1
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
2
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Furest Cataldo B, Yang L, Cabezas B, Ovetsky J, Vicario DS. Novel sound exposure drives dynamic changes in auditory lateralization that are associated with perceptual learning in zebra finches. Commun Biol 2023; 6:1205. [PMID: 38012325 PMCID: PMC10681987 DOI: 10.1038/s42003-023-05567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Songbirds provide a model for adult plasticity in the auditory cortex as a function of recent experience due to parallels with human auditory processing. As for speech processing in humans, activity in songbirds' higher auditory cortex (caudomedial nidopallium, NCM) is lateralized for complex vocalization sounds. However, in Zebra finches exposed to a novel heterospecific (canary) acoustic environment for 4-9 days, the typical pattern of right-lateralization is reversed. We now report that, in birds passively exposed to a novel heterospecific environment for extended periods (up to 21 days), the right-lateralized pattern of epidural auditory potentials first reverses transiently then returns to the typical pattern. Using acute, bilateral multi-unit electrophysiology, we confirm that this dynamic pattern occurs in NCM. Furthermore, extended exposure enhances discrimination for heterospecific stimuli. We conclude that lateralization is functionally labile and, when engaged by novel sensory experience, contributes to discrimination of novel stimuli that may be ethologically relevant. Future studies seek to determine whether, (1) the dynamicity of lateralized processes engaged by novel sensory experiences recurs with every novel challenge in the same organism; (2) the dynamic pattern extends to other cortical, thalamic or midbrain structures; and (3) the phenomenon generalizes across sensory modalities.
Collapse
Affiliation(s)
| | - Lillian Yang
- The City College of New York (CUNY), Physiology, Pharmacology and Neuroscience Department, New York, NY, 10031, USA
| | - Bryan Cabezas
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - Jonathan Ovetsky
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - David S Vicario
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Chen C, Cruces-Solís H, Ertman A, de Hoz L. Subcortical coding of predictable and unsupervised sound-context associations. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100110. [PMID: 38020811 PMCID: PMC10663128 DOI: 10.1016/j.crneur.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.
Collapse
Affiliation(s)
- Chi Chen
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate School of Neurosciences and Molecular Biosciences, Germany
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
| | - Hugo Cruces-Solís
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate School of Neurosciences and Molecular Biosciences, Germany
| | - Alexandra Ertman
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
- International Graduate Program Medical Neurosciences, Charité Medical University, Berlin, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Charité Medical University, Neuroscience Research Center, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
6
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. Hear Res 2023; 438:108878. [PMID: 37659220 PMCID: PMC10529106 DOI: 10.1016/j.heares.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. Using an animal model of adult, male Sprague-Dawley rats, this report is the first to identify genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie long-lasting discriminative memory formation of acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects. Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG rno04725), extra-cellular matrix receptor interaction (KEGG rno04512), and neuroactive receptor interaction (KEGG rno04080) among the top biological pathways are likely to be important for auditory discrimination learning. The findings characterize candidate effectors underlying the early stages of changes in cortical and behavioral function to ultimately support the formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate experiences that induce long-lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - K L Knudtson
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA; Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ, USA; Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Willmore BDB, King AJ. Adaptation in auditory processing. Physiol Rev 2023; 103:1025-1058. [PMID: 36049112 PMCID: PMC9829473 DOI: 10.1152/physrev.00011.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.
Collapse
Affiliation(s)
- Ben D. B. Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Memory Specific to Temporal Features of Sound Is Formed by Cue-Selective Enhancements in Temporal Coding Enabled by Inhibition of an Epigenetic Regulator. J Neurosci 2021; 41:9192-9209. [PMID: 34544835 DOI: 10.1523/jneurosci.0691-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Recent investigation of memory-related functions in the auditory system have capitalized on the use of memory-modulating molecules to probe the relationship between memory and substrates of memory in auditory system coding. For example, epigenetic mechanisms, which regulate gene expression necessary for memory consolidation, are powerful modulators of learning-induced neuroplasticity and long-term memory (LTM) formation. Inhibition of the epigenetic regulator histone deacetylase 3 (HDAC3) promotes LTM, which is highly specific for spectral features of sound. The present work demonstrates for the first time that HDAC3 inhibition also enables memory for temporal features of sound. Adult male rats trained in an amplitude modulation (AM) rate discrimination task and treated with a selective inhibitor of HDAC3 formed memory that was highly specific to the AM rate paired with reward. Sound-specific memory revealed behaviorally was associated with a signal-specific enhancement in temporal coding in the auditory system; stronger phase locking that was specific to the rewarded AM rate was revealed in both the surface-recorded frequency following response and auditory cortical multiunit activity in rats treated with the HDAC3 inhibitor. Furthermore, HDAC3 inhibition increased trial-to-trial cortical response consistency (relative to naive and trained vehicle-treated rats), which generalized across different AM rates. Stronger signal-specific phase locking correlated with individual behavioral differences in memory specificity for the AM signal. These findings support that epigenetic mechanisms regulate activity-dependent processes that enhance discriminability of sensory cues encoded into LTM in both spectral and temporal domains, which may be important for remembering spectrotemporal features of sounds, for example, as in human voices and speech.SIGNIFICANCE STATEMENT Epigenetic mechanisms have recently been implicated in memory and information processing. Here, we use a pharmacological inhibitor of HDAC3 in a sensory model of learning to reveal the ability of HDAC3 to enable precise memory for amplitude-modulated sound cues. In so doing, we uncover neural substrates for memory's specificity for temporal sound cues. Memory specificity was supported by auditory cortical changes in temporal coding, including greater response consistency and stronger phase locking. HDAC3 appears to regulate effects across domains that determine specific cue saliency for behavior. Thus, epigenetic players may gate how sensory information is stored in long-term memory and can be leveraged to reveal the neural substrates of sensory details stored in memory.
Collapse
|
9
|
Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neurosci Res 2021; 173:1-13. [PMID: 34274406 DOI: 10.1016/j.neures.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The brain is organized into anatomically distinct structures consisting of a variety of projection neurons. While such evolutionarily conserved neural circuit organization underlies the innate ability of animals to swiftly adapt to environments, they can cause biased cognition and behavior. Although recent studies have begun to address the causal importance of projection-neuron types as distinct computational units, it remains unclear how projection types are functionally organized in encoding variables during cognitive tasks. This review focuses on the neural computation of decision making in the prefrontal cortex and discusses what decision variables are encoded by single neurons, neuronal populations, and projection type, alongside how specific projection types constrain decision making. We focus particularly on "over-representations" of distinct decision variables in the prefrontal cortex that reflect the biological and subjective significance of the variables for the decision makers. We suggest that task-specific over-representation in the prefrontal cortex involves the refinement of the given decision making, while generalized over-representation of fundamental decision variables is associated with suboptimal decision biases, including pathological ones such as those in patients with psychiatric disorders. Such over-representation of the fundamental decision variables in the prefrontal cortex appear to be tightly constrained by afferent and efferent connections that can be optogenetically intervened on. These ideas may provide critical insights into potential therapeutic targets for psychiatric disorders, including addiction and depression.
Collapse
|
10
|
Zelenka O, Novak O, Brunova A, Syka J. Heterogeneous associative plasticity in the auditory cortex induced by fear learning - novel insight into the classical conditioning paradigm. Physiol Res 2021; 70:447-460. [PMID: 33982575 DOI: 10.33549/physiolres.934559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used two-photon calcium imaging with single-cell and cell-type resolution. Fear conditioning induced heterogeneous tuning shifts at single-cell level in the auditory cortex, with shifts both to CS+ frequency and to the control CS- stimulus frequency. We thus extend the view of simple expansion of CS+ tuned regions. Instead of conventional freezing reactions only, we observe selective orienting responses towards the conditioned stimuli. The orienting responses were often followed by escape behavior.
Collapse
Affiliation(s)
- O Zelenka
- Department of Physiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Rotondo EK, Bieszczad KM. Sensory cortical and subcortical auditory neurophysiological changes predict cue-specific extinction behavior enabled by the pharmacological inhibition of an epigenetic regulator during memory formation. Brain Res Bull 2021; 169:167-183. [PMID: 33515653 PMCID: PMC8591994 DOI: 10.1016/j.brainresbull.2021.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 11/19/2022]
Abstract
Extinction learning and memory have been broadly investigated at both behavioral and neural levels, but sensory system contributions to extinction processes have been less explored. Using a sound-reward extinction paradigm in male rats, we reveal both cortical and subcortical forms of plasticity associated with the cue-specificity of behavioral extinction memory. In the auditory cortex, frequency tuning narrowed by up to two-thirds of an octave around the remembered extinguished sound cue. Subcortical signals revealed in the auditory brainstem response (ABR) in the same animals developed smaller amplitudes of some (but not all) ABR peaks evoked by the extinguished sound frequency. Interestingly, treatment with an inhibitor of histone deacetylase 3 (HDAC3-i) facilitated both auditory cortical tuning bandwidth changes and changes in subcortical peak amplitude evoked only by the extinguished sound frequency. These neurophysiological changes were correlated to each other, and to the highly precise extinction behavior enabled by HDAC3-i (compared to vehicle controls). Thus, we show for the first time that HDAC3 regulates the specificity of sensory features consolidated in extinction memory. Further, the sensory cortical changes in tuning bandwidth recapitulate known effects of blocking HDAC3 to enhance cue specificity in other behavioral tasks. Therefore, the findings demonstrate how some forms of sensory neuroplasticity may encode specific sensory features of learning experiences in order to enable cue-specific behaviors.
Collapse
Affiliation(s)
- Elena K Rotondo
- Dept. of Psychology, Rutgers- The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Kasia M Bieszczad
- Dept. of Psychology, Rutgers- The State University of New Jersey, Piscataway, NJ, 08854, United States.
| |
Collapse
|
12
|
Rotondo EK, Bieszczad KM. Precise memory for pure tones is predicted by measures of learning-induced sensory system neurophysiological plasticity at cortical and subcortical levels. ACTA ACUST UNITED AC 2020; 27:328-339. [PMID: 32669388 PMCID: PMC7365018 DOI: 10.1101/lm.051318.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/02/2020] [Indexed: 01/06/2023]
Abstract
Despite identical learning experiences, individuals differ in the memory formed of those experiences. Molecular mechanisms that control the neurophysiological bases of long-term memory formation might control how precisely the memory formed reflects the actually perceived experience. Memory formed with sensory specificity determines its utility for selectively cueing subsequent behavior, even in novel situations. Here, a rodent model of auditory learning capitalized on individual differences in learning-induced auditory neuroplasticity to identify and characterize neural substrates for sound-specific (vs. general) memory of the training signal's acoustic frequency. Animals that behaviorally revealed a naturally induced signal-"specific" memory exhibited long-lasting signal-specific neurophysiological plasticity in auditory cortical and subcortical evoked responses. Animals with "general" memories did not exhibit learning-induced changes in these same measures. Manipulating a histone deacetylase during memory consolidation biased animals to have more signal-specific memory. Individual differences validated this brain-behavior relationship in both natural and manipulated memory formation, such that the degree of change in sensory cortical and subcortical neurophysiological responses could be used to predict the behavioral precision of memory.
Collapse
Affiliation(s)
- Elena K Rotondo
- CLEF Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Kasia M Bieszczad
- CLEF Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
13
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
14
|
Maor I, Shwartz-Ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex. Front Neural Circuits 2020; 13:82. [PMID: 32047424 PMCID: PMC6997498 DOI: 10.3389/fncir.2019.00082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Associative learning of pure tones is known to cause tonotopic map expansion in the auditory cortex (ACx), but the function this plasticity sub-serves is unclear. We developed an automated training platform called the “Educage,” which was used to train mice on a go/no-go auditory discrimination task to their perceptual limits, for difficult discriminations among pure tones or natural sounds. Spiking responses of excitatory and inhibitory parvalbumin (PV+) L2/3 neurons in mouse ACx revealed learning-induced overrepresentation of the learned frequencies, as expected from previous literature. The coordinated plasticity of excitatory and inhibitory neurons supports a role for PV+ neurons in homeostatic maintenance of excitation–inhibition balance within the circuit. Using a novel computational model to study auditory tuning curves, we show that overrepresentation of the learned tones does not necessarily improve discrimination performance of the network to these tones. In a separate set of experiments, we trained mice to discriminate among natural sounds. Perceptual learning of natural sounds induced “sparsening” and decorrelation of the neural response, consequently improving discrimination of these complex sounds. This signature of plasticity in A1 highlights its role in coding natural sounds.
Collapse
Affiliation(s)
- Ido Maor
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ravid Shwartz-Ziv
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Libi Feigin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Elyada
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haim Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, Kilgard MP, Engineer CT. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol 2019; 122:659-671. [PMID: 31215351 DOI: 10.1152/jn.00832.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.
Collapse
Affiliation(s)
- Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Will A Vrana
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Nicole A Moreno
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth A Fogarty
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Sven Vanneste
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| |
Collapse
|
16
|
Active avoidance learning differentially activates ERK phosphorylation in the primary auditory and visual cortices of Roman high- and low-avoidance rats. Physiol Behav 2019; 201:31-41. [DOI: 10.1016/j.physbeh.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
17
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Patton MH, Blundon JA, Zakharenko SS. Rejuvenation of plasticity in the brain: opening the critical period. Curr Opin Neurobiol 2018; 54:83-89. [PMID: 30286407 DOI: 10.1016/j.conb.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Cortical circuits are particularly sensitive to incoming sensory information during well-defined intervals of postnatal development called 'critical periods'. The critical period for cortical plasticity closes in adults, thus restricting the brain's ability to indiscriminately store new sensory information. For example, children acquire language in an exposure-based manner, whereas learning language in adulthood requires more effort and attention. It has been suggested that pairing sounds with the activation of neuromodulatory circuits involved in attention reopens this critical period. Here, we review two critical period hypotheses related to neuromodulation: cortical disinhibition and thalamic adenosine. We posit that these mechanisms co-regulate the critical period for auditory cortical plasticity. We also discuss ways to reopen this period and rejuvenate cortical plasticity in adults.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Abstract
Our ability to make sense of the auditory world results from neural processing that begins in the ear, goes through multiple subcortical areas, and continues in the cortex. The specific contribution of the auditory cortex to this chain of processing is far from understood. Although many of the properties of neurons in the auditory cortex resemble those of subcortical neurons, they show somewhat more complex selectivity for sound features, which is likely to be important for the analysis of natural sounds, such as speech, in real-life listening conditions. Furthermore, recent work has shown that auditory cortical processing is highly context-dependent, integrates auditory inputs with other sensory and motor signals, depends on experience, and is shaped by cognitive demands, such as attention. Thus, in addition to being the locus for more complex sound selectivity, the auditory cortex is increasingly understood to be an integral part of the network of brain regions responsible for prediction, auditory perceptual decision-making, and learning. In this review, we focus on three key areas that are contributing to this understanding: the sound features that are preferentially represented by cortical neurons, the spatial organization of those preferences, and the cognitive roles of the auditory cortex.
Collapse
Affiliation(s)
- Andrew J King
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Sundeep Teki
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ben D B Willmore
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
20
|
Abstract
Contemporary neuroscience suggests that perception is perhaps best understood as a dynamically iterative process that does not honor cleanly segregated "bottom-up" or "top-down" streams. We argue that there is substantial empirical support for the idea that affective influences infiltrate the earliest reaches of sensory processing and even that primitive internal affective dimensions (e.g., goodness-to-badness) are represented alongside physical dimensions of the external world.
Collapse
|
21
|
Holt LL, Tierney AT, Guerra G, Laffere A, Dick F. Dimension-selective attention as a possible driver of dynamic, context-dependent re-weighting in speech processing. Hear Res 2018; 366:50-64. [PMID: 30131109 PMCID: PMC6107307 DOI: 10.1016/j.heares.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
The contribution of acoustic dimensions to an auditory percept is dynamically adjusted and reweighted based on prior experience about how informative these dimensions are across the long-term and short-term environment. This is especially evident in speech perception, where listeners differentially weight information across multiple acoustic dimensions, and use this information selectively to update expectations about future sounds. The dynamic and selective adjustment of how acoustic input dimensions contribute to perception has made it tempting to conceive of this as a form of non-spatial auditory selective attention. Here, we review several human speech perception phenomena that might be consistent with auditory selective attention although, as of yet, the literature does not definitively support a mechanistic tie. We relate these human perceptual phenomena to illustrative nonhuman animal neurobiological findings that offer informative guideposts in how to test mechanistic connections. We next present a novel empirical approach that can serve as a methodological bridge from human research to animal neurobiological studies. Finally, we describe four preliminary results that demonstrate its utility in advancing understanding of human non-spatial dimension-based auditory selective attention.
Collapse
Affiliation(s)
- Lori L Holt
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Adam T Tierney
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK
| | - Giada Guerra
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK
| | - Aeron Laffere
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK; Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
22
|
Shang A, Bylipudi S, Bieszczad KM. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations. Behav Brain Res 2018; 356:453-469. [PMID: 29860001 DOI: 10.1016/j.bbr.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/01/2022]
Abstract
Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors.
Collapse
Affiliation(s)
- Andrea Shang
- Department of Psychology, Behavioral & Systems Neuroscience, Rutgers The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ, 08854 USA
| | - Sooraz Bylipudi
- Department of Psychology, Behavioral & Systems Neuroscience, Rutgers The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ, 08854 USA
| | - Kasia M Bieszczad
- Department of Psychology, Behavioral & Systems Neuroscience, Rutgers The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ, 08854 USA.
| |
Collapse
|
23
|
Abstract
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example.
Collapse
|
24
|
Abstract
Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.
Collapse
Affiliation(s)
- Dominik Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
25
|
Heald SLM, Van Hedger SC, Nusbaum HC. Perceptual Plasticity for Auditory Object Recognition. Front Psychol 2017; 8:781. [PMID: 28588524 PMCID: PMC5440584 DOI: 10.3389/fpsyg.2017.00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as "noise" in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed.
Collapse
|
26
|
Chavez C, Zaborszky L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2017; 27:2335-2347. [PMID: 27073229 DOI: 10.1093/cercor/bhw091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) release in the cortex is critical for learning, memory, attention, and plasticity. Here, we explore the cholinergic and noncholinergic projections from the basal forebrain (BF) to the auditory cortex using classical retrograde and monosynaptic viral tracers deposited in electrophysiologically identified regions of the auditory cortex. Cholinergic input to both primary (A1) and nonprimary auditory cortical (belt) areas originates in a restricted area in the caudal BF within the globus pallidus (GP) and in the dorsal part of the substantia innominata (SId). On the other hand, we found significant differences in the proportions of cholinergic and noncholinergic projection neurons to primary and nonprimary auditory areas. Inputs to A1 projecting cholinergic neurons were restricted to the GP, caudate-putamen, and the medial part of the medial geniculate body, including the posterior intralaminar thalamic group. In addition to these areas, afferents to belt-projecting cholinergic neurons originated from broader areas, including the ventral secondary auditory cortex, insular cortex, secondary somatosensory cortex, and the central amygdaloid nucleus. These findings support a specific BF projection pattern to auditory cortical areas. Additionally, these findings point to potential functional differences in how ACh release may be regulated in the A1 and auditory belt areas.
Collapse
Affiliation(s)
- Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| |
Collapse
|
27
|
Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning. eNeuro 2016; 3:eN-NWR-0318-16. [PMID: 27957529 PMCID: PMC5128782 DOI: 10.1523/eneuro.0318-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.
Collapse
|
28
|
Laufer O, Israeli D, Paz R. Behavioral and Neural Mechanisms of Overgeneralization in Anxiety. Curr Biol 2016; 26:713-22. [PMID: 26948881 DOI: 10.1016/j.cub.2016.01.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Overgeneralization of dangerous stimuli is a possible etiological account for anxiety disorders, yet the underlying behavioral and neural origins remain vague. Specifically, it is unclear whether this is a choice behavior in an unsafe environment ("better safe than sorry") or also a fundamental change in how the stimulus is perceived. We show that anxiety patients have wider generalization for loss-conditioned tone when compared to controls and do so even in a safe context that requires a different behavioral policy. Moreover, patients overgeneralized for gain-conditioned tone as well. Imaging (fMRI) revealed that in anxiety only, activations during conditioning in the dACC and the putamen were correlated with later overgeneralization of loss and gain, respectively, whereas valence distinction in the amygdala and hippocampus during conditioning mediated the difference between loss and gain generalization. During generalization itself, neural discrimination based on multivoxel patterns in auditory cortex and amygdala revealed specific stimulus-related plasticity. Our results suggest that overgeneralization in anxiety has perceptual origins and involves affective modulation of stimulus representations in primary cortices and amygdala.
Collapse
Affiliation(s)
- Offir Laufer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Israeli
- The Jerusalem Mental Health Center and the Hebrew University, Jerusalem 91120, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
29
|
Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation. Neural Plast 2016; 2016:7254297. [PMID: 26881129 PMCID: PMC4735916 DOI: 10.1155/2016/7254297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.
Collapse
|
30
|
Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation. J Neurosci 2015; 35:13124-32. [PMID: 26400942 DOI: 10.1523/jneurosci.0914-15.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually "tuned-in" to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control "informational capture" at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories.
Collapse
|
31
|
Elias GA, Bieszczad KM, Weinberger NM. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory. Neurobiol Learn Mem 2015; 126:39-55. [PMID: 26596700 DOI: 10.1016/j.nlm.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS- tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was "bar-press from tone-onset-to-error signal" ("TOTE"). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error ("iTOTE"). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain sites, including reversal of cortical expansion.
Collapse
Affiliation(s)
- Gabriel A Elias
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Kasia M Bieszczad
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States; Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, NJ 08854-8020, United States
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States.
| |
Collapse
|
32
|
McGann JP. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? ACTA ACUST UNITED AC 2015; 22:567-76. [PMID: 26472647 PMCID: PMC4749728 DOI: 10.1101/lm.039636.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral outputs, such as the amygdala and cerebellum. However, evidence is accumulating that some forms of learning can in fact drive stimulus-specific changes very early in sensory systems, including not only primary sensory cortices but also precortical structures and even the peripheral sensory organs themselves. This review synthesizes evidence across sensory modalities to report emerging themes, including the systems’ flexibility to emphasize different aspects of a sensory stimulus depending on its predictive features and ability of different forms of learning to produce similar plasticity in sensory structures. Potential functions of this learning-induced neuroplasticity are discussed in relation to the challenges faced by sensory systems in changing environments, and evidence for absolute changes in sensory ability is considered. We also emphasize that this plasticity may serve important nonsensory functions, including balancing metabolic load, regulating attentional focus, and facilitating downstream neuroplasticity.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
33
|
Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size. Proc Natl Acad Sci U S A 2015; 112:12846-51. [PMID: 26420875 DOI: 10.1073/pnas.1505068112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.
Collapse
|
34
|
Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nat Neurosci 2015; 18:1483-92. [PMID: 26301326 PMCID: PMC4583810 DOI: 10.1038/nn.4090] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is plastic and represents the world according to the significance of sensory stimuli. However, cortical networks are embodied in complex circuits, including neuromodulatory systems such as the noradrenergic locus coeruleus, providing information about internal state and behavioral relevance. Although norepinephrine is important for cortical plasticity, it is unknown how modulatory neurons themselves respond to changes of sensory input. We examined how locus coeruleus neurons are modified by experience and the consequences of locus coeruleus plasticity for cortical representations and sensory perception. We made whole-cell recordings from rat locus coeruleus and primary auditory cortex (A1), pairing sounds with locus coeruleus activation. Although initially unresponsive, locus coeruleus neurons developed and maintained auditory responses afterwards. Locus coeruleus plasticity induced changes in A1 responses lasting at least hours and improved auditory perception for days to weeks. Our results demonstrate that locus coeruleus is highly plastic, leading to substantial changes in regulation of brain state by norepinephrine.
Collapse
|
35
|
Abstract
Auditory learning is associated with an enhanced representation of acoustic cues in primary auditory cortex, and modulation of inhibitory strength is causally involved in learning. If this inhibitory plasticity is associated with task learning and improvement, its expression should emerge and persist until task proficiency is achieved. We tested this idea by measuring changes to cortical inhibitory synaptic transmission as adult gerbils progressed through the process of associative learning and perceptual improvement. Using either of two procedures, aversive or appetitive conditioning, animals were trained to detect amplitude-modulated noise and then tested daily. Following each training session, a thalamocortical brain slice was generated, and inhibitory synaptic properties were recorded from layer 2/3 pyramidal neurons. Initial associative learning was accompanied by a profound reduction in the amplitude of spontaneous IPSCs (sIPSCs). However, sIPSC amplitude returned to control levels when animals reached asymptotic behavioral performance. In contrast, paired-pulse ratios decreased in trained animals as well as in control animals that experienced unpaired conditioned and unconditioned stimuli. This latter observation suggests that inhibitory release properties are modified during behavioral conditioning, even when an association between the sound and reinforcement cannot occur. These results suggest that associative learning is accompanied by a reduction of postsynaptic inhibitory strength that persists for several days during learning and perceptual improvement.
Collapse
|
36
|
Becoming a mother-circuit plasticity underlying maternal behavior. Curr Opin Neurobiol 2015; 35:49-56. [PMID: 26143475 DOI: 10.1016/j.conb.2015.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
Abstract
The transition to motherhood is a dramatic event during the lifetime of many animals. In mammals, motherhood is accompanied by hormonal changes in the brain that start during pregnancy, followed by experience dependent plasticity after parturition. Together, these changes prime the nervous system of the mother for efficient nurturing of her offspring. Recent work has described how neural circuits are modified during the transition to motherhood. Here we discuss changes in the auditory cortex during motherhood as a model for maternal plasticity in sensory systems. We compare classical plasticity paradigms with changes that arise naturally in mothers, highlighting current efforts to establish a mechanistic understanding of plasticity and its different components in the context of maternal behavior.
Collapse
|
37
|
Headley DB, Weinberger NM. Relational associative learning induces cross-modal plasticity in early visual cortex. Cereb Cortex 2015; 25:1306-18. [PMID: 24275832 PMCID: PMC4397573 DOI: 10.1093/cercor/bht325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices.
Collapse
Affiliation(s)
- Drew B Headley
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| |
Collapse
|
38
|
Weinberger NM. New perspectives on the auditory cortex: learning and memory. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:117-47. [PMID: 25726266 DOI: 10.1016/b978-0-444-62630-1.00007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
39
|
Engineer CT, Perez CA, Carraway RS, Chang KQ, Roland JL, Kilgard MP. Speech training alters tone frequency tuning in rat primary auditory cortex. Behav Brain Res 2014; 258:166-78. [PMID: 24344364 DOI: 10.1016/j.bbr.2013.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies in both humans and animals have documented improved performance following discrimination training. This enhanced performance is often associated with cortical response changes. In this study, we tested the hypothesis that long-term speech training on multiple tasks can improve primary auditory cortex (A1) responses compared to rats trained on a single speech discrimination task or experimentally naïve rats. Specifically, we compared the percent of A1 responding to trained sounds, the responses to both trained and untrained sounds, receptive field properties of A1 neurons, and the neural discrimination of pairs of speech sounds in speech trained and naïve rats. Speech training led to accurate discrimination of consonant and vowel sounds, but did not enhance A1 response strength or the neural discrimination of these sounds. Speech training altered tone responses in rats trained on six speech discrimination tasks but not in rats trained on a single speech discrimination task. Extensive speech training resulted in broader frequency tuning, shorter onset latencies, a decreased driven response to tones, and caused a shift in the frequency map to favor tones in the range where speech sounds are the loudest. Both the number of trained tasks and the number of days of training strongly predict the percent of A1 responding to a low frequency tone. Rats trained on a single speech discrimination task performed less accurately than rats trained on multiple tasks and did not exhibit A1 response changes. Our results indicate that extensive speech training can reorganize the A1 frequency map, which may have downstream consequences on speech sound processing.
Collapse
|
40
|
Tong MT, Peace ST, Cleland TA. Properties and mechanisms of olfactory learning and memory. Front Behav Neurosci 2014; 8:238. [PMID: 25071492 PMCID: PMC4083347 DOI: 10.3389/fnbeh.2014.00238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system—particularly olfactory bulb—comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.
Collapse
Affiliation(s)
- Michelle T Tong
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| | - Shane T Peace
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Thomas A Cleland
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
41
|
Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 2014; 232:125-33. [DOI: 10.1016/j.jneumeth.2014.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
42
|
Moreno S, Bidelman GM. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear Res 2014; 308:84-97. [DOI: 10.1016/j.heares.2013.09.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
|
43
|
Schiffino FL, Zhou V, Holland PC. Posterior parietal cortex is critical for the encoding, consolidation, and retrieval of a memory that guides attention for learning. Eur J Neurosci 2014; 39:640-9. [PMID: 24236913 PMCID: PMC4018654 DOI: 10.1111/ejn.12417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/29/2022]
Abstract
Within most contemporary learning theories, reinforcement prediction error, the difference between the obtained and expected reinforcer value, critically influences associative learning. In some theories, this prediction error determines the momentary effectiveness of the reinforcer itself, such that the same physical event produces more learning when its presentation is surprising than when it is expected. In other theories, prediction error enhances attention to potential cues for that reinforcer by adjusting cue-specific associability parameters, biasing the processing of those stimuli so that they more readily enter into new associations in the future. A unique feature of these latter theories is that such alterations in stimulus associability must be represented in memory in an enduring fashion. Indeed, considerable data indicate that altered associability may be expressed days after its induction. Previous research from our laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event, and to the subsequent expression of that altered associability in more rapid learning. Here, for the first time, we identified a brain region, the posterior parietal cortex, as a potential site for a memorial representation of altered stimulus associability. In three experiments using rats and a serial prediction task, we found that intact posterior parietal cortex function was essential during the encoding, consolidation, and retrieval of an associability memory enhanced by surprising omissions. We discuss these new results in the context of our previous findings and additional plausible frontoparietal and subcortical networks.
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, 232 Ames Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | | | | |
Collapse
|
44
|
Schreiner CE, Polley DB. Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 2013; 24:143-56. [PMID: 24492090 DOI: 10.1016/j.conb.2013.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
45
|
Abolafia JM, Martinez-Garcia M, Deco G, Sanchez-Vives MV. Variability and information content in auditory cortex spike trains during an interval-discrimination task. J Neurophysiol 2013; 110:2163-74. [PMID: 23945780 DOI: 10.1152/jn.00381.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Processing of temporal information is key in auditory processing. In this study, we recorded single-unit activity from rat auditory cortex while they performed an interval-discrimination task. The animals had to decide whether two auditory stimuli were separated by either 150 or 300 ms and nose-poke to the left or to the right accordingly. The spike firing of single neurons in the auditory cortex was then compared in engaged vs. idle brain states. We found that spike firing variability measured with the Fano factor was markedly reduced, not only during stimulation, but also in between stimuli in engaged trials. We next explored if this decrease in variability was associated with an increased information encoding. Our information theory analysis revealed increased information content in auditory responses during engagement compared with idle states, in particular in the responses to task-relevant stimuli. Altogether, we demonstrate that task-engagement significantly modulates coding properties of auditory cortical neurons during an interval-discrimination task.
Collapse
Affiliation(s)
- Juan M Abolafia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Takahashi H, Yokota R, Kanzaki R. Response variance in functional maps: neural darwinism revisited. PLoS One 2013; 8:e68705. [PMID: 23874733 PMCID: PMC3708906 DOI: 10.1371/journal.pone.0068705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/31/2013] [Indexed: 11/23/2022] Open
Abstract
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
47
|
Oldoni D, De Coensel B, Boes M, Rademaker M, De Baets B, Van Renterghem T, Botteldooren D. A computational model of auditory attention for use in soundscape research. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:852-861. [PMID: 23862891 DOI: 10.1121/1.4807798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Urban soundscape design involves creating outdoor spaces that are pleasing to the ear. One way to achieve this goal is to add or accentuate sounds that are considered to be desired by most users of the space, such that the desired sounds mask undesired sounds, or at least distract attention away from undesired sounds. In view of removing the need for a listening panel to assess the effectiveness of such soundscape measures, the interest for new models and techniques is growing. In this paper, a model of auditory attention to environmental sound is presented, which balances computational complexity and biological plausibility. Once the model is trained for a particular location, it classifies the sounds that are present in the soundscape and simulates how a typical listener would switch attention over time between different sounds. The model provides an acoustic summary, giving the soundscape designer a quick overview of the typical sounds at a particular location, and allows assessment of the perceptual effect of introducing additional sounds.
Collapse
Affiliation(s)
- Damiano Oldoni
- Acoustics Research Group, Department of Information Technology, Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. J Neurosci 2013; 33:7345-57. [PMID: 23616541 DOI: 10.1523/jneurosci.4500-12.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.
Collapse
|
49
|
Bieszczad KM, Miasnikov AA, Weinberger NM. Remodeling sensory cortical maps implants specific behavioral memory. Neuroscience 2013; 246:40-51. [PMID: 23639876 DOI: 10.1016/j.neuroscience.2013.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Neural mechanisms underlying the capacity of memory to be rich in sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels the adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66-kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity was consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects' area of expansion and the tone that was strongest in each animal's memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation.
Collapse
Affiliation(s)
- K M Bieszczad
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States.
| | | | | |
Collapse
|
50
|
Ide Y, Miyazaki T, Lauwereyns J, Sandner G, Tsukada M, Aihara T. Optical imaging of plastic changes induced by fear conditioning in the auditory cortex. Cogn Neurodyn 2013; 6:1-10. [PMID: 23372615 DOI: 10.1007/s11571-011-9173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 11/29/2022] Open
Abstract
The plastic changes in the auditory cortex induced by a fear conditioning, through pairing a sound (CS) with an electric foot-shock (US), were investigated using an optical recording method with voltage sensitive dye, RH795. In order to investigate the effects of association learning, optical signals in the auditory cortex in response to CS (12 kHz pure tone) and non-CS (4, 8, 16 kHz pure tone) were recorded before and after normal and sham conditioning. As a result, the response area to CS enlarged only in the conditioning group after the conditioning. Additionally, the rise time constant of the auditory response to CS significantly decreased and the relative peak value and the decay time constant of the auditory response to CS significantly increased after the conditioning. This study introduces an optical approach to the investigation of fear conditioning, representational plasticity, and the cholinergic system. The findings are synthesized in a model of the synaptic mechanisms that underlie cortical plasticity.
Collapse
Affiliation(s)
- Yoshinori Ide
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610 Japan
| | | | | | | | | | | |
Collapse
|