1
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Lv H, Xu X, Wu Z, Lin Y, Liu Y, Liu M, Xu L, Wang X, Sun N, Abdel-Shafy H, Abdelrahman M, Alsaegh AA, Ahmed AE, Yang L, Hua G. Yes-associated protein 1 is essential for maintaining lactation via regulating mammary epithelial cell dynamics and secretion capacity. Int J Biol Macromol 2024; 293:139290. [PMID: 39743110 DOI: 10.1016/j.ijbiomac.2024.139290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Understanding the physiology and molecular mechanisms of lactogenesis is crucial for enhancing mammalian milk production. Yes-associated protein 1 (YAP1) regulated mammary epithelial cell survival during pregnancy, but its role in lactation maintenance remains unclear. We found that YAP1 was highly expressed in mammary gland across specie, with elevated expression levels during murine gestation and lactation, particularly localized in alveoli epithelial cells. In vivo administration of a YAP1 inhibitor impaired murine milk yield, mammary gland weight, alveolar structure, and mammary epithelial cell dynamics. In vitro, YAP1 positively affected mammary epithelial cell growth and the synthesis of triglyceride and α-casein. Notably, the primary lactogenesis hormone Prolactin induced cell growth and triglyceride secretion while enhancing YAP1 expression and activity. In contrast, Melatonin inhibited cell growth and triglyceride synthesis, decreasing YAP1 expression and activity. YAP1 knockdown compromised prolactin induced effects, whereas YAP1 overexpression partially rescued cell functions inhibited by melatonin. Finally, Bioinformatics analyses revealed that YAP1 regulated multiple biological processes related to lactogenesis, including cell cycle, apoptosis, endoplasmic reticulum, amino acid transport and biosynthesis, etc. These finding indicated that YAP1 is essential for mammary epithelial cells growth and secretion and played an essential role in the lactating endocrine network by mediating key hormone functions.
Collapse
Affiliation(s)
- Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China
| | - Xiaoling Xu
- Laboratory of Animal Reproduction, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, BJ, China
| | - Zihui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Lin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liu
- Laboratory of Animal Reproduction, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, BJ, China
| | - Miaoyu Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linghua Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, El-Gamma Street, 12613 Giza, Egypt
| | - Mohamed Abdelrahman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Animal Production Department, Faculty of Agriculture, Assuit University, Asyut, Egypt
| | - Aiman A Alsaegh
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Wu Z, Li J, Chen W. Biological characterization of lipoic acid- and heme-dependent Escherichia coli small colony variants isolated from sheep in Xinjiang, China. Vet Res Commun 2024; 48:3859-3872. [PMID: 39325108 DOI: 10.1007/s11259-024-10554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Escherichia coli (E. coli) small colony variants (SCVs) have garnered attention due to their heightened antibiotic resistance and enhanced cell retention, posing significant risks to public health and food safety. However, understanding of SCVs derived from sheep remains limited. This study aimed to detect the biological characterization of sheep-derived E. coli SCVs and investigate the factors contributing to SCV development with preliminary genomic data. In this study, a lipoic acid-dependent SCV (LA-SCV) and a wild-type (WT) strain were isolated from sheep bile. Then, a heme-dependent SCV (HD-SCV) was induced from WT using amikacin. Initially, we examined factors contributing to SCV formation via comparative genomics. Subsequent comparisons between WT and two SCV strains encompassed antibiotic resistance, hemolytic activity, biofilm formation, motility, and metabolism. Genomic analyses identified a frameshift deletion mutation in the lipA gene in LA-SCV and a stopgain mutation in the hemG gene in HD-SCV, hypothesized as potential triggers for lipoic acid- and heme-dependent SCV development, respectively. Physiological, biochemical, and cultural traits exhibited notable differences between WT and SCVs, including increased antibiotic resistance, hemolytic activity, and biofilm formation, but alongside non-fermentative acetate utilization, slow growth, reduced intracellular ATP, and decreased motility (P < 0.01). The energy and amino acid metabolism were suppressed during the logarithmic phase in LA-SCV, while both logarithmic and stable phases in HD-SCV. These alterations in biological characteristics present significant challenges in managing E. coli pathogenicity and antibiotic resistance.
Collapse
Affiliation(s)
- Zihao Wu
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China
| | - Jing Li
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| | - Wei Chen
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China.
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| |
Collapse
|
4
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
5
|
Wang C, Zheng M, Est C, Lawal R, Liang W, Korasick DA, Rau MJ, Saracco SA, Johnson V, Wang Y, White T, Li W, Zhang J, Gu X, Liu-Gontarek F. Production and characterization of homologous protoporphyrinogen IX oxidase (PPO) proteins: Evidence that small N-terminal amino acid changes do not impact protein function. PLoS One 2024; 19:e0311049. [PMID: 39325813 PMCID: PMC11426539 DOI: 10.1371/journal.pone.0311049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Transgenic soybean, cotton, and maize tolerant to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides have been developed by introduction of a bacterial-derived PPO targeted into the chloroplast. PPO is a membrane-associated protein with an intrinsic tendency for aggregation, making expression, purification, and formulation at high concentrations difficult. In this study, transgenic PPO expressed in three crops was demonstrated to exhibit up to a 13 amino acid sequence difference in the N-terminus due to differential processing of the chloroplast transit peptide (CTP). Five PPO protein variants were produced in and purified from E. coli, each displaying equivalent immunoreactivity and functional activity, with values ranging from 193 to 266 nmol min-1 mg-1. Inclusion of an N-terminal 6xHis-tag or differential processing of the CTP peptide does not impact PPO functional activity. Additionally, structural modeling by Alphafold, ESMfold, and Openfold indicates that these short N-terminal extensions are disordered and predicted to not interfere with the mature PPO structure. These results support the view that safety studies on PPO from various crops can be performed from a single representative variant. Herein, we report a novel and robust method for large-scale production of PPO, enabling rapid production of more than 200 g of highly active PPO protein at 99% purity and low endotoxin contamination. We also present a formulation that allows for concentration of active PPO to > 75 mg/mL in a buffer suitable for mammalian toxicity studies.
Collapse
Affiliation(s)
- Cunxi Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Meiying Zheng
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chandler Est
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Remi Lawal
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenguang Liang
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - David A. Korasick
- Small Molecules, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael J. Rau
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Scott A. Saracco
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Virginia Johnson
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Tommi White
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenze Li
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Xin Gu
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Flora Liu-Gontarek
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
6
|
Li B, Chen X, Zhao D, Liu Z, Li J, Siddique MS, Wu J, Zhuang Y, Wang Z. Physiological Metabolic Analysis of VB 12 Accumulation in Ensifer adhaerens Casida A Enhanced by Oxygen Limitation. Biotechnol J 2024; 19:e202400305. [PMID: 39295543 DOI: 10.1002/biot.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Cobalamin (VB12) is in enormous demand across the fields of medicine, food, and feed additives. However, the oxygen supply plays a critical role in VB12 biosynthesis by Ensifer adhaerens Casida A and has been identified as a bottleneck for economical substrate consumption. This study elucidates the relationship between oxygen limitation and VB12 accumulation with transcriptomic and metabolomic analyses. Under oxygen limitation, E. adhaerens enhances oxygen transport and storage by increasing expression of flavin hemoglobin (Hmp), which was up-regulated 6-fold at 24 h of oxygen restriction compared to the oxygen restriction of 4 h (p < 0.01). Because of the cofactor of Hmp is heme, the demand for heme increases, leading to the upregulation of genes in the heme biosynthesis pathway. Similarly, genes involved in biosynthesis of its precursor, 5-ALA, were upregulated as well. 5-ALA is also a direct precursor of VB12, further leading to the upregulation of genes in the VB12 biosynthesis pathway. This process initiates biosynthesis and accumulation of VB12. As VB12 and heme biosynthesis progresses, genes associated with the biosynthesis and transportation pathways of compounds related to their biosynthesis were likewise upregulated, including genes involved in S-adenosyl methionine (SAM) biosynthesis, and the transport of Fe2+ and Co2+. Additionally, amino acids and organic acids associated with biosynthesis were also extensively consumed, such as methionine, which is used for synthesizing SAM, decreased by 310% after 24 h of oxygen limitation compared to 20% dissolved oxygen (p < 0.05). At the same time, genes related to growth-associated metabolic pathways, such as pentose phosphate pathway (PPP), were significantly downregulated. Therefore, the potential mechanism by which E. adhaerens accumulates VB12 under oxygen-limited conditions by enhancing Hmp expression, which facilitates the porphyrin metabolic pathway and promotes VB12 biosynthesis. This research provides valuable insights for increasing VB12 production through metabolic engineering and process optimization.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinyi Chen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dujuan Zhao
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Safwan Siddique
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiequn Wu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Nguyen VH. Genomic investigations of diverse corbiculate bee gut-associated Gilliamella reveal conserved pathways for energy metabolism, with diverse and variable energy sources. Access Microbiol 2024; 6:000793.v3. [PMID: 39148688 PMCID: PMC11325843 DOI: 10.1099/acmi.0.000793.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Gilliamella is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through in vivo and in vitro experiments focused on the type species Gilliamella apicola. This study examined 95 publicly available genomes representing at least 18 Gilliamella species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the Gilliamella but also other members of the family Orbaceae. Evidence suggests Gilliamella are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all Gilliamella and acetoin for some G. apicola strains. According to genomic evidence examined, all Gilliamella are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all Gilliamella species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phosphoenol-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Project Genomes To Functional, Ecological, and Evolutionary Characterizations (Project G2FEEC), Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Zhang Y, Kubiak AM, Bailey TS, Claessen L, Hittmeyer P, Dubois L, Theys J, Lambin P. Development of a CRISPR-Cas12a system for efficient genome engineering in clostridia. Microbiol Spectr 2023; 11:e0245923. [PMID: 37947521 PMCID: PMC10715149 DOI: 10.1128/spectrum.02459-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Continued efforts in developing the CRISPR-Cas systems will further enhance our understanding and utilization of Clostridium species. This study demonstrates the development and application of a genome-engineering tool in two Clostridium strains, Clostridium butyricum and Clostridium sporogenes, which have promising potential as probiotics and oncolytic agents. Particular attention was given to the folding of precursor crRNA and the role of this process in off-target DNA cleavage by Cas12a. The results provide the guidelines necessary for efficient genome engineering using this system in clostridia. Our findings not only expand our fundamental understanding of genome-engineering tools in clostridia but also improve this technology to allow use of its full potential in a plethora of biotechnological applications.
Collapse
Affiliation(s)
- Yanchao Zhang
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Exomnis Biotech BV, Maastricht, The Netherlands
| | - Tom S. Bailey
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Luuk Claessen
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Philip Hittmeyer
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Ludwig Dubois
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Borisov VB. Generation of Membrane Potential by Cytochrome bd. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1504-1512. [PMID: 38105020 DOI: 10.1134/s0006297923100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Arias-Cartin R, Kazemzadeh Ferizhendi K, Séchet E, Pelosi L, Loeuillet C, Pierrel F, Barras F, Bouveret E. Role of the Escherichia coli ubiquinone-synthesizing UbiUVT pathway in adaptation to changing respiratory conditions. mBio 2023; 14:e0329822. [PMID: 37283518 PMCID: PMC10470549 DOI: 10.1128/mbio.03298-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Isoprenoid quinones are essential for cellular physiology. They act as electron and proton shuttles in respiratory chains and various biological processes. Escherichia coli and many α-, β-, and γ-proteobacteria possess two types of isoprenoid quinones: ubiquinone (UQ) is mainly used under aerobiosis, while demethylmenaquinones (DMK) are mostly used under anaerobiosis. Yet, we recently established the existence of an anaerobic O2-independent UQ biosynthesis pathway controlled by ubiT, ubiU, and ubiV genes. Here, we characterize the regulation of ubiTUV genes in E. coli. We show that the three genes are transcribed as two divergent operons that are both under the control of the O2-sensing Fnr transcriptional regulator. Phenotypic analyses using a menA mutant devoid of DMK revealed that UbiUV-dependent UQ synthesis is essential for nitrate respiration and uracil biosynthesis under anaerobiosis, while it contributes, though modestly, to bacterial multiplication in the mouse gut. Moreover, we showed by genetic study and 18O2 labeling that UbiUV contributes to the hydroxylation of ubiquinone precursors through a unique O2-independent process. Last, we report the crucial role of ubiT in allowing E. coli to shift efficiently from anaerobic to aerobic conditions. Overall, this study uncovers a new facet of the strategy used by E. coli to adjust its metabolism on changing O2 levels and respiratory conditions. This work links respiratory mechanisms to phenotypic adaptation, a major driver in the capacity of E. coli to multiply in gut microbiota and of facultative anaerobic pathogens to multiply in their host. IMPORTANCE Enterobacteria multiplication in the gastrointestinal tract is linked to microaerobic respiration and associated with various inflammatory bowel diseases. Our study focuses on the biosynthesis of ubiquinone, a key player in respiratory chains, under anaerobiosis. The importance of this study stems from the fact that UQ usage was for long considered to be restricted to aerobic conditions. Here we investigated the molecular mechanism allowing UQ synthesis in the absence of O2 and searched for the anaerobic processes that UQ is fueling in such conditions. We found that UQ biosynthesis involves anaerobic hydroxylases, that is, enzymes able to insert an O atom in the absence of O2. We also found that anaerobically synthesized UQ can be used for respiration on nitrate and the synthesis of pyrimidine. Our findings are likely to be applicable to most facultative anaerobes, which count many pathogens (Salmonella, Shigella, and Vibrio) and will help in unraveling microbiota dynamics.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Département de Microbiologie, Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, Paris, France
| | | | - Emmanuel Séchet
- Département de Microbiologie, Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, Paris, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Corinne Loeuillet
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Frédéric Barras
- Département de Microbiologie, Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, Paris, France
| | - Emmanuelle Bouveret
- Département de Microbiologie, Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, Paris, France
| |
Collapse
|
11
|
Zamarreño Beas J, Videira MAM, Karavaeva V, Lourenço FM, Almeida MR, Sousa F, Saraiva LM. In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase. Front Genet 2023; 14:1199357. [PMID: 37415606 PMCID: PMC10320005 DOI: 10.3389/fgene.2023.1199357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.
Collapse
Affiliation(s)
- Jordi Zamarreño Beas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Frederico M. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda R. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipa Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
12
|
Mattison RL, Beffa R, Bojack G, Bollenbach-Wahl B, Dörnbrack C, Dorn N, Freigang J, Gatzweiler E, Getachew R, Hartfiel C, Heinemann I, Helmke H, Hohmann S, Jakobi H, Lange G, Lümmen P, Willms L, Frackenpohl J. Design, synthesis and screening of herbicidal activity for new phenyl pyrazole-based protoporphyrinogen oxidase-inhibitors (PPO) overcoming resistance issues. PEST MANAGEMENT SCIENCE 2023; 79:2264-2280. [PMID: 36815643 DOI: 10.1002/ps.7425] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Whilst there are several methods to control weeds, which continuously plague farmers around the globe, the application of small molecular compounds is still the most effective technology to date. Plants can evolve to become resistant to PPO-inhibitors, a class of herbicides in commercial use since the 1960s. It is therefore essential to continuously develop new herbicides based on this mode-of-action with enhanced intrinsic activity, an improved resistance profile and favourable physicochemical properties. Based on an Amaranthus PPO crystal structure and subsequent modelling studies, halogen-substituted pyrazoles have been investigated as isosteres of uracil-based PPO-inhibitors. RESULTS By combining structural features from the commercial PPO-inhibitors tiafenacil and pyraflufen-ethyl and by investigating receptor-binding properties, we identified new promising pyrazole-based lead structures showing strong activity in vitro and in vivo against economically important weeds of the Amaranthus genus: A. retroflexus, and resistant A. palmeri and A. tuberculatus. CONCLUSION The present work covers a series of novel PPO-inhibiting compounds that contain a pyrazole ring and a substituted thioacetic acid sidechain attached to the core phenyl group. These compounds show good receptor fit in line with excellent herbicidal activity against weeds that plague corn and rice crops with low application rates. This, in combination with promising selectivity in corn, have the potential to mitigate and affect weeds that have become resistant to some of the current market standards. Remarkably, some of the novel PPO-inhibitors outlined herein show efficacies against economically important weeds that were superior to recently commercialized and structurally related tiafenacil. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebecca L Mattison
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Roland Beffa
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Christine Dörnbrack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Nicole Dorn
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Rahel Getachew
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Ines Heinemann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Harald Jakobi
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Peter Lümmen
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Lothar Willms
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Yang Q, Zhao J, Zheng Y, Chen T, Wang Z. Microbial Synthesis of Heme b: Biosynthetic Pathways, Current Strategies, Detection, and Future Prospects. Molecules 2023; 28:3633. [PMID: 37110868 PMCID: PMC10144233 DOI: 10.3390/molecules28083633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Heme b, which is characterized by a ferrous ion and a porphyrin macrocycle, acts as a prosthetic group for many enzymes and contributes to various physiological processes. Consequently, it has wide applications in medicine, food, chemical production, and other burgeoning fields. Due to the shortcomings of chemical syntheses and bio-extraction techniques, alternative biotechnological methods have drawn increasing attention. In this review, we provide the first systematic summary of the progress in the microbial synthesis of heme b. Three different pathways are described in detail, and the metabolic engineering strategies for the biosynthesis of heme b via the protoporphyrin-dependent and coproporphyrin-dependent pathways are highlighted. The UV spectrophotometric detection of heme b is gradually being replaced by newly developed detection methods, such as HPLC and biosensors, and for the first time, this review summarizes the methods used in recent years. Finally, we discuss the future prospects, with an emphasis on the potential strategies for improving the biosynthesis of heme b and understanding the regulatory mechanisms for building efficient microbial cell factories.
Collapse
Affiliation(s)
- Qiuyu Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yangyang Zheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Ushimaru R, Lyu J, Abe I. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad016. [PMID: 37422437 PMCID: PMC10548856 DOI: 10.1093/jimb/kuad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Tetrapyrroles represent a unique class of natural products that possess diverse chemical architectures and exhibit a broad range of biological functions. Accordingly, they attract keen attention from the natural product community. Many metal-chelating tetrapyrroles serve as enzyme cofactors essential for life, while certain organisms produce metal-free porphyrin metabolites with biological activities potentially beneficial for the producing organisms and for human use. The unique properties of tetrapyrrole natural products derive from their extensively modified and highly conjugated macrocyclic core structures. Most of these various tetrapyrrole natural products biosynthetically originate from a branching point precursor, uroporphyrinogen III, which contains propionate and acetate side chains on its macrocycle. Over the past few decades, many modification enzymes with unique catalytic activities, and the diverse enzymatic chemistries employed to cleave the propionate side chains from the macrocycles, have been identified. In this review, we highlight the tetrapyrrole biosynthetic enzymes required for the propionate side chain removal processes and discuss their various chemical mechanisms. ONE-SENTENCE SUMMARY This mini-review describes various enzymes involved in the propionate side chain cleavages during the biosynthesis of tetrapyrrole cofactors and secondary metabolites.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqi Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
16
|
Barber DM. A Competitive Edge: Competitor Inspired Scaffold Hopping in Herbicide Lead Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11075-11090. [PMID: 35271269 DOI: 10.1021/acs.jafc.1c07910] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the years, scaffold hopping has proven to be a powerful tool in the agrochemical optimization process. It offers the opportunity to modify known molecular lead structures to improve a range of parameters, including biological efficacy and spectrum, physicochemical properties, toxicity, stability, and to secure new intellectual property. Very often the disclosure of a new chemical structure can spark a multitude of competitor activities, where scaffold hopping plays a crucial role in the optimization process as well as for the generation of new intellectual property. Herein, recent examples of scaffold hopping in early phase herbicide research based on competitor inspired activities will be discussed using examples of how these research campaigns can often result in the registration of new crop protection products.
Collapse
Affiliation(s)
- David M Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
17
|
He G, Jiang M, Cui Z, Sun X, Chen T, Wang Z. Construction of 5-aminolevulinic acid synthase variants by cysteine-targeted mutation to release heme inhibition. J Biosci Bioeng 2022; 134:416-423. [PMID: 36089467 DOI: 10.1016/j.jbiosc.2022.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
5-Aminolevulinic acid (5-ALA), a vital precursor for the biosynthesis of tetrapyrrole compounds, has been widely applied in agriculture and medicine, while extremely potential for the treatment of cancers, corona virus disease 2019 (COVID-19) and metabolic diseases in recent years. With the development of metabolic engineering and synthetic biology, the biosynthesis of 5-ALA has attracted increasing attention. 5-Aminolevulinic acid synthase (ALAS), the key enzyme for 5-ALA synthesis in the C4 pathway, is subject to stringent feedback inhibition by heme. In this work, cysteine-targeted mutation of ALAS was proposed to overcome this drawback. ALAS from Rhodopseudomonas palustris (RP-ALAS) and Rhodobacter capsulatus (RC-ALAS) were selected for mutation and eight variants were generated. Variants RP-C132A and RC-C201A increased enzyme activities and released hemin inhibition, respectively, maintaining 82.5% and 81.9% residual activities in the presence of 15 μM hemin. Moreover, the two variants exhibited higher stability than that of their corresponding wild-type enzymes. Corynebacterium glutamicum overexpressing RP-C132A and RC-C201A produced 14.0% and 21.6% higher titers of 5-ALA than the control, respectively. These results strongly suggested that variants RP-C132A and RC-C201A obtained by utilizing cysteine-targeted mutation strategy released hemin inhibition, broadening their applications in 5-ALA biosynthesis.
Collapse
Affiliation(s)
- Guimei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiru Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
18
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
19
|
Forte E, Nastasi MR, Borisov VB. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:720-730. [PMID: 36171653 DOI: 10.1134/s0006297922080041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Martina R Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
20
|
Quinones: More Than Electron Shuttles. Res Microbiol 2022; 173:103953. [DOI: 10.1016/j.resmic.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
|
21
|
Tang R, Sun W, Zhang JC, Mao L, Quanquin N, Wu D, Sun Y. Expression of Human Uncoupling Protein-1 in Escherichia coli Decreases its Survival Under Extremely Acidic Conditions. Curr Microbiol 2022; 79:77. [DOI: 10.1007/s00284-022-02762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
|
22
|
Lall D, Miscevic D, Bruder M, Westbrook A, Aucoin M, Moo-Young M, Perry Chou C. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. BIORESOUR BIOPROCESS 2022; 8:122. [PMID: 34970474 PMCID: PMC8668860 DOI: 10.1186/s40643-021-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~ 30 g L−1 glycerol, we achieved high PBG titers up to 209 mg L−1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization.
Collapse
Affiliation(s)
- Davinder Lall
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Mark Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Adam Westbrook
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Marc Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
23
|
Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production. AMB Express 2021; 11:179. [PMID: 34958433 PMCID: PMC8712284 DOI: 10.1186/s13568-021-01335-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
5-aminolevulinic acid (ALA) has broad potential applications in the medical, agricultural and food industries. Several strategies have been implemented successfully to try to improve ALA synthesis. Nonetheless, the low yield has got in the way of large-scale bio-manufacture of 5-ALA. In this study, we explored strain engineering strategies for high-level 5-ALA production in Corynebacterium glutamicum F343 using the C4 pathway. Initially, the glutamate dehydrogenase-encoding gene gdhA was deleted to reduce glutamate yield. Then the C4 pathway was introduced in the gdhA mutant strain F2-A (∆gdhA + hemA), resulting in a 5-ALA yield of up to 3.2 g/L. Furthermore, the accumulations of downstream metabolites such as heme, porphobilinogen, and protoporphyrin IX, were decreased. After evaluating the mechanisms of this synthetic pathway by RNA-Seq, the results showed that genes involved in both the C5 pathway and heme pathways were down-regulated in strain F2-A (∆gdhA + hemA). Interestingly, upstream genes of succinyl-CoA in the tricarboxylic acid (TCA) cycle, such as icd, lpdA, were up-regulated, while its downstream genes, including sucC, sucD, sdhB, sdhA, sdhCD, were down-regulated. These changes amplify the sources of succinyl-CoA and reduce its expenditure, before pulling the carbon flux to produce 5-ALA. Furthermore, the down-regulation of most genes of the heme pathway could reduce the drainage of 5-ALA, which further enhance its accumulation. To alleviate competition between glyoxylate and the TCA cycle, the isocitrate dehydrogenase-encoding gene aceA was also knocked out, resulting in 3.86 g/L of 5-ALA. Finally, the fermentation conditions were optimized, resulting in a maximum 5-ALA yield of 5.6 g/L. Overall, the blocking of the glutamate synthesis pathway could be a powerful strategy to re-allocate the carbon flux to produce 5-ALA. It could also enable the efficient synthesis of other TCA derivatives in C. glutamicum.
Collapse
|
24
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
26
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
27
|
Wang Y, Ye X, Lan Q, Ke X, Hu L, Hu L. UPLC-MS/MS Determination of Linezolid and Heme in Plasma of Infected Patients and Correlation Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6679076. [PMID: 34337043 PMCID: PMC8289587 DOI: 10.1155/2021/6679076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022]
Abstract
Linezolid can cause serious haematological toxicity, such as thrombocytopenia and aneamia. Heme, composed of iron and porphyrin, is an important component of hemoglobin. In order to investigate the relationship between the concentration of linezolid and heme in the plasma of infected patients, a UPLC-MS/MS method that can determine the concentrations of linezolid and heme simultaneously was developed and validated. A total of 96 healthy subjects and 81 infected patients, who received blood routine blood tests, were included and determined by the UPLC-MS/MS method. The results showed that the concentration of linezolid was 5.08 ± 3.46 μg/mL in infected patients who were treated with linezolid. The heme in healthy subjects was 7.05 ± 8.68 μg/mL, and it was significantly decreased to 0.88 ± 0.79 μg/mL in infected patients (P < 0.01). Spearman correlation analysis showed that linezolid had a high negative correlation with platelet (PLT) (R = -0.309). Heme had a high positive correlation with hemoglobin (Hb) (R = 0.249) in healthy subjects and infected patients. The ROC analysis showed that heme had diagnostic value to distinguish low Hb (110 g/L). In conclusion, there was a positive correlation between heme and Hb, and this correlation was also observed in infected patients. A high concentration of linezolid was inclined to decrease PLT. Monitoring of heme and linezolid helps in the early diagnose of low Hb and PLT.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuemei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qin Lan
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaofang Ke
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lichuan Hu
- Department of Pharmacy, Wenzhou Central Hospital, Wenzhou 325000, China
| |
Collapse
|
28
|
Ge F, Wen D, Ren Y, Chen G, He B, Li X, Li W. Downregulating of hemB via synthetic antisense RNAs for improving 5-aminolevulinic acid production in Escherichia coli. 3 Biotech 2021; 11:230. [PMID: 33968574 DOI: 10.1007/s13205-021-02733-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Aminolevulinic acid (ALA), a type of natural non-protein amino acid, is a key precursor for the biosynthesis of heme, and it has been broadly applied in medicine, agriculture. Several strategies have been applied to enhance ALA synthesis in bacteria. In the present study, we employed synthetic antisense RNAs (asRNAs) of hemB (encodes ALA dehydratase) to weaken metabolic flux of ALA to porphobilinogen (PBG), and investigated their effect on ALA accumulation. For this purpose, we designed and constructed vectors pET28a-hemA-asRNA and pRSFDuet-hemA-asRNA to simultaneously express 5-ALA synthase (ALAS, encoded by hemA) and PTasRNAs (2 inverted repeat DNA sequences sandwiched with the antisense sequence of hemB), selecting the region ranging from - 57 nt upstream to + 139 nt downstream of the start codon of hemB as a target. The qRT-PCR analysis showed that the mRNA levels of hemB were decreased above 50% of the control levels, suggesting that the anti-hemB asRNA was functioning appropriately. ALA accumulation in the hemB weakened strains were 17.6% higher than that obtained using the control strains while accumulating less PBG. These results indicated that asRNAs can be used as a tool for regulating ALA accumulation in E. coli. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02733-8.
Collapse
Affiliation(s)
- Fanglan Ge
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Dongmei Wen
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Yao Ren
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Guiying Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Bing He
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Xiaokun Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
| | - Wei Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610068 People's Republic of China
- Key Laboratory for Utilization and Conservation of Bio-Resources of Education, Department of Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
29
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
30
|
Pakiari AH, Salarhaji M, Abdollahi T, Safapour M. The redox potential of flavin derivatives as a mediator in biosensors. J Mol Model 2021; 27:96. [PMID: 33641033 DOI: 10.1007/s00894-020-04650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
The two-electron reduction potential for a set of 393 flavin derivatives is presented in this article. These derivatives are substituted flavin on carbon 6, 7, 8, and 9 by coinage transition metals (Cu, Ag, and Au) and conjugated double bond hydrocarbons; and both groups are examined with and without functional groups such as OH, Cl, CH3, COOH, and NO2. In order to show the validity of the results, the reduction potential of human life molecules, which have experimental values, such as flavin adenine dinucleotide (FAD) and riboflavin (vitamin B2) is calculated. The experimental value for FAD is - 0.22 V, while the obtained theoretical value is - 0.21 V, and the corresponding values for riboflavin are - 0.18 and - 0.19 V, respectively. Theoretical calculations have been carried out by DFT procedure with a 6-31+G** basis set and BLYP xc-functional for coinage transition metals substitution, and MPW1PW9 xc-functionals for conjugated double bond hydrocarbon substitution. Both xc-functionals are chosen by the DFT calibration procedure.
Collapse
Affiliation(s)
- A H Pakiari
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - M Salarhaji
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - T Abdollahi
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, 75149-44141, Iran
| | - M Safapour
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| |
Collapse
|
31
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Roessler K, Hervey-Jumper S, Penninger JM, Berger MS, Widhalm G, Erhart F. Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas. Cancers (Basel) 2021; 13:cancers13040662. [PMID: 33562253 PMCID: PMC7916021 DOI: 10.3390/cancers13040662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Diffusely infiltrating gliomas are frequent brain tumors with variable prognosis. In addition to the blood pigment’s role of oxygen transportation, the metabolic pathway synthesizing heme has been shown to play a role in the biochemistry of various tumors. In this study we thus investigated the impact of heme biosynthesis factors mRNA expression on the survival in glioma patients and observed a progressive decrease in survival time with increasing mRNA expression signature. This association was present for overall as well as progression-free survival and remained statistically significant after correction for established prognostic factors such as patient age and tumor grade. Abstract Diffusely infiltrating gliomas are characterized by a variable clinical course, and thus novel prognostic biomarkers are needed. The heme biosynthesis cycle constitutes a fundamental metabolic pathway and might play a crucial role in glioma biology. The aim of this study was thus to investigate the role of the heme biosynthesis mRNA expression signature on prognosis in a large glioma patient cohort. Glioma patients with available sequencing data on heme biosynthesis expression were retrieved from The Cancer Genome Atlas (TCGA). In each patient, the heme biosynthesis mRNA expression signature was calculated and categorized into low, medium, and high expression subgroups. Differences in progression-free and overall survival between these subgroups were investigated including a multivariate analysis correcting for WHO grade, tumor subtype, and patient age and sex. In a total of 693 patients, progression-free and overall survival showed a strictly monotonical decrease with increasing mRNA expression signature subgroups. In detail, median overall survival was 134.2 months in the low, 79.9 months in the intermediate, and 16.5 months in the high mRNA expression signature subgroups, respectively. The impact of mRNA expression signature on progression-free and overall survival was independent of the other analyzed prognostic factors. Our data indicate that the heme biosynthesis mRNA expression signature might serve as an additional novel prognostic marker in patients with diffusely infiltrating gliomas to optimize postoperative management.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Thomas Roetzer
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria;
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Correspondence:
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| |
Collapse
|
32
|
Ikeyama N, Ohkuma M, Sakamoto M. Stress Response of Mesosutterella multiformis Mediated by Nitrate Reduction. Microorganisms 2020; 8:microorganisms8122003. [PMID: 33333944 PMCID: PMC7765368 DOI: 10.3390/microorganisms8122003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial stress responses are closely associated with the survival and colonization of anaerobes in the human gut. Mesosutterella multiformis JCM 32464T is a novel member of the family Sutterellaceae, an asaccharolytic bacterium. We previously demonstrated energy generation via heme biosynthesis, which is coupled with nitrate reductase. Here, physiological and morphological changes in M. multiformis induced by exposure to nitrate were investigated. The ability of M. multiformis to reduce nitrate was determined using a colorimetric assay. A unique morphology was observed during nitrate reduction under anaerobic conditions. The association between nitrate concentration and cell size or cellular fatty acid composition was evaluated. Nitrate-induced responses of M. multiformis were compared to those of related species. An increase in cellular filamentation and the ratio of saturated: unsaturated fatty acids was mediated specifically by nitrate. This indicates a decrease in cell fluidity and low leakage. Furthermore, a similar response was not observed in other related species cultured in the presence of nitrate. Hence, the nitrate-induced stress response in new anaerobes such as M. multiformis was demonstrated. The response could also be involved in the conservation of menaquinones and the maximization of nitrate reduction.
Collapse
Affiliation(s)
- Nao Ikeyama
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
- PRIME, Japan Agency for Medical Research and Development (AMED), Tsukuba 305-0074, Ibaraki, Japan
| |
Collapse
|
33
|
Layer G. Heme biosynthesis in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118861. [PMID: 32976912 DOI: 10.1016/j.bbamcr.2020.118861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
The cyclic tetrapyrrole heme is used as a prosthetic group in a broad variety of different proteins in almost all organisms. Often, it is essential for vital biochemical processes such as aerobic and anaerobic respiration as well as photosynthesis. In Nature, heme is made from the common tetrapyrrole precursor 5-aminolevulinic acid, and for a long time it was assumed that heme is biosynthesized by a single, common pathway in all organisms. However, although this is indeed the case in eukaryotes, heme biosynthesis is more diverse in the prokaryotic world, where two additional pathways exist. The final elucidation of the two 'alternative' heme biosynthesis routes operating in some bacteria and archaea was achieved within the last decade. This review summarizes the three different heme biosynthesis pathways with a special emphasis on the two 'new' prokaryotic routes.
Collapse
Affiliation(s)
- Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Wissenschaften, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| |
Collapse
|
34
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
35
|
Liu CC, Lin MH. Involvement of Heme in Colony Spreading of Staphylococcus aureus. Front Microbiol 2020; 11:170. [PMID: 32117177 PMCID: PMC7026375 DOI: 10.3389/fmicb.2020.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus spreads rapidly on the surface of soft agar medium. The spreading depends on the synthesis of biosurfactants, i.e., phenol soluble modulins (PSMs), which facilitate colony spreading of S. aureus. Our earlier study demonstrated that water accumulates in a colony is important to modulate colony spreading of S. aureus. The current study screened a transposon-based mutant library of S. aureus HG001 and obtained four non-spreading mutants with mutations in hemY and ctaA, which are involved in heme synthesis. The spreading ability of these mutants was restored when the mutants are transformed with a plasmid encoding hemY or ctaA, respectively. HemY mutants, which do not synthesize heme B, were able to spread on agar medium supplemented with hemin, a heme B derivative. By contrast, hemin supplementation did not rescue the spreading of the ctaA mutant, which lacks heme B and heme A, indicating that heme A is also critical for colony spreading. Moreover, mutations in hemY and ctaA had little effect on PSMs production but affect ATP production and water accumulation in the colony. In conclusion, this study sheds light on the role of heme synthesis and energy production in the regulation of S. aureus colony spreading, which is important for understanding the movement mechanisms of bacteria lacking a motor apparatus.
Collapse
Affiliation(s)
- Chao-Chin Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hui Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Mei-Hui Lin,
| |
Collapse
|
36
|
Celis AI, Choby JE, Kentro J, Skaar EP, DuBois JL. Control of Metabolite Flux during the Final Steps of Heme b Biosynthesis in Gram-Positive Bacteria. Biochemistry 2019; 58:5259-5270. [PMID: 31241911 PMCID: PMC7160669 DOI: 10.1021/acs.biochem.9b00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pathway for assembling heme ends with a unique set of enzymes in Gram-positive bacteria. Substrates for these reactions include coproporphyrin III, Fe(II), and H2O2, which are highly reactive and toxic. Because these bacteria lack membranous compartments, we hypothesized that metabolite flux may occur via a transient protein-protein interaction between the final two pathway enzymes, coproporphyrin ferrochelatase (CpfC) and coproheme decarboxylase (ChdC). This hypothesis was tested using enzymes from the pathogen Staphylococcus aureus and a corresponding ΔchdC knockout strain. The ultraviolet-visible spectral features of coproporphyrin III served as an in vitro indicator of a protein-protein interaction. A CpfC-ChdC KD of 17 ± 7 μM was determined, consistent with transient complexation and supported by the observation that the catalytic competence of both enzymes was moderately suppressed in the stable complex. The ΔchdC S. aureus was transformed with plasmids containing single-amino acid mutants in the active site gate of ChdC. The porphyrin content and growth phenotypes of these mutants showed that K129 and Y133 promote the ChdC-CpfC interaction and revealed the importance of E120. Understanding the nature of interactions between these enzymes and those further upstream in the heme biosynthesis pathway could provide new means of specifically targeting pathogenic Gram-positive bacteria such as S. aureus.
Collapse
Affiliation(s)
- Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, United States
| | - Jacob E. Choby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, United States,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States,Graduate Program in Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James Kentro
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, United States,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, United States,Corresponding Author Address: 221 Chemistry and Biochemistry Building, Bozeman, MT 59715. Phone: 406-994-2844.
| |
Collapse
|
37
|
Su T, Guo Q, Zheng Y, Liang Q, Wang Q, Qi Q. Fine-Tuning of hemB Using CRISPRi for Increasing 5-Aminolevulinic Acid Production in Escherichia coli. Front Microbiol 2019; 10:1731. [PMID: 31417522 PMCID: PMC6685056 DOI: 10.3389/fmicb.2019.01731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023] Open
Abstract
5-aminolevulinic acid (5-ALA) is an important metabolic intermediate in the biosynthesis of heme and has been broadly applied in medicine, agriculture, and organic synthesis. Compared to the chemical synthesis methods, microbial fermentation of ALA has significant economic and environmental advantages. However, the heme biosynthesis pathway downstream of ALA is essential for cell survival, so it cannot be completely blocked. In this work, we fine-tuned the expression of HemB, the key enzyme involved in heme biosynthesis, using CRISPR interference (CRISPRi), and investigated its effect on promoting ALA accumulation. The activity of HemB was down-regulated by 15, 19, 33, 36, 71, and 80% respectively, with six CRISPRi sites targeting various regions of hemB. ALA accumulation in these hemB weakened strains varied from 90.2 to 493.1% compared to that of the original strain. This work provided new insights into fine-tuning of heme biosynthesis pathway for promoting ALA production.
Collapse
Affiliation(s)
- Tianyuan Su
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qi Guo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
38
|
Draft Genome Sequence of Mesosutterella multiformis JCM 32464 T, a Member of the Family Sutterellaceae, Isolated from Human Feces. Microbiol Resour Announc 2019; 8:8/24/e00478-19. [PMID: 31196925 PMCID: PMC6588042 DOI: 10.1128/mra.00478-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence of Mesosutterella multiformis JCM 32464T, a new member of the family Sutterellaceae that was isolated from human feces. The genome assembly comprised 2,621,983 bp, with a G+C content of 56.9%. This genomic analysis will be useful for understanding the metabolic activities of this asaccharolytic bacterium. Here, we report the draft genome sequence of Mesosutterella multiformis JCM 32464T, a new member of the family Sutterellaceae that was isolated from human feces. The genome assembly comprised 2,621,983 bp, with a G+C content of 56.9%. This genomic analysis will be useful for understanding the metabolic activities of this asaccharolytic bacterium.
Collapse
|
39
|
Brzezowski P, Ksas B, Havaux M, Grimm B, Chazaux M, Peltier G, Johnson X, Alric J. The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Commun Biol 2019; 2:159. [PMID: 31069268 PMCID: PMC6499784 DOI: 10.1038/s42003-019-0395-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Pawel Brzezowski
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Brigitte Ksas
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Marie Chazaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Jean Alric
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
40
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
41
|
Biochemical characterization of protoporphyrinogen dehydrogenase and protoporphyrin ferrochelatase of Vibrio vulnificus and the critical complex formation between these enzymes. Biochim Biophys Acta Gen Subj 2018; 1862:2674-2687. [PMID: 30251658 DOI: 10.1016/j.bbagen.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Protoporphyrin IX (PPn), an intermediate in the heme biosynthesis reaction, generates singlet oxygen upon exposure to UV light. It has been proposed that PPn is channeled directly to ferrochelatase within a protoporphyrinogen dehydrogenase (PgdH1)-protoporphyrin ferrochelatase (PpfC) complex as a way to avoid this damaging side reaction. However, the PgdH1-PpfC complex has not been characterized, and the question of how heme affects the activities of PgdH1 has not been addressed. METHODS Protein interactions were explored through pull-down assays and western blotting, and the importance of this complex in vivo was examined using inter-species combinations of the two proteins. The purified PgdH1-PpfC complex was characterized kinetically and used for heme binding studies. RESULTS In Vibrio vulnificus, PgdH1 and PpfC formed an 8:8 heterohexadecameric complex that was important for maintaining PPn at low levels. PpfC catalyzed PPn efficiently whether or not it was part of the complex. Notably, heme was a noncompetitive inhibitor of V. vulnificus PgdH1, but a competitive inhibitor of the human protoporphyrinogen oxidase PgoX. CONCLUSION The PdgH1-PpfC complex is important for protective channeling of PPn and for efficient catalysis of free PPn. The production of PPn by PgdH1 is regulated by feedback inhibition by heme. GENERAL SIGNIFICANCE Both proteobacteria and eukaryotes have evolved mechanisms to prevent the harmful accumulation of the heme biosynthesis intermediate PPn. The data presented here suggest two previously unknown mechanisms: the channeling of PPn through the PgdH1-PpfC complex, and the direct inhibition of PgdH1 activity (PgoX activity as well) by heme.
Collapse
|
42
|
Skotnicová P, Sobotka R, Shepherd M, Hájek J, Hrouzek P, Tichý M. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem 2018; 293:12394-12404. [PMID: 29925590 DOI: 10.1074/jbc.ra118.003441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
Collapse
Affiliation(s)
- Petra Skotnicová
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Roman Sobotka
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Mark Shepherd
- the School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NZ,United Kingdom
| | - Jan Hájek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Pavel Hrouzek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Martin Tichý
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic, .,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| |
Collapse
|
43
|
Hao GF, Zuo Y, Yang SG, Chen Q, Zhang Y, Yin CY, Niu CW, Xi Z, Yang GF. Computational Discovery of Potent and Bioselective Protoporphyrinogen IX Oxidase Inhibitor via Fragment Deconstruction Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5581-5588. [PMID: 28654285 DOI: 10.1021/acs.jafc.7b01557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tuning the binding selectivity through appropriate ways is a primary goal in the design and optimization of a lead toward agrochemical discovery. However, how to achieve rational design of selectivity is still a big challenge. Herein, we developed a novel computational fragment generation and coupling (CFGC) strategy that led to a series of highly potent and bioselective inhibitors targeting protoporphyrinogen IX oxidase. This enzyme plays a vital role in heme and chlorophyll biosynthesis, which has been proven to be associated with many drugs and agrochemicals. However, existing agrochemicals are nonbioselective, resulting in a great threat to nontargeted organisms. To the best of our knowledge, this is the first bioselective inhibitor targeting the tetrapyrrole biosynthesis pathway. In addition, the candidate showed excellent in vivo bioactivity and much better safety toward humans.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Yang Zuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Sheng-Gang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Qian Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Chun-Yan Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry Nankai University , Tianjin 300071, People's Republic of China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry Nankai University , Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjing 300072, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjing 300072, People's Republic of China
| |
Collapse
|
44
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
45
|
Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis. Sci Rep 2017; 7:44567. [PMID: 28303934 PMCID: PMC5355995 DOI: 10.1038/srep44567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regions. NADH reduces DNA-binding activity of Rex to target promoters, while NAD+ competitively binds to Rex and modulates its DNA-binding activity. Rex plays an essential regulatory role in aerobic metabolism by controlling expression of the respiratory genes atpIBEFHAGDC, cydA1B1CD, nuoA1-N1, rex-hemAC1DB, hppA, and ndh2. Rex also regulates morphological differentiation by repressing expression of wblE, which encodes a putative WhiB-family transcriptional regulator. A rex-deletion mutant (Drex) showed higher avermectin production than the wild-type strain ATCC31267, and was more tolerant of oxygen limitation conditions in regard to avermectin production.
Collapse
|
46
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
47
|
Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J Ind Microbiol Biotechnol 2016; 44:647-658. [PMID: 27800562 DOI: 10.1007/s10295-016-1851-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.
Collapse
|
48
|
The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis. Biochem J 2016; 473:3997-4009. [PMID: 27597779 PMCID: PMC5095920 DOI: 10.1042/bcj20160696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureus has an ancient haem biosynthetic pathway that proceeds via the formation of coproporphyrin III, a less reactive porphyrin. Here, we demonstrate, for the first time, that HemY of S. aureus is able to generate both protoporphyrin IX and coproporphyrin III, and that the terminal enzyme of this pathway, HemQ, can stimulate the generation of protoporphyrin IX (but not coproporphyrin III). Assays with hydrogen peroxide, horseradish peroxidase, superoxide dismutase, and catalase confirm that this stimulatory effect is mediated by superoxide. Structural modelling reveals that HemQ enzymes do not possess the structural attributes that are common to peroxidases that form compound I [FeIV==O]+, which taken together with the superoxide data leaves Fenton chemistry as a likely route for the superoxide-mediated stimulation of protoporphyrinogen IX oxidase activity of HemY. This generation of toxic free radicals could explain why HemQ enzymes have not been identified in organisms that synthesise haem via the classical protoporphyrin IX pathway. This work has implications for the divergent evolution of haem biosynthesis in ancestral microorganisms, and provides new structural and mechanistic insights into a recently discovered oxidative decarboxylase reaction.
Collapse
|
49
|
Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbiol Res 2016; 192:292-299. [PMID: 27664748 DOI: 10.1016/j.micres.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/10/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthetic pathway, attracts close attention among researchers because of its potential applications to cancer treatment and agriculture. Overexpression of heterologous hemA and hemL, which encode glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase, respectively, in Corynebacterium glutamicum produces ALA, although whether ALA accumulation causes unintended effects on the host is unknown. Here we used an integrated systems approach to compare global transcriptional changes induced by the expression of hemA and hemL. Metabolic pathway such as glycolysis was inhibited, but tricarboxylic acid cycle, pentose phosphate pathway, and respiratory metabolism were stimulated. Moreover, the transcriptional levels of certain genes involved in heme biosynthesis were up-regulated, and the data implicate the two-component system (TCS) HrrSA was involved in the regulation of heme synthesis. With these understandings, it is proposed that ALA accumulation stimulates heme synthesis pathway and respiratory metabolism. Our study illuminates the physiological effects of overexpressing hemA and hemL on the phenotype of C. glutamicum and contributes important insights into the regulatory mechanisms of the heme biosynthetic pathways.
Collapse
|
50
|
Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins. PLoS One 2016; 11:e0157923. [PMID: 27332877 PMCID: PMC4917255 DOI: 10.1371/journal.pone.0157923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.
Collapse
|