1
|
Cong Y, Cui X, Shi Y, Pan X, Huang K, Geng Z, Xu P, Ge L, Zhu J, Xu J, Jia X. Tripartite-motif 3 represses ovarian cancer progression by downregulating lactate dehydrogenase A and inhibiting AKT signaling. Mol Cell Biochem 2024; 479:3405-3424. [PMID: 38367118 DOI: 10.1007/s11010-023-04920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/19/2023] [Indexed: 02/19/2024]
Abstract
The E3 ubiquitin ligase Tripartite-motif 3 (TRIM3) is known to play a crucial role in tumor suppression in various tumors through different mechanisms. However, its function and mechanism in ovarian cancer have yet to be elucidated. Our study aims to investigate the expression of TRIM3 in ovarian cancer and evaluate its role in the development of the disease. Our findings revealed a significant decrease in TRIM3 mRNA and protein levels in ovarian cancer tissues and cells when compared to normal ovarian epithelial tissues and cells. Furthermore, we observed a negative correlation between the protein level of TRIM3 and the FIGO stage, as well as a positive correlation with the survival of ovarian cancer patients. Using gain and loss of function experiments, we demonstrated that TRIM3 can inhibit cell proliferation, migration and invasion of the ovarian cancer cells in vitro, as well as suppress tumor growth in vivo. Mechanistic studies showed that TRIM3 interacts with lactate dehydrogenase A, a key enzyme in the glycolytic pathway, through its B-box and coiled-coil domains and induces its ubiquitination and proteasomal degradation, leading to the inhibition of glycolytic ability in ovarian cancer cells. RNA-sequencing analysis revealed significant alterations in the phosphatidylinositol signaling pathways upon TRIM3 overexpression. Additionally, overexpression of TRIM3 inhibited the phosphorylation of AKT. In conclusion, our study demonstrated that TRIM3 exerts a tumor-suppressive effect in ovarian cancer, at least partially, by downregulating LDHA and inhibiting the AKT signaling pathway, and thus leading to the inhibition of glycolysis and limiting the growth of ovarian cancer cells.
Collapse
Affiliation(s)
- Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xin Cui
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, 210004, Jiangsu, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Jin Zhu
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
2
|
Mi T, Kong X, Chen M, Guo P, He D. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm (Beijing) 2024; 5:e791. [PMID: 39415848 PMCID: PMC11480524 DOI: 10.1002/mco2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Collapse
Affiliation(s)
- Tao Mi
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Xiangpan Kong
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Meiling Chen
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Peng Guo
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
- Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouP.R. China
| | - Dawei He
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| |
Collapse
|
3
|
Kaneko R, Hirakawa R, Hijii S, Mori T, Katayama Y. Accurate evaluation of drug effect on the LDH activity of live cells: dual measurement of live cell number by fluorescent staining of nucleus and LDH activity by formazan. ANAL SCI 2024; 40:2075-2080. [PMID: 39033093 DOI: 10.1007/s44211-024-00631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Effect of drugs on the intracellular activity of lactate dehydrogenase (LDH) has been measured by using water-soluble tetrazolium (WST). Because the assay is usually conducted in the presence of dead cells, net activity of live cells is not evaluated. Here, we reported the assay of the net intracellular LDH activity of live cells by counting the live cells using fluorescent staining of nucleus. By using a deep red fluorescent dye, dual measurements of fluorescence signal of nucleus and absorbance of WST could be conducted with transparent 96-well-plates. We found that conventional assay in the presence of dead cells overestimate the effect of drugs on the LDH activity.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Rui Hirakawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Shoichi Hijii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023 ROC, Taiwan.
| |
Collapse
|
4
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Yiru Yuan
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tianhao Hu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Haozhe Piao
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
6
|
Kono M, Yamasaki K, Nakamura M. Investigating the regulatory mechanism of glucose metabolism by ubiquitin-like protein MNSFβ. Mol Biol Rep 2024; 51:1053. [PMID: 39404900 DOI: 10.1007/s11033-024-10009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Monoclonal nonspecific suppressor factor β (MNSFβ), a ubiquitously expressed member of the ubiquitin-like protein family, is associated with diverse cell regulatory functions. It has been implicated in glycolysis regulation and cell proliferation enhancement in the macrophage-like cell line Raw264.7. This study aims to show that HIF-1α regulates MNSFβ-mediated metabolic reprogramming. METHODS AND RESULTS In Raw264.7 cells, MNSFβ siRNA increased the oxygen consumption rate and reactive oxygen species (ROS) production but decreased ATP levels. Cells with MNSFβ knockdown showed a markedly increased ATP reduction rate upon the addition of oligomycin, a mitochondrial ATP synthase inhibitor. In addition, MNSFβ siRNA decreased the expression levels of mRNA and protein of HIF-1α-a regulator of glucose metabolism. Evaluation of the effect of MNSFβ on glucose metabolism in murine peritoneal macrophages revealed no changes in lactate production, glucose consumption, or ROS production. CONCLUSION MNSFβ affects both glycolysis and mitochondrial metabolism, suggesting HIF-1α involvement in the MNSFβ-regulated glucose metabolism in Raw264.7 cells.
Collapse
Affiliation(s)
- Megumi Kono
- Department of Cooperative Medical Research, Head Office for Regional Collaboration and Innovation, Shimane University, 89-1 Enya-Cho, Izumo, Shimane, 693-8501, Japan
| | - Kyoko Yamasaki
- Department of Cooperative Medical Research, Head Office for Regional Collaboration and Innovation, Shimane University, 89-1 Enya-Cho, Izumo, Shimane, 693-8501, Japan
| | - Morihiko Nakamura
- Department of Cooperative Medical Research, Head Office for Regional Collaboration and Innovation, Shimane University, 89-1 Enya-Cho, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
7
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Tian T, Dai H, Zhang M, Su M, Chen X, Huang R. Lactate Dehydrogenase A is Associated with Elevated FDG Metabolism, Radioiodine Non-avidity, and Poor Prognosis in Differentiated Thyroid Cancer. Acad Radiol 2024; 31:4011-4020. [PMID: 38866688 DOI: 10.1016/j.acra.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024]
Abstract
RATIONALE AND OBJECTIVES The role of lactate dehydrogenase A (LDHA) expression in differentiated thyroid cancer (DTC), especially in radioiodine-refractory DTC, remains unclear. The aim of this study was to analyse the relationships and the prognostic value of LDHA, glycolysis, and radioactive iodine (RAI) avidity in DTC. METHODS DTC patients who underwent 18F-FDG PET/CT and subsequent total thyroidectomy or metastasectomy were enroled. The expression levels of LDHA, glucose transporters (Glut) and Ki67 proteins in tumour tissue were measured using immunohistochemistry. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) of 18F-FDG PET/CT were measured. A radioiodine whole body scan was used to determine lesion radioiodine avidity. RESULTS 69 patients with DTC were enroled in this study, including 37 women (53.6%) and 32 men (46.4%), with a median age of 52 years (11 to 77 years). Regarding the pathological category, papillary thyroid cancer was documented in 50 patients (72.5%), while follicular and poorly differentiated thyroid cancer were found in 12 patients (17.4%) and seven patients (10.1%), respectively. Distant metastases were observed in 27 (39.1%) patients; 34 (49.3%) were classified as stage I, 16 (23.2%) as stage II, and 3 (4.3%) and 16 (23.2%) patients in stages III and IV, respectively. LDHA expression levels were correlated with Glut3 expression levels (r = 0.395, P = 0.003) and SUVmax (r = 0.408, P = 0.002). The median LDHA expression and lesion SUVmax of the RAI avidity group were lower than those of the non-RAI avidity group (200 vs. 285, P = 0.036; 3.06 vs. 8.38, P = 0.038, respectively). Elevated SUVmax (P = 0.004), MTV (P = 0.014), TLG (P = 0.001) and LDHA expression (P = 0.048) led to shorter time to progression (TTP); Cox regression analysis revealed that TLG (HR: 4.773, P = 0.047) was an independent prognostic factor of TTP. CONCLUSION Elevated LDHA is correlated with increased glucose metabolism, decreased radioiodine avidity, and accelerated disease progression. Moreover, 18F-FDG PET/CT acting as "in vivo pathology" is an excellent predictor of DTC prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China
| | - Hongyuan Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China
| | - Minggang Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China
| | - Rui Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No 37. Guoxue Alley 610041, Chengdu, China.
| |
Collapse
|
9
|
Zhang X, Liang C, Wu C, Wan S, Xu L, Wang S, Wang J, Huang X, Xu L. A rising star involved in tumour immunity: Lactylation. J Cell Mol Med 2024; 28:e70146. [PMID: 39417674 PMCID: PMC11483924 DOI: 10.1111/jcmm.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, continuous exploration worldwide has revealed that some metabolites produced during cellular and tissue metabolism can act as signalling molecules to exert different effects on the human body. These metabolites may act as cofactors for proteases or as post-translational modifications linked to proteins. Lactate, a traditional metabolite, is found at high levels in the tumour microenvironment (TME). Many studies have shown that lactate influences tumorigenesis and development via different mechanisms, not only through the metabolic reprogramming of tumours but also through its significant impact on tumour immunity. Previously, tumour cells were reported to use glucose and glutamine to fuel lactate metabolism; however, lactate serves not only as an energy source for tumour cells but also as a precursor substance needed for the post-translational modification of proteins. Recent studies identified a novel form of epigenetic modification, lactate-mediated histone lysine lactylation (Kla) and demonstrated that histone lactylation directly stimulates chromatin after gene transcription; consequently, lactylation has become a popular research topic in recent years. This article focuses on the research progress and application prospects of lactylation in the context of tumour immunity.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Changming Liang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Chengwei Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Senlin Wan
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Lishuai Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Song Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Jiawei Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Xiaoxu Huang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Li Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| |
Collapse
|
10
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Preston SEJ, Dahabieh MS, Flores González RE, Gonçalves C, Richard VR, Leibovitch M, Dakin E, Papadopoulos T, Lopez Naranjo C, McCallum PA, Huang F, Gagnon N, Perrino S, Zahedi RP, Borchers CH, Jones RG, Brodt P, Miller WH, Del Rincón SV. Blocking tumor-intrinsic MNK1 kinase restricts metabolic adaptation and diminishes liver metastasis. SCIENCE ADVANCES 2024; 10:eadi7673. [PMID: 39270021 PMCID: PMC11397505 DOI: 10.1126/sciadv.adi7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.
Collapse
Affiliation(s)
- Samuel E J Preston
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Michael S Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Raúl Ernesto Flores González
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christophe Gonçalves
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Matthew Leibovitch
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Eleanor Dakin
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Theodore Papadopoulos
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Carolina Lopez Naranjo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Paige A McCallum
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Natascha Gagnon
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Stephanie Perrino
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christoph H Borchers
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Pnina Brodt
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Departments of Surgery, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
12
|
Sharma H, Mondal S, Urquiza U, Esparza C, Bartlett S, Santa-Pinter L, Hill H, White M, Sharma P, Luckett-Chastain L, Cooper A, Rasel M, Gao P, Battaile KP, Shukla SK, Lovell S, Ihnat MA. Synthesis and biological characterization of an orally bioavailable lactate dehydrogenase-A inhibitor against pancreatic cancer. Eur J Med Chem 2024; 275:116598. [PMID: 38925013 DOI: 10.1016/j.ejmech.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lactate dehydrogenase-A (LDHA) is the major isoform of lactate dehydrogenases (LDH) that is overexpressed and linked to poor survival in pancreatic ductal adenocarcinoma (PDAC). Despite some progress, current LDH inhibitors have poor structural and physicochemical properties or exhibit unfavorable pharmacokinetics that have hampered their development. The present study reports the synthesis and biological evaluation of a novel class of LDHA inhibitors comprising a succinic acid monoamide motif. Compounds 6 and 21 are structurally related analogs that demonstrated potent inhibition of LDHA with IC50s of 46 nM and 72 nM, respectively. We solved cocrystal structures of compound 21-bound to LDHA that showed that the compound binds to a distinct allosteric site between the two subunits of the LDHA tetramer. Inhibition of LDHA correlated with reduced lactate production and reduction of glycolysis in MIA PaCa-2 pancreatic cancer cells. The lead compounds inhibit the proliferation of human pancreatic cancer cell lines and patient-derived 3D organoids and exhibit a synergistic cytotoxic effect with the OXPHOS inhibitor phenformin. Unlike current LDHA inhibitors, 6 and 21 have appropriate pharmacokinetics and ligand efficiency metrics, exhibit up to 73% oral bioavailability, and a cumulative half-life greater than 4 h in mice.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA.
| | - Somrita Mondal
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Uzziah Urquiza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Colter Esparza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Seth Bartlett
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Landon Santa-Pinter
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Hanna Hill
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Madalyn White
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Pragya Sharma
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Lerin Luckett-Chastain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Mohammad Rasel
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, USA
| | | | - Surendra K Shukla
- Department of Oncology Science, OU College of Medicine, Oklahoma City, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
13
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
14
|
Verma S, Budhu S, Serganova I, Dong L, Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, Zappasodi R, Wolchok JD, Merghoub T. Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest 2024; 134:e177606. [PMID: 39225102 PMCID: PMC11364391 DOI: 10.1172/jci177606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor reliance on glycolysis is a hallmark of cancer. Immunotherapy is more effective in controlling glycolysis-low tumors lacking lactate dehydrogenase (LDH) due to reduced tumor lactate efflux and enhanced glucose availability within the tumor microenvironment (TME). LDH inhibitors (LDHi) reduce glucose uptake and tumor growth in preclinical models, but their impact on tumor-infiltrating T cells is not fully elucidated. Tumor cells have higher basal LDH expression and glycolysis levels compared with infiltrating T cells, creating a therapeutic opportunity for tumor-specific targeting of glycolysis. We demonstrate that LDHi treatment (a) decreases tumor cell glucose uptake, expression of the glucose transporter GLUT1, and tumor cell proliferation while (b) increasing glucose uptake, GLUT1 expression, and proliferation of tumor-infiltrating T cells. Accordingly, increasing glucose availability in the microenvironment via LDH inhibition leads to improved tumor-killing T cell function and impaired Treg immunosuppressive activity in vitro. Moreover, combining LDH inhibition with immune checkpoint blockade therapy effectively controls murine melanoma and colon cancer progression by promoting effector T cell infiltration and activation while destabilizing Tregs. Our results establish LDH inhibition as an effective strategy for rebalancing glucose availability for T cells within the TME, which can enhance T cell function and antitumor immunity.
Collapse
Affiliation(s)
- Svena Verma
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Sadna Budhu
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Inna Serganova
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
| | - Lauren Dong
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Levi M. Mangarin
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Jonathan F. Khan
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Mamadou A. Bah
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Immunology and Microbial Pathogenesis Program
| | - Anais Assouvie
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Yacine Marouf
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Isabell Schulze
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Roberta Zappasodi
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
| | - Jedd D. Wolchok
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| | - Taha Merghoub
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
16
|
Feng X, Ren J, Zhang X, Kong D, Yin L, Zhou Q, Wang S, Li A, Guo Y, Wang Y, Feng X, Wang X, Niu J, Jiang Y, Zheng C. Lactate dehydrogenase A is implicated in the pathogenesis of B-cell lymphoma through regulation of the FER signaling pathway. Biofactors 2024; 50:1024-1038. [PMID: 38516823 DOI: 10.1002/biof.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in various tumors. However, the role of LDHA in the pathogenesis of B-cell lymphoma remains unclear. Analysis of data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases revealed an elevated LDHA expression in diffuse large B-cell lymphoma (DLBC) tissues compared with normal tissues. Similarly, our results demonstrated a significant increase in LDHA expression in tumor tissues from the patients with B-cell lymphoma compared with those with lymphadenitis. To further elucidate potential roles of LDHA in B-cell lymphoma pathogenesis, we silenced LDHA in the Raji cells (a B-cell lymphoma cell line) using shRNA techniques. Silencing LDHA led to reduced mitochondrial membrane integrity, adenosine triphosphate (ATP) production, glycolytic activity, cell viability and invasion. Notably, LDHA knockdown substantially suppressed in vivo growth of Raji cells and extended survival in mice bearing lymphoma (Raji cells). Moreover, proteomic analysis identified feline sarcoma-related protein (FER) as a differential protein positively associated with LDHA expression. Treatment with E260, a FER inhibitor, significantly reduced the metabolism, proliferation and invasion of Raji cells. In summary, our findings highlight that LDHA plays multiple roles in B-cell lymphoma pathogenesis via FER pathways, establishing LDHA/FER may as a potential therapeutic target.
Collapse
MESH Headings
- Humans
- Animals
- Signal Transduction
- Mice
- Cell Line, Tumor
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Lactate Dehydrogenase 5/metabolism
- Lactate Dehydrogenase 5/genetics
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Female
Collapse
Affiliation(s)
- Xiumei Feng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Jing Ren
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xunqi Zhang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Yin
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Qian Zhou
- Hematology Department, Linyi Central Hospital, Yishui, China
| | - Shunye Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Ai Li
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Yanan Guo
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Nursing, The Second Hospital of Shandong University, Jinan, China
| | - Jianhua Niu
- Department of Hematology, Fourth People's Hospital of Jinan City, Jinan, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Shima T, Taniguchi K, Inomata Y, Arima J, Lee SW. Glycolysis in gastrointestinal stromal tumor: a brief overview. Neoplasia 2024; 55:101022. [PMID: 38943997 PMCID: PMC11261875 DOI: 10.1016/j.neo.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Gastrointestinal stromal tumor (GIST) is the most prevalent mesenchymal tumor of the digestive tract. Its growth is primarily influenced by mutations in KIT or PDGFRA. Surgery is the primary treatment option for GIST; however, KIT inhibitors, such as imatinib, are used for inoperable cases. Resistance to imatinib is an upcoming challenge, especially because the effectiveness of alternative drugs is limited. Enhancement of the glycolysis pathway in cancer cells has been identified as a key feature in cancer. This unique metabolic activity has implications on tumor growth, prognosis, and resistance to therapy, even in GIST. Members of the glucose transporter (GLUT) family (particularly GLUT-1) play a significant role in GIST progression and response to treatment. Diagnostic imaging using 18F-fluorodeoxyglucose positron emission tomography/computed tomography, which enables visualization of glucose metabolism, can aid in GIST diagnosis and risk assessment. The interplay between glycolysis and GIST can lead to the development of various therapeutic strategies, especially those involving glycolysis-related molecules, such as hexokinase and lactate dehydrogenase. However, further research is required to understand the full spectrum of glycolysis in GIST and its therapeutic potential. Herein, we present an exhaustive overview and analysis of the role of glycolysis in GIST, especially as a therapeutic target.
Collapse
Affiliation(s)
- Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan; Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
18
|
Gao Y, Yan W, Sun L, Zhang X. PiRNA hsa_piR_019914 Promoted Chondrocyte Anabolic Metabolism By Inhibiting LDHA-Dependent ROS Production. Cartilage 2024; 15:303-314. [PMID: 37431854 PMCID: PMC11418426 DOI: 10.1177/19476035231181094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common joint disease. The occurrence and progression of OA are regulated by epigenetics. A large number of studies have shown the important regulatory role of noncoding RNAs in joint diseases. As the largest class of noncoding small RNAs, the importance of piRNAs in many diseases, especially cancer, has been increasingly recognized. However, few studies have explored the role of piRNAs in OA. Our study showed that hsa_piR_019914 decreased significantly in OA. This study aimed to demonstrate the role of hsa_piR_019914 as a potential biological target of OA in chondrocytes. DESIGN The GEO database and bioinformatics analysis were used for a series of screenings, and the OA model using human articular chondrocytes (C28/I2 cells), SW1353 cells under inflammatory factor stimulation was used to determine that hsa_piR_019914 was significantly downregulated in OA. Overexpression or inhibition of hsa_piR_019914 in C28/I2 cells was achieved by transfecting mimics or inhibitors. The effect of hsa_piR_019914 on the biological function of chondrocytes was verified by qPCR, flow cytometry, and colony formation assays in vitro. The target gene of hsa_piR_019914, lactate dehydrogenase A (LDHA), was screened by small RNA sequencing and quantitative polymerase chain reaction (qPCR), LDHA was knocked out in C28/I2 cells by the transfection of siRNA LDHA, and the relationship between hsa_piR_019914, LDHA, and reactive oxygen species (ROS) production was verified by flow cytometry. RESULTS The piRNA hsa-piR-019914 was significantly downregulated in osteoarthritis (OA). Hsa-piR-019914 reduced inflammation-mediated chondrocyte apoptosis and maintained cell proliferation and clone formation in vitro. Hsa-piR-019914 reduced the production of LDHA-dependent ROS through targeted regulation of LDHA expression, maintained chondrocyte-specific gene expression of ACAN and COL2, and inhibited the gene expression of MMP3 and MMP13. CONCLUSIONS Collectively, this study showed that hsa_piR_019914 was negatively correlated with the expression of LDHA, which mediates ROS production. Under the stimulation of inflammatory factors, overexpression of hsa_piR_019914 had a protective effect on chondrocytes in vitro, and the absence of hsa_piR_019914 exacerbated the negative effect of inflammation on chondrocytes. Studies on piRNAs provide new therapeutic interventions for OA.
Collapse
Affiliation(s)
- YuXuan Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Wen Yan
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Soochow, P.R. China
| | - Liangye Sun
- Department of Orthopedic Surgery, Luan Hospital, Anhui Medical University, Luan, China
| | - XiaoLing Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
19
|
Zhou Y, Lin L, Li F, Xu Y, Peng H, Chen Q. Juzaowan Suppresses Glycolysis in Breast Cancer Cells by Inhibiting the STAT3/C-Myc Axis. Nutr Cancer 2024:1-15. [PMID: 39210541 DOI: 10.1080/01635581.2024.2395066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Breast cancer (BC) is characterized by an increasing incidence and mortality rate. Juzaowan inhibits various malignant processes, although its mechanism in BC remains unclear. METHODS To evaluate the impact of Juzaowan on biological functions of BC cells, cellular assays were done to assess proliferation, migration, invasion, and apoptosis. Bioinformatics was used to identify signaling pathways affected by active ingredients of Juzaowan. BC cells were treated with Juzaowan. Western blot assayed lactate production, glucose consumption, and expression of proteins related to glycolytic pathway and STAT3/C-Myc axis. RESULTS Juzaowan suppressed BC cell proliferation and increased apoptosis. It downregulated anti-apoptotic protein BCL2 while upregulating pro-apoptotic proteins Bax and cleaved caspase 3. Juzaowan significantly inhibited BC cell migration and invasion. Significant upregulation of E-cadherin and significant downregulation of E-cadherin-binding protein ZEB1, N-cadherin, and vimentin were observed. Bioinformatics analysis and cellular experiments confirmed inhibition of Juzaowan on BC cell glucose uptake and glycolytic pathways-related key metabolic enzymes (GLUT1, PKM2, LDH) expressions. Western blot revealed that Juzaowan induced metabolic alterations in BC cells by impeding STAT3/C-Myc axis. CONCLUSION This study elucidated molecular mechanisms of Juzaowan inhibiting BC cell glycolysis by repressing STAT3/C-Myc axis, thus suppressing malignant progression. These findings supported clinical applications of Juzaowan.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| | - Liumei Lin
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| | - Fei Li
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| | - Yuchun Xu
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| | - Huatong Peng
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| | - Qiang Chen
- Department of Thyroid and Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping City, Fujian Province, China
| |
Collapse
|
20
|
Wang RH, Chen PR, Chen YT, Chen YC, Chu YH, Chien CC, Chien PC, Lo SY, Wang ZL, Tsou MC, Chen SY, Chiu GS, Chen WL, Wu YH, Wang LHC, Wang WC, Lin SY, Kung HJ, Wang LH, Cheng HC, Lin KT. Hydrogen sulfide coordinates glucose metabolism switch through destabilizing tetrameric pyruvate kinase M2. Nat Commun 2024; 15:7463. [PMID: 39198443 PMCID: PMC11358145 DOI: 10.1038/s41467-024-51875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.
Collapse
Grants
- National Science and Technology Council (Taiwan), 108-2314-B-007-003-MY3, 111-2320-B-007-005-MY3; National Tsing Hua University (NTHU), 111Q2713E1, 112Q2511E1, and 112Q2521E1, 113Q2524E1.
- National Science and Technology Council (Taiwan), 110-2320-B-007-004-MY3; National Health Research Institutes (Taiwan), NHRI-EX113-11124BI. National Tsing Hua University (NTHU), 112QI033E1
- National Science and Technology Council (Taiwan),110-2320-B-039-066; Ministry of Education (Taiwan), CMRC-CENTER-0
- National Science and Technology Council (Taiwan), 108-2311-B-007-002-MY3, 111-2311-B-007-009
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Ru Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Hsin Chu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Yun Lo
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhong-Liang Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Chen Tsou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ssu-Yu Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guang-Shen Chiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Jien Kung
- College of Medical Science and Technology, PhD Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Lu-Hai Wang
- Chiese Medicine Research Center, and Institute of Integrated Medicine, China Medical University, Taichung City, Taiwan.
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
21
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024:S1074-7613(24)00407-2. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Shu Y, Yue J, Li Y, Yin Y, Wang J, Li T, He X, Liang S, Zhang G, Liu Z, Wang Y. Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay. J Comput Aided Mol Des 2024; 38:28. [PMID: 39123063 DOI: 10.1007/s10822-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC50 value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yekui Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiaxu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- New York University, East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
23
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
24
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjorn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606284. [PMID: 39211256 PMCID: PMC11361052 DOI: 10.1101/2024.08.02.606284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
Collapse
|
25
|
Ding P, Yang K, Wang H, Kuang L, Gao L, Luo J, Tuo X. Exploring the therapeutic potential of rutin through investigating its inhibitory mechanism on lactate dehydrogenase: Multi-spectral methods and computer simulation. Bioorg Chem 2024; 149:107503. [PMID: 38823312 DOI: 10.1016/j.bioorg.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel β-sheet, and β-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.
Collapse
Affiliation(s)
- Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Huixiao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
26
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
27
|
Malla A, Gupta S, Sur R. Inhibition of lactate dehydrogenase A by diclofenac sodium induces apoptosis in HeLa cells through activation of AMPK. FEBS J 2024; 291:3628-3652. [PMID: 38767406 DOI: 10.1111/febs.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells exhibit a unique metabolic preference for the glycolytic pathway over oxidative phosphorylation for maintaining the tumor microenvironment. Lactate dehydrogenase A (LDHA) is a key enzyme that facilitates glycolysis by converting pyruvate to lactate and has been shown to be upregulated in multiple cancers due to the hypoxic tumor microenvironment. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, has been shown to exhibit anticancer effects by interfering with the glucose metabolism pathway. However, the specific targets of this drug remain unknown. Using in silico, biochemical, and biophysical studies, we show that DCF binds to LDHA adjacent to the substrate binding site and inhibits its activity in a dose-dependent and allosteric manner in HeLa cells. Thus, DCF inhibits the hypoxic microenvironment and induces apoptosis-mediated cell death. DCF failed to induce cytotoxicity in HeLa cells when LDHA was knocked down, confirming that DCF exerts its antimitotic effects via LDHA inhibition. DCF-induced LDHA inhibition alters pyruvate, lactate, NAD+, and ATP production in cells, and this could be a possible mechanism through which DCF inhibits glucose uptake in cancer cells. DCF-induced ATP deprivation leads to mitochondria-mediated oxidative stress, which results in DNA damage, lipid peroxidation, and apoptosis-mediated cell death. Reduction in intracellular ATP levels additionally activates the sensor kinase, adenosine monophosphate-activated protein kinase (AMPK), which further downregulates phosphorylated ribosomal S6 kinase (p-S6K), leading to apoptosis-mediated cell death. We find that in LDHA knocked down cells, intracellular ATP levels were depleted, resulting in the inhibition of p-S6K, suggesting the involvement of DCF-induced LDHA inhibition in the activation of the AMPK/S6K signaling pathway.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Suvroma Gupta
- Khejuri College, Purba Medinipur, West Bengal, India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| |
Collapse
|
28
|
Li PC, Dai SY, Lin YS, Chang YT, Liu CC, Wang IC, Lee MF. Forkhead box M1 mediates metabolic reprogramming in human colorectal cancer cells. Am J Physiol Gastrointest Liver Physiol 2024; 327:G284-G294. [PMID: 38953837 DOI: 10.1152/ajpgi.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).
Collapse
Affiliation(s)
- Po-Chen Li
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Sheng-Yu Dai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Tsen Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chen-Chia Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
29
|
Yuba T, Koyama Y, Ootaki C, Fujino Y, Shimada S. Effect of blood sample storage period on d-ROMs and BAP test data. Heliyon 2024; 10:e34573. [PMID: 39113980 PMCID: PMC11304014 DOI: 10.1016/j.heliyon.2024.e34573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The Diacron-reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests can easily and rapidly measure the state of oxidative stress in the blood; they have been used to determine the relationship between oxidative stress and various diseases. However, the extent to which the blood storage period affects the analyzed data remains unclear. In clinical practice, the storage conditions for samples after blood collection vary. Therefore, the influence of blood storage conditions, particularly the reversible redox state, on biochemical tests has been thoroughly investigated. The storage conditions of the sample may affect its state; however, its effect on oxidative stress has not been investigated yet. In this study, considering that the time from blood collection to blood cell separation differs depending on the clinical setting, we analyzed the effect of storage period on the redox analysis data of blood samples stored for a certain period in a 4 °C refrigerator without centrifugation. Heparinized plasma samples from three healthy adult men in their 30s were subjected to the d-ROMs and BAP tests. The analysis was performed at the following 12 time points: immediately after blood collection; 1, 3, 6, 12, and 24 h later; and 2, 3, 4, 5, 6, and 7 days later. The d-ROMs and BAP values varied and were unstable after 1 h of blood collection. These findings suggest that centrifugation should be performed within 1 h after blood collection, at the latest. In a clinical setting, data should be interpreted with caution if centrifugation is performed more than 1 h after blood collection, even if heparin is added and the samples are stored at 4 °C.
Collapse
Affiliation(s)
- Tomoo Yuba
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Chiyo Ootaki
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Fujino
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
30
|
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, Jin H, Tuo B. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 2024; 54:59. [PMID: 38785162 PMCID: PMC11188982 DOI: 10.3892/ijmm.2024.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.
Collapse
Affiliation(s)
- Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ting Tao
- Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
31
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
32
|
Wu G, Gu M, Zhu J, Gu R, Yang B, Ji S, Zhao Y, Gu K. Prognostic prediction of oxidative stress related hematological biomarkers in locally advanced cervical cancer patients undergoing chemoradiotherapy. Biomarkers 2024; 29:255-264. [PMID: 38767430 DOI: 10.1080/1354750x.2024.2358300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This investigation aimed to develop and validate a novel oxidative stress score for prognostic prediction in locally advanced cervical cancer (LACC) patients receiving chemoradiotherapy. METHODS A total of 301 LACC patients were enrolled and randomly divided into a training and a validation set. The association between oxidative stress parameters and prognosis was analyzed for oxidative stress score (OSS) establishment. A Cox regression model was conducted for overall survival (OS) and progression-free survival (PFS). A nomogram prediction model was developed using independent prognostic factors from the training set and validated in the validation set. RESULTS A novel OSS was established with four oxidative stress parameters, including albumin, total bilirubin, blood urea nitrogen, and lactate dehydrogenase. Multivariate regression analysis identified OSS as an independent prognostic factor for OS (p = 0.001) and PFS (p < 0.001). A predictive nomogram based on the OSS was established and validated. The C-indexes of the nomogram in the training set were 0.772 for OS and 0.781 for PFS, while in the validation set the C-indexes were 0.642 for OS and 0.621 for PFS. CONCLUSION This study confirmed that preoperative OSS could serve as a useful independent prognostic factor in LACC patients who received CCRT.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Mengxuan Gu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ruike Gu
- Department of Rehabilitation Medical, Suzhou Rehabilitation Hospital (Suzhou Municipal Hospital Rehabilitation Medical Center), Suzhou, Jiangsu, P.R. China
| | - Bo Yang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
33
|
Kuppusamy P, Haque MM, Traub RJ, Melemedjian OK. Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific manner. FRONTIERS IN PAIN RESEARCH 2024; 5:1424348. [PMID: 38979441 PMCID: PMC11228363 DOI: 10.3389/fpain.2024.1424348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of cancer treatment that significantly impacts patients' quality of life. This study investigated the effects of targeting metabolic pathways on bortezomib-induced neuropathic pain and tumor growth using a Lewis lung carcinoma (LLC) mouse model, while exploring potential sex differences. Methods Male and female C57BL/6J mice were implanted with LLC cells and treated with bortezomib alone or in combination with metformin, dichloroacetate (DCA), or oxamate. Tactile allodynia was assessed using von Frey filaments. Tumor volume and weight were measured to evaluate tumor growth. Results Metformin, DCA, and oxamate effectively attenuated bortezomib-induced neuropathic pain without compromising the anticancer efficacy of bortezomib in both male and female mice. The LLC model exhibited a paraneoplastic neuropathy-like phenotype. Significant sex differences were observed, with male mice exhibiting larger tumors compared to females. Oxamate was more effective in alleviating allodynia in males, while metformin and DCA showed greater efficacy in reducing tumor growth in females. Discussion Targeting metabolic pathways can alleviate CIPN without interfering with bortezomib's anticancer effects. The LLC model may serve as a tool for studying paraneoplastic neuropathy. Sex differences in tumor growth and response to metabolic interventions highlight the importance of considering sex as a biological variable in preclinical and clinical studies investigating cancer biology, CIPN, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Panjamurthy Kuppusamy
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Md Mamunul Haque
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
34
|
ZHANG Q, CAO L, XU K. [Role and Mechanism of Lactylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:471-479. [PMID: 39026499 PMCID: PMC11258650 DOI: 10.3779/j.issn.1009-3419.2024.102.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/20/2024]
Abstract
Post translational modifications (PTMs) can change the properties of a protein by covalent addition of functional groups to one or more amino acids, and influence almost all aspects of normal cell biology and pathogenesis. Lactylation is a novel identified PTM, and has been found in both histone and non-histone proteins. Since associated with the end product of glycolysis-- lactate, lactylation modification could provide a new perspective for understanding the relationship between metabolic reprogramming and epigenetic modifications. Accumulated evidences suggest that lactylation play important roles in tumor progression and links to poor prognosis in clinical studies. Histone lactylation can affect gene expression in tumor cells and immunological cells, further promoting tumor progression and immune suppression. Lactylation on non-histone proteins can also regulate tumor progression and drug resistance. In this review, we aimed to summarize the roles of lactylation in cancer progression, microenvironment interactions and immune suppression, try to identify new molecular targets for cancer therapy and provide a new direction for combined targeted therapy and immunotherapy.
.
Collapse
|
35
|
Zhang K, Zhu J, Wang P, Chen Y, Wang Z, Ge X, Wu J, Chen L, Lu Y, Xu P, Yao J. Plasma metabolites as mediators in immune cell-pancreatic cancer risk: insights from Mendelian randomization. Front Immunol 2024; 15:1402113. [PMID: 38933268 PMCID: PMC11199692 DOI: 10.3389/fimmu.2024.1402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Immune cells play a crucial role in the development and progression of pancreatic cancer, yet the causal relationship remains uncertain due to complex immune microenvironments and conflicting research findings. Mendelian randomization (MR), this study aims to delineate the causal relationships between immune cells and pancreatic cancer while identifying intermediary factors. Methods The genome-wide association study (GWAS) data on immune cells, pancreatic cancer, and plasma metabolites are derived from public databases. In this investigation, inverse variance weighting (IVW) as the primary analytical approach to investigate the causal relationship between exposure and outcome. Furthermore, this study incorporates MR-Egger, simple mode, weighted median, and weighted mode as supplementary analytical approaches. To ensure the reliability of our findings, we further assessed horizontal pleiotropy and heterogeneity and evaluated the stability of MR results using the Leave-one-out method. In conclusion, this study employed mediation analysis to elucidate the potential mediating effects of plasma metabolites. Results Our investigation revealed a causal relationship between immune cells and pancreatic cancer, highlighting the pivotal roles of CD11c+ monocytes (odds ratio, ORIVW=1.105; 95% confidence interval, 95%CI: 1.002-1.218; P=0.045), HLA DR+ CD4+ antigen-presenting cells (ORIVW=0.920; 95%CI: 0.873-0.968; P=0.001), and HLA DR+ CD8br T cells (ORIVW=1.058; 95%CI: 1.002-1.117; P=0.041) in pancreatic cancer progression. Further mediation analysis indicated that oxalate (proportion of mediation effect in total effect: -11.6%, 95% CI: -89.7%, 66.6%) and the mannose to trans-4-hydroxyproline ratio (-19.4, 95% CI: -136%, 96.8%) partially mediate the relationship between HLA DR+ CD8br T cells and pancreatic cancer in nature. In addition, our analysis indicates that adrenate (-8.39%, 95% CI: -18.3%, 1.54%) plays a partial mediating role in the association between CD11c+ monocyte and pancreatic cancer, while cortisone (-26.6%, 95% CI: 138%, -84.8%) acts as a partial mediator between HLA DR+ CD4+ AC and pancreatic cancer. Conclusion This MR investigation provides evidence supporting the causal relationship between immune cell and pancreatic cancer, with plasma metabolites serving as mediators. Identifying immune cell phenotypes with potential causal effects on pancreatic cancer sheds light on its underlying mechanisms and suggests novel therapeutic targets.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Long Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yipin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
37
|
Boufaied N, Chetta P, Hallal T, Cacciatore S, Lalli D, Luthold C, Homsy K, Imada EL, Syamala S, Photopoulos C, Di Matteo A, de Polo A, Storaci AM, Huang Y, Giunchi F, Sheridan PA, Michelotti G, Nguyen QD, Zhao X, Liu Y, Davicioni E, Spratt DE, Sabbioneda S, Maga G, Mucci LA, Ghigna C, Marchionni L, Butler LM, Ellis L, Bordeleau F, Loda M, Vaira V, Labbé DP, Zadra G. Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer. Cancer Res 2024; 84:1834-1855. [PMID: 38831751 PMCID: PMC11148549 DOI: 10.1158/0008-5472.can-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.
Collapse
Affiliation(s)
- Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Paolo Chetta
- University of Milan, Residency Program in Pathology, Milan, Italy
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Stefano Cacciatore
- Bionformatics Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Daniela Lalli
- Department of Science and Technological Innovation, University of Piemonte Orientale “A. Avogadro,” Alessandria, Italy
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
| | - Eddie L. Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Sudeepa Syamala
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cornelia Photopoulos
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anna Di Matteo
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Anna de Polo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Quang-De Nguyen
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xin Zhao
- Veracyte, South San Francisco, California
| | - Yang Liu
- Veracyte, South San Francisco, California
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Claudia Ghigna
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Leigh Ellis
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Québec, Canada
- Department of Molecular Biology, Clinical Biochemistry, and Pathology, Laval University, Québec, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, New York
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, Québec, Canada
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Institute of Molecular Genetics, National Research Council (CNR-IGM), Pavia, Italy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Hou X, Zhang B, Cheng K, Zhang F, Xie X, Chen W, Tan L, Fan J, Liu B, Xu Q. Engineering Phage Nanocarriers Integrated with Bio-Intelligent Plasmids for Personalized and Tunable Enzyme Delivery to Enhance Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308349. [PMID: 38582522 PMCID: PMC11199971 DOI: 10.1002/advs.202308349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Xiao‐Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Xiao‐Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Lin‐Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Jin‐Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Key Laboratory of Biomedical Photonics (HUST)Ministry of EducationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical DevicesHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Qiu‐Ran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiang310014P. R. China
| |
Collapse
|
39
|
Liu Q, Chen X, Tan Y, Liu J, Zhu M, Li D, Zhou Y, Zhang T, Yin QZ. Natural products as glycolytic inhibitors for cervical cancer treatment: A comprehensive review. Biomed Pharmacother 2024; 175:116708. [PMID: 38723515 DOI: 10.1016/j.biopha.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Cervical cancer, a prevalent gynaecological malignancy, presents challenges in late-stage treatment efficacy. Aerobic glycolysis, a prominent metabolic trait in cervical cancer, emerges as a promising target for novel drug discovery. Natural products, originating from traditional medicine, represent a significant therapeutic avenue and primary source for new drug development. This review explores the regulatory mechanisms of glycolysis in cervical cancer and summarises natural compounds that inhibit aerobic glycolysis as a therapeutic strategy. The glycolytic phenotype in cervical cancer is regulated by classical molecules such as HIF-1, HPV virulence factors and specificity protein 1, which facilitate the Warburg effect in cervical cancer. Various natural products, such as artemisinin, shikonin and kaempferol, exert inhibitory effects by downregulating key glycolytic enzymes through signalling pathways such as PI3K/AKT/HIF-1α and JAK2/STAT3. Despite challenges related to drug metabolism and toxicity, these natural compounds provide novel insights and promising avenues for cervical cancer treatment.
Collapse
Affiliation(s)
- Qun Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiuhan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yurong Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiao Liu
- Nantong University, Nantong 226019, China
| | - Mingya Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Delin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yijie Zhou
- Anyue County Traditional Chinese Medicine Hospital, Ziyang 610072, China.
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qiao Zhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
40
|
Atallah-Yunes SA, Habermann TM, Khurana A. Targeted therapy in Burkitt lymphoma: Small molecule inhibitors under investigation. Br J Haematol 2024; 204:2165-2172. [PMID: 38577716 DOI: 10.1111/bjh.19425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Multiagent chemoimmunotherapy remains the standard of care treatment for Burkitt lymphoma leading to a cure in the majority of cases. However, frontline treatment regimens are associated with a significant risk of treatment related toxicity especially in elderly and immunocompromised patients. Additionally, prognosis remains dismal in refractory/relapsed Burkitt lymphoma. Thus, novel therapies are required to not only improve outcomes in relapsed/refractory Burkitt lymphoma but also minimize frontline treatment related toxicities. Recurrent genomic changes and signalling pathway alterations that have been implicated in the Burkitt lymphomagenesis include cell cycle dysregulation, cell proliferation, inhibition of apoptosis, epigenetic dysregulation and tonic B-cell receptor-phosphatidylinositol 3-kinase (BCR-PI3K) signalling. Here, we will discuss novel targeted therapy approaches using small molecule inhibitors that could pave the way to the future treatment landscape based on the understanding of recurrent genomic changes and signalling pathway alterations in the lymphomagenesis of adult Burkitt lymphoma.
Collapse
Affiliation(s)
| | - Thomas M Habermann
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Bexkens ML, Martin OMF, van den Heuvel JM, Schmitz MGJ, Teusink B, Bakker BM, van Hellemond JJ, Haanstra JR, Walkinshaw MD, Tielens AGM. The unusual kinetics of lactate dehydrogenase of Schistosoma mansoni and their role in the rapid metabolic switch after penetration of the mammalian host. Int J Parasitol 2024; 54:367-378. [PMID: 38492780 DOI: 10.1016/j.ijpara.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.
Collapse
Affiliation(s)
- Michiel L Bexkens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Olivier M F Martin
- Systems Biology Lab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jos M van den Heuvel
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marion G J Schmitz
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Barbara M Bakker
- Systems Biology Lab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jurgen R Haanstra
- Systems Biology Lab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Malcolm D Walkinshaw
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Zygmunt A, Gubernator J. Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology. Expert Opin Drug Deliv 2024; 21:845-865. [PMID: 38899424 DOI: 10.1080/17425247.2024.2370492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Certainly, pancreatic ductal adenocarcinoma poses one of the greatest challenges in current oncology. The dense extracellular matrix and low vessel density in PDA tumor impede the effective delivery of drugs, primarily due to the short pharmacokinetics of most drugs and potential electrostatic interactions with stroma components. AREA COVERED Owing to the distinctive metabolism of PDA and challenges in accessing nutrients, there is a growing interest in cell metabolism inhibitors as a potential means to inhibit cancer development. However, even if suitable combinations of inhibitors are identified, the question about their administration remains, as the same hindrances that impede effective treatment with conventional drugs will also hinder the delivery of inhibitors. Methods including nanotechnology to increase drugs in PDA penetrations are reviewed and discussed. EXPERT OPINION Pancreatic cancer is one of the most difficult tumors to treat due to the small number of blood vessels, high content of extracellular matrix, and specialized resistance mechanisms of tumor cells. One possible method of treating this tumor is the use of metabolic inhibitors in combinations that show synergy. Despite promising results in in vitro tests, their effect is uncertain due to the tumor's structure. In the case of pancreatic cancer, priming of the tumor tissue is required through the sequential administration of drugs that generate blood vessels, increase blood flow, and enhance vascular permeability and extracellular matrix. The use of drug carriers with a size of 10-30 nm may be crucial in the therapy of this cancer.
Collapse
Affiliation(s)
- Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
43
|
Lu Y, Wang Y, Zhang L, Ma Z, Yu K, Shu Y, Zou X, Yang J, Liu X, Wang C, Du Y, Li Q. KAT7 enhances the proliferation and metastasis of head and neck squamous carcinoma by promoting the acetylation level of LDHA. Cancer Lett 2024; 590:216869. [PMID: 38593918 DOI: 10.1016/j.canlet.2024.216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.
Collapse
Affiliation(s)
- Ying Lu
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yong Wang
- Department of Nuclear Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Leilei Zhang
- Department of Stomatology, 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - Zhaofeng Ma
- Department of Stomatology, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Kaitao Yu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yao Shu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xuan Zou
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jinjin Yang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xin Liu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chenglong Wang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Qihong Li
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
44
|
Ser MH, Webb M, Thomsen A, Sener U. Isocitrate Dehydrogenase Inhibitors in Glioma: From Bench to Bedside. Pharmaceuticals (Basel) 2024; 17:682. [PMID: 38931350 PMCID: PMC11207016 DOI: 10.3390/ph17060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are a primary malignancy of the central nervous system (CNS) malignancies, most commonly affecting adults under the age of 55. Standard of care therapy for IDH-mutant gliomas involves maximal safe resection, radiotherapy, and chemotherapy. However, despite good initial responses to multimodality treatment, recurrence is virtually universal. IDH-mutant gliomas represent a life-limiting prognosis. For this reason, there is a great need for novel treatments that can prolong survival. Uniquely for IDH-mutant gliomas, the IDH mutation is the direct driver of oncogenesis through its oncometabolite 2-hydroxygluterate. Inhibition of this mutated IDH with a corresponding reduction in 2-hydroxygluterate offers an attractive treatment target. Researchers have tested several IDH inhibitors in glioma through preclinical and early clinical trials. A phase III clinical trial of an IDH1 and IDH2 inhibitor vorasidenib yielded promising results among patients with low-grade IDH-mutant gliomas who had undergone initial surgery and no radiation or chemotherapy. However, many questions remain regarding optimal use of IDH inhibitors in clinical practice. In this review, we discuss the importance of IDH mutations in oncogenesis of adult-type diffuse gliomas and current evidence supporting the use of IDH inhibitors as therapeutic agents for glioma treatment. We also examine unresolved questions and propose potential directions for future research.
Collapse
Affiliation(s)
- Merve Hazal Ser
- Department of Neurology, SBU Istanbul Research and Training Hospital, Istanbul 34098, Turkey
| | - Mason Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Nie R, Zhang W, Tian H, Li J, Ling Y, Zhang B, Zhang H, Wu C. Proteo-transcriptomic profiles reveal key regulatory pathways and functions of LDHA in the ovulation of domestic chickens (Gallus gallus). J Anim Sci Biotechnol 2024; 15:68. [PMID: 38725063 PMCID: PMC11083957 DOI: 10.1186/s40104-024-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear. RESULTS Critical biochemical events involved in ovulation in domestic chickens (Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle (F1) and postovulatory follicle (POF1) in continuous laying (CL) and intermittent laying (IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes (DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A (LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro. CONCLUSIONS This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.
Collapse
Affiliation(s)
- Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haoyu Tian
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
46
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024; 29:2110. [PMID: 38731601 PMCID: PMC11085455 DOI: 10.3390/molecules29092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
47
|
Littleflower AB, Parambil ST, Antony GR, Subhadradevi L. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment. Biochimie 2024; 220:107-121. [PMID: 38184121 DOI: 10.1016/j.biochi.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
48
|
Liu Y, Suhail Y, Novin A, Afzal J, Pant A, Kshitiz. Lactate in breast cancer cells is associated with evasion of hypoxia-induced cell cycle arrest and adverse patient outcome. Hum Cell 2024; 37:768-781. [PMID: 38478356 PMCID: PMC11256967 DOI: 10.1007/s13577-024-01046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Junaid Afzal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aditya Pant
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
49
|
Ertik O, Tunali S, Acar ET, Bal-Demirci T, Ülküseven B, Yanardag R. Antioxidant Activity and Protective Effects of an Oxovanadium (IV) Complex on Heart and Aorta Injury of STZ-Diabetic Rats. Biol Trace Elem Res 2024; 202:2085-2099. [PMID: 37603267 DOI: 10.1007/s12011-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diabetic people have a much higher rate of cardiovascular disease than healthy people. Therefore, heart and aortic tissues are target tissues in diabetic research. In recent years, the synthesis of new vanadium complexes and investigation of their antidiabetic/lowering effect on the blood glucose levels and antioxidant properties are increasing day by day. Our study aimed to examine the effects of synthesized oxovanadium (IV) complex of 2-[(2,4-dihydroxybenzylidene]hydrazine-1-[(N-(2-hydroxybenzylidene)](S-methyl)carbothioamide [VOL] on diabetic heart and aortic tissues, as well as in vitro lactate dehydrogenase (LDH) and myeloperoxidase (MPO) inhibition, antioxidant properties, and reducing power. Electrochemical characterization of the VOL was carried out by using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) methods. In addition, in silico drug-likeness and ADME prediction were also investigated. For in vivo study, male Swiss albino rats were randomly selected and separated into four groups which are control, control + VOL, diabetic and diabetic + VOL. After the experimental procedure, biochemical parameters were investigated in homogenates of heart and aorta tissues. The results showed that VOL has a protective effect on heart and aortic tissue against oxidative stress. According to electrochemical experiments, one reversible oxidative couple and one irreversible reductive response were observed for the complex. In addition, in vitro LDH and MPO inhibition of VOL was examined. It was found that VOL had a protective effect on heart and aortic tissues of diabetic rats, and caused the inhibition of LDH and MPO in in vitro studies. On the other hand, evaluating the synthesized VOL according to in silico drug-likeness and absorption, distribution, metabolism, and excretion (ADME) prediction, it was found that VOL has drug-like properties and exhibited high gastrointestinal absorption. The VOL had a therapeutic impact on the heart and aortic tissues of diabetic rats, according to the findings.
Collapse
Affiliation(s)
- Onur Ertik
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey.
| | - Sevim Tunali
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Elif Turker Acar
- Division of Physical Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Tulay Bal-Demirci
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Bahri Ülküseven
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| |
Collapse
|
50
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|