1
|
Szabó R, Szepesi Kovács D, Kiss DJ, Yazdi ZN, Tóth AD, Brea J, Loza MI, Meszéna D, Wittner L, Ulbert I, Volk B, Hunyady L, Keserű GM. Design, Synthesis, and Evaluation of a New Fluorescent Ligand for the M 2 Muscarinic Acetylcholine Receptor. ACS Med Chem Lett 2025; 16:552-559. [PMID: 40236555 PMCID: PMC11995211 DOI: 10.1021/acsmedchemlett.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
The M2 muscarinic acetylcholine receptor (M2R) is a G protein-coupled receptor involved in regulating cardiovascular functions and mediation of central muscarinic effects, such as movement, temperature control, and antinociceptive responses. Molecular probes targeting this receptor are therefore important in exploring its pathophysiological role at a molecular level. Herein, we report the design, synthesis, and evaluation of a new fluorescent probe for M2R based on an anthranilamide ligand. In radioligand binding experiments, the presented Oregon Green 488-labeled conjugate (33) exhibited high M2R affinity (K i = 2.4 nM), a moderate preference for the M2R over the M4 receptor, and excellent to pronounced M2R selectivity compared to the M1, M3, and M5 receptors. The utility of the probe was demonstrated in confocal, two-photon, and stimulated emission depletion nanoscopy (STED) imaging to specifically label the receptors in human embryonic kidney (HEK) 293T cells. These properties suggest that our probe may be utilized in advanced microscopy to study the pharmacology of the M2R.
Collapse
Affiliation(s)
- Renáta Szabó
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Dénes Szepesi Kovács
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zeinab Nezafat Yazdi
- Institute
of Molecular Life Sciences, Centre of Excellence of the Hungarian
Academy of Sciences, HUN-REN Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - András Dávid Tóth
- Institute
of Molecular Life Sciences, Centre of Excellence of the Hungarian
Academy of Sciences, HUN-REN Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Internal Medicine and Haematology, Semmelweis
University, H-1088 Budapest, Hungary
| | - Jose Brea
- Innopharma
Drug Screening and Pharmacogenomics Platform, BioFarma Research Group,
Center for Research in Molecular Medicine and Chronic Diseases (CiMUS),
Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, University of Santiago de Compostela, 15705 Santiago
de Compostela, Spain
| | - María Isabel Loza
- Innopharma
Drug Screening and Pharmacogenomics Platform, BioFarma Research Group,
Center for Research in Molecular Medicine and Chronic Diseases (CiMUS),
Department of Pharmacology, Pharmacy, and Pharmaceutical Technology, University of Santiago de Compostela, 15705 Santiago
de Compostela, Spain
| | - Domokos Meszéna
- Department
of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Integrative
Neuroscience Research Group, Institute of Cognitive Neuroscience and
Psychology, HUN-REN Research Centre for
Natural Sciences, H-1117 Budapest, Hungary
| | - Lucia Wittner
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Integrative
Neuroscience Research Group, Institute of Cognitive Neuroscience and
Psychology, HUN-REN Research Centre for
Natural Sciences, H-1117 Budapest, Hungary
| | - István Ulbert
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Integrative
Neuroscience Research Group, Institute of Cognitive Neuroscience and
Psychology, HUN-REN Research Centre for
Natural Sciences, H-1117 Budapest, Hungary
- Department
of Neurosurgery and Neurointervention, Semmelweis
University, H-1145 Budapest, Hungary
- Department
of Information Technology and Bionics, Péter
Pázmány Catholic University, H-1083 Budapest, Hungary
| | - Balázs Volk
- Directorate
of Drug Substance Development, Egis Pharmaceuticals
Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - László Hunyady
- Institute
of Molecular Life Sciences, Centre of Excellence of the Hungarian
Academy of Sciences, HUN-REN Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Physiology, Faculty of Medicine, Semmelweis
University, H-1094 Budapest, Hungary
| | - György Miklós Keserű
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Sharrocks KL, Swaih AM, Hanyaloglu AC. Single-molecule localization microscopy as a tool to quantify di/oligomerization of receptor tyrosine kinases and G protein-coupled receptors. Mol Pharmacol 2025; 107:100033. [PMID: 40228395 DOI: 10.1016/j.molpha.2025.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Dimerization and oligomerization of membrane receptors, including G protein-coupled receptors and receptor tyrosine kinases, are fundamental for regulating cell signaling and diversifying downstream responses to mediate a range of physiological processes. Receptor di/oligomers play roles in diverse facets of receptor function. Changes in receptor di/oligomers have been implicated in a range of diseases; therefore, better understanding of the specific composition and interactions between receptors in complexes is essential, especially for the development of di/oligomer-specific drugs. Previously, different optical microscopy approaches and proximity-based biophysical assays have been used to demonstrate di/oligomerization of membrane receptors. However, in recent years, single-molecule super-resolution microscopy techniques have allowed researchers to quantify and uncover the precise dynamics and stoichiometry of specific receptor complexes. This allows the organization of membrane protein receptors to be mapped across the plasma membrane to explore the effects of factors such as ligands, effectors, membrane environment, and therapeutic agents. Quantification of receptor complexes is required to better understand the intricate balance of distinct receptor complexes in cells. In this brief review, we provide an overview of single-molecule approaches for the quantification of receptor di/oligomerization. We will discuss the techniques commonly employed to study membrane receptor di/oligomerization and their relative advantages and limitations. SIGNIFICANCE STATEMENT: Receptor di/oligomerization plays an important role in their function. For some receptors, di/oligomerization is essential for functional signaling, whereas for others, it acts as a mechanism to achieve signaling pleiotropy. Aberrant receptor di/oligomerization has been implicated in a wide range of diseases. Single-molecule super-resolution microscopy techniques provide convincing methods to precisely quantify receptor complexes at the plasma membrane. Understanding receptor complex organization in disease models can also influence the targeting of specific monomeric or oligomeric complexes in therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Aylin C Hanyaloglu
- The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Yoda T, Sako Y, Inoue A, Yanagawa M. Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide. Biophys Physicobiol 2024; 21:e210020. [PMID: 39802745 PMCID: PMC11718171 DOI: 10.2142/biophysico.bppb-v21.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques. Here we developed a method for labeling cell-surface GPCRs inspired by the HiBiT system, which utilizes the high affinity complementation between LgBiT and HiBiT fragments of the NanoLuc luciferase. We synthesized four fluorescence-labeled HiBiT peptides (F-FiBiTs) with a different color dye (Setau-488, TMR, SaraFluor 650 and SaraFluor 720). We constructed a multicolor total internal reflection fluorescence microscopy system that allows us to track four color dyes simultaneously. As a proof-of-concept experiment, we labeled an N-terminally LgBiT-fused GPCR (Lg-GPCR) with a mixture of the four F-FiBiTs and successfully tracked each dye within a cell at the single-molecule level. The F-FiBiT-labeled Lg-GPCRs showed agonist-dependent changes in the diffusion dynamics and accumulation into the clathrin-coated pits as observed with a conventional method using a C-terminally HaloTag-fused GPCR. Taking advantage of luciferase complementation by the F-FiBiT and Lg-GPCRs, the F-FiBiT was also applicable to bioluminescence plate-reader-based assays. By combining existing labeling methods such as HaloTag, SNAP-tag, and fluorescent proteins, the F-FiBiT method will be useful for multicolor single-molecule imaging and will enhance our understanding of GPCR signaling at the single-molecule level.
Collapse
Affiliation(s)
- Toshiki Yoda
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masataka Yanagawa
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Prince S, Maguemoun K, Ferdebouh M, Querido E, Derumier A, Tremblay S, Chartrand P. CoPixie, a novel algorithm for single-particle track colocalization, enables efficient quantification of telomerase dynamics at telomeres. Nucleic Acids Res 2024; 52:9417-9430. [PMID: 39082280 PMCID: PMC11381360 DOI: 10.1093/nar/gkae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Single-particle imaging and tracking can be combined with colocalization analysis to study the dynamic interactions between macromolecules in living cells. Indeed, single-particle tracking has been extensively used to study protein-DNA interactions and dynamics. Still, unbiased identification and quantification of binding events at specific genomic loci remains challenging. Herein, we describe CoPixie, a new software that identifies colocalization events between a theoretically unlimited number of imaging channels, including single-particle movies. CoPixie is an object-based colocalization algorithm that relies on both pixel and trajectory overlap to determine colocalization between molecules. We employed CoPixie with live-cell single-molecule imaging of telomerase and telomeres, to test the model that cancer-associated POT1 mutations facilitate telomere accessibility. We show that POT1 mutants Y223C, D224N or K90E increase telomere accessibility for telomerase interaction. However, unlike the POT1-D224N mutant, the POT1-Y223C and POT1-K90E mutations also increase the duration of long-lasting telomerase interactions at telomeres. Our data reveal that telomere elongation in cells expressing cancer-associated POT1 mutants arises from the dual impact of these mutations on telomere accessibility and telomerase retention at telomeres. CoPixie can be used to explore a variety of questions involving macromolecular interactions in living cells, including between proteins and nucleic acids, from multicolor single-particle tracks.
Collapse
Affiliation(s)
- Samuel Prince
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Kamélia Maguemoun
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mouna Ferdebouh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Amélie Derumier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Stéphanie Tremblay
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
5
|
Hu S, Wang D, Liu W, Wang Y, Chen J, Cai X. Apelin receptor dimer: Classification, future prospects, and pathophysiological perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167257. [PMID: 38795836 DOI: 10.1016/j.bbadis.2024.167257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China.
| |
Collapse
|
6
|
Kusumi A, Tsunoyama TA, Suzuki KGN, Fujiwara TK, Aladag A. Transient, nano-scale, liquid-like molecular assemblies coming of age. Curr Opin Cell Biol 2024; 89:102394. [PMID: 38963953 DOI: 10.1016/j.ceb.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Amine Aladag
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
8
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Zhou X, Septien-Gonzalez H, Husaini S, Ward RJ, Milligan G, Gradinaru CC. Diffusion and Oligomerization States of the Muscarinic M 1 Receptor in Live Cells─The Impact of Ligands and Membrane Disruptors. J Phys Chem B 2024; 128:4354-4366. [PMID: 38683784 PMCID: PMC11090110 DOI: 10.1021/acs.jpcb.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 μm2/s), slow (∼0.04 μm2/s), and fast (∼0.14 μm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.
Collapse
Affiliation(s)
- Xiaohan Zhou
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Horacio Septien-Gonzalez
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Sami Husaini
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Richard J. Ward
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
10
|
Bestsennaia E, Maslov I, Balandin T, Alekseev A, Yudenko A, Abu Shamseye A, Zabelskii D, Baumann A, Catapano C, Karathanasis C, Gordeliy V, Heilemann M, Gensch T, Borshchevskiy V. Channelrhodopsin-2 Oligomerization in Cell Membrane Revealed by Photo-Activated Localization Microscopy. Angew Chem Int Ed Engl 2024; 63:e202307555. [PMID: 38226794 DOI: 10.1002/anie.202307555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
Collapse
Affiliation(s)
- Ekaterina Bestsennaia
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and the Biomedical Research Institute, Hasselt University, B3590, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Taras Balandin
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexey Alekseev
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anna Yudenko
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Assalla Abu Shamseye
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
- European XFEL, 22869, Schenefeld, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
11
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
12
|
Bénac N, Ezequiel Saraceno G, Butler C, Kuga N, Nishimura Y, Yokoi T, Su P, Sasaki T, Petit-Pedrol M, Galland R, Studer V, Liu F, Ikegaya Y, Sibarita JB, Groc L. Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis. Nat Commun 2024; 15:27. [PMID: 38167277 PMCID: PMC10762086 DOI: 10.1038/s41467-023-44301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Direct interactions between receptors at the neuronal surface have long been proposed to tune signaling cascades and neuronal communication in health and disease. Yet, the lack of direct investigation methods to measure, in live neurons, the interaction between different membrane receptors at the single molecule level has raised unanswered questions on the biophysical properties and biological roles of such receptor interactome. Using a multidimensional spectral single molecule-localization microscopy (MS-SMLM) approach, we monitored the interaction between two membrane receptors, i.e. glutamatergic NMDA (NMDAR) and G protein-coupled dopamine D1 (D1R) receptors. The transient interaction was randomly observed along the dendritic tree of hippocampal neurons. It was higher early in development, promoting the formation of NMDAR-D1R complexes in an mGluR5- and CK1-dependent manner, favoring NMDAR clusters and synaptogenesis in a dopamine receptor signaling-independent manner. Preventing the interaction in the neonate, and not adult, brain alters in vivo spontaneous neuronal network activity pattern in male mice. Thus, a weak and transient interaction between NMDAR and D1R plays a structural and functional role in the developing brain.
Collapse
Affiliation(s)
- Nathan Bénac
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | | | - Corey Butler
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Yuya Nishimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | | | - Rémi Galland
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Vincent Studer
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Laurent Groc
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
13
|
Qin G, Xu J, Liang Y, Fang X. Single-Molecule Imaging Reveals Differential AT1R Stoichiometry Change in Biased Signaling. Int J Mol Sci 2023; 25:374. [PMID: 38203545 PMCID: PMC10778740 DOI: 10.3390/ijms25010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
G protein-coupled receptors (GPCRs) represent promising therapeutic targets due to their involvement in numerous physiological processes mediated by downstream G protein- and β-arrestin-mediated signal transduction cascades. Although the precise control of GPCR signaling pathways is therapeutically valuable, the molecular details for governing biased GPCR signaling remain elusive. The Angiotensin II type 1 receptor (AT1R), a prototypical class A GPCR with profound implications for cardiovascular functions, has become a focal point for biased ligand-based clinical interventions. Herein, we used single-molecule live-cell imaging techniques to evaluate the changes in stoichiometry and dynamics of AT1R with distinct biased ligand stimulations in real time. It was revealed that AT1R existed predominantly in monomers and dimers and underwent oligomerization upon ligand stimulation. Notably, β-arrestin-biased ligands induced the formation of higher-order aggregates, resulting in a slower diffusion profile for AT1R compared to G protein-biased ligands. Furthermore, we demonstrated that the augmented aggregation of AT1R, triggered by activation from each biased ligand, was completely abrogated in β-arrestin knockout cells. These findings furnish novel insights into the intricate relationship between GPCR aggregation states and biased signaling, underscoring the pivotal role of molecular behaviors in guiding the development of selective therapeutic agents.
Collapse
Affiliation(s)
- Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
14
|
Gill KS, Mehta K, Heredia JD, Krishnamurthy VV, Zhang K, Procko E. Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCR5 demonstrated by deep mutagenesis. J Biol Chem 2023; 299:105229. [PMID: 37690681 PMCID: PMC10551899 DOI: 10.1016/j.jbc.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.
Collapse
Affiliation(s)
- Kevin S Gill
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Kritika Mehta
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Jeremiah D Heredia
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | | - Kai Zhang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA; Cyrus Biotechnology, Seattle, Washington, USA.
| |
Collapse
|
15
|
Köckenberger J, Fischer O, Konopa A, Bergwinkl S, Mühlich S, Gmeiner P, Kutta RJ, Hübner H, Keller M, Heinrich MR. Synthesis, Characterization, and Application of Muscarinergic M 3 Receptor Ligands Linked to Fluorescent Dyes. J Med Chem 2022; 65:16494-16509. [PMID: 36484801 DOI: 10.1021/acs.jmedchem.2c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Through the linkage of two muscarinergic M3 receptor ligands to fluorescent tetramethylrhodamine- and cyanine-5-type dyes, two novel tool compounds, OFH5503 and OFH611, have been developed. Based on the suitable binding properties and kinetics related to the M3 subtype, both ligand-dye conjugates were found to be useful tools to determine binding affinities via flow cytometric measurements. In addition, confocal microscopy underlined the comparably low unspecific binding and the applicability for studying M3 receptor expression in cells. Along with the proven usefulness regarding studies on the M3 subtype, the conjugates OFH5503 and OFH611 could, due to their high affinity to the M1 receptor, evolve as even more versatile tools in the field of research on muscarinergic receptors.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Oliver Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Andreas Konopa
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Susanne Mühlich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol 2022; 13:974160. [PMID: 36148314 PMCID: PMC9486310 DOI: 10.3389/fphys.2022.974160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
17
|
Cumberbatch D, Mori T, Yang J, Mi D, Vinson P, Weaver CD, Johnson CH. A BRET Ca 2+ sensor enables high-throughput screening in the presence of background fluorescence. Sci Signal 2022; 15:eabq7618. [PMID: 35973028 PMCID: PMC9930640 DOI: 10.1126/scisignal.abq7618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intrinsic fluorescence of samples confounds the use of fluorescence-based sensors. This is of particular concern in high-throughput screening (HTS) applications using large chemical libraries containing intrinsically fluorescent compounds. To overcome this problem, we developed a bioluminescence resonance energy transfer (BRET) Ca2+ sensor, CalfluxCTN. We demonstrated that it reliably reported changes in intracellular Ca2+ concentrations evoked by an agonist and an antagonist of the human muscarinic acetylcholine receptor M1 (hM1R) even in the presence of the fluorescent compound fluorescein, which interfered with a standard fluorescent HTS sensor (Fluo-8). In an HTS using a chemical library containing fluorescent compounds, CalfluxCTN accurately identified agonists and antagonists that were missed or miscategorized using Fluo-8. Moreover, we showed that a luciferase substrate that becomes activated only when inside cells generated long-lasting BRET signals in HTS, enabling results to be reliably compared among replicate samples for hours. Thus, the use of a self-luminescent sensor instead of a fluorescent sensor could facilitate the complete screening of chemical libraries in a high-throughput context and enable analysis of autofluorescent samples in many different applications.
Collapse
Affiliation(s)
- Derrick Cumberbatch
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jie Yang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Dehui Mi
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | | | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
18
|
The M 1 muscarinic receptor is present in situ as a ligand-regulated mixture of monomers and oligomeric complexes. Proc Natl Acad Sci U S A 2022; 119:e2201103119. [PMID: 35671422 PMCID: PMC9214538 DOI: 10.1073/pnas.2201103119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is appreciated that members of the large family of rhodopsin-like cell surface receptors can form dimeric or larger protein complexes when expressed at high levels in cultured cells, their organizational state within native cells and tissues of the body is largely unknown. We assessed this in neurons of the central nervous system by replacing the M1 muscarinic acetylcholine receptor in mice with a form of this receptor with an added fluorescent protein. Receptor function was unaltered by this change, and the biophysical approach we used demonstrated that the receptor exists as a mixture of monomers and dimers or oligomers. Drug treatments that target this receptor promote its monomerization, which may have significance for receptor function. The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.
Collapse
|
19
|
Tahk MJ, Torp J, Ali MAS, Fishman D, Parts L, Grätz L, Müller C, Keller M, Veiksina S, Laasfeld T, Rinken A. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses-which way to go with measuring ligand binding to M 4 muscarinic receptors? Open Biol 2022; 12:220019. [PMID: 35674179 PMCID: PMC9175271 DOI: 10.1098/rsob.220019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023] Open
Abstract
M4 muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer's disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M4 receptor. Using budded baculovirus particles as M4 receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM4R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.
Collapse
Affiliation(s)
- Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jane Torp
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Mohammed A. S. Ali
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Dmytro Fishman
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Leopold Parts
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
20
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Balakrishnan A, Hemmen K, Choudhury S, Krohn JH, Jansen K, Friedrich M, Beliu G, Sauer M, Lohse MJ, Heinze KG. Unraveling the hidden temporal range of fast β 2-adrenergic receptor mobility by time-resolved fluorescence. Commun Biol 2022; 5:176. [PMID: 35228644 PMCID: PMC8885909 DOI: 10.1038/s42003-022-03106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β2-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm²/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbrück model.
Collapse
Affiliation(s)
- Ashwin Balakrishnan
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Susobhan Choudhury
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jan-Hagen Krohn
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Jansen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
22
|
Visualizing G protein-coupled receptor homomers using photoactivatable dye localization microscopy. Methods Cell Biol 2022; 169:27-41. [DOI: 10.1016/bs.mcb.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Masullo LA, Szalai AM, Lopez LF, Stefani FD. Fluorescence nanoscopy at the sub-10 nm scale. Biophys Rev 2021; 13:1101-1112. [PMID: 35059030 PMCID: PMC8724505 DOI: 10.1007/s12551-021-00864-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.
Collapse
Affiliation(s)
- Luciano A. Masullo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Alan M. Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía F. Lopez
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D. Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone. Proc Natl Acad Sci U S A 2021; 118:2108776118. [PMID: 34810259 PMCID: PMC8640787 DOI: 10.1073/pnas.2108776118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
G protein–coupled receptors (GPCRs) are major players in cellular signal transmission. In this work, we have used rigid oligoproline backbones derivatized with two ligands at defined distances to induce GPCR dimer formation as a way to alter its signaling profile. We show that bivalent ligands at distances of 20 and 30 Å induce dimers of the GRPR receptor with different signaling responses. In addition, a nondimer–inducing bivalent ligand (with 10-Å distance between agonists) also induces different signaling patterns, most likely due to allosteric effects. These findings identify bivalent ligands with a stiff oligoproline backbone as tools to explore the natural signaling space of GPCRs. G protein–coupled receptors (GPCRs) are one of the most important drug–target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward β-arrestin-1 and β-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting β-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.
Collapse
|
25
|
Connelly SM, Sridharan R, Naider F, Dumont ME. Oligomerization of yeast α-factor receptor detected by fluorescent energy transfer between ligands. Biophys J 2021; 120:5090-5106. [PMID: 34627767 DOI: 10.1016/j.bpj.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise a large superfamily of transmembrane receptors responsible for transducing responses to the binding of a wide variety of hormones, neurotransmitters, ions, and other small molecules. There is extensive evidence that GPCRs exist as homo-and hetero-oligomeric complexes; however, in many cases, the role of oligomerization and the extent to which it occurs at low physiological levels of receptor expression in cells remain unclear. We report here the use of flow cytometry to detect receptor-receptor interactions based on fluorescence resonance energy transfer between fluorescently labeled cell-impermeant ligands bound to yeast α-mating pheromone receptors that are members of the GPCR superfamily. A novel, to our knowledge, procedure was used to analyze energy transfer as a function of receptor occupancy by donor and acceptor ligands. Measurements of loss of donor fluorescence due to energy transfer in cells expressing high levels of receptors were used to calibrate measurements of enhanced acceptor emission due to energy transfer in cells expressing low levels of receptors. The procedure allows determination of energy transfer efficiencies over a 50-fold range of expression of full-length receptors at the surface of living cells without the need to create fluorescent or bioluminescent fusion proteins. Energy transfer efficiencies for fluorescently labeled derivatives of the receptor agonist α-factor do not depend on receptor expression level and are unaffected by C-terminal truncation of receptors. Fluorescently labeled derivatives of α-factor that act as receptor antagonists exhibit higher transfer efficiencies than those for labeled agonists. Although the approach cannot determine the number of receptors per oligomer, these results demonstrate that ligand-bound, native α-factor receptors exist as stable oligomers in the cell membranes of intact yeast cells at normal physiological expression levels and that the extent of oligomer formation is not dependent on the concentration of receptors in the membrane.
Collapse
Affiliation(s)
- Sara M Connelly
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Rajashri Sridharan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, New York; PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York
| | - Mark E Dumont
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
26
|
Nagai R, Sugimachi A, Tanimoto Y, Suzuki KGN, Hayashi F, Weikert D, Gmeiner P, Kasai RS, Morigaki K. Functional Reconstitution of Dopamine D2 Receptor into a Supported Model Membrane in a Nanometric Confinement. Adv Biol (Weinh) 2021; 5:e2100636. [PMID: 34761565 DOI: 10.1002/adbi.202100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Dopamine D2 receptor (D2R), a G-protein-coupled receptor (GPCR), plays critical roles in neural functions and represents the target for a wide variety of drugs used to treat neurological diseases. However, its fundamental physicochemical properties, such as dimerization and affinity to different lipid environments, remain unknown. Here, reconstitution and characterization of D2R in a supported model membrane in nanometric confinement are reported. D2R is expressed in Chinese hamster ovary (CHO) cells and transferred into the supported model membrane as cell membrane blebs. D2R molecules are reconstituted with an elevated density in the cleft between the substrate and poly(dimethylsiloxane) (PDMS) elastomer. Reconstituted D2R retains the physiological functions, as evaluated from its binding to an antagonist and dimerization lifetime. The transient dimer formation of D2R, similar to the live cell, suggests that it is an innate property that does not depend on the cellular structures such as actin filaments. Although the mechanism of this unique reconstitution process is currently not fully understood, the finding points to a new possibility of using a nanometric space (<100 nm thick) as a platform for reconstituting and studying membrane proteins under the quasi-physiological conditions, which are difficult to be created by other methods.
Collapse
Affiliation(s)
- Rurika Nagai
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Ayane Sugimachi
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yasushi Tanimoto
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Rinshi S Kasai
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
27
|
Mashanov GI, Nenasheva TA, Mashanova A, Lape R, Birdsall NJM, Sivilotti L, Molloy JE. Heterogeneity of cell membrane structure studied by single molecule tracking. Faraday Discuss 2021; 232:358-374. [PMID: 34647559 PMCID: PMC8704140 DOI: 10.1039/d1fd00035g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity. We used a quadrat sampling method and show how statistical tests for membrane heterogeneity can be conducted by analysing the paths of many molecules that pass through the same unit area of membrane. We describe experiments performed on cultured primary cells, stable cell lines and ex vivo tissue slices using a variety of membrane proteins, under different imaging conditions. In some cell types, we find no evidence for heterogeneity in mobility across the plasma membrane, but in others we find statistically significant differences with some regions of membrane showing significantly higher viscosity than others. We use total internal reflection fluorescence microscopy combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity.![]()
Collapse
Affiliation(s)
| | - Tatiana A Nenasheva
- Koltzov Institute of Developmental Biology, 26 Vavilova Str., Moscow, 119334, Russia
| | - Alla Mashanova
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, Gower St., London, UK
| | | | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, Gower St., London, UK
| | - Justin E Molloy
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
28
|
da Rocha-Azevedo B, Lee S, Dasgupta A, Vega AR, de Oliveira LR, Kim T, Kittisopikul M, Malik ZA, Jaqaman K. Heterogeneity in VEGF Receptor-2 Mobility and Organization on the Endothelial Cell Surface Leads to Diverse Models of Activation by VEGF. Cell Rep 2021; 32:108187. [PMID: 32997988 PMCID: PMC7541195 DOI: 10.1016/j.celrep.2020.108187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic nanoscale organization of cell surface receptors plays an important role in signaling. We determine this organization and its relation to activation of VEGF receptor-2 (VEGFR-2), a critical receptor tyrosine kinase in endothelial cells (ECs), by combining single-molecule imaging of endogenous VEGFR-2 in live ECs with multiscale computational analysis. We find that surface VEGFR-2 can be mobile or exhibit restricted mobility and be monomeric or non-monomeric, with a complex interplay between the two. This basal heterogeneity results in heterogeneity in the sequence of steps leading to VEGFR-2 activation by VEGF. Specifically, we find that VEGF can bind to monomeric and non-monomeric VEGFR-2 and that, when binding to monomeric VEGFR-2, its effect on dimerization depends on the mobility of VEGFR-2. Our study highlights the dynamic and heterogeneous nature of cell surface receptor organization and the need for multiscale, single-molecule-based analysis to determine its relationship to receptor activation and signaling. da Rocha-Azevedo et al. show that VEGFR-2 exhibits mobility and interaction heterogeneity on the endothelial cell surface. The sequence of steps leading to VEGFR-2 activation by VEGF depends on the basal state of VEGFR-2. Thus, there is not one model but multiple co-existing models of VEGFR-2 activation by VEGF.
Collapse
Affiliation(s)
| | - Sungsoo Lee
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aparajita Dasgupta
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony R Vega
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tae Kim
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachariah A Malik
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Budzinski J, Maschauer S, Kobayashi H, Couvineau P, Vogt H, Gmeiner P, Roggenhofer A, Prante O, Bouvier M, Weikert D. Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Commun Biol 2021; 4:1062. [PMID: 34508168 PMCID: PMC8433439 DOI: 10.1038/s42003-021-02574-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Bivalent ligands are composed of two pharmacophores connected by a spacer of variable size. These ligands are able to simultaneously recognize two binding sites, for example in a G protein-coupled receptor heterodimer, resulting in enhanced binding affinity. Taking advantage of previously described heterobivalent dopamine-neurotensin receptor ligands, we demonstrate specific interactions between dopamine D3 (D3R) and neurotensin receptor 1 (NTSR1), two receptors with expression in overlapping brain areas that are associated with neuropsychiatric diseases and addiction. Bivalent ligand binding to D3R-NTSR1 dimers results in picomolar binding affinity and high selectivity compared to the binding to monomeric receptors. Specificity of the ligands for the D3R-NTSR1 receptor pair over D2R-NTSR1 dimers can be achieved by a careful choice of the linker length. Bivalent ligands enhance and stabilize the receptor-receptor interaction leading to NTSR1-controlled internalization of D3R into endosomes via recruitment of β-arrestin, highlighting a potential mechanism for dimer-specific receptor trafficking and signalling.
Collapse
Affiliation(s)
- Julian Budzinski
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Maschauer
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroyuki Kobayashi
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Pierre Couvineau
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hannah Vogt
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Roggenhofer
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Prante
- grid.5330.50000 0001 2107 3311Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michel Bouvier
- grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Dorothee Weikert
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Li J, Ding Y, Liu H, He H, Yu D, Wang X, Wang X, Yu X, Ge B, Huang F. Oligomerization-Enhanced Receptor-Ligand Binding Revealed by Dual-Color Simultaneous Tracking on Living Cell Membranes. J Phys Chem Lett 2021; 12:8164-8169. [PMID: 34410720 DOI: 10.1021/acs.jpclett.1c01844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GPCR oligomerization plays a critical role in cellular signaling, yet the stoichiometry of the interactions between oligomers and binding ligands in living cells remains a longstanding challenge. Here, by developing a dual-color simultaneous tracking system based on a total internal reflection fluorescence microscope (TIRFM), the CCR5-CCL5 interactions are visualized and quantitatively assessed in real time. Results show that each oligomeric state of CCR5 could bind with CCL5 but with different binding affinities; CCR5 dimers have a 3.5-fold higher binding affinity than the monomers. The dimerization may cause an asymmetric conformational change which makes the first binding pocket have a 3.5-fold higher binding affinity and the second have only a half compared with the monomeric CCR5. This study is the first example to directly scrutinize the CCR5-CCL5 interactions at the single-molecule level on living cell membranes and will offer great potential for the interaction stoichiometry study of diverse surface proteins.
Collapse
Affiliation(s)
- Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yanzhi Ding
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hengheng Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoxi Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
31
|
Chen H, Tang W, Liu Y, Wang L. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF 4:Yb,Tm@NaYF 4 upconversion nanoparticles composite luminescent probe. Food Chem 2021; 367:130660. [PMID: 34390907 DOI: 10.1016/j.foodchem.2021.130660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/12/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
In this work, a quantitative image analysis method based on cyanine dye-upconversion nanoparticles composite luminescent nanoprobe for the detection of nitrite was developed. The nanoprobe was constructed by combining the NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) and the new cyanine dye IR-790. The upconversion nanoparticles transferred energy to IR-790, resulting in the luminescence quenching, while the luminescence of UCNPs was recovered after adding NO2-. The increase in photons was related to the concentration of NO2-. Under the optimal experimental conditions, the detection range was 0.20-140 μM and the limit of detection was 0.030 μM. The measurement for NO2- can be completed in 29 min. The method has the characteristics of fast response (~0.1 s), low sample consumption (10 μL) and powerful data support (550 frame time series images). Furthermore, the quantitative image analysis method was successfully applied for the analysis of nitrite in environmental water and food samples.
Collapse
Affiliation(s)
- Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Wei Tang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yunchun Liu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
32
|
Yoshimura H. Potential of Single-Molecule Live-Cell Imaging for Chemical Translational Biology. Chembiochem 2021; 22:2941-2945. [PMID: 34254418 DOI: 10.1002/cbic.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Indexed: 11/11/2022]
Abstract
Single-molecule live-cell imaging is the most direct approach for monitoring the motility of molecules in living cells. Considering the relationship between the motility of molecules and their function, information obtained from single-molecule imaging involves essential clues for understanding the regulatory mechanisms of the processes of target molecules, and translation to applied sciences such as drug discovery. In this Concept, examples of single-molecule imaging studies on G protein-coupled receptors (GPCRs) are mainly introduced, and recent techniques of single-molecule imaging for overcoming the limitation of single-molecule live-cell imaging are discussed. Based on these studies, the prospects of single-molecule imaging will be outlined.
Collapse
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| |
Collapse
|
33
|
Wang Q, He H, Zhang Q, Feng Z, Li J, Chen X, Liu L, Wang X, Ge B, Yu D, Ren H, Huang F. Deep-Learning-Assisted Single-Molecule Tracking on a Live Cell Membrane. Anal Chem 2021; 93:8810-8816. [PMID: 34132089 DOI: 10.1021/acs.analchem.1c00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Single-molecule fluorescence imaging is a powerful tool to study protein function by tracking molecular position and distribution, but the precise and rapid identification of dynamic molecules remains challenging due to the heterogeneous distribution and interaction of proteins on the live cell membrane. We now develop a deep-learning (DL)-assisted single-molecule imaging method that can precisely distinguish the monomer and complex for rapid and real-time tracking of protein interaction. This DL-based model, which comprises convolutional layers, max pooling layers, and fully connected layers, is trained to reach an accuracy of >98% for identifying monomer and complex. We use this method to investigate the dynamic process of chemokine receptor CXCR4 on the live cell membrane during the early signaling stage. The results show that, upon ligand activation, the CXCR4 undergoes a dynamic process of forming a receptor complex. We further demonstrate that the CXCR4 complex tends to be internalized at 2.5-fold higher rate into the cell interior than the monomer via the clathrin-dependent pathway. This study is the first example to scrutinize the early signaling process of CXCR4 at the single-molecule level on the live cell membrane. We envision that this DL-assisted imaging method would be a broadly useful technique to study more protein families for elucidating their physiological and pathological functions.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
34
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
35
|
Bathe-Peters M, Gmach P, Boltz HH, Einsiedel J, Gotthardt M, Hübner H, Gmeiner P, Lohse MJ, Annibale P. Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proc Natl Acad Sci U S A 2021; 118:e2101119118. [PMID: 34088840 PMCID: PMC8201832 DOI: 10.1073/pnas.2101119118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two β-adrenergic receptor (β-AR) subtypes, β1 and β2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for β1-AR but not for β2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent β-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the β2-AR is confined to and diffuses within the T-tubular network, as opposed to the β1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the β2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the β2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Mice
- Mice, Transgenic
- Molecular Imaging
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Philipp Gmach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Horst-Holger Boltz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department for Modelling and Simulation of Complex Processes, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Department of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
- ISAR Bioscience Institute, 82152 Munich-Planegg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
36
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
37
|
Shivnaraine RV, Kelly B, Elmslie G, Huang XP, Dong YJ, Seidenberg M, Wells JW, Ellis J. Allostery of atypical modulators at oligomeric G protein-coupled receptors. Sci Rep 2021; 11:9265. [PMID: 33927236 PMCID: PMC8085029 DOI: 10.1038/s41598-021-88399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional effects of orthosteric ligands through a mix of conformational changes, steric hindrance and electrostatic repulsion transmitted within and between the constituent protomers of an oligomer. Tacrine has been called an atypical modulator because it exhibits positive cooperativity, as revealed by Hill coefficients greater than 1 in its negative allosteric effect on binding and response. Radioligand binding and molecular dynamics simulations were used to probe the mechanism of that modulation in monomers and oligomers of wild-type and mutant M2 receptors. Tacrine is not atypical at monomers, which indicates that its atypical effects are a property of the receptor in its oligomeric state. These results illustrate that oligomerization of the M2 receptor has functional consequences.
Collapse
Affiliation(s)
- Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, B163 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA.
| | - Brendan Kelly
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gwendolynne Elmslie
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Xi-Ping Huang
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, The National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yue John Dong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Margaret Seidenberg
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| | - John Ellis
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Psychiatry H073, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
38
|
Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021; 10:e67027. [PMID: 33880992 PMCID: PMC8102066 DOI: 10.7554/elife.67027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G-protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. Although numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here, we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric, and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.
Collapse
Affiliation(s)
- Jordana K Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Alexa Strauss
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| | | | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Martin J Lohse
- Max Delbrück Center for Molecular MedicineBerlinGermany
- ISAR Bioscience InstitutePlanegg-MunichGermany
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| |
Collapse
|
39
|
Işbilir A, Serfling R, Möller J, Thomas R, De Faveri C, Zabel U, Scarselli M, Beck-Sickinger AG, Bock A, Coin I, Lohse MJ, Annibale P. Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells. Nat Protoc 2021; 16:1419-1451. [PMID: 33514946 DOI: 10.1038/s41596-020-00458-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.
Collapse
Affiliation(s)
- Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Romy Thomas
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chiara De Faveri
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,ISAR Bioscience Institute, Munich, Germany.
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
40
|
Laasfeld T, Ehrminger R, Tahk MJ, Veiksina S, Kõlvart KR, Min M, Kopanchuk S, Rinken A. Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. NANOSCALE 2021; 13:2436-2447. [PMID: 33464268 DOI: 10.1039/d0nr06737g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studying mechanisms of receptor-ligand interactions has remained challenging due to several limitations of different measurement methods. Here we present a total internal reflection fluorescence microscopy-based method that maintains the right balance between retaining the receptors in the natural lipid environment, sufficient throughput for ligand screening, high sensitivity, and offering more detailed view into the ligand-binding process. The novel method combines G protein-coupled receptor display in budded baculovirus particles and the immobilization of the particles to a functionalized coverslip. We adapted and validated the functionalized coverslip preparation process to achieve selective immobilization of budded baculovirus particles. The selectivity of budded baculovirus immobilization was validated with budded baculovirus particles displaying either Frizzled 6 receptors labeled with mCherry or neuropeptide Y Y1 receptors. To scale the system for ligand binding assays, we developed both open-source multiwell systems and image analysis software SPOTNIC for flexible assay design. The neuropeptide Y Y1 receptor was used for further receptor-ligand binding studies with high-affinity TAMRA labeled fluorescent ligand UR-MC026. The affinities of the fluorescent ligand and four unlabeled ligands (BIBO3304, UR-MK299, PYY, pNPY) were obtained with the developed method and followed a similar trend with both the parallel measurements with fluorescence anisotropy method and the data published earlier. The novel method could be extended for various advanced assays utilizing multidimensional detection modes, integrating super-resolution methods for single molecule detection and microfluidic devices for kinetic measurements.
Collapse
Affiliation(s)
- Tõnis Laasfeld
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Robin Ehrminger
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia. and Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Maris-Johanna Tahk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Karl Rene Kõlvart
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Mart Min
- Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Sergei Kopanchuk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
41
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
42
|
Yanagawa M, Sako Y. Workflows of the Single-Molecule Imaging Analysis in Living Cells: Tutorial Guidance to the Measurement of the Drug Effects on a GPCR. Methods Mol Biol 2021; 2274:391-441. [PMID: 34050488 DOI: 10.1007/978-1-0716-1258-3_32] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Single-molecule imaging (SMI) is a powerful method to measure the dynamics of membrane proteins on the cell membrane. The single-molecule tracking (SMT) analysis provides information about the diffusion dynamics, the oligomer size distribution, and the particle density change. The affinity and on/off-rate of a protein-protein interaction can be estimated from the dual-color SMI analysis. However, it is difficult for trainees to determine quantitative information from the SMI movies. The present protocol guides the detailed workflows to measure the drug-activated dynamics of a G protein-coupled receptor (GPCR) and metabotropic glutamate receptor 3 (mGluR3), by using the total internal reflection fluorescence microscopy (TIRFM). This tutorial guidance comprises an open-source software, named smDynamicsAnalyzer, with which one can easily analyze the SMT dataset by just following the workflows after building a designated folder structure ( https://github.com/masataka-yanagawa/IgorPro8-smDynamicsAnalyzer ).
Collapse
Affiliation(s)
- Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan.
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
43
|
Kappa but not delta or mu opioid receptors form homodimers at low membrane densities. Cell Mol Life Sci 2021; 78:7557-7568. [PMID: 34657173 PMCID: PMC8629795 DOI: 10.1007/s00018-021-03963-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/03/2022]
Abstract
Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.
Collapse
|
44
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Mashanov GI, Nenasheva TA, Mashanova T, Maclachlan C, Birdsall NJM, Molloy JE. A method for imaging single molecules at the plasma membrane of live cells within tissue slices. J Gen Physiol 2020; 153:211598. [PMID: 33326014 PMCID: PMC7748802 DOI: 10.1085/jgp.202012657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023] Open
Abstract
Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.
Collapse
Affiliation(s)
| | - Tatiana A Nenasheva
- Russian Academy of Science, Koltzov Institute of Developmental Biology, Moscow, Russia
| | | | | | | | | |
Collapse
|
46
|
Allikalt A, Purkayastha N, Flad K, Schmidt MF, Tabor A, Gmeiner P, Hübner H, Weikert D. Fluorescent ligands for dopamine D 2/D 3 receptors. Sci Rep 2020; 10:21842. [PMID: 33318558 PMCID: PMC7736868 DOI: 10.1038/s41598-020-78827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fluorescent ligands are versatile tools for the study of G protein-coupled receptors. Depending on the fluorophore, they can be used for a range of different applications, including fluorescence microscopy and bioluminescence or fluorescence resonance energy transfer (BRET or FRET) assays. Starting from phenylpiperazines and indanylamines, privileged scaffolds for dopamine D2-like receptors, we developed dansyl-labeled fluorescent ligands that are well accommodated in the binding pockets of D2 and D3 receptors. These receptors are the target proteins for the therapy for several neurologic and psychiatric disorders, including Parkinson’s disease and schizophrenia. The dansyl-labeled ligands exhibit binding affinities up to 0.44 nM and 0.29 nM at D2R and D3R, respectively. When the dansyl label was exchanged for sterically more demanding xanthene or cyanine dyes, fluorescent ligands 10a-c retained excellent binding properties and, as expected from their indanylamine pharmacophore, acted as agonists at D2R. While the Cy3B-labeled ligand 10b was used to visualize D2R and D3R on the surface of living cells by total internal reflection microscopy, ligand 10a comprising a rhodamine label showed excellent properties in a NanoBRET binding assay at D3R.
Collapse
Affiliation(s)
- Anni Allikalt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Nirupam Purkayastha
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Khajidmaa Flad
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Alina Tabor
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
47
|
Yano Y, Watanabe Y, Matsuzaki K. Thermodynamic and kinetic stabilities of transmembrane helix bundles as revealed by single-pair FRET analysis: Effects of the number of membrane-spanning segments and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183532. [PMID: 33316240 DOI: 10.1016/j.bbamem.2020.183532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
The tertiary structures and conformational dynamics of transmembrane (TM) helical proteins are maintained by the interhelical interaction network in membranes, although it is complicated to analyze the underlying driving forces because the amino acid sequences can involve multiple and various types of interactions. To obtain insights into basal and common effects of the number of membrane-spanning segments and membrane cholesterol, we measured stabilities of helix bundles composed of simple TM helices (AALALAA)3 (1TM) and (AALALAA)3-G5-(AALALAA)3 (2TM). Association-dissociation dynamics for 1TM-1TM, 1TM-2TM, and 2TM-2TM pairs were monitored to compare stabilities of 2-, 3-, and 4-helical bundles, respectively, with single-pair fluorescence resonance energy transfer (sp-FRET) in liposome membranes. Both thermodynamic and kinetic stabilities of the helix bundles increased with a greater number of membrane-spanning segments in POPC. The presence of 30 mol% cholesterol strongly enhanced the formation of 1TM-1TM and 1TM-2TM bundles (~ - 9 kJ mol-1), whereas it only weakly stabilized the 2TM-2TM bundle (~ - 3 kJ mol-1). Fourier transform infrared-polarized attenuated total reflection (ATR-FTIR) spectroscopy revealed an ~30° tilt of the helix axis relative to bilayer normal for the 1TM-2TM pair in the presence of cholesterol, suggesting the formation of a tilted helix bundle to release high lateral pressure at the center of cholesterol-containing membranes. These results demonstrate that the number of membrane-spanning segments affects the stability and structure of the helix bundle, and their cholesterol-dependences. Such information is useful to understand the basics of folding and assembly of multispanning TM proteins.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
48
|
FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proc Natl Acad Sci U S A 2020; 117:31800-31807. [PMID: 33257569 DOI: 10.1073/pnas.2018554117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of α-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.
Collapse
|
49
|
Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc Natl Acad Sci U S A 2020; 117:29144-29154. [PMID: 33148803 PMCID: PMC7682396 DOI: 10.1073/pnas.2013319117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Class A G protein−coupled receptors (GPCRs) can form dimers and oligomers via poorly understood mechanisms. We show here that the chemokine receptor CXCR4, which is a major pharmacological target, has an oligomerization behavior modulated by its active conformation. Combining advanced, single-molecule, and single-cell optical tools with functional assays and computational approaches, we unveil three key features of CXCR4 quaternary organization: CXCR4 dimerization 1) is dynamic, 2) increases with receptor expression level, and 3) can be disrupted by stabilizing an inactive receptor conformation. Ligand binding motifs reveal a ligand binding subpocket essential to modulate both CXCR4 basal activity and dimerization. This is relevant to develop new strategies to design CXCR4-targeting drugs. Although class A G protein−coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer−dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.
Collapse
|
50
|
Paprocki J, Biener G, Stoneman M, Raicu V. In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. J Phys Chem B 2020; 124:10062-10076. [DOI: 10.1021/acs.jpcb.0c06081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|