1
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
2
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
6
|
Yewdell JW, Dersh D, Fåhraeus R. Peptide Channeling: The Key to MHC Class I Immunosurveillance? Trends Cell Biol 2019; 29:929-939. [PMID: 31662235 DOI: 10.1016/j.tcb.2019.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA.
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Robin Fåhraeus
- Inserm, 27 rue Juliette Dodu, 750 10 Paris, France; International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| |
Collapse
|
7
|
Effect of Protein Denaturation and Enzyme Inhibitors on Proteasomal-Mediated Production of Peptides in Human Embryonic Kidney Cells. Biomolecules 2019; 9:biom9060207. [PMID: 31142026 PMCID: PMC6627375 DOI: 10.3390/biom9060207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides produced by the proteasome have been proposed to function as signaling molecules that regulate a number of biological processes. In the current study, we used quantitative peptidomics to test whether conditions that affect protein stability, synthesis, or turnover cause changes in the levels of peptides in Human Embryonic Kidney 293T (HEK293T) cells. Mild heat shock (42 °C for 1 h) or treatment with the deubiquitinase inhibitor b-AP15 led to higher levels of ubiquitinated proteins but did not significantly increase the levels of intracellular peptides. Treatment with cycloheximide, an inhibitor of protein translation, did not substantially alter the levels of intracellular peptides identified herein. Cells treated with a combination of epoxomicin and bortezomib showed large increases in the levels of most peptides, relative to the levels in cells treated with either compound alone. Taken together with previous studies, these results support a mechanism in which the proteasome cleaves proteins into peptides that are readily detected in our assays (i.e., 6–37 amino acids) and then further degrades many of these peptides into smaller fragments.
Collapse
|
8
|
ERAP1 shapes just part of the immunopeptidome. Hum Immunol 2019; 80:296-301. [DOI: 10.1016/j.humimm.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
|
9
|
Abstract
Since the publication of the DRiP (defective ribosomal product) hypothesis in 1996, numerous studies have addressed the contribution of DRiPs to generating viral antigenic peptides for CD8+ T cell immunosurveillance. Here, we review studies characterizing the generation of antigenic peptides from influenza A virus encoded DRiPs, discuss the many remaining mysteries regarding the nature of their co-translational generation, and speculate on where the future might lead.
Collapse
|
10
|
Woon AP, Purcell AW. The use of proteomics to understand antiviral immunity. Semin Cell Dev Biol 2018; 84:22-29. [PMID: 30449533 DOI: 10.1016/j.semcdb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Viruses are intracellular pathogens that cause a vast array of diseases, which are often severe and typified by high morbidity and mortality rates. Viral infections continue to be a global health burden and effective vaccines and therapeutics are constantly sought to prevent and treat these infections. The development of such treatments generally relies on understanding the mechanisms that underpin efficient host antiviral immune responses. This review summarises recent developments in our understanding of antiviral adaptive immunity and in particular, highlights the use of mass spectrometry to elucidate viral antigens and their processing and presentation to T cells and other immune effectors. These processed peptides serve as potential vaccine candidates or may facilitate clinical monitoring, diagnosis and immunotherapy of infectious diseases.
Collapse
Affiliation(s)
- Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Boulanger DSM, Eccleston RC, Phillips A, Coveney PV, Elliott T, Dalchau N. A Mechanistic Model for Predicting Cell Surface Presentation of Competing Peptides by MHC Class I Molecules. Front Immunol 2018; 9:1538. [PMID: 30026743 PMCID: PMC6041393 DOI: 10.3389/fimmu.2018.01538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex-I (MHC-I) molecules play a central role in the immune response to viruses and cancers. They present peptides on the surface of affected cells, for recognition by cytotoxic T cells. Determining which peptides are presented, and in what proportion, has profound implications for developing effective, medical treatments. However, our ability to predict peptide presentation levels is currently limited. Existing prediction algorithms focus primarily on the binding affinity of peptides to MHC-I, and do not predict the relative abundance of individual peptides on the surface of antigen-presenting cells in situ which is a critical parameter for determining the strength and specificity of the ensuing immune response. Here, we develop and experimentally verify a mechanistic model for predicting cell-surface presentation of competing peptides. Our approach explicitly models key steps in the processing of intracellular peptides, incorporating both peptide binding affinity and intracellular peptide abundance. We use the resulting model to predict how the peptide repertoire is modified by interferon-γ, an immune modulator well known to enhance expression of antigen processing and presentation proteins.
Collapse
Affiliation(s)
- Denise S. M. Boulanger
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth C. Eccleston
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | | | - Peter V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
12
|
Lawand M, Evnouchidou I, Baranek T, Montealegre S, Tao S, Drexler I, Saveanu L, Si-Tahar M, van Endert P. Impact of the TAP-like transporter in antigen presentation and phagosome maturation. Mol Immunol 2018; 113:75-86. [PMID: 29941219 DOI: 10.1016/j.molimm.2018.06.268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.
Collapse
Affiliation(s)
- Myriam Lawand
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Irini Evnouchidou
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Thomas Baranek
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Sebastian Montealegre
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Sha Tao
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ingo Drexler
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Loredana Saveanu
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France.
| |
Collapse
|
13
|
Immunoribosomes: Where's there's fire, there's fire. Mol Immunol 2018; 113:38-42. [PMID: 29361306 DOI: 10.1016/j.molimm.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
The MHC class I antigen presentation pathway enables T cell immunosurveillance of cancer cells, viruses and other intracellular pathogens. Rapidly degraded newly synthesized proteins (DRiPs) are a major source of self-, and particularly, viral antigenic peptides. A number of findings support the idea that a substantial fraction of antigenic peptides are synthesized by "immunoribosomes", a subset of translating ribosomes that generate class I peptides with enhanced efficiency. Here, we review the evidence for the immunoribosome hypothesis.
Collapse
|
14
|
Palmer AL, de Jong A, Leestemaker Y, Geurink PP, Wijdeven RH, Ovaa H, Dolan BP. Inhibition of the Deubiquitinase Usp14 Diminishes Direct MHC Class I Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2017; 200:928-936. [PMID: 29282303 DOI: 10.4049/jimmunol.1700273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/22/2017] [Indexed: 11/19/2022]
Abstract
Infected or transformed cells must present peptides derived from endogenous proteins on MHC class I molecules to be recognized and targeted for elimination by Ag-specific cytotoxic T cells. In the first step of peptide generation, proteins are degraded by the proteasome. In this study, we investigated the role of the ubiquitin-specific protease 14 (Usp14), a proteasome-associated deubiquitinase, in direct Ag presentation using a ligand-stabilized model protein expressed as a self-antigen. Chemical inhibition of Usp14 diminished direct presentation of the model antigenic peptide, and the effect was especially pronounced when presentation was restricted to the defective ribosomal product (DRiP) form of the protein. Additionally, presentation specifically from DRiP Ags was diminished by expression of a catalytically inactive form of Usp14. Usp14 inhibition did not appreciably alter protein synthesis and only partially delayed protein degradation as measured by a slight increase in the half-life of the model protein when its degradation was induced. Taken together, these data indicate that functional Usp14 enhances direct Ag presentation, preferentially of DRiP-derived peptides, suggesting that the processing of DRiPs is in some ways different from other forms of Ag.
Collapse
Affiliation(s)
- Amy L Palmer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Annemieke de Jong
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Yves Leestemaker
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Paul P Geurink
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ruud H Wijdeven
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Brian P Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331;
| |
Collapse
|
15
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
16
|
Dasgupta S, Yang C, Castro LM, Tashima AK, Ferro ES, Moir RD, Willis IM, Fricker LD. Analysis of the Yeast Peptidome and Comparison with the Human Peptidome. PLoS One 2016; 11:e0163312. [PMID: 27685651 PMCID: PMC5042401 DOI: 10.1371/journal.pone.0163312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Peptides function as signaling molecules in species as diverse as humans and yeast. Mass spectrometry-based peptidomics techniques provide a relatively unbiased method to assess the peptidome of biological samples. In the present study, we used a quantitative peptidomic technique to characterize the peptidome of the yeast Saccharomyces cerevisiae and compare it to the peptidomes of mammalian cell lines and tissues. Altogether, 297 yeast peptides derived from 75 proteins were identified. The yeast peptides are similar to those of the human peptidome in average size and amino acid composition. Inhibition of proteasome activity with either bortezomib or epoxomicin led to decreased levels of some yeast peptides, suggesting that these peptides are generated by the proteasome. Approximately 30% of the yeast peptides correspond to the N- or C-terminus of the protein; the human peptidome is also highly represented in N- or C-terminal protein fragments. Most yeast and humans peptides are derived from a subset of abundant proteins, many with functions involving cellular metabolism or protein synthesis and folding. Of the 75 yeast proteins that give rise to peptides, 24 have orthologs that give rise to human and/or mouse peptides and for some, the same region of the proteins are found in the human, mouse, and yeast peptidomes. Taken together, these results support the hypothesis that intracellular peptides may have specific and conserved biological functions.
Collapse
Affiliation(s)
- Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Leandro M. Castro
- Biomedical Science Institute, Campus on the São Paulo Coast, São Paulo State University, São Vicente, 11330–900, SP, Brazil
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, 04023–901, SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo, 05508–000, SP, Brazil
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lawand M, Abramova A, Manceau V, Springer S, van Endert P. TAP-Dependent and -Independent Peptide Import into Dendritic Cell Phagosomes. THE JOURNAL OF IMMUNOLOGY 2016; 197:3454-3463. [PMID: 27664280 DOI: 10.4049/jimmunol.1501925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/24/2016] [Indexed: 11/19/2022]
Abstract
Cross-presentation of phagocytosed Ags by MHC class I (MHC-I) molecules is thought to involve transport of cytosolic peptides into dendritic cell phagosomes, mediated by TAP transporters recruited from the endoplasmic reticulum. However, because pure and tightly sealed phagosomes are difficult to obtain, direct evidence for peptide transport into phagosomes has remained limited. Moreover, the parameters determining peptide uptake by, and survival in, phagosomes remain little characterized. In this study, we monitored peptide import into phagosomes by flow cytometry using two types of fluorescent reporter peptides, one of which directly bound to intraphagosomal beads. We observed that a peptide with high TAP affinity is imported into phagosomes in a TAP- and ATP-dependent manner, as expected. However, surprisingly, import of the OVA peptide SIINFEKL, a CD8+ T cell epitope frequently used to study cross-presentation, is ATP-dependent but substantially TAP-independent. The half-life of both reporter peptides is shortened by enhanced phagosome maturation triggered by TLR signaling. Conversely, formation of complexes with MHC-I molecules enhances peptide accumulation in phagosomes. Collectively, these results confirm that TAP can import peptides into phagosomes, but they suggest that some peptides, including the popular SIINFEKL, can enter phagosomes also via a second unknown energy-dependent mechanism. Therefore, the frequently reported TAP dependence of cross-presentation of phagocytosed OVA may principally reflect a requirement for recycling MHC-I molecules rather than SIINFEKL import into phagosomes via TAP.
Collapse
Affiliation(s)
- Myriam Lawand
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Anastasia Abramova
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Valérie Manceau
- INSERM, Unité 1151, 75015 Paris, France.,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Peter van Endert
- INSERM, Unité 1151, 75015 Paris, France; .,CNRS, Unité 8253, 75015 Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; and
| |
Collapse
|
18
|
Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 2016; 7:10238. [PMID: 26728094 PMCID: PMC4728431 DOI: 10.1038/ncomms10238] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
In view of recent reports documenting pervasive translation outside of canonical protein-coding sequences, we wished to determine the proportion of major histocompatibility complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using high-throughput mass spectrometry to probe the six-frame translation of the B-cell transcriptome. We report that ∼10% of MAPs originate from allegedly noncoding genomic sequences or exonic out-of-frame translation. The biogenesis and properties of these ‘cryptic MAPs' differ from those of conventional MAPs. Cryptic MAPs come from very short proteins with atypical C termini, and are coded by transcripts bearing long 3′UTRs enriched in destabilizing elements. Relative to conventional MAPs, cryptic MAPs display different MHC class I-binding preferences and harbour more genomic polymorphisms, some of which are immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the scope of CD8 T-cell immunosurveillance. Cryptic translation of the 'non-coding' genome is increasingly recognised, however its biological significance remains unclear. Laumont et al. employ proteogenomic techniques to map the human immunoproteome, and find that approximately 10% of MHC class I-associated peptides are cryptic.
Collapse
|
19
|
Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection. Infect Immun 2015; 84:480-90. [PMID: 26597986 DOI: 10.1128/iai.01254-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.
Collapse
|
20
|
Bitzer A, Basler M, Groettrup M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol Immunol 2015; 69:99-105. [PMID: 26598275 DOI: 10.1016/j.molimm.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Antigen processing for direct presentation on MHC class I molecules is a multistep process requiring the concerted activity of several cellular complexes. The essential steps at the beginning of this pathway, namely protein synthesis at the ribosome and degradation via the proteasome, have been known for years. Nevertheless, there is a considerable lack of factors identified to function between protein synthesis and degradation during antigen processing. Here, we analyzed the impact of the chaperone BAG6 on MHC class I cell surface expression and presentation of virus-derived peptides. Although an essential role of BAG6 in antigen processing has been proposed previously, we found BAG6 to be dispensable in this pathway. Still, interaction of BAG6 and the model antigen tyrosinase was enhanced during proteasome inhibition pointing towards a role of BAG6 in antigen degradation. Redundant chaperone pathways potentially mask the contribution of BAG6 to antigen processing and presentation.
Collapse
Affiliation(s)
- Annegret Bitzer
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| |
Collapse
|
21
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
22
|
Transport and quality control of MHC class I molecules in the early secretory pathway. Curr Opin Immunol 2015; 34:83-90. [PMID: 25771183 DOI: 10.1016/j.coi.2015.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.
Collapse
|
23
|
The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proc Natl Acad Sci U S A 2014; 111:E1591-9. [PMID: 24715725 DOI: 10.1073/pnas.1321902111] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MHC class I peptides are products of endogenous cellular protein degradation. Their prompt presentation, after rapid degradation of their newly synthesized source proteins, is needed to alert the immune system during pathogen infection. A possible source for such rapidly degrading proteins can be defective ribosome products (DRiPs), which include polypeptides produced as part of the pioneer round of translation, premature translation termination, and proteins failing to fold properly or to assemble into their multisubunit protein complexes. However, the identities and relative contribution to the MHC peptidome of these mature or newly synthesized and rapidly degraded cellular proteins is not well understood. To clarify these issues, we used dynamic stable isotope labeling by amino acids in cell culture to define the relative rates of synthesis of the HLA class I peptidomes and the source proteomes of three cultured human hematopoietic cell lines. Large numbers of HLA class I peptides were observed to be derived from DRiPs, defined here as HLA peptides that shift from their light to heavy isotope forms faster than their source proteins. Specific groups of proteins, such as ribosomal and T-complex protein 1 (TCP-1), contributed a disproportionately large number of DRiPs to the HLA peptidomes. Furthermore, no significant preference was observed for HLA peptides derived from the amino terminal regions of the proteins, suggesting that the contribution of products of premature translation termination was minimal. Thus, the most likely sources of DRiPs-derived HLA peptides are full-sized, misassembled, and surplus subunits of large protein complexes.
Collapse
|
24
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Rock KL, Farfán-Arribas DJ, Colbert JD, Goldberg AL. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol 2014; 35:144-52. [PMID: 24566257 DOI: 10.1016/j.it.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 01/03/2023]
Abstract
MHC class I molecules present peptides derived from intracellular proteins, enabling immune surveillance by CD8(+) T cells and the elimination of virus-infected and cancerous cells. It has been argued that the dominant source of MHC class I-presented peptides is through proteasomal degradation of newly synthesized defective proteins, termed defective ribosomal products (DRiPs). Here, we critically examine the DRiP hypothesis and discuss recent studies indicating that antigenic peptides are generated from the entire proteome and not just from failures in protein synthesis or folding.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Diego J Farfán-Arribas
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
|
27
|
Palmer AL, Dolan BP. MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97. PLoS One 2013; 8:e67796. [PMID: 23844095 PMCID: PMC3699533 DOI: 10.1371/journal.pone.0067796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022] Open
Abstract
CD8+ T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8+ T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.
Collapse
Affiliation(s)
- Amy L. Palmer
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hickman HD, Reynoso GV, Ngudiankama BF, Rubin EJ, Magadán JG, Cush SS, Gibbs J, Molon B, Bronte V, Bennink JR, Yewdell JW. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 2013; 13:155-68. [PMID: 23414756 PMCID: PMC3591514 DOI: 10.1016/j.chom.2013.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Despite extensive ex vivo investigation, the spatiotemporal organization of immune cells interacting with virus-infected cells in tissues remains uncertain. To address this, we used intravital multiphoton microscopy to visualize immune cell interactions with virus-infected cells following epicutaneous vaccinia virus (VV) infection of mice. VV infects keratinocytes in epidermal foci and numerous migratory dermal inflammatory monocytes that outlie the foci. We observed Ly6G(+) innate immune cells infiltrating and controlling foci, while CD8(+) T cells remained on the periphery killing infected monocytes. Most antigen-specific CD8(+) T cells in the skin did not interact with virus-infected cells. Blocking the generation of reactive nitrogen species relocated CD8(+) T cells into foci, modestly reducing viral titers. Depletion of Ly6G(+) and CD8(+) cells dramatically increased viral titers, consistent with their synergistic but spatially segregated viral clearance activities. These findings highlight previously unappreciated differences in the anatomic specialization of antiviral immune cell subsets.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wolf BJ, Princiotta MF. Processing of recombinant Listeria monocytogenes proteins for MHC class I presentation follows a dedicated, high-efficiency pathway. THE JOURNAL OF IMMUNOLOGY 2013; 190:2501-9. [PMID: 23396941 DOI: 10.4049/jimmunol.1201660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T lymphocytes recognize short peptides of ∼8-10 aa bound to MHC class I molecules (pMHC) on the surface of APCs. These peptides can be generated from either endogenous proteins synthesized by the biosynthetic machinery of the presenting cell or from exogenously sourced proteins. Because much of the research characterizing the MHC class I processing pathway has focused on endogenously synthesized proteins, it is not known whether differences exist in the processing pathway followed by endogenously synthesized versus exogenously sourced proteins. To highlight potential differences in the processing of endogenous versus exogenous proteins, we developed a model system to measure the efficiency of pMHC generation from nearly identical recombinant proteins expressed from vaccinia virus and Listeria monocytogenes. In these experiments, we uncovered a striking difference in the way recombinant Listeria Ags are processed and presented when compared with endogenously synthesized viral proteins. Specifically, we find that pMHC production from secreted Listeria proteins occurs at the same rate, independent of the cellular half-life of the protein from which it is derived, whereas the rate of pMHC production from endogenously synthesized viral proteins is absolutely dependent on its protein half-life. Accordingly, our data demonstrate the existence of a distinct and highly efficient MHC class I presentation pathway used for the processing of at least some exogenously synthesized proteins.
Collapse
Affiliation(s)
- Benjamin J Wolf
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
30
|
Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IEA, Lin LCW, Tscharke DC, Purcell AW. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog 2013; 9:e1003129. [PMID: 23382674 PMCID: PMC3561264 DOI: 10.1371/journal.ppat.1003129] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023] Open
Abstract
Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are directly linked to epitope presentation and immunogenicity. A major mechanism for the detection of virus infection is the recognition by T cells of short peptide fragments (epitopes) derived from the degradation of intracellular proteins presented at the cell surface in a complex with class I MHC. Whilst the mechanics of antigen degradation and the loading of peptides onto MHC are now well understood, the kinetics of epitope presentation have only been studied for individual model antigens. We addressed this issue by studying vaccinia virus, best known as the smallpox vaccine, using advanced mass spectrometry. Precise and simultaneous quantification of multiple peptide-MHC complexes showed that the surface of infected cells provides a surprisingly dynamic landscape from the point of view of anti-viral T cells. Further, concurrent measurement of virus protein levels demonstrated that in most cases, peak presentation of epitopes occurs at the same time or precedes the time of maximum protein build up. Finally, we found a complete disconnect between the abundance of epitopes on infected cells and the size of the responding T cell populations. These data provide new insights into how virus infected cells are seen by T cells, which is crucial to our understanding of anti-viral immunity and development of vaccines.
Collapse
Affiliation(s)
- Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stewart A. Smith
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yik Chun Wong
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chor Teck Tan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L. Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Inge E. A. Flesch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Leon C. W. Lin
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (DCT); (AWP)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (DCT); (AWP)
| |
Collapse
|
31
|
Determining the activity of the transporter associated with antigen processing in the compartments of the secretory pathway. Methods Mol Biol 2013. [PMID: 23329484 DOI: 10.1007/978-1-62703-218-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide-receptive MHC class I molecules and the TAP (transporter associated with antigen processing) peptide transporter are known to leave the ER and cycle through the cis side of the Golgi apparatus. The amount, and the extent of the activity, of TAP in post-ER compartments is likely to vary between different cell types. Here we describe a convenient microscopic assay to determine it.
Collapse
|
32
|
Premature translational termination products are rapidly degraded substrates for MHC class I presentation. PLoS One 2012; 7:e51968. [PMID: 23251665 PMCID: PMC3522582 DOI: 10.1371/journal.pone.0051968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
Nearly thirty percent of all newly synthesized polypeptides are targeted for rapid proteasome-mediated degradation. These rapidly degraded polypeptides (RDPs) are a source of antigenic substrates for the MHC class I presentation pathway, allowing for immunosurveillance of newly synthesized proteins by cytotoxic T lymphocytes. Despite the recognized role of RDPs in MHC I presentation, it remains unclear what molecular characteristics distinguish RDPs from their more stable counterparts. It has been proposed that premature translational termination products may constitute a form of RDP; indeed, in prokaryotes translational drop-off products are normal by-products of protein synthesis and are subsequently rapidly degraded. To study the cellular fate of premature termination products, we used the antibiotic puromycin as a means to experimentally manipulate prematurely terminated polypeptide production in human cells. At low concentrations, puromycin enhanced flux into rapidly degraded polypeptide pools, with small polypeptides being markedly more labile then high molecular weight puromycin adducts. Immunoprecipitation experiments using anti-puromycin antisera demonstrated that the majority of peptidyl-puromycins are rapidly degraded in a proteasome-dependent manner. Low concentrations of puromycin increased the recovery of cell surface MHC I-peptide complexes, indicating that prematurely terminated polypeptides can be processed for presentation via the MHC I pathway. In the continued presence of puromycin, however, MHC I export to the cell surface was inhibited, coincident with the accumulation of polyubiquitinated proteins. The time- and dose-dependent effects of puromycin suggest that the pool of peptidyl-puromycin adducts differ in their targeting to various proteolytic pathways that, in turn, differ in the efficiency with which they access the MHC I presentation machinery. These studies highlight the diversity of cellular proteolytic pathways necessary for the metabolism and immunosurveillance of prematurely terminated polypeptides that are, by their nature, highly heterogeneous.
Collapse
|
33
|
Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proc Natl Acad Sci U S A 2012; 109:15407-12. [PMID: 22949678 DOI: 10.1073/pnas.1208696109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitivity is essential in CD8+ T-cell killing of virus-infected cells and tumor cells. Although the affinity of the T-cell receptor (TCR) for antigen is relatively low, the avidity of T cell-antigen-presenting cell interactions is greatly enhanced by increasing the valence of the interaction. It is known that TCRs cluster into protein islands after engaging their cognate antigen (peptides bound to MHC molecules). Here, we show that mouse K(b) class I molecules segregate into preformed, long-lasting (hours) clusters on the antigen-presenting cell surface based on their bound viral peptide. Peptide-specific K(b) clustering occurs when source antigens are expressed by vaccinia or vesicular stomatitis virus, either as proteasome-liberated precursors or free intracellular peptides. By contrast, K(b)-peptide complexes generated by incubating cells with synthetic peptides are extensively intermingled on the cell surface. Peptide-specific complex sorting is first detected in the Golgi complex, and compromised by removing the K(b) cytoplasmic tail. Peptide-specific clustering is associated with increased T-cell sensitivity: on a per-complex basis, endogenous SIINFEKL activates T cells more efficiently than synthetic SIINFEKL, and wild-type K(b) presents endogenous SIINFEKL more efficiently than tailless K(b). We propose that endogenous processing generates peptide-specific clusters of class I molecules to maximize the sensitivity and speed of T-cell immunosurveillance.
Collapse
|
34
|
Abstract
In this issue of Blood, Granados et al explore the relationship between the cellular transcriptome and immunopeptidome,1,2 the repertoire of peptides presented by MHC class I molecules for immunosurveillance.
Collapse
|
35
|
David A, Dolan BP, Hickman HD, Knowlton JJ, Clavarino G, Pierre P, Bennink JR, Yewdell JW. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. ACTA ACUST UNITED AC 2012; 197:45-57. [PMID: 22472439 PMCID: PMC3317795 DOI: 10.1083/jcb.201112145] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new method for visualizing translation in cells via standard immunofluorescence microscopy provides evidence for translation in the nucleoplasm and nucleolus. Whether protein translation occurs in the nucleus is contentious. To address this question, we developed the ribopuromycylation method (RPM), which visualizes translation in cells via standard immunofluorescence microscopy. The RPM is based on ribosome-catalyzed puromycylation of nascent chains immobilized on ribosomes by antibiotic chain elongation inhibitors followed by detection of puromycylated ribosome-bound nascent chains with a puromycin (PMY)-specific monoclonal antibody in fixed and permeabilized cells. The RPM correlates localized translation with myriad processes in cells and can be applied to any cell whose translation is sensitive to PMY. In this paper, we use the RPM to provide evidence for translation in the nucleoplasm and nucleolus, which is regulated by infectious and chemical stress.
Collapse
Affiliation(s)
- Alexandre David
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
MHC class I antigen processing distinguishes endogenous antigens based on their translation from cellular vs. viral mRNA. Proc Natl Acad Sci U S A 2012; 109:7025-30. [PMID: 22509014 DOI: 10.1073/pnas.1112387109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand the generation of MHC class I-associated peptides, we used a model antigenic protein whose proteasome-mediated degradation is rapidly and reversibly controlled by Shield-1, a cell-permeant drug. When expressed from a stably transfected gene, the efficiency of antigen presentation is ~2%, that is, one cell-surface MHC class I-peptide complex is generated for every 50 folded source proteins degraded upon Shield-1 withdrawal. By contrast, when the same protein is expressed by vaccinia virus, its antigen presentation efficiency is reduced ~10-fold to values similar to those reported for other vaccinia virus-encoded model antigens. Virus infection per se does not modify the efficiency of antigen processing. Rather, the efficiency difference between cellular and virus-encoded antigens is based on whether the antigen is synthesized from transgene- vs. virus-encoded mRNA. Thus, class I antigen-processing machinery can distinguish folded proteins based on the precise details of their synthesis to modulate antigen presentation efficiency.
Collapse
|
37
|
Grauling-Halama S, Schenk S, Bubert A, Geginat G. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides. PLoS One 2012; 7:e33335. [PMID: 22428021 PMCID: PMC3299774 DOI: 10.1371/journal.pone.0033335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/14/2012] [Indexed: 12/01/2022] Open
Abstract
The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217–225 and p60 449–457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.
Collapse
Affiliation(s)
- Silke Grauling-Halama
- Institut für medizinische Mikrobiologie und Hygiene, Fakultät für Medizin Mannheim der Universität Heidelberg, Universität Heidelberg, Mannheim, Germany
| | - Simone Schenk
- Institut für medizinische Mikrobiologie und Hygiene, Fakultät für Medizin Mannheim der Universität Heidelberg, Universität Heidelberg, Mannheim, Germany
| | | | - Gernot Geginat
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Magdeburg, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Kreer C, Rauen J, Zehner M, Burgdorf S. Cross-presentation: how to get there - or how to get the ER. Front Immunol 2012; 2:87. [PMID: 22566876 PMCID: PMC3341993 DOI: 10.3389/fimmu.2011.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/16/2011] [Indexed: 11/13/2022] Open
Abstract
Antigen cross-presentation enables dendritic cells (DCs) to present extracellular antigens on major histocompatibility complex (MHC) I molecules, a process that plays an important role in the induction of immune responses against viruses and tumors and in the induction of peripheral tolerance. In order to allow intracellular processing for cross-presentation, internalized antigens are targeted by distinct endocytic receptors toward specific endosomal compartments, where they are protected from rapid lysosomal degradation. From these compartments, antigens are processed for loading onto MHC I molecules. Such processing generally includes antigen transport into the cytoplasm, a process that is regulated by members of the ER-associated degradation (ERAD) machinery. After proteasomal degradation in the cytoplasm, antigen-derived peptides have been shown to be re-imported into the same endosomal compartment by endosomal transporter associated with antigen processing, another ER protein, which is recruited toward the endosomes after DC maturation. In our review, we highlight the recent advances on the molecular mechanisms of cross-presentation. We focus on the necessity of such antigen storage compartments and point out important parallels to MHC I-restricted presentation of endogenous antigens. We discuss the composition of such endosomes and the targeting of extracellular antigens into this compartment by specific endocytic receptors. Finally, we highlight recent advances on the recruitment of the cross-presentation machinery, like the members of the MHC I loading complex and the ERAD machinery, from the ER toward these storage compartments, a process that can be induced by antigen encounter or by activation of the dendritic cell after contact with endotoxins.
Collapse
Affiliation(s)
- Christoph Kreer
- Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|
39
|
Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev 2011; 11:627-35. [PMID: 22100331 DOI: 10.1016/j.autrev.2011.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.
Collapse
|
40
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. [PMID: 22076556 DOI: 10.1038/nri3084] [Citation(s) in RCA: 1233] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
41
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011. [PMID: 22076556 DOI: 10.1038/nri3084.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
42
|
Hickman HD, Li L, Reynoso GV, Rubin EJ, Skon CN, Mays JW, Gibbs J, Schwartz O, Bennink JR, Yewdell JW. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. ACTA ACUST UNITED AC 2011; 208:2511-24. [PMID: 22042976 PMCID: PMC3256957 DOI: 10.1084/jem.20102545] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CCR5-binding chemokines produced in the draining lymph node after vaccinia virus infection guide naive CD8+ T cells toward DCs and away from the macrophage-rich zone, thereby facilitating optimal CD8+ T cell activation and cytokine production. Naive antiviral CD8+ T cells are activated in the draining LN (DLN) by dendritic cells (DCs) presenting viral antigens. However, many viruses infect LN macrophages, which participate in initiation of innate immunity and B cell activation. To better understand how and why T cells select infected DCs rather than macrophages, we performed intravital microscopy and ex vivo analyses after infecting mice with vaccinia virus (VV), a large DNA virus that infects both LN macrophages and DCs. Although CD8+ T cells interact with both infected macrophages and DCs in the LN peripheral interfollicular region (PIR), DCs generate more frequent and stable interactions with T cells. VV infection induces rapid release of CCR5-binding chemokines in the LN, and administration of chemokine-neutralizing antibodies diminishes T cell activation by increasing T cell localization to macrophages in the macrophage-rich region (MRR) at the expense of PIR DCs. Similarly, DC ablation increases both T cell localization to the MRR and the duration of T cell–macrophage contacts, resulting in suboptimal T cell activation. Thus, virus-induced chemokines in DLNs enable antiviral CD8+ T cells to distinguish DCs from macrophages to optimize T cell priming.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
44
|
Tan ACL, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1895-902. [PMID: 21765016 DOI: 10.4049/jimmunol.1100664] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human HLA-A2-restricted CD8(+) T cell response to influenza A virus (IAV) is largely directed against the matrix protein-derived M1(58-66) epitope and represents an archetypal example of CD8(+) T cell immunodominance. In this study, we examined the CD8(+) T cell hierarchy to M1(58-66) and two subdominant IAV-specific epitopes: NS1(122-130) and PA(46-55) in HLA-A2(+) human subjects and HLA-A2.1 transgenic (HHD) mice. Using epitope-based lipopeptides, we show that the CD8(+) T cell hierarchy induced by IAV infection could also be induced by lipopeptide vaccination in a context outside of viral infection when the Ag load is equalized. In the HHD HLA-A2.1 mouse model, we show that the naive T cell precursor frequencies, and competition at the Ag presentation level, can predict the IAV-specific CD8(+) T cell hierarchy. Immunization of mice with subdominant epitopes alone was unable to overcome the dominance of the M1(58-66)-specific response in the face of IAV challenge; however, a multiepitope vaccination strategy was most effective at generating a broad and multispecific response to infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Saunders PM, van Endert P. Running the gauntlet: from peptide generation to antigen presentation by MHC class I. ACTA ACUST UNITED AC 2011; 78:161-70. [DOI: 10.1111/j.1399-0039.2011.01735.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Hawkins O, Verma B, Lightfoot S, Jain R, Rawat A, McNair S, Caseltine S, Mojsilovic A, Gupta P, Neethling F, Almanza O, Dooley W, Hildebrand W, Weidanz J. An HLA-presented fragment of macrophage migration inhibitory factor is a therapeutic target for invasive breast cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6607-16. [PMID: 21515791 DOI: 10.4049/jimmunol.1003995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report describes a novel HLA/peptide complex with potential prognostic and therapeutic roles for invasive breast cancer. Macrophage migration inhibitory factor (MIF) mediates inflammation and immunity, and MIF overexpression is observed in breast cancer. We hypothesized that the HLA class I of cancerous breast epithelial cells would present MIF-derived peptides. Consistent with this hypothesis, the peptide FLSELTQQL (MIF(19-27)) was eluted from the HLA-A*0201 (HLA-A2) of breast cancer cell lines. We posited that if this MIF(19-27)/HLA-A2 complex was exclusively found in invasive breast cancer, it could be a useful prognostic indicator. To assess the presentation of MIF peptides by the HLA of various cells and tissues, mice were immunized with the MIF(19-27)/HLA-A2 complex. The resulting mAb (RL21A) stained invasive ductal carcinoma (IDC) but not ductal carcinoma in situ, fibroadenoma, or normal breast tissues. RL21A did not stain WBCs (total WBCs) or normal tissues from deceased HLA-A2 donors, substantiating the tumor-specific nature of this MIF/HLA complex. As this MIF/HLA complex appeared specific to the surface of IDC, RL21A was tested as an immunotherapeutic for breast cancer in vitro and in vivo. In vitro, RL21A killed the MDA-MB-231 cell line via complement and induction of apoptosis. In an in vivo orthotopic mouse model, administration of RL21A reduced MDA-MB-231 and BT-20 tumor burden by 5-fold and by >2-fold, respectively. In summary, HLA-presented MIF peptides show promise as prognostic cell surface indicators for IDC and as targets for immunotherapeutic intervention.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Apoptosis/drug effects
- Apoptosis/immunology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/immunology
- Dose-Response Relationship, Drug
- Female
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Kinetics
- Macrophage Migration-Inhibitory Factors/chemistry
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Nude
- Peptides/immunology
- Peptides/metabolism
- Prognosis
- Protein Binding/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Oriana Hawkins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van Endert P. Providing ligands for MHC class I molecules. Cell Mol Life Sci 2011; 68:1467-9. [PMID: 21365275 PMCID: PMC11114800 DOI: 10.1007/s00018-011-0654-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, 75015 Paris, France,
| |
Collapse
|
48
|
David A, Netzer N, Strader MB, Das SR, Chen CY, Gibbs J, Pierre P, Bennink JR, Yewdell JW. RNA binding targets aminoacyl-tRNA synthetases to translating ribosomes. J Biol Chem 2011; 286:20688-700. [PMID: 21460219 DOI: 10.1074/jbc.m110.209452] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we examine tRNA-aminoacyl synthetase (ARS) localization in protein synthesis. Proteomics reveals that ten of the twenty cytosolic ARSs associate with ribosomes in sucrose gradients: phenylalanyl-RS (FRS), and the 9 ARSs that form the multi-ARS complex (MSC). Using the ribopuromycylation method (RPM) for localizing intracellular translation, we show that FRS and the MSC, and to a lesser extent other ARSs, localize to translating ribosomes, most strikingly when translation is restricted to poxvirus or alphavirus factories in infected cells. Immunoproximity fluorescence indicates close proximity between MSC and the ribosome. Stress induced-translational shutdown recruits the MSC to stress-granules, a depot for mRNA and translation components. MSC binding to mRNA provides a facile explanation for its delivery to translating ribosomes and stress granules. These findings, along with the abundance of the MSC (9 × 10(6) copies per cell, roughly equimolar with ribosomes), is consistent with the idea that MSC specificity, recently reported to vary with cellular stress (Netzer, N., Goodenbour, J. M., David, A., Dittmar, K. A., Jones, R. B., Schneider, J. R., Boone, D., Eves, E. M., Rosner, M. R., Gibbs, J. S., Embry, A., Dolan, B., Das, S., Hickman, H. D., Berglund, P., Bennink, J. R., Yewdell, J. W., and Pan, T. (2009) Nature 462, 522-526) can be modulated at the level of individual mRNAs to modify decoding of specific gene products.
Collapse
Affiliation(s)
- Alexandre David
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands. Cell Mol Life Sci 2011; 68:1481-9. [PMID: 21416150 DOI: 10.1007/s00018-011-0656-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/27/2022]
Abstract
It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation.
Collapse
|
50
|
Dolan BP, Li L, Veltri CA, Ireland CM, Bennink JR, Yewdell JW. Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance. THE JOURNAL OF IMMUNOLOGY 2011; 186:2065-72. [PMID: 21228349 DOI: 10.4049/jimmunol.1003096] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand better the endogenous sources of MHC class I peptide ligands, we generated an antigenic reporter protein whose degradation is rapidly and reversibly controlled with Shield-1, a cell-permeant drug. Using this system, we demonstrate that defective ribosomal products (DRiPs) represent a major and highly efficient source of peptides and are completely resistant to our attempts to stabilize the protein. Although peptides also derive from nascent Shield-1-sensitive proteins and "retirees" created by Shield-1 withdrawal, these are much less efficient sources on a molar basis. We use this system to identify two drugs--each known to inhibit polyubiquitin chain disassembly--that selectively inhibit presentation of Shield-1-resistant DRiPs. These findings provide the initial evidence for distinct biochemical pathways for presentation of DRiPs versus retirees and implicate polyubiquitin chain disassembly or the actions of deubiquitylating enzymes as playing an important role in DRiP presentation.
Collapse
Affiliation(s)
- Brian P Dolan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|