1
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Muñoz-Oreja M, Sandoval A, Bruland O, Perez-Rodriguez D, Fernandez-Pelayo U, de Arbina AL, Villar-Fernandez M, Hernández-Eguiazu H, Hernández I, Park Y, Goicoechea L, Pascual-Frías N, Garcia-Ruiz C, Fernandez-Checa J, Martí-Carrera I, Gil-Bea FJ, Hasan MT, Gegg ME, Bredrup C, Knappskog PM, Gereñu-Lopetegui G, Varhaug KN, Bindoff LA, Spinazzola A, Yoon WH, Holt IJ. Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation. Brain 2024; 147:1899-1913. [PMID: 38242545 PMCID: PMC11068212 DOI: 10.1093/brain/awae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.
Collapse
Affiliation(s)
- Mikel Muñoz-Oreja
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
| | - Abigail Sandoval
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Uxoa Fernandez-Pelayo
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Amaia Lopez de Arbina
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Marina Villar-Fernandez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | | | - Ixiar Hernández
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Nerea Pascual-Frías
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Jose Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Itxaso Martí-Carrera
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Pediatric Neurology, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | | | - Mazahir T Hasan
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, E-48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
| | | | - Gorka Gereñu-Lopetegui
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Kristin N Varhaug
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Laurence A Bindoff
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian J Holt
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
3
|
Gainullina A, Mogilenko DA, Huang LH, Todorov H, Narang V, Kim KW, Yng LS, Kent A, Jia B, Seddu K, Krchma K, Wu J, Crozat K, Tomasello E, Dress R, See P, Scott C, Gibbings S, Bajpai G, Desai JV, Maier B, This S, Wang P, Aguilar SV, Poupel L, Dussaud S, Zhou TA, Angeli V, Blander JM, Choi K, Dalod M, Dzhagalov I, Gautier EL, Jakubzick C, Lavine K, Lionakis MS, Paidassi H, Sieweke MH, Ginhoux F, Guilliams M, Benoist C, Merad M, Randolph GJ, Sergushichev A, Artyomov MN. Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Rep 2023; 42:112046. [PMID: 36708514 PMCID: PMC10372199 DOI: 10.1016/j.celrep.2023.112046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.
Collapse
Affiliation(s)
- Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, St. Petersburg 197101, Russia; Laboratory of Bioinformatics and Molecular Genetics, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helena Todorov
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lim Sheau Yng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
| | - Andrew Kent
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Baosen Jia
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Kumba Seddu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karine Crozat
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Elena Tomasello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Regine Dress
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Peter See
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Charlotte Scott
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | - Sophie Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Geetika Bajpai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Maier
- Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), University Lyon, Inserm, U1111, Université Claude Bernard Lyon ,1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Peter Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Vargas Aguilar
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France; Center for Regenerative Therapies (CRTD), TU Dresden, 01307 Dresden, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Lucie Poupel
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Sébastien Dussaud
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Tyng-An Zhou
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Emmanuel L Gautier
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Claudia Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Kory Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), University Lyon, Inserm, U1111, Université Claude Bernard Lyon ,1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Michael H Sieweke
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13288 Marseille, France; Center for Regenerative Therapies (CRTD), TU Dresden, 01307 Dresden, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Martin Guilliams
- Laboratory of Immunoregulation, Inflammation Research Centre, VIB Ghent University, 9052 Ghent, Belgium
| | | | - Miriam Merad
- Immunology Institute and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexey Sergushichev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, St. Petersburg 197101, Russia.
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Hong W, Liu CC, Zhang H, Chen Z, Xiao M, Xu L. Cancer Cell Preferential Penetration and pH-Responsive Drug Delivery of Oligorutin. Biomacromolecules 2021; 22:3679-3691. [PMID: 34383480 DOI: 10.1021/acs.biomac.1c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report herein a novel delivery system, derived from the facile enzymatic synthesis of oligorutin (OR), for cancer cell targeting and pH-responsive drug delivery. In this study, we demonstrate that OR could preferentially penetrate cancer cells via the lipid raft-mediated endocytosis pathway, and cell membrane cholesterol was critical to the internalization of OR. The accumulation of OR in the tumor region was further confirmed by an in vivo biodistribution study. Considering the tumor-targeting property of OR, a pH-responsive drug delivery system (OR-BTZ) was developed by covalent conjugation of the catechol groups on OR with antitumor drug bortezomib (BTZ) through a pH-sensitive borate ester bond. OR-BTZ exerted cytotoxicity as well as inhibition of the migration and invasion to hepatoma carcinoma cells and showed no apparent cytotoxicity with liver normal cells. The OR-BTZs also presented significant therapeutic efficacy and low systematic toxicity in the murine hepatocellular carcinoma model. To our knowledge, this study presents the first attempt to exploit the potential of oligoflavonoids for cancer cell-targeted drug delivery and will motivate the development of flavonoids and their derivatives as a new type of biomaterials for tumor-targeted therapy.
Collapse
Affiliation(s)
- Weiying Hong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Martínez-Beamonte R, Sánchez-Marco J, Felices MJ, Barranquero C, Gascón S, Arnal C, Burillo JC, Lasheras R, Busto R, Lasunción MA, Rodríguez-Yoldi MJ, Osada J. Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits. Food Funct 2021; 12:8141-8153. [PMID: 34291245 DOI: 10.1039/d0fo01836h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pospiech M, Owens SE, Miller DJ, Austin-Muttitt K, Mullins JGL, Cronin JG, Allemann RK, Sheldon IM. Bisphosphonate inhibitors of squalene synthase protect cells against cholesterol-dependent cytolysins. FASEB J 2021; 35:e21640. [PMID: 33991130 DOI: 10.1096/fj.202100164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Mateusz Pospiech
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Siân E Owens
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | | | | | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
9
|
Vaginal Isolates of Candida glabrata Are Uniquely Susceptible to Ionophoric Killer Toxins Produced by Saccharomyces cerevisiae. Antimicrob Agents Chemother 2021; 65:e0245020. [PMID: 33972245 PMCID: PMC8218651 DOI: 10.1128/aac.02450-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.
Collapse
|
10
|
Tomishige N, Murate M, Didier P, Richert L, Mély Y, Kobayashi T. The use of pore-forming toxins to image lipids and lipid domains. Methods Enzymol 2021; 649:503-542. [PMID: 33712198 DOI: 10.1016/bs.mie.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very few proteins are reported to bind specific lipids. Because of the high selectivity and strong binding to specific lipids, lipid-targeting pore forming toxins (PFTs) have been employed to study the distribution of lipids in cell- and model-membranes. Non-toxic and monomeric PFT-derivatives are especially useful to study living cells. In this chapter we highlight sphingomyelin (SM)-binding PFT, lysenin (Lys), its derivatives, and newly identified SM/cholesterol binding protein, nakanori. We describe the preparation of non-toxic mutant of Lys (NT-Lys) and its application in optical and super resolution microscopy. We also discuss the observation of nanometer scale lipid domains labeled with nakanori and maltose-binding protein (MBP)-Lys in electron microscopy.
Collapse
Affiliation(s)
| | | | - Pascal Didier
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | | - Yves Mély
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
11
|
Penkauskas T, Zentelyte A, Ganpule S, Valincius G, Preta G. Pleiotropic effects of statins via interaction with the lipid bilayer: A combined approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183306. [DOI: 10.1016/j.bbamem.2020.183306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022]
|
12
|
Komatsuya K, Kaneko K, Kasahara K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2020; 21:ijms21155539. [PMID: 32748854 PMCID: PMC7432685 DOI: 10.3390/ijms21155539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed.
Collapse
|
13
|
Petrov AM, Mast N, Li Y, Denker J, Pikuleva IA. Brain sterol flux mediated by cytochrome P450 46A1 affects membrane properties and membrane-dependent processes. Brain Commun 2020; 2. [PMID: 32661514 PMCID: PMC7357967 DOI: 10.1093/braincomms/fcaa043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 46A1 encoded by CYP46A1 catalyzes cholesterol 24-hydroxylation and is a CNS-specific enzyme that controls cholesterol removal and turnover in the brain. Accumulating data suggest that increases in cytochrome P450 46A1 activity in mouse models of common neurodegenerative diseases affect various, apparently unlinked biological processes and pathways. Yet, the underlying reason for these multiple enzyme activity effects is currently unknown. Herein, we tested the hypothesis that cytochrome P450 46A1-mediated sterol flux alters physico-chemical properties of the plasma membranes and thereby membrane-dependent events. We used 9-month old 5XFAD mice (an Alzheimer's disease model) treated for 6 months with the anti-HIV drug efavirenz. These animals have previously been shown to have improved behavioral performance, increased cytochrome P450 46A1 activity in the brain, and increased sterol flux through the plasma membranes. We further examined 9-month old Cyp46a1 -/- mice, which have previously been observed to have cognitive deficits and decreased sterol flux through brain membranes. Synaptosomal fractions from the brain of efavirenz-treated 5XFAD mice had essentially unchanged cholesterol levels as compared to control 5XFAD mice. However with efavirenz treatment in these mice, there were changes in the membrane properties (increased cholesterol accessibility, ordering, osmotic resistance, and thickness) as well as total glutamate content and ability to release glutamate in response to mild stimulation. Similarly, the cholesterol content in synaptosomal fractions from the brain of Cyp46a1 -/- mice was essentially the same as in wild type mice but knockout of Cyp46a1 was associated with changes in membrane properties and glutamate content and its exocytotic release. Changes in Cyp46a1 -/- mice were in the opposite direction to those observed in efavirenz-treated vs control 5XFAD mice. Incubation of synaptosomal fractions with the inhibitors of glycogen synthase kinase 3, cyclin-dependent kinase 5, protein phosphatase 1/2A or calcineurin, and protein phosphatase 2B revealed that increased sterol flux in efavirenz-treated vs control 5XFAD mice affected the ability of all four enzymes to modulate glutamate release. In contrast, in Cyp46a1 -/- vs wild type mice, decreased sterol flux altered the ability of only cyclin-dependent kinase 5 and protein phosphatase 2B to regulate the glutamate release. Collectively, our results support cytochrome P450 46A1-mediated sterol flux as an important contributor to the fundamental properties of the membranes, protein phosphorylation, and synaptic transmission Also, our data provide an explanation of how one enzyme, cytochrome P450 46A1, can affect multiple pathways and processes and serve as a common potential target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - John Denker
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
14
|
Mesquita FS, van der Goot FG, Sergeeva OA. Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cell Microbiol 2020; 22:e13167. [PMID: 32185902 PMCID: PMC7154709 DOI: 10.1111/cmi.13167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
A fundamental question of eukaryotic cell biology is how membrane organelles are organised and interact with each other. Cell biologists address these questions by characterising the structural features of membrane compartments and the mechanisms that coordinate their exchange. To do so, they must rely on variety of cargo molecules and treatments that enable targeted perturbation, localisation, and labelling of specific compartments. In this context, bacterial toxins emerged in cell biology as paradigm shifting molecules that enabled scientists to not only study them from the side of bacterial infection but also from the side of the mammalian host. Their selectivity, potency, and versatility made them exquisite tools for uncovering much of our current understanding of membrane trafficking mechanisms. Here, we will follow the steps that lead toxins until their intracellular targets, highlighting how specific events helped us comprehend membrane trafficking and establish the fundamentals of various cellular organelles and processes. Bacterial toxins will continue to guide us in answering crucial questions in cellular biology while also acting as probes for new technologies and applications.
Collapse
Affiliation(s)
| | | | - Oksana A Sergeeva
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| |
Collapse
|
15
|
Pleckaityte M. Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies. Front Cell Infect Microbiol 2020; 9:452. [PMID: 31998661 PMCID: PMC6966277 DOI: 10.3389/fcimb.2019.00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial vaginosis (BV) is a vaginal anaerobic dysbiosis that affects women of reproductive age worldwide. BV is microbiologically characterized by the depletion of vaginal lactobacilli and the overgrowth of anaerobic bacterial species. Accumulated evidence suggests that Gardnerella spp. have a pivotal role among BV-associated bacteria in the initiation and development of BV. However, Gardnerella spp. often colonize healthy women. Lactobacillus iners is considered as a prevalent constituent of healthy vaginal microbiota, and is abundant in BV. Gardnerella spp. and L. iners secrete the toxins vaginolysin (VLY) and inerolysin (INY), which have structural and activity features attributed to cholesterol-dependent cytolysins (CDCs). CDCs are produced by many pathogenic bacteria as virulence factors that participate in various stages of disease progression by forming lytic and non-lytic pores in cell membranes or via pore-independent pathways. VLY is expressed in the majority of Gardnerella spp. isolates; less is known about the prevalence of the gene that encodes INY. INY is a classical CDC; membrane cholesterol acts a receptor for INY. VLY uses human CD59 as its receptor, although cholesterol remains indispensable for VLY pore-forming activity. INY-induced damage of artificial membranes is directly dependent on cholesterol concentration in the bilayer, whereas VLY-induced damage occurs with high levels of membrane cholesterol (>40 mol%). VLY primarily forms membrane-embedded complete rings in the synthetic bilayer, whereas INY forms arciform structures with smaller pore sizes. VLY activity is high at elevated pH, which is characteristic of BV, whereas INY activity is high at more acidic pH, which is specific for a healthy vagina. Increased VLY levels in vaginal mucosa in vivo were associated with clinical indicators of BV. However, experimental evidence is lacking for the specific roles of VLY and INY in BV. The interplay between vaginal bacterial species affects the expression of the gene encoding VLY, thereby modulating the virulence of Gardnerella spp. This review discusses the current evidence for VLY and INY cytolysins, including their structures and activities, factors affecting their expression, and their potential impacts on the progression of anaerobic dysbiosis.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Laboratory of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
16
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
17
|
Hanashima S, Ibata Y, Watanabe H, Yasuda T, Tsuchikawa H, Murata M. Side-chain deuterated cholesterol as a molecular probe to determine membrane order and cholesterol partitioning. Org Biomol Chem 2019; 17:8601-8610. [DOI: 10.1039/c9ob01342c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
24dCho, which perfectly retains the cholesterol's membrane properties, was developed to examine cholesterol's interactions and membrane partitions using solid state 2H NMR.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yuki Ibata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hirofumi Watanabe
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Tomokazu Yasuda
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Michio Murata
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
18
|
Drücker P, Bachler S, Wolfmeier H, Schoenauer R, Köffel R, Babiychuk VS, Dittrich PS, Draeger A, Babiychuk EB. Pneumolysin-damaged cells benefit from non-homogeneous toxin binding to cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:795-805. [PMID: 29679741 DOI: 10.1016/j.bbalip.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/15/2018] [Indexed: 11/27/2022]
Abstract
Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca2+-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores. Here we provide evidence for the existence of plasmalemmal domains that are able to attract pneumolysin at high local concentrations. Within such a domain an immediate plasmalemmal perforation induced by a small number of pneumolysin pores would be capable of triggering the elimination of a large number of not yet active pre-pores/monomers and thus pre-empt more frequent and perilous perforation events. Our findings provide further insights into the functioning of the cellular repair machinery which benefits from an inhomogeneous plasmalemmal distribution of pneumolysin.
Collapse
Affiliation(s)
- Patrick Drücker
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering, ETH, Zurich 4058 Basel, Switzerland
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - René Köffel
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Viktoria S Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH, Zurich 4058 Basel, Switzerland
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| |
Collapse
|
19
|
Dumitru AC, Conrard L, Lo Giudice C, Henriet P, Veiga-da-Cunha M, Derclaye S, Tyteca D, Alsteens D. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes. Chem Commun (Camb) 2018; 54:6903-6906. [DOI: 10.1039/c8cc02201a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific mapping using AFM tips derivatized with toxin fragments targeting specific lipids as a novel approach to evidence lateral lipid heterogeneities at high-resolution.
Collapse
Affiliation(s)
- Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Louise Conrard
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Patrick Henriet
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Maria Veiga-da-Cunha
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Sylvie Derclaye
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Donatienne Tyteca
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| |
Collapse
|
20
|
Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis? Toxins (Basel) 2017; 9:toxins9120381. [PMID: 29168745 PMCID: PMC5744101 DOI: 10.3390/toxins9120381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) constitute a family of pore-forming toxins secreted by Gram-positive bacteria. These toxins form transmembrane pores by inserting a large β-barrel into cholesterol-containing membranes. Cholesterol is absolutely required for pore-formation. For most CDCs, binding to cholesterol triggers conformational changes that lead to oligomerization and end in pore-formation. Perfringolysin O (PFO), secreted by Clostridium perfringens, is the prototype for the CDCs. The molecular mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not fully understood. In particular, the location of the binding site for cholesterol has remained elusive. We have summarized here the current body of knowledge on the CDCs-cholesterol interaction, with focus on PFO. We have employed sterols in aqueous solution to identify structural elements in the cholesterol molecule that are critical for its interaction with PFO. In the absence of high-resolution structural information, site-directed mutagenesis data combined with binding studies performed with different sterols, and molecular modeling are beginning to shed light on this interaction.
Collapse
|
21
|
Screening and Identification of Bacillus thuringiensis Strains Native to Saudi Arabia that Exhibit Demonstrable Anticancer Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
23
|
Pfeiler S, Khandagale AB, Magenau A, Nichols M, Heijnen HFG, Rinninger F, Ziegler T, Seveau S, Schubert S, Zahler S, Verschoor A, Latz E, Massberg S, Gaus K, Engelmann B. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI. Sci Rep 2016; 6:34440. [PMID: 27694929 PMCID: PMC5046072 DOI: 10.1038/srep34440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation.
Collapse
Affiliation(s)
- Susanne Pfeiler
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Avinash B Khandagale
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Astrid Magenau
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maryana Nichols
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Harry F G Heijnen
- Laboratory of Clinical Chemistry and Haematology and Cell Microscopy Center, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Franz Rinninger
- Universitätsklinik Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Tilman Ziegler
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Stephanie Seveau
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sören Schubert
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, 80336, Germany
| | - Stefan Zahler
- Institut für Pharmazeutische Biologie, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Admar Verschoor
- Institut für Systemische Entzündungsforschung, Universität zu Lübeck, Lübeck, 23538, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, 53127, Germany.,Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA.,German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| |
Collapse
|
24
|
Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife 2016; 5. [PMID: 27657169 PMCID: PMC5033606 DOI: 10.7554/elife.17180] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.
Collapse
Affiliation(s)
- James R Edgar
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Paul T Manna
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Shinichi Nishimura
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - George Banting
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
25
|
Shoji A, Ikeya K, Aoyagi M, Takatsuji R, Yanagida A, Shibusawa Y, Sugawara M. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element. J Pharm Biomed Anal 2016; 128:455-461. [DOI: 10.1016/j.jpba.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
|
26
|
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 2016; 113:7858-63. [PMID: 27339137 DOI: 10.1073/pnas.1607769113] [Citation(s) in RCA: 694] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca(2+) from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane.
Collapse
|
27
|
Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway. Sci Rep 2016; 6:27080. [PMID: 27250250 PMCID: PMC4890043 DOI: 10.1038/srep27080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/15/2016] [Indexed: 12/22/2022] Open
Abstract
VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation.
Collapse
|
28
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
29
|
Bokori-Brown M, Petrov PG, Khafaji MA, Mughal MK, Naylor CE, Shore AC, Gooding KM, Casanova F, Mitchell TJ, Titball RW, Winlove CP. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. J Biol Chem 2016; 291:10210-27. [PMID: 26984406 DOI: 10.1074/jbc.m115.691899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Peter G Petrov
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Mawya A Khafaji
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Muhammad K Mughal
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire E Naylor
- the Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Angela C Shore
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Kim M Gooding
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Francesco Casanova
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Tim J Mitchell
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard W Titball
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - C Peter Winlove
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
30
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
31
|
Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 2015; 62:1-24. [PMID: 26738447 DOI: 10.1016/j.plipres.2015.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ludovic D'Auria
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
32
|
Abstract
Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally, events associated with pore formation can modulate properties of the lipid membrane and affect its organization. Model membranes do not necessarily reproduce the physicochemical properties of the native cellular membrane, and caution is needed when transferring results from model to native lipid membranes. In this context, the utilization of novel approaches that enable studying PFTs on living cells at a single molecule level should reveal complex protein-lipid membrane interactions in greater detail.
Collapse
Affiliation(s)
- Nejc Rojko
- Laboratory
for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory
for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Department
of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva
101, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Carquin M, Conrard L, Pollet H, Van Der Smissen P, Cominelli A, Veiga-da-Cunha M, Courtoy PJ, Tyteca D. Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation. Cell Mol Life Sci 2015; 72:4633-51. [PMID: 26077601 PMCID: PMC11113096 DOI: 10.1007/s00018-015-1951-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Louise Conrard
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Antoine Cominelli
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Pierre J Courtoy
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, 1200, Brussels, Belgium.
| |
Collapse
|
34
|
Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women. J Clin Microbiol 2015; 53:3304-9. [PMID: 26269625 DOI: 10.1128/jcm.01387-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/01/2015] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m(-2)), normal weight (BMI of 18.5 to 22.9 kg m(-2)), overweight (BMI of 23.0 to 24.9 kg m(-2)), and obese (BMI of ≥25 kg m(-2)). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia.
Collapse
|
35
|
Ros U, García-Sáez AJ. More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes. J Membr Biol 2015; 248:545-61. [PMID: 26087906 DOI: 10.1007/s00232-015-9820-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Pore-forming proteins (PFPs) punch holes in their target cell membrane to alter their permeability. Permeabilization of lipid membranes by PFPs has received special attention to study the basic molecular mechanisms of protein insertion into membranes and the development of biotechnological tools. PFPs act through a general multi-step mechanism that involves (i) membrane partitioning, (ii) insertion into the hydrophobic core of the bilayer, (iii) oligomerization, and (iv) pore formation. Interestingly, PFPs and membranes show a dynamic interplay. As PFPs are usually produced as soluble proteins, they require a large conformational change for membrane insertion. Moreover, membrane structure is modified upon PFPs insertion. In this context, the toroidal pore model has been proposed to describe a pore architecture in which not only protein molecules but also lipids are directly involved in the structure. Here, we discuss how PFPs and lipids cooperate and remodel each other to achieve pore formation, and explore new evidences of protein-lipid pore structures.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 # 455, Plaza de la Revolución, Havana, Cuba
| | | |
Collapse
|
36
|
Perfringolysin O: The Underrated Clostridium perfringens Toxin? Toxins (Basel) 2015; 7:1702-21. [PMID: 26008232 PMCID: PMC4448169 DOI: 10.3390/toxins7051702] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.
Collapse
|
37
|
Arita Y, Nishimura S, Ishitsuka R, Kishimoto T, Ikenouchi J, Ishii K, Umeda M, Matsunaga S, Kobayashi T, Yoshida M. Targeting Cholesterol in a Liquid-Disordered Environment by Theonellamides Modulates Cell Membrane Order and Cell Shape. ACTA ACUST UNITED AC 2015; 22:604-10. [DOI: 10.1016/j.chembiol.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
|
38
|
The cytolytic activity of vaginolysin strictly depends on cholesterol and is potentiated by human CD59. Toxins (Basel) 2015; 7:110-28. [PMID: 25590277 PMCID: PMC4303817 DOI: 10.3390/toxins7010110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Gardnerella vaginalis produces cytolysin vaginolysin (VLY), which has been suggested to be a contributor to bacterial vaginosis pathogenesis. VLY along with intermedilysin (ILY) from Streptococcus intermedius have been attributed to a group of cholesterol-dependent cytolysins (CDCs) whose pore-forming activity depends on human CD59 (hCD59). Here, we show that different types of cells lacking hCD59 are susceptible to VLY-mediated lysis, albeit to different extents. We analyze the effects of both hCD59 and cholesterol on VLY cytolytic activity. We show that VLY binds to cholesterol-rich membranes of non-human cells, while VLY with an impaired cholesterol recognition site retains binding to the hCD59-containing cells. We further demonstrate that cholesterol binding by VLY is sufficient to trigger the formation of oligomeric complexes on cholesterol rich-liposomes lacking hCD59. Thus, VLY may induce cell lysis following two alternative pathways. One requires only cholesterol and does not depend on hCD59. The second pathway involves hCD59 contribution similarly to ILY. Apparently, under physiological conditions VLY acts in the most effective way by accepting the assistance of hCD59.
Collapse
|
39
|
Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014; 30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
|
40
|
Lin Q, London E. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophys J 2014; 105:2733-42. [PMID: 24359745 DOI: 10.1016/j.bpj.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 02/07/2023] Open
Abstract
Because transmembrane (TM) protein localization, or nonlocalization, in ordered membrane domains (rafts) is a key to understanding membrane domain function, it is important to define the origin of protein-raft interaction. One hypothesis is that a tight noncovalent attachment of TM proteins to lipids that have a strong affinity for ordered domains can be sufficient to induce raft-protein interaction. The sterol-binding protein perfringolysin O (PFO) was used to test this hypothesis. PFO binds both to sterols that tend to localize in ordered domains (e.g., cholesterol), and to those that do not (e.g., coprostanol), but it does not bind to epicholesterol, a raft-promoting 3α-OH sterol. Using a fluorescence resonance energy transfer assay in model membrane vesicles containing coexisting ordered and disordered lipid domains, both TM and non-TM forms of PFO were found to concentrate in ordered domains in vesicles containing high and low-Tm lipids plus cholesterol or 1:1 (mol/mol) cholesterol/epicholesterol, whereas they concentrate in disordered domains in vesicles containing high-Tm and low-Tm lipids plus 1:1 (mol/mol) coprostanol/epicholesterol. Combined with previous studies this behavior indicates that TM protein association with ordered domains is dependent upon both the association of the protein-bound sterol with ordered domains and hydrophobic match between TM segments and rafts.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
41
|
Skočaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Maček P, Veranič P, Sepčić K. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS One 2014; 9:e92783. [PMID: 24664106 PMCID: PMC3963934 DOI: 10.1371/journal.pone.0092783] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/25/2014] [Indexed: 01/01/2023] Open
Abstract
Ostreolysin A (OlyA) is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry) labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK) epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA. OlyA-mCherry also stained cholesterol/sphingomyelin domains in the plasma membranes of both fixed and living MDCK cells, and in the living cells, this staining was abolished by pretreatment with either methyl-β-cyclodextrin or sphingomyelinase. Double labelling of MDCK cells with OlyA-mCherry and the sphingomyelin-specific markers equinatoxin II-Alexa488 and GST-lysenin, the cholera toxin B subunit as a probe that binds to the ganglioside GM1, or the cholesterol-specific D4 domain of perfringolysin O fused with EGFP, showed different patterns of binding and distribution of OlyA-mCherry in comparison with these other proteins. Furthermore, we show that OlyA-mCherry is internalised in living MDCK cells, and within 90 min it reaches the juxtanuclear region via caveolin-1-positive structures. No binding to membranes could be seen when OlyA-mCherry was expressed in MDCK cells. Altogether, these data clearly indicate that OlyA-mCherry is a promising tool for labelling a distinct pool of cholesterol/sphingomyelin membrane domains in living and fixed cells, and for following these domains when they are apparently internalised by the cell.
Collapse
Affiliation(s)
- Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Grundner
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ota
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Andrzej Sobota
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
42
|
Takatori S, Mesman R, Fujimoto T. Microscopic methods to observe the distribution of lipids in the cellular membrane. Biochemistry 2014; 53:639-53. [PMID: 24460209 DOI: 10.1021/bi401598v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane lipids not only provide the structural framework of cellular membranes but also influence protein functions in several different ways. In comparison to proteins, however, relatively little is known about distribution of membrane lipids because of the insufficiency of microscopic methods. The difficulty in studying lipid distribution results from several factors, including their unresponsiveness to chemical fixation, fast translational movement, small molecular size, and high packing density. In this Current Topic, we consider the major microscopic methods and discuss whether and to what degree of precision these methods can reveal membrane lipid distribution in situ. We highlight two fixation methods, chemical and physical, and compare the theoretical limitations to their spatial resolution. Recognizing the strengths and weaknesses of each method should help researchers interpret their microscopic results and increase our understanding of the physiological functions of lipids.
Collapse
Affiliation(s)
- Sho Takatori
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine , Nagoya 466-8550, Japan
| | | | | |
Collapse
|
43
|
Abstract
The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependent cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.
Collapse
|
44
|
Nishimura S, Ishii K, Iwamoto K, Arita Y, Matsunaga S, Ohno-Iwashita Y, Sato SB, Kakeya H, Kobayashi T, Yoshida M. Visualization of sterol-rich membrane domains with fluorescently-labeled theonellamides. PLoS One 2013; 8:e83716. [PMID: 24386262 PMCID: PMC3873978 DOI: 10.1371/journal.pone.0083716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Cholesterol plays important roles in biological membranes. The cellular location where cholesterol molecules work is prerequisite information for understanding their dynamic action. Bioimaging probes for cholesterol molecules would be the most powerful means for unraveling the complex nature of lipid membranes. However, only a limited number of chemical or protein probes have been developed so far for cytological analysis. Here we show that fluorescently-labeled derivatives of theonellamides act as new sterol probes in mammalian cultured cells. The fluorescent probes recognized cholesterol molecules and bound to liposomes in a cholesterol-concentration dependent manner. The probes showed patchy distribution in the plasma membrane, while they stained specific organelle in the cytoplasm. These data suggest that fTNMs will be valuable sterol probes for studies on the role of sterols in the biological membrane under a variety of experimental conditions.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
- Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail: (SH); (MY)
| | | | | | - Yuko Arita
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Satoshi B. Sato
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto, Japan
| | - Hideaki Kakeya
- Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
- * E-mail: (SH); (MY)
| |
Collapse
|
45
|
Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood 2013; 122:3340-8. [PMID: 24002447 DOI: 10.1182/blood-2013-04-491290] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.
Collapse
|
46
|
Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J Lipid Res 2013; 54:2933-43. [PMID: 23918047 DOI: 10.1194/jlr.d041731] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mixture of sphingomyelin (SM) and cholesterol (Chol) exhibits a characteristic lipid raft domain of the cell membranes that provides a platform to which various signal molecules as well as virus and bacterial proteins are recruited. Several proteins capable of specifically binding either SM or Chol have been reported. However, proteins that selectively bind to SM/Chol mixtures are less well characterized. In our screening for proteins specifically binding to SM/Chol liposomes, we identified a novel ortholog of Pleurotus ostreatus, pleurotolysin (Ply)A, from the extract of edible mushroom Pleurotus eryngii, named PlyA2. Enhanced green fluorescent protein (EGFP)-conjugated PlyA2 bound to SM/Chol but not to phosphatidylcholine/Chol liposomes. Cell surface labeling of PlyA2-EGFP was abolished after sphingomyelinase as well as methyl-β-cyclodextrin treatment, removing SM and Chol, respectively, indicating that PlyA2-EGFP specifically binds cell surface SM/Chol rafts. Tryptophan to alanine point mutation of PlyA2 revealed the importance of C-terminal tryptophan residues for SM/Chol binding. Our results indicate that PlyA2-EGFP is a novel protein probe to label SM/Chol lipid domains both in cell and model membranes.
Collapse
Affiliation(s)
- Hema Balakrishna Bhat
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Werner HB, Krämer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Möbius W, Moser T, Griffiths IR, Nave KA. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 2013; 61:567-86. [PMID: 23322581 DOI: 10.1002/glia.22456] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport.
Collapse
Affiliation(s)
- Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Characterization of pneumolysin from Streptococcus pneumoniae, interacting with carbohydrate moiety and cholesterol as a component of cell membrane. Biochem Biophys Res Commun 2012; 430:659-63. [PMID: 23211600 DOI: 10.1016/j.bbrc.2012.11.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 11/20/2022]
Abstract
The cytolytic mechanism of cholesterol-dependent cytolysins (CDCs) requires the presence of cholesterol in the target cell membrane. Membrane cholesterol was thought to serve as the common receptor for these toxins, but not all CDCs require cholesterol for binding. One member of this toxin family, pneumolysin (PLY) is a major virulence factor of Streptococcus pneumoniae, and the mechanism via which PLY binds to its putative receptor or cholesterol on the cell membrane is still poorly understood. Here, we demonstrated that PLY interacted with carbohydrate moiety and cholesterol as a component of the cell membrane, using the inhibitory effect of hemolytic activity. The hemolytic activity of PLY was inhibited by cholesterol-MβCD, which is in a 3β configuration at the C3-hydroxy group, but is not in a 3α-configuration. In the interaction between PLY and carbohydrate moiety, the mannose showed a dose-dependent increase in the inhibition of PLY hemolytic activity. The binding ability of mannose with truncated PLYs, as determined by the pull-down assay, showed that mannose might favor binding to domain 4 rather than domains 1-3. These studies provide a new model for the mechanism of cellular recognition by PLY, as well as a foundation for future investigations into whether non-sterol molecules can serve as receptors for other members of the CDC family of toxins.
Collapse
|
49
|
Garcia PS, Chieppa G, Desideri A, Cannata S, Romano E, Luly P, Rufini S. Sticholysin II: A pore-forming toxin as a probe to recognize sphingomyelin in artificial and cellular membranes. Toxicon 2012; 60:724-33. [DOI: 10.1016/j.toxicon.2012.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/11/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022]
|
50
|
Saher G, Rudolphi F, Corthals K, Ruhwedel T, Schmidt KF, Löwel S, Dibaj P, Barrette B, Möbius W, Nave KA. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet. Nat Med 2012; 18:1130-5. [PMID: 22706386 DOI: 10.1038/nm.2833] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|