapeutic efficacy of small molecules, antibodies, and nanomedicines. Taking advantage of the unique physiology of the pulmonary circulation, here, micro-combinatorial hydrogel particles (µCGP) are realized via soft lithographic techniques to enhance the specific delivery of a cocktail of cytotoxic nanoparticles to metastatic foci. By cross-linking short poly(ethylene glycol) (PEG) chains with erodible linkers within a shape-defining template, a deformable and biodegradable polymeric skeleton is realized and loaded with a variety of therapeutic and imaging agents, including docetaxel-nanoparticles. In a model of advanced breast cancer lung metastasis, µCGP amplified the colocalization of docetaxel-nanoparticles with pulmonary metastatic foci, prolonged the retention of chemotoxic molecules at the diseased site, suppressed lesion growth, and boosted survival beyond 20 weeks post nodule engraftment. The flexible design and modular architecture of µCGP would allow the efficient deployment of complex combination therapies in other vascular districts too, possibly addressing metastatic diseases of different origins.
Collapse
Affiliation(s)
- Anna Lisa Palange
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
- Present address:
Harvard Medical School, Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Peter J. Gawne
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Alessia Felici
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
- Present address:
Division of Oncology, Department of Medicine and Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | - Luca Bono
- Analytical Chemistry FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Thomas Lee Moore
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Marco Salerno
- Materials Characterization FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Andrea Armirotti
- Analytical Chemistry FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| |
Collapse
|
10
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
11
|
Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041216. [PMID: 36831558 PMCID: PMC9954089 DOI: 10.3390/cancers15041216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvβ3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.
Collapse
|
12
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
13
|
Wang X, Tang X, Gu J, Sun Z, Yang S, Mu Y, Guan M, Chen K, Liu W, Ruan H, Xu J. CEACAM6 serves as a biomarker for leptomeningeal metastasis in lung adenocarcinoma. Cancer Med 2023; 12:4521-4529. [PMID: 36082960 PMCID: PMC9972070 DOI: 10.1002/cam4.5221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIMS Diagnosis of leptomeningeal metastasis (LM) is challenging. In our previous study, CEACAM6 mRNA was found to be highly expressed in the circulating tumor cells of cerebrospinal fluid (CSF) from patients with lung adenocarcinoma with LM (LUAD-LM). The aim of this study was to identify whether CEACAM6 could be used as a biomarker for LUAD-LM. MATERIALS AND METHODS The level of CEACAM6 was determined by enzyme-linked immunosorbent assay (ELISA) in CSF from 40 LUAD-LM and 44 normal controls, and additional serum samples from 138 LUAD patients, including 12 LUAD-LM patients, and 30 healthy controls. Carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA 21-1) and neuron-specific enolase (NSE) levels in the CSF and sera were detected by chemiluminescent immunoassay. Receiver operating characteristic curve was plotted to evaluate the diagnostic performance for LUAD-LM. RESULTS CSF CEACAM6 level was higher in LUAD-LM than that in normal controls. In serum, LUAD patients had a higher level of CAECAM6 than healthy controls, and LM patients had the highest level among them. Serum CEACAM6 had a higher AUC than CEA in differentiating LM from non-LM in LUAD patients (0.95 vs. 0.64, p < 0.001). CONCLUSION CEACAM6 may serve as a potential biomarker in diagnosing LUAD-LM.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahui Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziwei Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengrui Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ming Guan
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- School of Internet of Things Engineering, Wuxi University, Wuxi, China
| | - Haoyu Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
14
|
Liu Y, Zhu W, Zhu H, Zhang J, Zhang J, Shen N, Jiang J, Xue Y, Jiang R. Characterization of orthotopic xenograft tumor of glioma stem cells (GSCs) on MRI, PET and immunohistochemical staining. Front Oncol 2022; 12:1085015. [PMID: 36591483 PMCID: PMC9797975 DOI: 10.3389/fonc.2022.1085015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The orthotopic xenograft tumors of human glioma stem cells (GSCs) is a recent glioma model with genotype and phenotypic characteristics close to human gliomas. This study aimed to explore the imaging and immunohistochemical characteristics of GSCs gliomas. Methods The rats underwent MRI and 18F-FDG PET scan in 6th-8th weeks after GSCs implantation. The MRI morphologic, DWI and PET features of the tumor lesions were assessed. In addition, the immunohistochemical features of the tumor tissues were further analyzed. Results Twenty-five tumor lesions were identified in 20 tumor-bearing rats. On structural MRI, the average tumor size was 30.04±17.31mm2, and the intensity was inhomogeneous in 76.00% (19/25) of the lesions. The proportion of the lesions mainly presented as solid, cystic and patchy tumor were 60.00% (15/25), 16.00% (4/25) and 24.00% (6/25), respectively. The boundary was unclear in 88.00% (22/25), and peritumoral mass effect was observed in 92.00% (23/25) of the lesions. On DWI, 80.00% (20/25) of the lesions showed increased intensity. Of the 14 lesions in the 11 rats underwent PET scan, 57.14% (8/14) showed increased FDG uptake. On immunohistochemical staining, the expression of Ki-67 was strong in all the lesions (51.67%±11.82%). Positive EGFR and VEGF expression were observed in 64.71% (11/17) and 52.94% (9/17) of the rats, whereas MGMT and HIF-1α showed negative expression in all the lesions. Discussion GSC gliomas showed significant heterogeneity and invasiveness on imaging, and exhibited strong expression of Ki-67, partial expression of EGFR and VEGF, and weak expression of MGMT and HIF-1α on immunohistochemical staining.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,*Correspondence: Rifeng Jiang,
| |
Collapse
|
15
|
Joshkon A, Tabouret E, Traboulsi W, Bachelier R, Simoncini S, Roffino S, Jiguet-Jiglaire C, Badran B, Guillet B, Foucault-Bertaud A, Leroyer AS, Dignat-George F, Chinot O, Fayyad-Kazan H, Bardin N, Blot-Chabaud M. Soluble CD146, a biomarker and a target for preventing resistance to anti-angiogenic therapy in glioblastoma. Acta Neuropathol Commun 2022; 10:151. [PMID: 36274147 PMCID: PMC9590138 DOI: 10.1186/s40478-022-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Rationale Glioblastoma multiforme (GBM) is a primary brain tumor with poor prognosis. The U.S. food and drug administration approved the use of the anti-VEGF antibody bevacizumab in recurrent GBM. However, resistance to this treatment is frequent and fails to enhance the overall survival of patients. In this study, we aimed to identify novel mechanism(s) responsible for bevacizumab-resistance in CD146-positive glioblastoma. Methods The study was performed using sera from GBM patients and human GBM cell lines in culture or xenografted in nude mice. Results We found that an increase in sCD146 concentration in sera of GBM patients after the first cycle of bevacizumab treatment was significantly associated with poor progression free survival and shorter overall survival. Accordingly, in vitro treatment of CD146-positive glioblastoma cells with bevacizumab led to a high sCD146 secretion, inducing cell invasion. These effects were mediated through integrin αvβ3 and were blocked by mucizumab, a novel humanized anti-sCD146 antibody. In vivo, the combination of bevacizumab with mucizumab impeded CD146 + glioblastoma growth and reduced tumor cell dissemination to an extent significantly higher than that observed with bevacizumab alone. Conclusion We propose sCD146 to be 1/ an early biomarker to predict and 2/ a potential target to prevent bevacizumab resistance in patients with glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s40478-022-01451-3.
Collapse
|
16
|
Echavidre W, Picco V, Faraggi M, Montemagno C. Integrin-αvβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022; 14:pharmaceutics14051053. [PMID: 35631639 PMCID: PMC9144720 DOI: 10.3390/pharmaceutics14051053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is associated with a dismal prognosis. Standard therapies including maximal surgical resection, radiotherapy, and temozolomide chemotherapy remain poorly efficient. Improving GBM treatment modalities is, therefore, a paramount challenge for researchers and clinicians. GBMs exhibit the hallmark feature of aggressive invasion into the surrounding tissue. Among cell surface receptors involved in this process, members of the integrin family are known to be key actors of GBM invasion. Upregulation of integrins was reported in both tumor and stromal cells, making them a suitable target for innovative therapies targeting integrins in GBM patients, as their impairment disrupts tumor cell proliferation and invasive capacities. Among them, integrin-αvβ3 expression correlates with high-grade GBM. Driven by a plethora of preclinical biological studies, antagonists of αvβ3 rapidly became attractive therapeutic candidates to impair GBM tumorigenesis. In this perspective, the advent of nuclear medicine is currently one of the greatest components of the theranostic concept in both preclinical and clinical research fields. In this review, we provided an overview of αvβ3 expression in GBM to emphasize the therapeutic agents developed. Advanced current and future developments in the theranostic field targeting αvβ3 are finally discussed.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Correspondence: ; Tel.: +377-97-77-44-15
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284, INSERM U1081, Université Cote d’Azur, 06200 Nice, France
| |
Collapse
|
17
|
IDH1 Mutation Induces HIF-1α and Confers Angiogenic Properties in Chondrosarcoma JJ012 Cells. DISEASE MARKERS 2022; 2022:7729968. [PMID: 35198082 PMCID: PMC8860547 DOI: 10.1155/2022/7729968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022]
Abstract
Chondrosarcoma is a group of primary bone cancers that arise from transformed cells of chondrocytic lineage. Tumor recurrence and metastasis are devastating for patients with chondrosarcoma since there are no effective treatment options. IDH mutations occur in over 50% of tumors from patients with conventional or dedifferentiated chondrosarcomas and represent an attractive target for therapy. However, their role in the pathogenesis of chondrosarcoma remains largely unknown. In this study, we sought to determine the association of IDH mutation and HIF-1α in chondrosarcoma. We used the chondrosarcoma JJ012 cell line and its derived CRISPR/Cas9 mutant IDH1 (IDH1mut) knockout (KO) cells. RNA-Seq data analysis revealed downregulation of several HIF-1α target genes upon loss of IDH1mut. This was associated with reduced HIF-1α levels in the IDH1mut KO cells and tumors. Loss of IDH1mut also attenuated the expression of angiogenic markers in tumor tissues and abrogated the angiogenic capacity of JJ012 cells. Moreover, we observed that exogenous expression of HIF-1α significantly promoted anchorage-independent colony-formation by IDH1mut KO cells. These results suggest IDH1 mutation confers angiogenic and tumorigenic properties of JJ012 cells by inducing HIF-1α. Thus, the HIF pathway represents a promising candidate for combinatorial regimens to target IDH1 mutated chondrosarcomas.
Collapse
|
18
|
Cardinal T, Pangal D, Strickland BA, Newton P, Mahmoodifar S, Mason J, Craig D, Simon T, Tew BY, Yu M, Yang W, Chang E, Cabeen RP, Ruzevick J, Toga AW, Neman J, Salhia B, Zada G. Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: a systematic review. Neurooncol Adv 2022; 4:vdab170. [PMID: 35024611 PMCID: PMC8739649 DOI: 10.1093/noajnl/vdab170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background While it has been suspected that different primary cancers have varying predilections for metastasis in certain brain regions, recent advances in neuroimaging and spatial modeling analytics have facilitated further exploration into this field. Methods A systematic electronic database search for studies analyzing the distribution of brain metastases (BMs) from any primary systematic cancer published between January 1990 and July 2020 was conducted using PRISMA guidelines. Results Two authors independently reviewed 1957 abstracts, 46 of which underwent full-text analysis. A third author arbitrated both lists; 13 studies met inclusion/exclusion criteria. All were retrospective single- or multi-institution database reviews analyzing over 8227 BMs from 2599 patients with breast (8 studies), lung (7 studies), melanoma (5 studies), gastrointestinal (4 studies), renal (3 studies), and prostate (1 study) cancers. Breast, lung, and colorectal cancers tended to metastasize to more posterior/caudal topographic and vascular neuroanatomical regions, particularly the cerebellum, with notable differences based on subtype and receptor expression. HER-2-positive breast cancers were less likely to arise in the frontal lobes or subcortical region, while ER-positive and PR-positive breast metastases were less likely to arise in the occipital lobe or cerebellum. BM from lung adenocarcinoma tended to arise in the frontal lobes and squamous cell carcinoma in the cerebellum. Melanoma metastasized more to the frontal and temporal lobes. Conclusion The observed topographical distribution of BM likely develops based on primary cancer type, molecular subtype, and genetic profile. Further studies analyzing this association and relationships to vascular distribution are merited to potentially improve patient treatment and outcomes.
Collapse
Affiliation(s)
- Tyler Cardinal
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Dhiraj Pangal
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ben A Strickland
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Paul Newton
- Department of Aerospace and Mechanical Engineering, Mathematics and The Ellison Institute for Transformative Medicine of USC, Los Angeles, California, USA
| | - Saeedeh Mahmoodifar
- Department of Physics & Astronomy, University of Southern California, Los Angeles, California, USA
| | - Jeremy Mason
- Department of Urology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - David Craig
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Thomas Simon
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Min Yu
- Broad Stem Cell Center, University of Southern California, Los Angeles, California, USA
| | - Wensha Yang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Eric Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Jacob Ruzevick
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Srinivasan ES, Deshpande K, Neman J, Winkler F, Khasraw M. The microenvironment of brain metastases from solid tumors. Neurooncol Adv 2021; 3:v121-v132. [PMID: 34859239 PMCID: PMC8633769 DOI: 10.1093/noajnl/vdab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain metastasis (BrM) is an area of unmet medical need that poses unique therapeutic challenges and heralds a dismal prognosis. The intracranial tumor microenvironment (TME) presents several challenges, including the therapy-resistant blood-brain barrier, a unique immune milieu, distinct intercellular interactions, and specific metabolic conditions, that are responsible for treatment failures and poor clinical outcomes. There is a complex interplay between malignant cells that metastasize to the central nervous system (CNS) and the native TME. Cancer cells take advantage of vascular, neuronal, immune, and anatomical vulnerabilities to proliferate with mechanisms specific to the CNS. In this review, we discuss unique aspects of the TME in the context of brain metastases and pathways through which the TME may hold the key to the discovery of new and effective therapies for patients with BrM.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- Department of Neurological Surgery, Physiology and Neuroscience, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
Colorectal signet ring cell carcinoma with leptomeningeal carcinomatosis: A case report and review of literature. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Tumor Nonimmune-Microenvironment-Related Gene Expression Signature Predicts Brain Metastasis in Lung Adenocarcinoma Patients after Surgery: A Machine Learning Approach Using Gene Expression Profiling. Cancers (Basel) 2021; 13:cancers13174468. [PMID: 34503278 PMCID: PMC8430997 DOI: 10.3390/cancers13174468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary It is important to be able to predict brain metastasis in lung adenocarcinoma patients; however, research in this area is still lacking. Much of the previous work on tumor microenvironments in lung adenocarcinoma with brain metastasis concerns the tumor immune microenvironment. The importance of the tumor nonimmune microenvironment (extracellular matrix (ECM), epithelial–mesenchymal transition (EMT) feature, and angiogenesis) has been overlooked with regard to brain metastasis. We evaluated tumor nonimmune-microenvironment-related gene expression signatures that could predict brain metastasis after the surgical resection of lung adenocarcinoma using a machine learning approach. We identified a tumor nonimmune-microenvironment-related 17-gene expression signature, and this signature showed high brain metastasis predictive power in four machine learning classifiers. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. Our tumor nonimmune-microenvironment-related gene expression signatures are important biological markers that can predict brain metastasis and provide patient-specific treatment options. Abstract Using a machine learning approach with a gene expression profile, we discovered a tumor nonimmune-microenvironment-related gene expression signature, including extracellular matrix (ECM) remodeling, epithelial–mesenchymal transition (EMT), and angiogenesis, that could predict brain metastasis (BM) after the surgical resection of 64 lung adenocarcinomas (LUAD). Gene expression profiling identified a tumor nonimmune-microenvironment-related 17-gene expression signature that significantly correlated with BM. Of the 17 genes, 11 were ECM-remodeling-related genes. The 17-gene expression signature showed high BM predictive power in four machine learning classifiers (areas under the receiver operating characteristic curve = 0.845 for naïve Bayes, 0.849 for support vector machine, 0.858 for random forest, and 0.839 for neural network). Subgroup analysis revealed that the BM predictive power of the 17-gene signature was higher in the early-stage LUAD than in the late-stage LUAD. Pathway enrichment analysis showed that the upregulated differentially expressed genes were mainly enriched in the ECM–receptor interaction pathway. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. The tumor nonimmune-microenvironment-related gene expression signatures found in this study are important biological markers that can predict BM and provide patient-specific treatment options.
Collapse
|
22
|
Heng JW, Yazid MD, Abdul Rahman MR, Sulaiman N. Coatings in Decellularized Vascular Scaffolds for the Establishment of a Functional Endothelium: A Scoping Review of Vascular Graft Refinement. Front Cardiovasc Med 2021; 8:677588. [PMID: 34395554 PMCID: PMC8358320 DOI: 10.3389/fcvm.2021.677588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Developments in tissue engineering techniques have allowed for the creation of biocompatible, non-immunogenic alternative vascular grafts through the decellularization of existing tissues. With an ever-growing number of patients requiring life-saving vascular bypass grafting surgeries, the production of functional small diameter decellularized vascular scaffolds has never been more important. However, current implementations of small diameter decellularized vascular grafts face numerous clinical challenges attributed to premature graft failure as a consequence of common failure mechanisms such as acute thrombogenesis and intimal hyperplasia resulting from insufficient endothelial coverage on the graft lumen. This review summarizes some of the surface modifying coating agents currently used to improve the re-endothelialization efficiency and endothelial cell persistence in decellularized vascular scaffolds that could be applied in producing a better patency small diameter vascular graft. A comprehensive search yielding 192 publications was conducted in the PubMed, Scopus, Web of Science, and Ovid electronic databases. Careful screening and removal of unrelated publications and duplicate entries resulted in a total of 16 publications, which were discussed in this review. Selected publications demonstrate that the utilization of surface coating agents can induce endothelial cell adhesion, migration, and proliferation therefore leads to increased re-endothelialization efficiency. Unfortunately, the large variance in methodologies complicates comparison of coating effects between studies. Thus far, coating decellularized tissue gave encouraging results. These developments in re-endothelialization could be incorporated in the fabrication of functional, off-the-shelf alternative small diameter vascular scaffolds.
Collapse
Affiliation(s)
- Jun Wei Heng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Srinivasan ES, Tan AC, Anders CK, Pendergast AM, Sipkins DA, Ashley DM, Fecci PE, Khasraw M. Salting the Soil: Targeting the Microenvironment of Brain Metastases. Mol Cancer Ther 2021; 20:455-466. [PMID: 33402399 PMCID: PMC8041238 DOI: 10.1158/1535-7163.mct-20-0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Carey K Anders
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | | | - Dorothy A Sipkins
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina.
| |
Collapse
|
24
|
Chen GY, Cheng JCH, Chen YF, Yang JCH, Hsu FM. Circulating Exosomal Integrin β3 Is Associated with Intracranial Failure and Survival in Lung Cancer Patients Receiving Cranial Irradiation for Brain Metastases: A Prospective Observational Study. Cancers (Basel) 2021; 13:380. [PMID: 33498505 PMCID: PMC7864205 DOI: 10.3390/cancers13030380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Brain metastasis (BM) is a major problem in patients with cancer. Exosomes or extracellular vesicles (EV) and integrins contribute to the development of BM, and exosomal integrins have been shown to determine organotropic metastasis. We hypothesized that circulating EV integrins are able to influence the failure patterns and outcomes in patients treated for BM. We prospectively enrolled 75 lung cancer patients with BM who received whole brain radiotherapy (WBRT). We isolated and quantified their circulating EV integrins, and analyzed the association of EV integrins with clinical factors, survival, and intracranial/extracranial failure. Circulating EV integrin levels were independent of age, sex, histology, number of BM, or graded prognostic assessment score. Age, histology, and graded prognostic assessment score correlated with survival. Patients with higher levels of circulating EV integrin β3 had worse overall survival (hazard ratio: 1.15 per 1 ng/mL increase; p = 0.04) following WBRT. Multivariate regression analysis also showed a higher cumulative incidence of intracranial failure (subdistribution hazard ratio: 1.216 per 1 ng/mL increase; p = 0.037). In conclusion, circulating EV integrin β3 levels correlated with survival and intracranial control of patients with lung cancer after WBRT for BM. This supports that EV integrin β3 mediates a brain-tropic metastasis pattern, and may serve as a novel prognostic biomarker for BM.
Collapse
Affiliation(s)
- Guann-Yiing Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan;
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan;
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Division of Medical Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (J.C.-H.C.)
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| |
Collapse
|
25
|
Brenet M, Martínez S, Pérez-Nuñez R, Pérez LA, Contreras P, Díaz J, Avalos AM, Schneider P, Quest AFG, Leyton L. Thy-1 (CD90)-Induced Metastatic Cancer Cell Migration and Invasion Are β3 Integrin-Dependent and Involve a Ca 2+/P2X7 Receptor Signaling Axis. Front Cell Dev Biol 2021; 8:592442. [PMID: 33511115 PMCID: PMC7835543 DOI: 10.3389/fcell.2020.592442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer cell adhesion to the vascular endothelium is an important step in tumor metastasis. Thy-1 (CD90), a cell adhesion molecule expressed in activated endothelial cells, has been implicated in melanoma metastasis by binding to integrins present in cancer cells. However, the signaling pathway(s) triggered by this Thy-1-Integrin interaction in cancer cells remains to be defined. Our previously reported data indicate that Ca2+-dependent hemichannel opening, as well as the P2X7 receptor, are key players in Thy-1-αVβ3 Integrin-induced migration of reactive astrocytes. Thus, we investigated whether this signaling pathway is activated in MDA-MB-231 breast cancer cells and in B16F10 melanoma cells when stimulated with Thy-1. In both cancer cell types, Thy-1 induced a rapid increase in intracellular Ca2+, ATP release, as well as cell migration and invasion. Connexin and Pannexin inhibitors decreased cell migration, implicating a requirement for hemichannel opening in Thy-1-induced cell migration. In addition, cell migration and invasion were precluded when the P2X7 receptor was pharmacologically blocked. Moreover, the ability of breast cancer and melanoma cells to transmigrate through an activated endothelial monolayer was significantly decreased when the β3 Integrin was silenced in these cancer cells. Importantly, melanoma cells with silenced β3 Integrin were unable to metastasize to the lung in a preclinical mouse model. Thus, our results suggest that the Ca2+/hemichannel/ATP/P2X7 receptor-signaling axis triggered by the Thy-1-αVβ3 Integrin interaction is important for cancer cell migration, invasion and transvasation. These findings open up the possibility of therapeutically targeting the Thy-1-Integrin signaling pathway to prevent metastasis.
Collapse
Affiliation(s)
- Marianne Brenet
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Martínez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ramón Pérez-Nuñez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Andrew F G Quest
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies of Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
27
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Gasca J, Flores ML, Jiménez-Guerrero R, Sáez ME, Barragán I, Ruíz-Borrego M, Tortolero M, Romero F, Sáez C, Japón MA. EDIL3 promotes epithelial-mesenchymal transition and paclitaxel resistance through its interaction with integrin α Vβ 3 in cancer cells. Cell Death Discov 2020; 6:86. [PMID: 33014430 PMCID: PMC7494865 DOI: 10.1038/s41420-020-00322-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 01/23/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has recently been associated with tumor progression, metastasis, and chemotherapy resistance in several tumor types. We performed a differential gene expression analysis comparing paclitaxel-resistant vs. paclitaxel-sensitive breast cancer cells that showed the upregulation of EDIL3 (EGF Like Repeats and Discoidin I Like Domains Protein 3). This gene codifies an extracellular matrix protein that has been identified as a novel regulator of EMT, so we studied its role in tumor progression and paclitaxel response. Our results demonstrated that EDIL3 expression levels were increased in paclitaxel-resistant breast and prostate cancer cells, and in subsets of high-grade breast and prostate tumors. Moreover, we observed that EDIL3 modulated the expression of EMT markers and this was impaired by cilengitide, which blocks the EDIL3-integrin αVβ3 interaction. EDIL3 knockdown reverted EMT and sensitized cells to paclitaxel. In contrast, EDIL3 overexpression or the culture of cells in the presence of EDIL3-enriched medium induced EMT and paclitaxel resistance. Adding cilengitide resensitized these cells to paclitaxel treatment. In summary, EDIL3 may contribute to EMT and paclitaxel resistance through autocrine or paracrine signaling in cancer cells. Blockade of EDIL3-integrin αVβ3 interaction by cilengitide restores sensitivity to paclitaxel and reverts EMT in paclitaxel-resistant cancer cells. Combinations of cilengitide and taxanes could be beneficial in the treatment of subsets of breast and prostate cancers.
Collapse
Affiliation(s)
- J. Gasca
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - M. L. Flores
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - R. Jiménez-Guerrero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - M. E. Sáez
- Centro Andaluz de Estudios Bioinformáticos (CAEBi), 41013 Seville, Spain
| | - I. Barragán
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Section of Immuno-Oncology, Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - M. Ruíz-Borrego
- Department of Medical Oncology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - M. Tortolero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - F. Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - C. Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - M. A. Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
30
|
Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of Cancer Stem Cells in Triple-Negative Breast Cancer and Brain Metastasis: Challenges and Solutions. Cancers (Basel) 2020; 12:cancers12082122. [PMID: 32751846 PMCID: PMC7463650 DOI: 10.3390/cancers12082122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
A higher propensity of developing brain metastasis exists in triple-negative breast cancer (TNBC). Upon comparing the metastatic patterns of all breast cancer subtypes, patients with TNBC exhibited increased risks of the brain being the initial metastatic site, early brain metastasis development, and shortest brain metastasis-related survival. Notably, the development of brain metastasis differs from that at other sites owing to the brain-unique microvasculature (blood brain barrier (BBB)) and intracerebral microenvironment. Studies of brain metastases from TNBC have revealed the poorest treatment response, mostly because of the relatively backward strategies to target vast disease heterogeneity and poor brain efficacy. Moreover, TNBC is highly associated with the existence of cancer stem cells (CSCs), which contribute to circulating cancer cell survival before BBB extravasation, evasion from immune surveillance, and plasticity in adaptation to the brain-specific microenvironment. We summarized recent literature regarding molecules and pathways and reviewed the effects of CSC biology during the formation of brain metastasis in TNBC. Along with the concept of individualized cancer therapy, certain strategies, namely the patient-derived xenograft model to overcome the lack of treatment-relevant TNBC classification and techniques in BBB disruption to enhance brain efficacy has been proposed in the hope of achieving treatment success.
Collapse
Affiliation(s)
- Kha-Liang Lee
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Gao Chen
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Che Kuo
- Taipei Medical University (TMU) Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Kai Su
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
31
|
Raguraman R, Parameswaran S, Kanwar JR, Vasudevan M, Chitipothu S, Kanwar RK, Krishnakumar S. Gene expression profiling of tumor stroma interactions in retinoblastoma. Exp Eye Res 2020; 197:108067. [PMID: 32585195 DOI: 10.1016/j.exer.2020.108067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
We aimed to identify the critical molecular pathways altered upon tumor stroma interactions in retinoblastoma (RB). In vitro 2 D cocultures of RB tumor cells (Weri-Rb-1 and NCC-RbC-51) with primary bone marrow stromal cells (BMSC) was established. Global gene expression patterns in coculture samples were assessed using Affymetrix Prime view human gene chip microarray and followed with bioinformatics analyses. Key upregulated genes from Weri-Rb-1 + BMSC and NCC-RbC-51 + BMSC coculture were validated using qRT-PCR to ascertain their role in RB progression. Whole genome microarray experiments identified significant (P ≤ 0.05, 1.1 log 2 FC) transcriptome level changes induced upon coculture of RB cells with BMSC. A total of 1155 genes were downregulated and 1083 upregulated in Weri-Rb-1 + BMSC coculture. Similarly, 1865 genes showed downregulation and 1644 genes were upregulation in NCC-RbC-51 + BMSC coculture. The upregulated genes were significantly associated with pathways of focal adhesion, PI3K-Akt signalling, ECM-receptor interaction, JAK-STAT, TGF-β signalling thus contributing to RB progression. Validation of key genes by qRT-PCR revealed significant overexpression of IL8, IL6, MYC and SMAD3 in the case of Weri-Rb-1 + BMSC coculture and IL6 in the case of NCC-RbC-51 + BMSC coculture. The microarray expression study on in vitro RB coculture models revealed the pathways that could be involved in the progression of RB. The gene signature obtained in a stimulated model when a growing tumor interacts with its microenvironment may provide new horizons for potential targeted therapy in RB.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | | | - Srujana Chitipothu
- Central Research Instrumentation Facility, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Subramanian Krishnakumar
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia.
| |
Collapse
|
32
|
Assessing the oncolytic potential of rotavirus on mouse myeloma cell line Sp2/0-Ag14. ACTA ACUST UNITED AC 2020; 40:362-381. [PMID: 32673463 PMCID: PMC7505517 DOI: 10.7705/biomedica.4916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer is the second leading cause of death in the United States, surpassed only by cardiovascular disease. However, cancer has now overtaken cardiovascular disease as the main cause of death in 12 countries in Western Europe. The burden of cancer is posing a major challenge to health care systems worldwide and demanding improvements in methods for cancer prevention, diagnosis, and treatment. Alternative and complementary strategies for orthodox surgery, radiotherapy, and chemotherapy need to be developed. OBJECTIVE To determine the oncolytic potential of tumor cell-adapted rotavirus in terms of their ability to infect and lysate murine myeloma Sp2/0-Ag14 cells. MATERIALS AND METHODS We inoculated rotaviruses Wt1-5, WWM, TRUYO, ECwt-O, and WTEW in Sp2/0-Ag14 cells and we examined their infectious effects by immunocytochemistry, immunofluorescence, flow cytometry, and DNA fragmentation assays. RESULTS Rotavirus infection involved the participation of some heat shock proteins, of protein disulfide isomerase (PDI), and integrin β3. We detected the accumulation of viral antigens within the virus-inoculated cells and in the culture medium in all the rotavirus isolates examined. The rotavirus-induced cell death mechanism in Sp2/0-Ag14 cells involved changes in cell membrane permeability, chromatin condensation, and DNA fragmentation, which were compatible with cytotoxicity and apoptosis. CONCLUSIONS The ability of the rotavirus isolates Wt1-5, WWM, TRUYO, ECwt-O, and WTEW to infect and cause cell death of Sp2/0-Ag14 cells through mechanisms that are compatible with virus-induced apoptosis makes them potential candidates as oncolytic agents.
Collapse
|
33
|
Andreou T, Rippaus N, Wronski K, Williams J, Taggart D, Cherqui S, Sunderland A, Kartika YD, Egnuni T, Brownlie RJ, Mathew RK, Holmen SL, Fife C, Droop A, Lorger M. Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell-Specific Gene Promoters. J Natl Cancer Inst 2020; 112:617-627. [PMID: 31501884 PMCID: PMC7301153 DOI: 10.1093/jnci/djz181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Brain metastases (BrM) develop in 20-40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain because of the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems. METHODS Green fluorescent protein (GFP)-transduced murine and nontransduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene-expression analysis and subsequent validation of a series of promoter-green fluorescent protein-reporter constructs in mice (n = 5). One of the promoters was used to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL vs control group). RESULTS HSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (mean [SD] = 37.6% [7.2%] of all infiltrating cells for murine HSC progeny; 27.9% mean [SD] = 27.9% [4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3-53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (mean [SD] = 8.8% [7.8%]). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] = 19.0 [3.4] vs mean [SD] = 15.0 [2.0] days for TRAIL vs control group; two-sided P = .006), demonstrating therapeutic and translational potential of our approach. CONCLUSIONS Our study establishes HSC gene therapy using a myeloid cell-specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions.
Collapse
Affiliation(s)
| | - Nora Rippaus
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | - Teklu Egnuni
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, UK
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Alastair Droop
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | | |
Collapse
|
34
|
Metastases to the central nervous system: Molecular basis and clinical considerations. J Neurol Sci 2020; 412:116755. [PMID: 32120132 DOI: 10.1016/j.jns.2020.116755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastatic tumors are the most common malignancies of the central nervous system (CNS) in adults. CNS metastases are associated with unfavorable prognosis, high morbidity and mortality. Lung cancer is the most common source of brain metastases, followed by breast cancer and melanoma. Rising incidence is primarily due to improvements in systemic control of primary malignancies, prolonged survival and advances in cancer detection. PURPOSE To provide an overview of the metastatic cascade and the role of angiogenesis, neuroinflammation, metabolic adaptations, and clinical details about brain metastases from different primary tumors. METHODS A review of the literature on brain metastases was conducted, focusing on the pathophysiology and clinical aspects of the disease. PubMed was used to search for relevant articles published from January 1975 through December 2019 using the keywords brain metabolism, brain metastasis, metastatic cascade, molecular mechanisms, incidence, risk factors, and prognosis. 146 articles met the criteria and were included in this review. DISCUSSION Some primary tumors have a higher tendency to metastasize to the CNS. Establishing a suitable metastatic microenvironment is important in maintaining tumor cell growth and survival. Magnetic resonance imaging (MRI) is a widely used tool for diagnosis and treatment monitoring. Available treatments include surgery, radiotherapy, stereotactic radiosurgery, chemotherapy, immunotherapy, and systemic targeted therapies. CONCLUSIONS Prevention of metastases to the CNS remains a difficult challenge. Advances in screening of high-risk patients and future development of novel treatments may improve patient outcomes.
Collapse
|
35
|
Optimization of cRGDfK ligand concentration on polymeric nanoparticles to maximize cancer targeting. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Carvalho R, Paredes J, Ribeiro AS. Impact of breast cancer cells´ secretome on the brain metastatic niche remodeling. Semin Cancer Biol 2019; 60:294-301. [PMID: 31711993 DOI: 10.1016/j.semcancer.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Brain metastases occur in approximately 10-20% of patients with metastatic breast cancer showing a very poor overall survival. Curiously, different molecular subtypes (that show specific gene expression signatures and differential prognostic significance) are associated with different risks for brain metastases development, suggesting that cancer cells harbor specific molecular programs that award them intrinsic advantages to survive in this specific foreign tissue. Emerging data has been revealing that biophysical and/or mechanical properties of the brain extracellular matrix (ECM), along with those of the brain resident cells, play a crucial role in creating the best conditions for survival, colonization and outgrowth of breast cancer cells in this distinct microenvironment. Although several reports show that cancer cells modulate metastatic niches way before they reach the target organ, few data exist for the brain metastatic niche. Indeed, little is known concerning how factors secreted by cancer cells activate brain resident cells and/or modify brain ECM biomechanical properties and how these modifications impact cells´ ability to metastasize the brain. The brain is a particular organ, protected by the blood brain barrier (BBB), and containing exclusive functional units and very special cell types. Additionally, it is the organ with the most singular ECM and biomechanical properties. Thus, this cancer cell-brain metastatic niche interaction must present distinct properties. Consequently, the search for putative molecular markers that modulate the brain pre-metastatic niche, thus promoting the successful metastatic homing of cancer cells, is urgently needed. In this review, we will discuss key aspects regarding breast cancer cells and the brain pre-metastatic niche paracrine communication that is crucial to initiate the metastatic cascade. We will focus on cancer cell`s secretome influence into the brain microenvironment, specifically on its impact on tissue mechanics and on brain resident cells as regulators of the pre-metastatic niche formation, ultimately promoting metastatic colonization.
Collapse
Affiliation(s)
| | - J Paredes
- i3S/IPATIMUP, 4200-135, Porto, Portugal
| | | |
Collapse
|
37
|
Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 2019; 21:1403-1412. [PMID: 31685984 DOI: 10.1038/s41556-019-0404-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.
Collapse
|
38
|
Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol 2019; 20:1439-1449. [PMID: 29566179 DOI: 10.1093/neuonc/noy044] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of brain metastasis (BM) of breast cancer is usually a late event with deleterious effect on the prognosis. Treatment options for intracerebral seeding of breast cancer are limited and, so far, nonspecific. Molecular detailing of subsequent events of penetration, seeding, and outgrowth in brain is highly relevant for developing therapeutic strategies to treat, or prevent, BM.We scrutinize recent literature for molecules and pathways that are operative in the formation of breast cancer BM. We also summarize current data on therapeutic efforts to specifically address BM of breast cancer. Data on molecular pathways underlying the formation of BM of breast cancer are sketchy and to some extent inconsistent. The molecular makeup of BM differs from that of the primary tumors, as well as from metastases at other sites. Current efforts to treat breast cancer BM are limited, and drugs used have proven effects on the primary tumors but lack specificity for the intracerebral tumors.More basic research is necessary to better characterize BM of breast cancer. Apart from the identification of drug targets defined by the intracerebral tumors, also targets in the molecular pathways involved in passing the blood-brain barrier and intracerebral tumor cell growth should be revealed.
Collapse
Affiliation(s)
- Rute M S M Pedrosa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Dana A Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, Turin, Italy
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
39
|
Zhang T, Lip H, He C, Cai P, Wang Z, Henderson JT, Rauth AM, Wu XY. Multitargeted Nanoparticles Deliver Synergistic Drugs across the Blood-Brain Barrier to Brain Metastases of Triple Negative Breast Cancer Cells and Tumor-Associated Macrophages. Adv Healthc Mater 2019; 8:e1900543. [PMID: 31348614 DOI: 10.1002/adhm.201900543] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Patients with brain metastases of triple negative breast cancer (TNBC) have a poor prognosis owing to the lack of targeted therapies, the aggressive nature of TNBC, and the presence of the blood-brain barrier (BBB) that blocks penetration of most drugs. Additionally, infiltration of tumor-associated macrophages (TAMs) promotes tumor progression. Here, a terpolymer-lipid hybrid nanoparticle (TPLN) system is designed with multiple targeting moieties to first undergo synchronized BBB crossing and then actively target TNBC cells and TAMs in microlesions of brain metastases. In vitro and in vivo studies demonstrate that covalently bound polysorbate 80 in the terpolymer enables the low-density lipoprotein receptor-mediated BBB crossing and TAM-targetability of the TPLN. Conjugation of cyclic internalizing peptide (iRGD) enhances cellular uptake, cytotoxicity, and drug delivery to brain metastases of integrin-overexpressing TNBC cells. iRGD-TPLN with coloaded doxorubicin (DOX) and mitomycin C (MMC) (iRGD-DMTPLN) exhibits higher efficacy in reducing metastatic burden and TAMs than nontargeted DMTPLN or a free DOX/MMC combination. iRGD-DMTPLN treatment reduces metastatic burden by 6-fold and 19-fold and increases host median survival by 1.3-fold and 1.6-fold compared to DMTPLN or free DOX/MMC treatments, respectively. These findings suggest that iRGD-DMTPLN is a promising multitargeted drug delivery system for the treatment of integrin-overexpressing brain metastases of TNBC.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Hoyin Lip
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Zhigao Wang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation OncologyUniversity of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
40
|
Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2019; 69:325-336. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Collapse
|
41
|
Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, Obara EAA, Miller TE, Song A, Lai S, Hubert CG, Jin X, Huang Z, Fang X, Dixit D, Tao W, Zhai K, Chen C, Dong Z, Zhang G, Dombrowski SM, Hamerlik P, Mack SC, Bao S, Rich JN. Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell 2019; 22:514-528.e5. [PMID: 29625067 DOI: 10.1016/j.stem.2018.03.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most lethal primary brain tumor; however, the crosstalk between glioblastoma stem cells (GSCs) and their supportive niche is not well understood. Here, we interrogated reciprocal signaling between GSCs and their differentiated glioblastoma cell (DGC) progeny. We found that DGCs accelerated GSC tumor growth. DGCs preferentially expressed brain-derived neurotrophic factor (BDNF), whereas GSCs expressed the BDNF receptor NTRK2. Forced BDNF expression in DGCs augmented GSC tumor growth. To determine molecular mediators of BDNF-NTRK2 paracrine signaling, we leveraged transcriptional and epigenetic profiles of matched GSCs and DGCs, revealing preferential VGF expression by GSCs, which patient-derived tumor models confirmed. VGF serves a dual role in the glioblastoma hierarchy by promoting GSC survival and stemness in vitro and in vivo while also supporting DGC survival and inducing DGC secretion of BDNF. Collectively, these data demonstrate that differentiated glioblastoma cells cooperate with stem-like tumor cells through BDNF-NTRK2-VGF paracrine signaling to promote tumor growth.
Collapse
Affiliation(s)
- Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, and The Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Kailin Yang
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andrew R Morton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zhe Zhu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Tyler E Miller
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Song
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Sisi Lai
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Weiwei Tao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Kui Zhai
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Cong Chen
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Stephen M Dombrowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen 2100, Denmark
| | - Stephen C Mack
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
42
|
Covarrubias G, He F, Raghunathan S, Turan O, Peiris PM, Schiemann WP, Karathanasis E. Effective treatment of cancer metastasis using a dual-ligand nanoparticle. PLoS One 2019; 14:e0220474. [PMID: 31356633 PMCID: PMC6663022 DOI: 10.1371/journal.pone.0220474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is responsible for the majority of deaths of breast cancer patients. While cytotoxic drugs are available with high potency to kill breast cancer cells, they are not designed to specifically seek and navigate in the dynamic and continuously changing microenvironment of metastatic disease. To effectively delivery chemotherapeutic agents to metastasis, we designed a dual-ligand nanoparticle loaded with doxorubicin by using two different types of ligands targeting EGFR and αvβ3 integrin. Metastatic cancer cells continuously change resulting in heterogeneity even across adjacent micrometastatic regions with variable expression of these targetable receptors. Using a mouse model of breast cancer metastasis, in vivo and ex vivo imaging showed that both EGFR and αvβ3 integrin-targeting were required to reliably direct the nanoparticle to metastasis and capture the spread and exact topology of the disease. Survival studies compared the anticancer efficacy of the standard drug, EGFR-targeting nanoparticle, αvβ3 integrin-targeting nanoparticle and the dual-ligand nanoparticle. While all the other treatments produced moderate therapeutic outcomes, treatment with the dual-ligand nanoparticle yielded significant improvement and event-free survival in a mouse model of breast cancer metastasis.
Collapse
Affiliation(s)
- Gil Covarrubias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Felicia He
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Shruti Raghunathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Oguz Turan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pubudu M. Peiris
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Palchetti S, Caputo D, Digiacomo L, Capriotti AL, Coppola R, Pozzi D, Caracciolo G. Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics 2019; 11:E31. [PMID: 30650541 PMCID: PMC6358751 DOI: 10.3390/pharmaceutics11010031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer-related mortality in the Western world and is envisaged to become the second cause by 2030. Although our knowledge about the molecular biology of PDAC is continuously increasing, this progress has not been translated into better patients' outcome. Liposomes have been used to circumvent concerns associated with the low efficiency of anticancer drugs such as severe side effects and damage of healthy tissues, but they have not resulted in improved efficacy as yet. Recently, the concept is emerging that the limited success of liposomal drugs in clinical practice is due to our poor knowledge of the nano⁻bio interactions experienced by liposomes in vivo. After systemic administration, lipid vesicles are covered by plasma proteins forming a biomolecular coating, referred to as the protein corona (PC). Recent studies have clarified that just a minor fraction of the hundreds of bound plasma proteins, referred to as "PC fingerprints" (PCFs), enhance liposome association with cancer cells, triggering efficient particle internalization. In this study, we synthesized a library of 10 liposomal formulations with systematic changes in lipid composition and exposed them to human plasma (HP). Size, zeta-potential, and corona composition of the resulting liposome⁻protein complexes were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis, and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). According to the recent literature, enrichment in PCFs was used to predict the targeting ability of synthesized liposomal formulations. Here we show that the predicted targeting capability of liposome⁻protein complexes clearly correlate with cellular uptake in pancreatic adenocarcinoma (PANC-1) and insulinoma (INS-1) cells as quantified by flow-assisted cell sorting (FACS). Of note, cellular uptake of the liposomal formulation with the highest abundance of PCFs was much larger than that of Onivyde®, an Irinotecan liposomal drug approved by the Food and Drug Administration in 2015 for the treatment of metastatic PDAC. Given the urgent need of efficient nanocarriers for the treatment of PDAC, we envision that our results will pave the way for the development of more efficient PC-based targeted nanomaterials. Here we also show that some BCs are enriched with plasma proteins that are associated with the onset and progression of PDAC (e.g., sex hormone-binding globulin, Ficolin-3, plasma protease C1 inhibitor, etc.). This could open the intriguing possibility to identify novel biomarkers.
Collapse
Affiliation(s)
- Sara Palchetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Damiano Caputo
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Coppola
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
- Istituti Fisioterapici Ospitalieri, Istituto Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
44
|
Zhang X, Ding K, Wang J, Li X, Zhao P. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed Pharmacother 2018; 109:39-46. [PMID: 30391707 DOI: 10.1016/j.biopha.2018.10.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary human brain tumor. Although comprehensive therapies combining radiotherapy and chemotherapy after surgery can prolong survival, the prognosis is still poor with a median survival of only 14.6 months. Chemoresistance is one of the major causes of relapse as well as poor survival in glioma patients. Therefore, novel strategies to overcome chemoresistance are desperately needed for improved treatment of human GBM. Recent studies have demonstrated that the tumor microenvironment plays a critical role in the chemoresistance of various tumor types, which makes it a suitable target in anti-cancer therapies, as well as a valuable biomarker for prognostic purposes. This review focuses on chemoresistance in GBM induced by stromal cells, including the endothelium of blood vessels, astrocytes, and myeloid cells, as well as non-cellular factors in the tumor microenvironment. Corresponding therapies are discussed, including progressive strategies involving 3-dimensional models integrating engineering as well as biological advances.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Kaikai Ding
- Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| |
Collapse
|
45
|
Non-small cell lung cancer brain metastases and the immune system: From brain metastases development to treatment. Cancer Treat Rev 2018; 68:69-79. [PMID: 29883857 DOI: 10.1016/j.ctrv.2018.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Brain metastases (BM) are diagnosed frequently in non-small cell lung cancer (NSCLC) patients. Despite the high incidence of BM (up to 40% in unselected patients), patients with untreated and/or unstable BM were excluded from pivotal immune checkpoint inhibitors (ICI) NSCLC trials. Percentage of patients with stable and treated BM in these trials ranged from 9.1 to 14.7% and ICI benefit over chemotherapy was not always demonstrated. Only small trials have been completed that demonstrated ICI efficacy in locally untreated, selected BM patients. With 33%, cranial objective response rate (ORR) was comparable to extracranial ORR and responses were often durable. With the promising survival benefits of ICI, in daily practice also unstable and/or untreated BM patients will often receive treatment with ICI and extrapolating clinical trial data to these patients can be challenging. In this review, we will summarize the preclinical rationale and potential concerns for the use of ICI in BM patients. Furthermore, we will summarize BM subgroup data from the pivotal NSCLC trials, retrospective series, the NSCLC BM specific ICI trials and the use of cranial radiation and ICI. Last, we provide an overview of response measurement criteria and future directions.
Collapse
|
46
|
Naik A, Al-Yahyaee A, Abdullah N, Sam JE, Al-Zeheimi N, Yaish MW, Adham SA. Neuropilin-1 promotes the oncogenic Tenascin-C/integrin β3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer 2018; 18:533. [PMID: 29728077 PMCID: PMC5935908 DOI: 10.1186/s12885-018-4446-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Neuropilin-1 (NRP-1), a non-tyrosine kinase glycoprotein receptor, is associated with poor prognosis breast cancer, however transcriptomic changes triggered by NRP-1 overexpression and its association with chemoresistance in breast cancer have not yet been explored. Methods BT-474 NRP-1 variant cells were generated by stable overexpression of NRP-1 in the BT-474 breast cancer cell line. RNA sequencing and qRT-PCR were conducted to identify differentially expressed genes. The role of an upregulated oncogene, Tenascin C (TNC) and its associated pathway was investigated by siRNA-mediated knockdown. Resistant variants of the control and BT-474 NRP-1 cells were generated by sequential treatment with four cycles of Adriamycin/Cyclophosphamide (4xAC) followed by four cycles of Paclitaxel (4xAC + 4xPAC). Results NRP-1 overexpression increased cellular tumorigenic behavior. RNA sequencing identified upregulation of an oncogene, Tenascin-C (TNC) and downregulation of several tumor suppressors in BT-474 NRP-1 cells. Additionally, protein analysis indicated activation of the TNC-associated integrin β3 (ITGB3) pathway via focal adhesion kinase (FAK), Akt (Ser473) and nuclear factor kappa B (NF-kB) p65. siRNA-mediated TNC knockdown ablated the migratory capacity of BT-474 NRP-1 cells and inactivated FAK/Akt473 signaling. NRP-1 overexpressing cells downregulated breast cancer resistance protein (BCRP/ABCG2). Consequently, sequential treatment with Adriamycin/Cyclophosphamide (AC) cytotoxic drugs to generate resistant cells indicated that BT-474 NRP-1 cells increased sensitivity to treatment by inactivating NRP-1/ITGB3/FAK/Akt/NF-kB p65 signaling compared to wild-type BT-474 resistant cells. Conclusions We thus report a novel mechanism correlating high baseline NRP-1 with upregulated TNC/ITGB3 signaling, but decreased ABCG2 expression, which sensitizes BT-474 NRP-1 cells to Adriamycin/Cyclophosphamide. The study emphasizes on the targetability of the NRP-1/ITGB3 axis and its potential as a predictive biomarker for chemotherapy response. Electronic supplementary material The online version of this article (10.1186/s12885-018-4446-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adviti Naik
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Aida Al-Yahyaee
- Department of Genetics, College of Medicine, Sultan Qaboos University, P. O. Box 35, Muscat, Oman
| | - Nada Abdullah
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Juda-El Sam
- Department of Life Sciences, Hogeschool van Arnhem en Nijmegen, Kapittelweg 33, 6525, Nijmegen, EN, Netherlands
| | - Noura Al-Zeheimi
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman.
| |
Collapse
|
47
|
Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer. Surg Oncol 2018; 27:225-230. [PMID: 29937175 DOI: 10.1016/j.suronc.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma. METHODS A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization. RESULTS Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13). CONCLUSION All three agents appear effective for FGS.
Collapse
|
48
|
Peiris PM, He F, Covarrubias G, Raghunathan S, Turan O, Lorkowski M, Gnanasambandam B, Wu C, Schiemann WP, Karathanasis E. Precise targeting of cancer metastasis using multi-ligand nanoparticles incorporating four different ligands. NANOSCALE 2018; 10:6861-6871. [PMID: 29620124 PMCID: PMC5908762 DOI: 10.1039/c8nr02513d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Metastasis displays a highly heterogeneous cellular population with cancer cells continuously evolving. As a result, a single-ligand nanoparticle cannot account for the continuously changing expression of targetable biomarkers over time and space. To effectively direct nanoparticles to metastasis, we developed a multi-ligand nanoparticle by using four different types of ligands on the same nanoparticle that target biomarkers on the endothelium associated with metastatic disease. These vascular targets included αvβ3 integrin, P-selectin, EGFR and fibronectin. Using terminal and in vivo imaging studies, the targeting performance of the multi-ligand nanoparticles was compared to the single-ligand nanoparticle variants. All four single-ligand nanoparticle variants achieved significant targeting of lung metastasis in the 4T1 mouse model of breast cancer metastasis with about 2.5% of the injected dose being deposited into metastasis. A dual-ligand nanoparticle resulted in a nearly 2-fold higher deposition into lung metastases than its single-ligand counterparts. The multi-ligand nanoparticle significantly outperformed its targeting nanoparticle counterparts achieving a deposition of ∼7% of its injected nanoparticles into lung metastases. Using the high sensitivity of radionuclide imaging, PET imaging showed that a multi-ligand nanoparticle labeled with [18F]fluoride was able to precisely target metastatic disease at its very early stage of development in three different animal models of metastatic breast cancer.
Collapse
Affiliation(s)
- P M Peiris
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38:563-587. [PMID: 28920514 PMCID: PMC5888855 DOI: 10.1177/0271678x17732025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
50
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|