1
|
Bian F, Hansen V, Feng HC, He J, Chen Y, Feng K, Ebrahimi B, Gray RS, Chai Y, Wu CL, Liu Z. The G protein-coupled receptor ADGRG6 maintains mouse growth plate homeostasis through IHH signaling. J Bone Miner Res 2024; 39:1644-1658. [PMID: 39236220 PMCID: PMC11523133 DOI: 10.1093/jbmr/zjae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The cartilage growth plate is essential for maintaining skeletal growth; however, the mechanisms governing postnatal growth plate homeostasis are still poorly understood. Using approaches of molecular mouse genetics and spatial transcriptomics applied to formalin-fixed, paraffin-embedded tissues, we show that ADGRG6/GPR126, a cartilage-enriched adhesion G protein-coupled receptor (GPCR), is essential for maintaining slow-cycling resting zone cells, appropriate chondrocyte proliferation and differentiation, and growth plate homeostasis in mice. Constitutive ablation of Adgrg6 in osteochondral progenitor cells with Col2a1Cre leads to a shortened resting zone, formation of cell clusters within the proliferative zone, and an elongated hypertrophic growth plate, marked by limited expression of parathyroid hormone-related protein (PTHrP) but increased Indian Hedgehog (IHH) signaling throughout the growth plate. Attenuation of smoothened-dependent hedgehog signaling restored the Adgrg6 deficiency-induced expansion of hypertrophic chondrocytes, confirming that IHH signaling can promote chondrocyte hypertrophy in a PTHrP-independent manner. In contrast, postnatal ablation of Adgrg6 in mature chondrocytes with AcanCreERT2, induced after the formation of the resting zone, does not affect PTHrP expression but causes an overall reduction of growth plate thickness marked by increased cell death specifically in the resting zone cells and a general reduction of chondrocyte proliferation and differentiation. Spatial transcriptomics reveals that ADGRG6 is essential for maintaining chondrocyte homeostasis by regulating osteogenic and catabolic genes in all the zones of the postnatal growth plates, potentially through positive regulation of SOX9 expression. Our findings elucidate the essential role of a cartilage-enriched adhesion GPCR in regulating cell proliferation and hypertrophic differentiation by regulation of PTHrP/IHH signaling, maintenance of slow-cycle resting zone chondrocytes, and safeguarding chondrocyte homeostasis in postnatal mouse growth plates.
Collapse
Affiliation(s)
- Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Victoria Hansen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Yanshi Chen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biology, University of Rochester, Rochester, NY 14642, United States
| | - Kaining Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Brenda Ebrahimi
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Ryan S Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
2
|
Zhang S, Hao W, Chen D, Chen S, Li Z, Zhong F, Wang H, Wang J, Zheng Z, Zhan Z, Dai G, Liu H. Intermittent administration of PTH for the treatment of inflammatory bone loss does not enhance entheseal pathological new bone formation. Biochem Biophys Res Commun 2024; 711:149888. [PMID: 38603833 DOI: 10.1016/j.bbrc.2024.149888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Fangling Zhong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Haitao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
4
|
Trompet D, Kurenkova AD, Zhou B, Li L, Dregval O, Usanova AP, Chu TL, Are A, Nedorubov AA, Kasper M, Chagin AS. Stimulation of skeletal stem cells in the growth plate promotes linear bone growth. JCI Insight 2024; 9:e165226. [PMID: 38516888 PMCID: PMC11063944 DOI: 10.1172/jci.insight.165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.
Collapse
Affiliation(s)
- Dana Trompet
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Baoyi Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lei Li
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ostap Dregval
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna P. Usanova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tsz Long Chu
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Are
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei A. Nedorubov
- Center for Preclinical Studies, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S. Chagin
- Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Zieba J, Nevarez L, Wachtell D, Martin JH, Kot A, Wong S, Cohn DH, Krakow D. Altered Sox9 and FGF signaling gene expression in Aga2 OI mice negatively affects linear growth. JCI Insight 2023; 8:e171984. [PMID: 37796615 PMCID: PMC10721276 DOI: 10.1172/jci.insight.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is a disorder characterized by bone fragility and increased fracture incidence. All forms of OI also feature short stature, implying an effect on endochondral ossification. Using the Aga2+/- mouse, which has a mutation in type I collagen, we show an affected growth plate primarily due to a shortened proliferative zone. We used single-cell RNA-Seq analysis of tibial and femoral growth plate tissues to understand transcriptional consequences on growth plate cell types. We show that perichondrial cells, which express abundant type I procollagen, and growth plate chondrocytes, which were found to express low amounts of type I procollagen, had ER stress and dysregulation of the same unfolded protein response pathway as previously demonstrated in osteoblasts. Aga2+/- proliferating chondrocytes showed increased FGF and MAPK signaling, findings consistent with accelerated differentiation. There was also increased Sox9 expression throughout the growth plate, which is expected to accelerate early chondrocyte differentiation but reduce late hypertrophic differentiation. These data reveal that mutant type I collagen expression in OI has an impact on the cartilage growth plate. These effects on endochondral ossification indicate that OI is a biologically complex phenotype going beyond its known impacts on bone to negatively affect linear growth.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Lisette Nevarez
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Davis Wachtell
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander Kot
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Sereen Wong
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Obstetrics and Gynecology and
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Dai LZ, Lin C, Lei R, Zhang Y, Ma H. A Case of Pseudohypoparathyroidism Misdiagnosed as Idiopathic Epilepsy for 5 Years: Clinical Analysis and Follow-up Outcomes. J Int Med Res 2023; 51:3000605231215202. [PMID: 38017366 PMCID: PMC10686026 DOI: 10.1177/03000605231215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
We report a 15-year-old Chinese girl who presented with intermittent seizure episodes and had been misdiagnosed as having idiopathic epilepsy 5 years previously. Laboratory testing revealed hypocalcemia, hyperphosphatemia, and a high parathyroid hormone (PTH) concentration. She was subsequently shown to have pseudohypoparathyroidism type Ib (PHPIb) based on the results of methylation analysis of the GNAS gene, which showed a loss of methylation of the differentially methylated regions (DMR) of GNAS-AS1, GNAS-XL, and GNAS-A/B; and a gain of methylation of the DMR of the GNAS-NESP55 region. We adjusted the patient's medication by prescribing calcium and calcitriol supplements, and gradually reduced the doses of antiepileptic drugs, until they had been completely discontinued. As a result, the patient did not experience any further seizures or epileptiform symptoms; and had normal plasma calcium, phosphorus, and 25-hydroxyvitamin D concentrations and 24-hour urinary calcium excretion. In addition, her PTH concentration gradually normalized over 12 months, and no urinary stones were found on ultrasonographic examination. In conclusion, the clinical presentation of PHP is complex, and the condition is often misdiagnosed. The diagnosis and follow-up of the present patient have provide valuable insights that should contribute to informed clinical decision-making and the implementation of appropriate treatment strategies.
Collapse
Affiliation(s)
- Li-Zhen Dai
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chenshi Lin
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Rui Lei
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yan Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Hong Ma
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Amano K, Kitaoka Y, Kato S, Fujiwara M, Okuzaki D, Aikawa T, Kogo M, Iida S. Pth1r Signal in Gli1+ Cells Maintains Postnatal Cranial Base Synchondrosis. J Dent Res 2023; 102:1241-1251. [PMID: 37575041 DOI: 10.1177/00220345231184405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Cranial base synchondroses are the endochondral ossification centers for cranial base growth and thus indispensable for proper skull, brain, and midfacial development. The synchondroses are composed of mirror-image growth plates that are continuously maintained from the embryonic to postnatal stage through chondrocyte differentiation. Several factors, including Pth1r signaling, are known to control fetal synchondrosis development. However, there are currently no reports regarding any role for Pth1r signaling in postnatal cranial base and synchondrosis development. Also, the mesenchymal cells that source Pth1r signaling for synchondroses are not known. Here, we employed an inducible mouse model, a hedgehog-responsive Gli1-CreERT2 driver, focusing on the postnatal study. We performed 2 inducible protocols using Gli1-CreERT2;Tomatofl/+ mice that uncovered distinct patterning of Gli1-positive and Gli1-negative chondrocytes in the synchondrosis cartilage. Moreover, we generated Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+ mice to assess their functions in postnatal synchondrosis and found that the mutants had survived postnatally. The mutant skulls morphologically presented unambiguous phenotypes where we noticed the shortened cranial base and premature synchondrosis closure. Histologically, gradual disorganization in mutant synchondroses caused an uncommon remaining central zone between hypertrophic zones on both sides while the successive differentiation of round, flat, and hypertrophic chondrocytes was observed in control sections. These mutant synchondroses disappeared and were finally replaced by bone. Of note, the mutant fusing synchondroses lost their characteristic patterning of Gli1-positive and Gli1-negative chondrocytes, suggesting that loss of Pth1r signaling alters the distribution of hedgehog-responsive chondrocytes. Moreover, we performed laser microdissection and RNA sequencing to characterize the flat proliferative and round resting chondrocytes where we found flat chondrocytes have a characteristic feature of both chondrocyte proliferation and maturation. Taken together, these data demonstrate that Pth1r signaling in Gli1-positive cells is essential for postnatal development and maintenance in cranial base synchondroses. Our findings will elucidate previously unknown aspects of Pth1r functions in cranial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Kitaoka
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- The Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - T Aikawa
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Kogo
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Oichi T, Kodama J, Wilson K, Tian H, Imamura Kawasawa Y, Usami Y, Oshima Y, Saito T, Tanaka S, Iwamoto M, Otsuru S, Enomoto-Iwamoto M. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. Bone Res 2023; 11:20. [PMID: 37080994 PMCID: PMC10119120 DOI: 10.1038/s41413-023-00258-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate, where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Although nutritional status is a known regulator of long bone growth, it is largely unknown whether and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2CreERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone and that exogenous IGF-1 restored the phosphorylated Akt level and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2CreERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of chondroprogenitor cells.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan.
- Department of Orthopedics, Teikyo University School of Medicine, Tokyo, 1738608, Japan.
| | - Joe Kodama
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Kimberly Wilson
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Hongying Tian
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Osaka, 5650871, Japan
| | - Yasushi Oshima
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Masahiro Iwamoto
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Satoru Otsuru
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
10
|
Oichi T, Kodama J, Wilson K, Tian H, Imamura Y, Usami Y, Oshima Y, Saito T, Tanaka S, Iwamoto M, Otsuru S, Iwamoto-Enomoto M. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524764. [PMID: 36711544 PMCID: PMC9882259 DOI: 10.1101/2023.01.20.524764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Though nutritional status is a known regulator of long bone growth, it is largely unknown if and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2Cre ERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone, and that exogenous IGF-1 canceled this reduction and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2Cre ERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate, and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of the chondroprogenitor cells.
Collapse
|
11
|
Xiu C, Gong T, Luo N, Ma L, Zhang L, Chen J. Suppressor of fused-restrained Hedgehog signaling in chondrocytes is critical for epiphyseal growth plate maintenance and limb elongation in juvenile mice. Front Cell Dev Biol 2022; 10:997838. [PMID: 36120578 PMCID: PMC9479194 DOI: 10.3389/fcell.2022.997838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hedgehog (Hh) signaling plays multiple critical roles in regulating chondrocyte proliferation and differentiation during epiphyseal cartilage development. However, it is still unclear whether Hh signaling in chondrocytes is required for growth plate maintenance during juvenile growth, and whether sustained activation of Hh signaling in chondrocytes promotes limb elongation. In this study, we first utilized Hh reporter mice to reveal that Hh signaling was activated in resting and columnar chondrocytes in growth plates of juvenile and adult mice. Next, we genetically modulated Hh signaling by conditionally deleting Smo or Sufu in all or a subpopulation of growth plate chondrocytes, and found that ablation of either Smo or Sufu in chondrocytes of juvenile mice caused premature closure of growth plates and shorter limbs, whereas Osx-Cre-mediated deletion of either of these two genes in prehypertrophic chondrocytes did not lead to obvious growth plate defects, indicating that Hh signaling mainly functions in resting and/or columnar chondrocytes to maintain growth plates at the juvenile stage. At the cellular level, we found that chondrocyte-specific ablation of Smo or Sufu accelerated or suppressed chondrocyte hypertrophy, respectively, whereas both decreased chondrocyte proliferation and survival. Thus, our study provided the first genetic evidence to establish the essential cell-autonomous roles for tightly-regulated Hh signaling in epiphyseal growth plate maintenance and limb elongation during juvenile growth.
Collapse
Affiliation(s)
- Chunmei Xiu
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Gong
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Na Luo
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Linghui Ma
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Jianquan Chen, ; Lei Zhang,
| | - Jianquan Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Jianquan Chen, ; Lei Zhang,
| |
Collapse
|
12
|
Mendes de Oliveira E, Keogh JM, Talbot F, Henning E, Ahmed R, Perdikari A, Bounds R, Wasiluk N, Ayinampudi V, Barroso I, Mokrosiński J, Jyothish D, Lim S, Gupta S, Kershaw M, Matei C, Partha P, Randell T, McAulay A, Wilson LC, Cheetham T, Crowne EC, Clayton P, Farooqi IS. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med 2021; 385:1581-1592. [PMID: 34614324 DOI: 10.1056/nejmoa2103329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).
Collapse
Affiliation(s)
- Edson Mendes de Oliveira
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Julia M Keogh
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Fleur Talbot
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elana Henning
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rachel Ahmed
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Aliki Perdikari
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rebecca Bounds
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Natalia Wasiluk
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Vikram Ayinampudi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Inês Barroso
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Jacek Mokrosiński
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Deepthi Jyothish
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sharon Lim
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sanjay Gupta
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Melanie Kershaw
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Cristina Matei
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Praveen Partha
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tabitha Randell
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Antoinette McAulay
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Louise C Wilson
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tim Cheetham
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elizabeth C Crowne
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Peter Clayton
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - I Sadaf Farooqi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| |
Collapse
|
13
|
Hallett SA, Matsushita Y, Ono W, Sakagami N, Mizuhashi K, Tokavanich N, Nagata M, Zhou A, Hirai T, Kronenberg HM, Ono N. Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. eLife 2021; 10:e64513. [PMID: 34309509 PMCID: PMC8313235 DOI: 10.7554/elife.64513] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 07/04/2021] [Indexed: 02/01/2023] Open
Abstract
Chondrocytes in the resting zone of the postnatal growth plate are characterized by slow cell cycle progression, and encompass a population of parathyroid hormone-related protein (PTHrP)-expressing skeletal stem cells that contribute to the formation of columnar chondrocytes. However, how these chondrocytes are maintained in the resting zone remains undefined. We undertook a genetic pulse-chase approach to isolate slow cycling, label-retaining chondrocytes (LRCs) using a chondrocyte-specific doxycycline-controllable Tet-Off system regulating expression of histone 2B-linked GFP. Comparative RNA-seq analysis identified significant enrichment of inhibitors and activators for Wnt signaling in LRCs and non-LRCs, respectively. Activation of Wnt/β-catenin signaling in PTHrP+ resting chondrocytes using Pthlh-creER and Apc-floxed allele impaired their ability to form columnar chondrocytes. Therefore, slow-cycling chondrocytes are maintained in a Wnt-inhibitory environment within the resting zone, unraveling a novel mechanism regulating maintenance and differentiation of PTHrP+ skeletal stem cells of the postnatal growth plate.
Collapse
Affiliation(s)
- Shawn A Hallett
- University of Michigan School of DentistryAnn ArborUnited States
| | - Yuki Matsushita
- University of Michigan School of DentistryAnn ArborUnited States
| | - Wanida Ono
- University of Michigan School of DentistryAnn ArborUnited States
- University of Texas Health Science Center at Houston School of DentistryHoustonUnited States
| | - Naoko Sakagami
- University of Michigan School of DentistryAnn ArborUnited States
| | - Koji Mizuhashi
- University of Michigan School of DentistryAnn ArborUnited States
| | - Nicha Tokavanich
- University of Michigan School of DentistryAnn ArborUnited States
| | - Mizuki Nagata
- University of Michigan School of DentistryAnn ArborUnited States
| | - Annabelle Zhou
- University of Michigan School of DentistryAnn ArborUnited States
| | - Takao Hirai
- Ishikawa Prefectural Nursing UniversityIshikawaJapan
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Noriaki Ono
- University of Michigan School of DentistryAnn ArborUnited States
- University of Texas Health Science Center at Houston School of DentistryHoustonUnited States
| |
Collapse
|
14
|
Wrobel W, Pach E, Ben-Skowronek I. Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. Int J Mol Sci 2021; 22:ijms22115573. [PMID: 34070375 PMCID: PMC8197470 DOI: 10.3390/ijms22115573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Achondroplasia (ACH) is a disease caused by a missense mutation in the FGFR3 (fibroblast growth factor receptor 3) gene, which is the most common cause of short stature in humans. The treatment of ACH is necessary and urgent because untreated achondroplasia has many complications, both orthopedic and neurological, which ultimately lead to disability. This review presents the current and potential pharmacological treatments for achondroplasia, highlighting the advantages and disadvantages of all the drugs that have been demonstrated in human and animal studies in different stages of clinical trials. The article includes the potential impacts of drugs on achondroplasia symptoms other than short stature, including their effects on spinal canal stenosis, the narrowing of the foramen magnum and the proportionality of body structure. Addressing these effects could significantly improve the quality of life of patients, possibly reducing the frequency and necessity of hospitalization and painful surgical procedures, which are currently the only therapeutic options used. The criteria for a good drug for achondroplasia are best met by recombinant human growth hormone at present and will potentially be met by vosoritide in the future, while the rest of the drugs are in the early stages of clinical trials.
Collapse
|
15
|
Roberts SA, Carswell JM. Growth, growth potential, and influences on adult height in the transgender and gender-diverse population. Andrology 2021; 9:1679-1688. [PMID: 33969625 PMCID: PMC9135059 DOI: 10.1111/andr.13034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
The sexually dimorphic trait of height is one aspect of the experience of transgender and gender‐diverse (TGD) individuals that may influence their gender dysphoria and satisfaction with their transition. In this article, we have reviewed the current knowledge of the factors that contribute to one's final adult height and how it might be affected in TGD youth who have not experienced their gonadal puberty in the setting of receiving gonadotropin‐releasing hormone analog (GnRHa) and gender‐affirming hormonal treatment. Additional research is needed to characterize the influence of growth and final adult height on the lived experience of TGD youth and adults and how to best assess their growth, predict their final adult height, and how medical transition can be potentially modified to help them meet their goals.
Collapse
Affiliation(s)
- Stephanie A Roberts
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jeremi M Carswell
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Weaver SR, Taylor EL, Zars EL, Arnold KM, Bradley EW, Westendorf JJ. Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. J Bone Miner Res 2021; 36:986-999. [PMID: 33434347 PMCID: PMC8131217 DOI: 10.1002/jbmr.4248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Bali SK, Bryce D, Prein C, Woodgett JR, Beier F. Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice. J Mol Med (Berl) 2021; 99:831-844. [PMID: 33609145 DOI: 10.1007/s00109-021-02049-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die late in embryogenesis or at birth. Selective Gsk3b KO in bone delays development of some bones, whereas cartilage-specific Gsk3b KO mice are normal except for elevated levels of GSK3A protein. However, the collective role of these two GSK3 proteins in cartilage was not evaluated. To address this, we generated tamoxifen-inducible, cartilage-specific Gsk3a/Gsk3b KO (described as "cDKO") in juvenile mice and investigated their skeletal phenotypes. We found that cartilage-specific Gsk3a/Gsk3b deletion in young, skeletally immature mice causes precocious growth plate (GP) remodeling, culminating in shorter long bones and hence, growth retardation. These mice exhibit inefficient breathing patterns at later stages and fail to survive. The disrupted GP in cDKO mice showed progressive loss of cellular and proteoglycan components, and immunostaining for SOX9, while BGLAP (osteocalcin) and COL2A1 increased. In addition, we observed increased osteoclast recruitment and cell apoptosis. Surprisingly, changes in articular cartilage of cDKO mice were mild compared with the GP, signifying differential regulation of articular cartilage vs GP tissues. Taken together, these findings emphasize a crucial role of two GSK3 proteins in skeletal development, in particular in the maintenance and function of GP. KEY MESSAGES: • Both GSK3 genes, together, are crucial regulators of growth plate remodeling. • Cartilage-specific deletion of both GSK3 genes causes skeletal growth retardation. • Deletion of both GSK3 genes decreases Sox9 levels and promotes chondrocyte apoptosis. • Cartilage-specific GSK3 deletion in juvenile mice culminates in premature lethality. • GSK3 deletion exhibits mild effects on articular cartilage compared to growth plate.
Collapse
Affiliation(s)
- Supinder Kour Bali
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - Dawn Bryce
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - Carina Prein
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada. .,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
18
|
Dong X, Xu X, Yang C, Luo Y, Wu Y, Wang J. USP7 regulates the proliferation and differentiation of ATDC5 cells through the Sox9-PTHrP-PTH1R axis. Bone 2021; 143:115714. [PMID: 33127578 DOI: 10.1016/j.bone.2020.115714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to examine the effect of ubiquitin-specific peptidase 7 (USP7) on the proliferation and differentiation of ATDC5 cells and explore the underlying mechanisms. PCR, western blot, and immunofluorescence staining were used to observe the expression of USP7 after chondrogenic induction. The expressions of markers of chondrogenic and hypertrophic differentiation, and parathyroid hormone-related protein (PTHrP)/parathyroid hormone 1 receptor (PTH1R) signalling, were assessed by PCR, western blot, and histological staining under USP7 knockdown or its inhibitor. Cell proliferation was assessed by the CCK-8 assay and crystal violet staining. An in vivo experiment was performed to verify the functions of USP7 through histological and immunohistochemistry staining. Cyclopamine and abaloparatide were used to verify the signalling pathway. The interactions between USP7 and both PTHrP and sex-determining region Y-box 9 (Sox9) were tested by co-immunoprecipitation. The relationship between Sox9 and PTHrP was tested by chromatin immunoprecipitation and siRNA. USP7 knockdown or its inhibitor suppressed cell proliferation and chondrogenic differentiation but improved hypertrophic differentiation. The in vivo study obtained the same results. USP7 knockdown or its inhibitor inhibited PTHrP/PTH1R signalling to exert its function. Supplementation with cyclopamine suppressed PTHrP/PTH1R signalling and inhibited ATDC5 cell proliferation and differentiation. Supplementation with abaloparatide activated PTH1R to upregulate proliferation and chondrogenic differentiation but downregulated hypertrophic differentiation. Furthermore, USP7 interacted with Sox9 and Sox9 bound to PTTHrP to promote its expression. In conclusion, USP7 modulates the proliferation and differentiation of ATDC5 cells via the Sox9-PTHrP-PTH1R axis.
Collapse
Affiliation(s)
- Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
19
|
Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther 2020; 5:297. [PMID: 33361757 PMCID: PMC7762753 DOI: 10.1038/s41392-020-00328-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, the type 1 parathyroid hormone receptor (PTH1R) is a critical regulator of skeletal development and homeostasis; however, how it is modulated is incompletely understood. Here we report that deleting Kindlin-2 in osteoblastic cells using the mouse 10-kb Dmp1-Cre largely neutralizes the intermittent PTH-stimulated increasing of bone volume fraction and bone mineral density by impairing both osteoblast and osteoclast formation in murine adult bone. Single-cell profiling reveals that Kindlin-2 loss increases the proportion of osteoblasts, but not mesenchymal stem cells, chondrocytes and fibroblasts, in non-hematopoietic bone marrow cells, with concomitant depletion of osteoblasts on the bone surfaces, especially those stimulated by PTH. Furthermore, haploinsufficiency of Kindlin-2 and Pth1r genes, but not that of either gene, in mice significantly decreases basal and, to a larger extent, PTH-stimulated bone mass, supporting the notion that both factors function in the same genetic pathway. Mechanistically, Kindlin-2 interacts with the C-terminal cytoplasmic domain of PTH1R via aa 474–475 and Gsα. Kindlin-2 loss suppresses PTH induction of cAMP production and CREB phosphorylation in cultured osteoblasts and in bone. Interestingly, PTH promotes Kindlin-2 expression in vitro and in vivo, thus creating a positive feedback regulatory loop. Finally, estrogen deficiency induced by ovariectomy drastically decreases expression of Kindlin-2 protein in osteocytes embedded in the bone matrix and Kindlin-2 loss essentially abolishes the PTH anabolic activity in bone in ovariectomized mice. Thus, we demonstrate that Kindlin-2 functions as an intrinsic component of the PTH1R signaling pathway in osteoblastic cells to regulate bone mass accrual and homeostasis.
Collapse
|
20
|
Ohba S. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. Int J Mol Sci 2020; 21:E6665. [PMID: 32933018 PMCID: PMC7555016 DOI: 10.3390/ijms21186665] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) signaling is highly conserved among species and plays indispensable roles in various developmental processes. There are three Hh members in mammals; one of them, Indian hedgehog (Ihh), is expressed in prehypertrophic and hypertrophic chondrocytes during endochondral ossification. Based on mouse genetic studies, three major functions of Ihh have been proposed: (1) Regulation of chondrocyte differentiation via a negative feedback loop formed together with parathyroid hormone-related protein (PTHrP), (2) promotion of chondrocyte proliferation, and (3) specification of bone-forming osteoblasts. Gli transcription factors mediate the major aspect of Hh signaling in this context. Gli3 has dominant roles in the growth plate chondrocytes, whereas Gli1, Gli2, and Gli3 collectively mediate biological functions of Hh signaling in osteoblast specification. Recent studies have also highlighted postnatal roles of the signaling in maintenance and repair of skeletal tissues.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
21
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
22
|
Yang H, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Xie M, Chen D, Wang M. Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20153797. [PMID: 31382618 PMCID: PMC6695690 DOI: 10.3390/ijms20153797] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
The temporomandibular joint (TMJ), which is biomechanically related to dental occlusion, is often insulted by osteoarthritis (OA). This study was conducted to clarify the relationship between Indian hedgehog (Ihh) and parathyroid hormone receptor 1 (PTH1R) signaling in modulating the enhanced chondrocyte terminal differentiation in dental stimulated TMJ osteoarthritic cartilage. A gain- and loss-of-function strategy was used in an in vitro model in which fluid flow shear stress (FFSS) was applied, and in an in vivo model in which the unilateral anterior cross-bite (UAC) stimulation was adopted. Ihh and PTH1R signaling was modulated through treating the isolated chondrocytes with inhibitor/activator and via deleting Smoothened (Smo) and/or Pth1r genes in mice with the promoter gene of type 2 collagen (Col2-CreER) in the tamoxifen-inducible pattern. We found that both FFSS and UAC stimulation promoted the deep zone chondrocytes to undergo terminal differentiation, while cells in the superficial zone were robust. We demonstrated that the terminal differentiation process in deep zone chondrocytes promoted by FFSS and UAC was mediated by the enhanced Ihh signaling and declined PTH1R expression. The FFSS-promoted terminal differentiation was suppressed by administration of the Ihh inhibitor or PTH1R activator. The UAC-promoted chondrocytes terminal differentiation and OA-like lesions were rescued in Smo knockout, but were enhanced in Pth1r knockout mice. Importantly, the relieving effect of Smo knockout mice was attenuated when Pth1r knockout was also applied. Our data suggest a chondrocyte protective effect of suppressing Ihh signaling in TMJ OA cartilage which is dependent on PTH1R signaling.
Collapse
Affiliation(s)
- Hongxu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mianjiao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Mohanty S, Pinelli R, Dahia CL. Characterization of Krt19 CreERT allele for targeting the nucleus pulposus cells in the postnatal mouse intervertebral disc. J Cell Physiol 2019; 235:128-140. [PMID: 31187500 PMCID: PMC6778700 DOI: 10.1002/jcp.28952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration and associated back pain are relatively common but sparsely understood conditions, affecting over 70% of the population during some point of life. Disc degeneration is often associated with a loss of nucleus pulposus (NP) cells. Genetic mouse models offer convenient avenues to understand the cellular and molecular regulation of the disc during its formation, growth, maintenance, and aging. However, due to the lack of inducible driver lines to precisely target NP cells in the postnatal mouse disc, progress in this area of research has been moderate. NP cells are known to express cytokeratin 19 (Krt19), and tamoxifen (Tam)‐inducible Krt19CreERT allele is available. The current study describes the characterization of Krt19CreERT allele to specifically and efficiently target NP cells in neonatal, skeletally mature, middle‐aged, and aged mice using two independent fluorescent reporter lines. The efficiency of recombination at all ages was validated by immunostaining for KRT19. Results show that following Tam induction, Krt19CreERT specifically drives recombination of NP cells in the spine of neonatal and aged mice, while no recombination was detected in the surrounding tissues. Knee joints from skeletally mature Tam‐treated Krt19CreERT/+; R26tdTOM mouse show the absence of recombination in all tissues and cells of the knee joint. Thus, this study provides evidence for the use of Krt19CreERT allele for genetic characterization of NP cells at different stages of the mouse life.
Collapse
Affiliation(s)
- Sarthak Mohanty
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Robert Pinelli
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Chitra Lekha Dahia
- Orthopaedic Soft Tissue Research, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Sciences, New York, New York
| |
Collapse
|
24
|
Holzer T, Probst K, Etich J, Auler M, Georgieva VS, Bluhm B, Frie C, Heilig J, Niehoff A, Nüchel J, Plomann M, Seeger JM, Kashkar H, Baris OR, Wiesner RJ, Brachvogel B. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J Cell Biol 2019; 218:1853-1870. [PMID: 31085560 PMCID: PMC6548139 DOI: 10.1083/jcb.201809056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Children with mitochondrial diseases often present with slow growth and short stature, but the underlying mechanism remains unclear. In this study, Holzer et al. provide in vivo evidence that mitochondrial respiratory chain dysfunction induces cartilage degeneration coincident with altered metabolism, impaired extracellular matrix formation, and cell death at the cartilage–bone junction. In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage–bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.
Collapse
Affiliation(s)
- Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Auler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Julian Nüchel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany .,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018. [PMID: 29928541 DOI: 10.1038/s41413‐018‐0021‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
|
26
|
Aghajanian P, Mohan S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018; 6:19. [PMID: 29928541 PMCID: PMC6002476 DOI: 10.1038/s41413-018-0021-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
- Department of Medicine, Loma Linda University, Loma Linda, California USA
- Department of Orthopedics, Loma Linda University, Loma Linda, California USA
- Department of Biochemistry, Loma Linda University, Loma Linda, California USA
| |
Collapse
|
27
|
Activation of mTORC1 in chondrocytes does not affect proliferation or differentiation, but causes the resting zone of the growth plate to become disordered. Bone Rep 2018; 8:64-71. [PMID: 29955624 PMCID: PMC6020113 DOI: 10.1016/j.bonr.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/22/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
There are several pitfalls associated with research based on transgenic mice. Here, we describe our interpretation and analysis of mTORC1 activation in growth plate chondrocytes and compare these to a recent publication (Yan et al., Nature Communications 2016, 7:11151). Both laboratories employed TSC1-floxed mice crossed with collagen type 2-driven Cre (Col2-Cre), but drew substantially different conclusions. It was reported that activation of mechanistic target of rapamycin complex 1 (mTORC1) via Tsc1 ablation promotes the hypertrophy of growth plate chondrocytes, whereas we observe only disorganization in the resting zone, with no effect on chondrocyte hypertrophy or proliferation. Here, we present our data and discuss the differences in comparison to the earlier phenotypic characterization of TSC1 ablation in cartilage. Importantly, we detect Col2-Cre activity in non-cartilaginous tissues (including the brain) and discuss it in relation to other studies reporting non-cartilaginous expression of collagen alpha(1) II. Altogether, we conclude that mouse phenotypes following genetic ablation using Col2-Cre should be interpreted with care. We also conclude that activation of mTORC1 by TSC1 ablation in postnatal chondrocytes with inducible Col2-Cre (Col2-CreERt) leads to disorganization of the resting zone but causes no changes in chondrocyte proliferation or differentiation. Ablation of Tsc1 using Col2-Cre causes severe developmental abnormalities. Col2-Cre is not specific to chondrocytes during early development. Mice develop normally when Tsc1 is ablated in chondrocytes postnatally.
Collapse
|
28
|
|
29
|
Dual roles of parathyroid hormone related protein in TGF-β1 signaling and fibronectin up-regulation in mesangial cells. Biosci Rep 2017; 37:BSR20171061. [PMID: 28954822 PMCID: PMC5665616 DOI: 10.1042/bsr20171061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
Little is known about the cross-talk between parathyroid hormone (PTH) related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R (PTH/PTHrP receptor)–TβRII (TGF-β type 2 receptor) complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) up-regulation. However, prolonged PTHrP treatment (12–48 h) failed to induce PTH1R–TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor re-expression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease (DKD).
Collapse
|
30
|
Zhang H, Wang H, Zeng C, Yan B, Ouyang J, Liu X, Sun Q, Zhao C, Fang H, Pan J, Xie D, Yang J, Zhang T, Bai X, Cai D. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthritis Cartilage 2017; 25:952-963. [PMID: 28043938 DOI: 10.1016/j.joca.2016.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocyte activation, involving aberrant proliferation and prehypertrophic differentiation, is essential for osteoarthritis (OA) initiation and progression. Disruption of mechanistic target of rapamycin complex 1 (mTORC1) promotes chondrocyte autophagy and survival, and decreases the severity of experimental OA. However, the role of cartilage mTORC1 activation in OA initiation is unknown. In this study, we elucidated the specific role of mTORC1 activation in OA initiation, and identify the underlying mechanisms. METHOD Expression of mTORC1 in articular cartilage of OA patients and OA mice was assessed by immunostaining. Cartilage-specific tuberous sclerosis complex 1 (Tsc1, mTORC1 upstream inhibitor) knockout (TSC1CKO) and inducible Tsc1 KO (TSC1CKOER) mice were generated. The functional effects of mTORC1 in OA initiation and development on its downstream targets were examined by immunostaining, western blotting and qPCR. RESULTS Articular chondrocyte mTORC1 was activated in early-stage OA and in aged mice. TSC1CKO mice exhibited spontaneous OA, and TSC1CKOER mice (from 2 months) exhibited accelerated age-related and DMM-induced OA phenotypes, with aberrant chondrocyte proliferation and hypertrophic differentiation. This was associated with hyperactivation of mTORC1 and dramatic downregulation of FGFR3 and PPR, two receptors critical for preventing chondrocyte proliferation and differentiation. Rapamycin treatment reversed these phenotypes in KO mice. Furthermore, in vitro rescue experiments demonstrated that p73 and ERK1/2 may mediate the negative regulation of FGFR3 and PPR by mTORC1. CONCLUSION mTORC1 activation stimulates articular chondrocyte proliferation and differentiation to initiate OA, in part by downregulating FGFR3 and PPR.
Collapse
Affiliation(s)
- H Zhang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, China.
| | - C Zeng
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - B Yan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Ouyang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - X Liu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Q Sun
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - C Zhao
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Fang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Pan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - D Xie
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Yang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - T Zhang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - X Bai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - D Cai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
32
|
Taniguchi Y, Kawata M, Ho Chang S, Mori D, Okada K, Kobayashi H, Sugita S, Hosaka Y, Inui H, Taketomi S, Yano F, Ikeda T, Akiyama H, Mills AA, Chung UI, Tanaka S, Kawaguchi H, Saito T. Regulation of Chondrocyte Survival in Mouse Articular Cartilage by p63. Arthritis Rheumatol 2017; 69:598-609. [DOI: 10.1002/art.39976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor; New York
| | | | | | | | | |
Collapse
|
33
|
Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, De Sanctis L, Elli FM, Freson K, Garin I, Grybek V, Hanna P, Izzi B, Hiort O, Lecumberri B, Pereda A, Saraff V, Silve C, Turan S, Usardi A, Werner R, de Nanclares GP, Linglart A. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol 2016; 175:P1-P17. [PMID: 27401862 DOI: 10.1530/eje-16-0107] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. DESIGN AND METHODS Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. RESULTS AND CONCLUSIONS After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term 'inactivating PTH/PTHrP signalling disorder' (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like 'pseudo' and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.
Collapse
Affiliation(s)
- Susanne Thiele
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anne Barlier
- APHMHôpital la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Valentina Boldrin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatric SciencesUniversity of Torino, Torino, Italy
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Intza Garin
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Virginie Grybek
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Patrick Hanna
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Benedetta Izzi
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Olaf Hiort
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Beatriz Lecumberri
- Department of Endocrinology and NutritionLa Paz University Hospital, Madrid, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular BiologyUniversity of Basque Country, Leioa, Spain
| | - Vrinda Saraff
- Department of Endocrinology and DiabetesBirmingham Children's Hospital, Birmingham, UK
| | - Caroline Silve
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPService de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of PediatricsDivision of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Alessia Usardi
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Ralf Werner
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
34
|
Hedgehog Signaling in Endochondral Ossification. J Dev Biol 2016; 4:jdb4020020. [PMID: 29615586 PMCID: PMC5831785 DOI: 10.3390/jdb4020020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh) is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1) chondrocyte differentiation; (2) chondrocyte proliferation; and (3) specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP) to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders.
Collapse
|
35
|
Kong L, Zhao YP, Tian QY, Feng JQ, Kobayashi T, Merregaert J, Liu CJ. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. FASEB J 2016; 30:2741-54. [PMID: 27075243 DOI: 10.1096/fj.201600261r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023]
Abstract
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.
Collapse
Affiliation(s)
- Li Kong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, New York, USA
| | - Yun-Peng Zhao
- Department of Orthopedic Surgery, New York University School of Medicine, New York, New York, USA
| | - Qing-Yun Tian
- Department of Orthopedic Surgery, New York University School of Medicine, New York, New York, USA
| | - Jian-Quan Feng
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, Texas, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph Merregaert
- Laboratory of Molecular Biotechnology, University of Antwerp, Antwerp, Belgium
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
Chan ASM, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell 2016; 27:1367-82. [PMID: 26912788 PMCID: PMC4831889 DOI: 10.1091/mbc.e15-12-0851] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
The parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex. SNX27 binds directly to the C-terminal PDZ-binding motif of PTHR, wiring it to retromer for endosomal sorting. The structure of SNX27 bound to the PTHR motif reveals a high-affinity interface involving conserved electrostatic interactions. Mechanistically, depletion of SNX27 or retromer augments intracellular PTHR signaling in endosomes. Osteoblasts genetically lacking SNX27 show similar disruptions in PTHR signaling and greatly reduced capacity for bone mineralization, contributing to profound skeletal deficits in SNX27-knockout mice. Taken together, our data support a critical role for SNX27-retromer mediated transport of PTHR in normal bone development.
Collapse
Affiliation(s)
- Audrey S M Chan
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Euphemie Landao-Bassonga
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Genevieve Kinna
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Pei Ying Ng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Tak Sum Cheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Minghao Zheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
37
|
Altman AR, Tseng WJ, de Bakker CMJ, Chandra A, Lan S, Huh BK, Luo S, Leonard MB, Qin L, Liu XS. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 2015; 81:370-379. [PMID: 26254742 PMCID: PMC4641023 DOI: 10.1016/j.bone.2015.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
In this study we established an image analysis scheme for the investigation of cortical and trabecular bone development during skeletal growth and tested this concept on in vivo μCT images of rats. To evaluate its efficacy, we applied the technique to young (1-month-old) and adult (3-month-old) rat tibiae with vehicle (Veh) or intermittent parathyroid hormone (PTH) treatment. By overlaying 2 sequential scans based on their distinct trabecular microarchitecture, we calculated the linear growth rate of young rats to be 0.31 mm/day at the proximal tibia. Due to rapid growth (3.7 mm in 12 days), the scanned bone region at day 12 had no overlap with the bone tissue scanned at day 0. Instead, the imaged bone region at day 12 represented newly generated bone tissue from the growth plate. The new bone of the PTH-treated rats had significantly greater trabecular bone volume fraction, number, and thickness than those of the Veh-treated rats, indicating PTH's anabolic effect on bone modeling. In contrast, the effect of PTH on adult rat trabecular bone was found to be caused by PTH's anabolic effect on bone remodeling. The cortical bone at the proximal tibia of young rats also thickened more in the PTH group (23%) than the Veh group (14%). This was primarily driven by endosteal bone formation and coalescence of trabecular bone into the cortex. This process can be visualized by aligning the local bone structural changes using image registration. As a result, the cortex after PTH treatment was 31% less porous, and had a 22% greater polar moment of inertia compared to the Veh group. Lastly, we monitored the longitudinal bone growth in adult rats by measuring the distance of bone flow away from the proximal tibial growth plate from 3 months to 19 months of age and discovered a total of 3.5mm growth in 16 months. It was demonstrated that this image analysis scheme can efficiently evaluate bone growth, bone modeling, and bone remodeling, and is ready to be translated into a clinical imaging platform.
Collapse
Affiliation(s)
- Allison R Altman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Abhishek Chandra
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Shenghui Lan
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China; Department of Orthopaedic Surgery, Wuhan General Hospital of Guangzhou Military Command, Hubei Province, People's Republic of China.
| | - Beom Kang Huh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Shiming Luo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Mary B Leonard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Lieben L, Verlinden L, Masuyama R, Torrekens S, Moermans K, Schoonjans L, Carmeliet P, Carmeliet G. Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal. Bone 2015; 81:502-512. [PMID: 26319498 DOI: 10.1016/j.bone.2015.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
The active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone. It remains however unclear whether low intestinal VDR activity, as observed during aging, is sufficient for intestinal calcium transport and for mineral and bone homeostasis. To this end, we generated mice that expressed the Vdr exclusively in the gut, but at reduced levels. We found that ~15% of intestinal VDR expression greatly prevented the Vdr null phenotype in young-adult mice, including the severe hypocalcemia. Serum calcium levels were, however, in the low-normal range, which may be due to the suboptimal intestinal calcium absorption, renal calcium loss, insufficient increase in bone resorption and normal calcium incorporation in the bone matrix. In conclusion, our results indicate that low intestinal VDR levels improve intestinal calcium absorption compared to Vdr null mice, but also show that 1,25(OH)2D-mediated fine-tuning of renal calcium reabsorption and bone mineralization and resorption is required to maintain fully normal serum calcium levels.
Collapse
Affiliation(s)
- Liesbet Lieben
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Ritsuko Masuyama
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Sophie Torrekens
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
39
|
Staal HM, Goud AL, van der Woude HJ, Witlox MA, Ham SJ, Robben SGF, Dremmen MHG, van Rhijn LW. Skeletal maturity of children with multiple osteochondromas: is diminished stature due to a systemic influence? J Child Orthop 2015; 9:397-402. [PMID: 26320759 PMCID: PMC4619368 DOI: 10.1007/s11832-015-0680-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/17/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Multiple ostechondromas (MO) is an autosomal dominant inherited disease caused by mutated exostosin genes. It mostly affects the long bones and can lead to growth disturbances, especially disproportionate short stature. Both the local effect on growth plates and the systemic influence of the gene disorder on growth mechanisms might explain the diminished stature. PURPOSE The hypothesis of this study is that the diminished stature in adults with MO is due to a systemic influence, leading to early skeletal maturation and early closure of the growth plate. Therefore, in these patients the skeletal age in adolescence is hypothesized to be higher than the calendar age. METHODS Radiographs of the left hand were collected from 50 MO-affected children. The skeletal age was calculated using these radiographs according to the Greulich-Pyle bone scale and was compared to the calendar age at the time of radiography. RESULTS Children aged 3-12 years had a significantly lower skeletal age compared to their calendar age (p = 0.030). Children aged 12-17 years had a significantly higher skeletal age (p = 0.019), especially boys. Skeletal maturation in children with MO therefore differs from their peers. CONCLUSION In this study, the skeletal age in younger children with MO is lower than their calendar age. For adolescents, particularly boys, this is reversed, suggesting an earlier or faster closure of the growth plates. These findings support a systemic influence of the gene defect on growth rate.
Collapse
Affiliation(s)
- Heleen M Staal
- Department of Orthopaedic Surgery, Research School Caphri, Maastricht University Medical Centre, P. Debeyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Annemarie L Goud
- Department of Orthopaedic Surgery, Diaconessenhuis, Utrecht, The Netherlands
| | | | - Marianne Adhiambo Witlox
- Department of Orthopaedic Surgery, Research School Caphri, Maastricht University Medical Centre, P. Debeyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - S John Ham
- Department of Orthopaedic Surgery, Onze Lieve Vrouwe Gasthuis (OLVG), Amsterdam, The Netherlands
| | - Simon G F Robben
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein H G Dremmen
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Research School Caphri, Maastricht University Medical Centre, P. Debeyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| |
Collapse
|
40
|
Hirai T, Kobayashi T, Nishimori S, Karaplis AC, Goltzman D, Kronenberg HM. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis. Endocrinology 2015; 156:2774-80. [PMID: 26052897 PMCID: PMC4511135 DOI: 10.1210/en.2014-1835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.
Collapse
Affiliation(s)
- Takao Hirai
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Tatsuya Kobayashi
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Shigeki Nishimori
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Andrew C Karaplis
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - David Goltzman
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| | - Henry M Kronenberg
- Endocrine Unit (T.H., T.K., S.N., H.M.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Sir Mortimer B. Davis Jewish General Hospital (A.C.K.), McGill University, Montreal, Québec, Canada H3T 1E2; and Royal Victoria Hospital of the McGill University Health Centre (D.G.), Montreal, Québec, Canada H3A 1A1
| |
Collapse
|
41
|
Huang L, Cai X, Li H, Xie Q, Zhang M, Yang C. The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint. Arch Oral Biol 2015; 60:622-30. [DOI: 10.1016/j.archoralbio.2015.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022]
|
42
|
Abstract
The complex networks of nutritional, cellular, paracrine, and endocrine factors are closely related with pubertal growth and epiphyseal fusion. Important influencing factors include chondrocyte differentiation capacity, multiple molecular pathways active in the growth plate, and growth hormone-insulin-like growth factor-I axis activation and epiphyseal fusion through estrogen and its receptors. However, the exact mechanisms of these phenomena are still unclear. A better understanding of the detailed processes involved in the pubertal growth spurt and growth plate closure in longitudinal bone growth will help us develop methods to efficiently promote pubertal growth and delay epiphyseal fusion with fewer adverse effects.
Collapse
Affiliation(s)
- Kye Shik Shim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Qiu T, Xian L, Crane J, Wen C, Hilton M, Lu W, Newman P, Cao X. PTH receptor signaling in osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J Bone Miner Res 2015; 30:309-17. [PMID: 25196529 PMCID: PMC4730385 DOI: 10.1002/jbmr.2327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022]
Abstract
Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lingling Xian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunyi Wen
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Matthew Hilton
- Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, USA
| | - William Lu
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Peter Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Bach FC, Rutten K, Hendriks K, Riemers FM, Cornelissen P, de Bruin A, Arkesteijn GJ, Wubbolts R, Horton WA, Penning LC, Tryfonidou MA. The paracrine feedback loop between vitamin D₃ (1,25(OH)₂D₃) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol 2014; 229:1999-2014. [PMID: 24777663 PMCID: PMC4298802 DOI: 10.1002/jcp.24658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10−8 M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration.
Collapse
Affiliation(s)
- Frances C Bach
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu ES, Zalutskaya A, Chae BT, Zhu ED, Gori F, Demay MB. Phosphate interacts with PTHrP to regulate endochondral bone formation. Endocrinology 2014; 155:3750-6. [PMID: 25057796 PMCID: PMC4164920 DOI: 10.1210/en.2014-1315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphate and parathyroid hormone related peptide (PTHrP) are required for normal growth plate maturation. Hypophosphatemia impairs hypertrophic chondrocyte apoptosis leading to rachitic expansion of the growth plate; however, the effect of phosphate restriction on chondrocyte differentiation during endochondral bone formation has not been examined. Investigations were, therefore, undertaken to address whether phosphate restriction alters the maturation of embryonic d15.5 murine metatarsal elements. Metatarsals cultured in low phosphate media exhibited impaired chondrocyte differentiation, analogous to that seen with PTHrP-treatment of metatarsals cultured in control media. Because phosphate restriction acutely increases PTHrP expression in cultured metatarsals, studies were undertaken to determine if this increase in PTHrP plays a pathogenic role in the impaired chondrocyte differentiation observed under low phosphate conditions. In contrast to what was observed with wild-type metatarsal elements, phosphate restriction did not impair the differentiation of metatarsals isolated from PTHrP heterozygous or PTHrP knockout mice. In vivo studies in postnatal mice demonstrated that PTHrP haploinsufficiency also prevents the impaired hypertrophic chondrocyte apoptosis observed with phosphate restriction. To determine how signaling through the PTH/PTHrP receptor antagonizes the pro-apoptotic effects of phosphate, investigations were performed in primary murine hypertrophic chondrocytes. Receptor activation impaired phosphate-induced Erk1/2 phosphorylation specifically in the mitochondrial fraction and decreased levels of mitochondrial Bad, while increasing cytosolic phospho-Bad. Thus, these data demonstrate that phosphate restriction attenuates chondrocyte differentiation as well as impairing hypertrophic chondrocyte apoptosis and implicate a functional role for the PTH/PTHrP signaling pathway in the abnormalities in chondrocyte differentiation and hypertrophic chondrocyte apoptosis observed under phosphate restricted conditions.
Collapse
Affiliation(s)
- Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension (E.S.L.), Brigham and Women's Hospital, Boston, Massachusetts 02115; Endocrine Unit (E.S.L., A.Z., B.T.C., E.D.Z., F.G., M.B.D.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (E.S.L., A.Z., F.G., M.B.D.), Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Herein, we review the regulation of differentiation of the growth plate chondrocytes by G-proteins. In connection with this, we summarize the current knowledge regarding each family of G-protein α subunit, specifically, Gα(s), Gα(q/11), Gα(12/13), and Gα(i/o). We discuss different mechanisms involved in chondrocyte differentiation downstream of G-proteins and different G-protein-coupled receptors (GPCRs) activating G-proteins in the epiphyseal chondrocytes. We conclude that among all G-proteins and GPCRs expressed by chondrocytes, Gα(s) has the most important role and prevents premature chondrocyte differentiation. Receptor for parathyroid hormone (PTHR1) appears to be the major activator of Gα(s) in chondrocytes and ablation of either one leads to accelerated chondrocyte differentiation, premature fusion of the postnatal growth plate, and ultimately short stature.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Physiology and PharmacologyKarolinska Institutet, Nanna Svartz Vagen 2, Stockholm 17177, SwedenEndocrine UnitMassachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | - Henry M Kronenberg
- Department of Physiology and PharmacologyKarolinska Institutet, Nanna Svartz Vagen 2, Stockholm 17177, SwedenEndocrine UnitMassachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| |
Collapse
|
47
|
Mead TJ, Lefebvre V. Proliferation assays (BrdU and EdU) on skeletal tissue sections. Methods Mol Biol 2014; 1130:233-243. [PMID: 24482177 DOI: 10.1007/978-1-62703-989-5_17] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Assessing cell proliferation in situ is an important phenotyping component of skeletal tissues from development to adult stages and disease. Various methods exist including immunostaining for proteins and protein modifications associated with specific steps of the cell cycle, but the gold standard is to quantify the percentage of DNA-synthesizing cells. The thymidine analog 5-bromo-2'-deoxyuridine (BrdU) has been widely used in the last decades for this purpose, with the inconvenience that its detection is lengthy and requires harsh treatment of tissue sections to give access of anti-BrdU antibody to nucleosides in genomic DNA. In 2008, Salic and Mitchison developed a new method and proved it to be quicker, simpler, and highly sensitive in non-skeletal tissues. This method relies on incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into de novo DNA. This other thymidine analog is readily detected by click chemistry, i.e., covalent cross-linking of its ethynyl group with a fluorescent azide, a molecule small enough to diffuse freely through native tissues and DNA. Here, we describe and compare the BrdU and EdU approaches in skeletal tissues and conclude that in these tissues too EdU provides an easy and very sensitive alternative to BrdU.
Collapse
Affiliation(s)
- Timothy J Mead
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | |
Collapse
|
48
|
Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol 2014; 53:T1-9. [PMID: 24740736 PMCID: PMC4133284 DOI: 10.1530/jme-14-0022] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For most bones, elongation is driven primarily by chondrogenesis at the growth plates. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is carefully orchestrated by complex networks of local paracrine factors and modulated by endocrine factors. We review here recent advances in the understanding of growth plate physiology. These advances include new approaches to study expression patterns of large numbers of genes in the growth plate, using microdissection followed by microarray. This approach has been combined with genome-wide association studies to provide insights into the regulation of the human growth plate. We also review recent studies elucidating the roles of bone morphogenetic proteins, fibroblast growth factors, C-type natriuretic peptide, and suppressor of cytokine signaling in the local regulation of growth plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ola Nilsson
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, SwedenProgram in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
49
|
Nilsson O, Guo MH, Dunbar N, Popovic J, Flynn D, Jacobsen C, Lui JC, Hirschhorn JN, Baron J, Dauber A. Short stature, accelerated bone maturation, and early growth cessation due to heterozygous aggrecan mutations. J Clin Endocrinol Metab 2014; 99:E1510-8. [PMID: 24762113 PMCID: PMC4121031 DOI: 10.1210/jc.2014-1332] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Many children with idiopathic short stature have a delayed bone age. Idiopathic short stature with advanced bone age is far less common. OBJECTIVE The aim was to identify underlying genetic causes of short stature with advanced bone age. SETTING AND DESIGN We used whole-exome sequencing to study three families with autosomal-dominant short stature, advanced bone age, and premature growth cessation. RESULTS Affected individuals presented with short stature [adult heights -2.3 to -4.2 standard deviation scores (SDS)] with histories of early growth cessation or childhood short stature (height SDS -1.9 to -3.5 SDS), advancement of bone age, and normal endocrine evaluations. Whole-exome sequencing identified novel heterozygous variants in ACAN, which encodes aggrecan, a proteoglycan in the extracellular matrix of growth plate and other cartilaginous tissues. The variants were present in all affected, but in no unaffected, family members. In Family 1, a novel frameshift mutation in exon 3 (c.272delA) was identified, which is predicted to cause early truncation of the aggrecan protein. In Family 2, a base-pair substitution was found in a highly conserved location within a splice donor site (c.2026+1G>A), which is also likely to alter the amino acid sequence of a large portion of the protein. In Family 3, a missense variant (c.7064T>C) in exon 14 affects a highly conserved residue (L2355P) and is strongly predicted to perturb protein function. CONCLUSIONS Our study demonstrates that heterozygous mutations in ACAN can cause a mild skeletal dysplasia, which presents clinically as short stature with advanced bone age. The accelerating effect on skeletal maturation has not previously been noted in the few prior reports of human ACAN mutations. Our findings thus expand the spectrum of ACAN defects and provide a new molecular genetic etiology for the unusual child who presents with short stature and accelerated skeletal maturation.
Collapse
Affiliation(s)
- Ola Nilsson
- Program in Developmental Endocrinology and Genetics (O.N., J.C.L., J.B.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health (O.N.), Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Program in Biological and Biomedical Sciences (M.H.G.), Harvard Medical School, Boston, Massachusetts 02115; Connecticut Children's Medical Center (N.D.), Hartford, Connecticut 06106; Children's Hospital of Pittsburgh (J.P., D.F.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224; Division of Endocrinology (M.H.G., C.J., J.N.H., A.D.), Boston Children's Hospital, Boston, Massachusetts 02115; Department of Genetics (M.H.G., J.N.H.), Harvard Medical School, Boston, Massachusetts 02115; and Program in Medical and Population Genetics (J.N.H., A.D.), Broad Institute, Cambridge, Massachusetts 02142
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nilsson O, Weise M, Landman EBM, Meyers JL, Barnes KM, Baron J. Evidence that estrogen hastens epiphyseal fusion and cessation of longitudinal bone growth by irreversibly depleting the number of resting zone progenitor cells in female rabbits. Endocrinology 2014; 155:2892-9. [PMID: 24708243 PMCID: PMC4098010 DOI: 10.1210/en.2013-2175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With age, growth plate cartilage undergoes programmed senescence, eventually causing cessation of bone elongation and epiphyseal fusion. Estrogen accelerates this developmental process. We hypothesized that senescence occurs because progenitor cells in the resting zone are depleted in number and that estrogen acts by accelerating this depletion. To test this hypothesis, juvenile ovariectomized rabbits received injections of estradiol cypionate or vehicle for 5 weeks, and then were left untreated for an additional 5 weeks. Exposure to estrogen accelerated the normal decline in growth plate height and in the number of proliferative and hypertrophic chondrocytes. Five weeks after discontinuation of estrogen treatment, these structural parameters remained advanced, indicating an irreversible advancement in structural senescence. Similarly, transient estrogen exposure hastened epiphyseal fusion. Estrogen also caused a more rapid decline in functional parameters of growth plate senescence, including growth rate, proliferation rate, and hypertrophic cell size. However, in contrast to the structural parameters, once the estrogen treatment was discontinued, the growth rate, chondrocyte proliferation rate, and hypertrophic cell size all normalized, suggesting that estrogen has a reversible, suppressive effect on growth plate function. In addition, estrogen accelerated the normal loss of resting zone chondrocytes with age. This decrease in resting zone cell number did not appear to be due to apoptosis. However, it was maintained after the estrogen treatment stopped, suggesting that it represents irreversible depletion. The findings are consistent with the hypothesis that estrogen causes irreversible depletion of progenitor cells in the resting zone, thus irreversibly accelerating structural senescence and hastening epiphyseal fusion. In addition, estrogen reversibly suppresses growth plate function.
Collapse
Affiliation(s)
- Ola Nilsson
- Program in Developmental Endocrinology and Genetics (O.N., M.W., E.B.M.L., J.L.M., K.M.B., J.B.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Center for Molecular Medicine and Pediatric Endocrinology Unit (O.N., E.B.M.L.), Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|