1
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Pilewski KA, Wall S, Richardson SI, Manamela NP, Clark K, Hermanus T, Binshtein E, Venkat R, Sautto GA, Kramer KJ, Shiakolas AR, Setliff I, Salas J, Mapengo RE, Suryadevara N, Brannon JR, Beebout CJ, Parks R, Raju N, Frumento N, Walker LM, Fechter EF, Qin JS, Murji AA, Janowska K, Thakur B, Lindenberger J, May AJ, Huang X, Sammour S, Acharya P, Carnahan RH, Ross TM, Haynes BF, Hadjifrangiskou M, Crowe JE, Bailey JR, Kalams S, Morris L, Georgiev IS. Functional HIV-1/HCV cross-reactive antibodies isolated from a chronically co-infected donor. Cell Rep 2023; 42:112044. [PMID: 36708513 PMCID: PMC10372200 DOI: 10.1016/j.celrep.2023.112044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.
Collapse
Affiliation(s)
- Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Kaitlyn Clark
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rutendo E Mapengo
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naveen Suryadevara
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren M Walker
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Juliana S Qin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amyn A Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Bhishem Thakur
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Aaron J May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Spyros Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
4
|
Guiding the Immune Response to a Conserved Epitope in MSP2, an Intrinsically Disordered Malaria Vaccine Candidate. Vaccines (Basel) 2021; 9:vaccines9080855. [PMID: 34451980 PMCID: PMC8402609 DOI: 10.3390/vaccines9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
Collapse
|
5
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
6
|
Han J, Schmitz AJ, Richey ST, Dai YN, Turner HL, Mohammed BM, Fremont DH, Ellebedy AH, Ward AB. Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Rep 2021; 34:108682. [PMID: 33503432 PMCID: PMC7888560 DOI: 10.1016/j.celrep.2020.108682] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022] Open
Abstract
Novel influenza A virus (IAV) strains elicit recall immune responses to conserved epitopes, making them favorable antigenic choices for universal influenza virus vaccines. Evaluating these immunogens requires a thorough understanding of the antigenic sites targeted by the polyclonal antibody (pAb) response, which single-particle electron microscopy (EM) can sensitively detect. In this study, we employ EM polyclonal epitope mapping (EMPEM) to extensively characterize the pAb response to hemagglutinin (HA) after H5N1 immunization in humans. Cross-reactive pAbs originating from memory B cells immediately bound the stem of HA and persisted for more than a year after vaccination. In contrast, de novo pAb responses to multiple sites on the head of HA, targeting previously determined key neutralizing sites on H5 HA, expanded after the second immunization and waned quickly. Thus, EMPEM provides a robust tool for comprehensively tracking the specificity and durability of immune responses elicited by novel universal influenza vaccine candidates.
Collapse
Affiliation(s)
- Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Yang F, Mariz FC, Zhao X, Spagnoli G, Ottonello S, Müller M. Broad Neutralization Responses Against Oncogenic Human Papillomaviruses Induced by a Minor Capsid L2 Polytope Genetically Incorporated Into Bacterial Ferritin Nanoparticles. Front Immunol 2020; 11:606569. [PMID: 33343580 PMCID: PMC7746619 DOI: 10.3389/fimmu.2020.606569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer remains a global health burden despite the introduction of highly effective vaccines for the prophylaxis of causative human papillomavirus infection (HPV). Current efforts to eradicate cervical cancer focus on the development of broadly protective, cost-effective approaches. HPV minor capsid protein L2 is being recognized as a promising alternative to the major capsid protein L1 because of its ability to induce responses against a wider range of different HPV types. However, a major limitation of L2 as a source of cross-neutralizing epitopes is its lower immunogenicity compared to L1 when assembled into VLPs. Various approaches have been proposed to overcome this limitation, we developed and tested ferritin-based bio-nanoparticles displaying tandemly repeated L2 epitopes from eight different HPV types grafted onto the surface of Pyrococcus furiosus thioredoxin (Pf Trx). Genetic fusion of the Pf Trx-L2(8x) module to P. furiosus ferritin (Pf Fe) did not interfere with ferritin self-assembly into an octahedral structure composed by 24 protomers. In guinea pigs and mice, the ferritin super-scaffolded, L2 antigen induced a broadly neutralizing antibody response covering 14 oncogenic and two non-oncogenic HPV types. Immune-responsiveness lasted for at least one year and the resulting antibodies also conferred protection in a cervico-vaginal mouse model of HPV infection. Given the broad organism distribution of thioredoxin and ferritin, we also verified the lack of cross-reactivity of the antibodies elicited against the scaffolds with human thioredoxin or ferritin. Altogether, the results of this study point to P. furiosus ferritin nanoparticles as a robust platform for the construction of peptide-epitope-based HPV vaccines.
Collapse
Affiliation(s)
- Fan Yang
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Filipe C. Mariz
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Xueer Zhao
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Gloria Spagnoli
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
van Regenmortel MHV. What does it mean to develop an HIV vaccine by rational design? Arch Virol 2020; 166:27-33. [PMID: 33251565 DOI: 10.1007/s00705-020-04884-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
Abstract
This review argues that the three popular concepts of design, rationality and reductionism, which guided vaccine research for many years, actually contributed to the inability of vaccinologists to develop an effective HIV vaccine. The strong goal-directed intentionality inherent in the concept of design together with excessive confidence in the power of rational thinking convinced investigators that the accumulated structural knowledge on HIV epitopes, derived from crystallographic studies of complexes of neutralizing antibodies bound to HIV Env epitopes, would allow them to rationally design complementary immunogens capable of inducing anti-HIV protective antibodies. This strategy failed because it was not appreciated that the structures observed in epitope-paratope crystallographic complexes result from mutually induced fit between the two partners and do not represent structures present in the free disordered molecules before they had interacted. In addition, reductionist thinking led investigators to accept that biology could be reduced to chemistry, and this made them neglect the fundamental difference between chemical antigenicity and biological immunogenicity. As a result, they did not investigate which inherent constituents of immune systems controlled the induction of protective antibodies and focused instead only on the steric complementarity that exists between bound epitopes and paratopes.
Collapse
|
9
|
Ströh LJ, Krey T. HCV Glycoprotein Structure and Implications for B-Cell Vaccine Development. Int J Mol Sci 2020; 21:ijms21186781. [PMID: 32947858 PMCID: PMC7555785 DOI: 10.3390/ijms21186781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the approval of highly efficient direct-acting antivirals in the last decade Hepatitis C virus (HCV) remains a global health burden and the development of a vaccine would constitute an important step towards the control of HCV. The high genetic variability of the viral glycoproteins E1 and E2, which carry the main neutralizing determinants, together with their intrinsic structural flexibility, the high level of glycosylation that shields conserved neutralization epitopes and immune evasion using decoy epitopes renders the design of an efficient vaccine challenging. Recent structural and functional analyses have highlighted the role of the CD81 receptor binding site on E2, which overlaps with those neutralization epitopes within E2 that have been structurally characterized to date. This CD81 binding site consists of three distinct segments including “epitope I”, “epitope II” and the “CD81 binding loop”. In this review we summarize the structural features of the HCV glycoproteins that have been derived from X-ray structures of neutralizing and non-neutralizing antibody fragments complexed with either recombinant E2 or epitope-derived linear peptides. We focus on the current understanding how neutralizing antibodies interact with their cognate antigen, the structural features of the respective neutralization epitopes targeted by nAbs and discuss the implications for informed vaccine design.
Collapse
Affiliation(s)
- Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)451–3101-3101
| |
Collapse
|
10
|
Qu Z, Li M, Guo Y, Liu Y, Wang J, Gao M. Expression, purification, and characterisation of recombinant ferritin in insect cells using the baculovirus expression system. Biotechnol Lett 2019; 42:57-65. [PMID: 31720971 DOI: 10.1007/s10529-019-02755-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Ferritin is an attractive vector for the delivery of drug molecules and antigen proteins because of its unique structural and biochemical features. In this study, recombinant ferritin from Helicobacter pylori was expressed in the soluble form employing the baculovirus expression system. RESULTS The optimum conditions for producing recombinant ferritin comprised MOI 5 of rBV-ferritin for 96 h of infection. The recombinant ferritin was purified by Ni Sepharose™ 6 Fast Flow, with a purity and yield of 92.5% and 11.25 mg/L, respectively. In addition, the recombinant ferritin showed a multimeric structure under non-denaturing conditions, as well as self-assembled spherical cage architecture with a diameter of approximately 12 nm. Dot-ELISA results suggested that the His-tag at the N-terminus likely existed on the surface of the recombinant ferritin. CONCLUSION Recombinant ferritin was produced by the baculovirus expression system, which has the potential to display exogenous proteins, and may aid in the delivery of drugs for disease prevention and treatment.
Collapse
Affiliation(s)
- Zhehui Qu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.,College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, People's Republic of China
| | - Mingzhu Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Yongli Guo
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Yue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
11
|
Coêlho DF, Ferraz MVF, Marques ETA, Lins RD, Viana IFT. The influence of biotinylation on the ability of a computer designed protein to detect B-cells producing anti-HIV-1 2F5 antibodies. J Mol Graph Model 2019; 93:107442. [PMID: 31479948 DOI: 10.1016/j.jmgm.2019.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Antibodies against the HIV-1 2F5 epitope are known as one of the most powerful and broadly protective anti-HIV antibodies. Therefore, vaccine strategies that include the 2F5 epitope in their formulation require a robust method to detect specific anti-2F5 antibody production by B cells. Towards this goal, we have biotinylated a previously reported computer-designed protein carrying the HIV-1 2F5 epitope aiming the further development of a platform to detect human B-cells expressing anti-2F5 antibodies through flow cytometry. Biophysical and immunological properties of our devised protein were characterized by computer simulation and experimental methods. Biotinylation did not affect folding and improved protein stability and solubility. The biotinylated protein exhibited similar binding affinity trends compared to its unbiotinylated counterpart and was recognized by anti-HIV-1 2F5 antibodies expressed on the surface of patient-derived peripheral blood mononuclear cells. Moreover, we present a high affinity marker for the identification of epitope-specific B cells that can be used to measure the efficacy of vaccine strategies based on the HIV-1 envelope protein.
Collapse
Affiliation(s)
- Danilo F Coêlho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil
| | - Matheus V F Ferraz
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil
| | - Ernesto T A Marques
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil.
| | - Isabelle F T Viana
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil.
| |
Collapse
|
12
|
Butler AL, Fallon JK, Alter G. A Sample-Sparing Multiplexed ADCP Assay. Front Immunol 2019; 10:1851. [PMID: 31456799 PMCID: PMC6700248 DOI: 10.3389/fimmu.2019.01851] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Antibodies serve as the primary correlate of protection following most clinically approved vaccines and are thought to confer protection in part through their ability to block (neutralize) infection. Increasingly, studies have shown that beyond their blocking activities, the ability of antibodies to leverage the innate immune response may serve a vital role in protection from infection. Specifically, antibodies can drive phagocytosis, complement activation, and cellular cytotoxicity by interacting with Fc-receptors found on all innate immune cells. Measuring the capacity of antibodies to induce these functions has become critical for the identification of correlates of protection in large-scale vaccine trials. Therefore, there is a growing need to develop robust, high throughput assays able to interrogate the functional capacity of innate immune recruiting antibodies. However, in many instances, only small sample volumes are available. Nevertheless, profiling antibody functions across many pathogen-associated antigens or across global intra-pathogen variants is in high demand, making sample sparing approaches to perform this antibody evaluation critical. Here we describe the development of an approach to interrogate the functional activity of antibodies in serum against up to 5 antigen targets simultaneously. A single bead-based cellular assay was adapted to accommodate 5 different fluorescently colored beads, allowing for the concurrent investigation of antibody responses directed against multiple antigens in a single well. The multiplexed assay was as sensitive, specific, and accurate as the single antigen assay and robustly able to assess functional differences mediated by antibodies across different samples. These findings show multiplexing allows for accurate and more efficient analysis of antibody-mediated effector profiles.
Collapse
Affiliation(s)
| | | | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
13
|
Rudometov AP, Chikaev AN, Rudometova NB, Antonets DV, Lomzov AA, Kaplina ON, Ilyichev AA, Karpenko LI. Artificial Anti-HIV-1 Immunogen Comprising Epitopes of Broadly Neutralizing Antibodies 2F5, 10E8, and a Peptide Mimic of VRC01 Discontinuous Epitope. Vaccines (Basel) 2019; 7:vaccines7030083. [PMID: 31390770 PMCID: PMC6789618 DOI: 10.3390/vaccines7030083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
The construction of artificial proteins using conservative B-cell and T-cell epitopes is believed to be a promising approach for a vaccine design against diverse viral infections. This article describes the development of an artificial HIV-1 immunogen using a polyepitope immunogen design strategy. We developed a recombinant protein, referred to as nTBI, that contains epitopes recognized by broadly neutralizing HIV-1 antibodies (bNAbs) combined with Th-epitopes. This is a modified version of a previously designed artificial protein, TBI (T- and B-cell epitopes containing Immunogen), carrying four T- and five B-cell epitopes from HIV-1 Env and Gag proteins. To engineer the nTBI molecule, three B-cell epitopes of the TBI protein were replaced with the epitopes recognized by broadly neutralizing HIV-1 antibodies 10E8, 2F5, and a linear peptide mimic of VRC01 epitope. We showed that immunization of rabbits with the nTBI protein elicited antibodies that recognize HIV-1 proteins and were able to neutralize Env-pseudotyped SF162.LS HIV-1 strain (tier 1). Competition assay revealed that immunization of rabbits with nTBI induced mainly 10E8-like antibodies. Our findings support the use of nTBI protein as an immunogen with predefined favorable antigenic properties.
Collapse
Affiliation(s)
- Andrey P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia.
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, 8/2 Lavrentiev Avenue Novosibirsk, Novosibirsk 630090, Russia.
| | - Nadezhda B Rudometova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Denis V Antonets
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga N Kaplina
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Alexander A Ilyichev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Larisa I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia.
| |
Collapse
|
14
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
15
|
Mishra S, Manish M. Studies on computational grafting of malarial epitopes in serum albumin. Comput Biol Med 2018; 102:126-131. [PMID: 30268977 DOI: 10.1016/j.compbiomed.2018.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Antigens (or their epitopes)-carrier protein combinations are extensively utilized for vaccine development strategies. Chemical conjugation methods are cumbersome with limited conjugation sites. Computational protein modelling methods can evaluate every position of a carrier protein for conjugation via epitope grafting in a reasonable time frame as compared to wet experimental techniques. Graftibility of positions can be estimated by the presence of native atomic contacts in resulting chimeric antigen. METHODOLOGY Five epitopes were selected, and computational grafting at each position was performed in three templates of serum albumin. Protein modelling algorithms such as segment matching and satisfaction of spatial restraints were employed for computational grafting. Contact-based protein discriminatory function was used to evaluate the chimeric proteins having native atomic contacts. RESULTS On the evaluation of approximately 1 million distinct protein modelling simulations, region around the 450th position of serum albumin was observed to be suitable for epitope grafting. CONCLUSION Computational protein modelling tools may be used to design a chimeric antigen. The approach may overcome the limitations associated with chemical conjugation and furthermore harness the potential of custom gene synthesis/recombinant protein production.
Collapse
Affiliation(s)
- Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Manish
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; ICMR-National Institute of Malaria Research, Dwarka, Sector-8, New Delhi, 110077, India.
| |
Collapse
|
16
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
17
|
Ströh LJ, Nagarathinam K, Krey T. Conformational Flexibility in the CD81-Binding Site of the Hepatitis C Virus Glycoprotein E2. Front Immunol 2018; 9:1396. [PMID: 29967619 PMCID: PMC6015841 DOI: 10.3389/fimmu.2018.01396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Numerous antibodies have been described that potently neutralize a broad range of hepatitis C virus (HCV) isolates and the majority of these antibodies target the binding site for the cellular receptor CD81 within the major HCV glycoprotein E2. A detailed understanding of the major antigenic determinants is crucial for the design of an efficient vaccine that elicits high levels of such antibodies. In the past 6 years, structural studies have shed additional light on the way the host’s humoral immune system recognizes neutralization epitopes within the HCV glycoproteins. One of the most striking findings from these studies is that the same segments of the E2 polypeptide chain induce antibodies targeting distinct antigen conformations. This was demonstrated by several crystal structures of identical polypeptide segments bound to different antibodies, highlighting an unanticipated intrinsic structural flexibility that allows binding of antibodies with distinct paratope shapes following an “induced-fit” mechanism. This unprecedented flexibility extends to the entire binding site for the cellular receptor CD81, underlining the importance of dynamic analyses to understand (1) the interplay between HCV and the humoral immune system and (2) the relevance of this structural flexibility for virus entry. This review summarizes the current understanding how neutralizing antibodies target structurally flexible epitopes. We focus on differences and common features of the reported structures and discuss the implications of the observed structural flexibility for the viral replication cycle, the full scope of the interplay between the virus and the host immune system and—most importantly—informed vaccine design.
Collapse
Affiliation(s)
- Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Van Regenmortel MHV. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design. Front Immunol 2018; 8:2009. [PMID: 29387066 PMCID: PMC5776009 DOI: 10.3389/fimmu.2017.02009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems.
Collapse
|
19
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
20
|
Ding P, Zhang T, Li Y, Teng M, Sun Y, Liu X, Chai S, Zhou E, Jin Q, Zhang G. Nanoparticle orientationally displayed antigen epitopes improve neutralizing antibody level in a model of porcine circovirus type 2. Int J Nanomedicine 2017; 12:5239-5254. [PMID: 28769561 PMCID: PMC5533572 DOI: 10.2147/ijn.s140789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advancements in biotechnology have enabled the rapid identification and subsequent expression of pathogenic microbial major antigens that induce protective immune responses. However, subunit vaccines have not been successfully commercialized mainly due to the lack of sufficient levels of neutralizing antibodies (NAs). High levels of NA rely on the efficient recognition and cross-linking of multiple neutralizing epitopes with B-cell receptors (BCRs). Nanoparticles are able to display coupled antigenic arrays at high density and provide multiple binding molecular scenarios with BCRs. The high-resolution antigenic structure makes it possible to accurately display stable neutralizing epitopes. Therefore, the development of a nanovaccine that orientationally displays neutralizing epitopes is a feasible strategy. To address this hypothesis, the capsid (Cap) protein of porcine circovirus type 2 as model antigen was conjugated to gold nanoparticles (AuNPs) through direct reaction of the mercapto group of the unique cysteines with AuNPs, rendering Cap-AuNPs to have neutralizing epitopes on outer surface and an immunodominant epitope buried within the inner surface. In vitro studies showed that AuNPs promoted the phagocytosis of Cap protein and NA levels were significantly improved, meanwhile antibody levels against the immunodominant epitope was significantly reduced. In mouse studies, Cap-AuNP-immunized mice displayed a high production of interleukin (IL)-4, IL-10, and interferon-γ, suggesting that Cap-AuNPs can effectively activate CD4+ and CD8+ T cells and balance Th1 and Th2 cellular responses. This study presents a new vaccine design strategy based on antigen structure, where nanoparticles are coupled to antigens in well-ordered arrays and orientationally display neutralizing epitopes to enhance NA levels.
Collapse
Affiliation(s)
- Peiyang Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling.,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences
| | - Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences.,College of Life Sciences, Henan Agricultural University
| | - Yafei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling.,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences
| | - Man Teng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences
| | - Xiao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling.,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
21
|
Wu M, Li M, Yue Y, Xu W. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis
vaccine. Microbiol Immunol 2016; 60:634-45. [DOI: 10.1111/1348-0421.12410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Manli Wu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Min Li
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Yan Yue
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Wei Xu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| |
Collapse
|
22
|
Henry KA, Hussack G, Collins C, Zwaagstra JC, Tanha J, MacKenzie CR. Isolation of TGF-β-neutralizing single-domain antibodies of predetermined epitope specificity using next-generation DNA sequencing. Protein Eng Des Sel 2016; 29:439-443. [DOI: 10.1093/protein/gzw043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/20/2016] [Indexed: 11/14/2022] Open
|
23
|
Abstract
The bacterial type 6 secretion system (T6SS) is a dynamic apparatus that translocates proteins between cells by a mechanism analogous to phage tail contraction. T6SS sheaths are cytoplasmic tubular structures composed of stable VipA-VipB (named for ClpV-interacting protein A and B) heterodimers. Here, the structure of the VipA/B sheath was exploited to generate immunogenic multivalent particles for vaccine delivery. Sheaths composed of VipB and VipA fused to an antigen of interest were purified from Vibrio cholerae or Escherichia coli and used for immunization. Sheaths displaying heterologous antigens generated better immune responses against the antigen and different IgG subclasses compared with soluble antigen alone. Moreover, antigen-specific antibodies raised against sheaths presenting Neisseria meningitidis factor H binding protein (fHbp) antigen were functional in a serum bactericidal assay. Our results demonstrate that multivalent nanoparticles based on the T6SS sheath represent a versatile scaffold for vaccine applications.
Collapse
|
24
|
Reichart TM, Baksh MM, Rhee JK, Fiedler JD, Sligar SG, Finn MG, Zwick MB, Dawson PE. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy M. Reichart
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Michael M. Baksh
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- School of Chemistry & Biochemistry; Georgia Institute of Technology; 901 Atlantic Drive Atlanta GA 30332 USA
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Korea
| | - Jason D. Fiedler
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Stephen G. Sligar
- Department of Biochemistry; University of Illinois; Urbana IL 61801 USA
| | - M. G. Finn
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- School of Chemistry & Biochemistry; Georgia Institute of Technology; 901 Atlantic Drive Atlanta GA 30332 USA
| | - Michael B. Zwick
- Department of Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA USA
| | - Philip E. Dawson
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
25
|
Reichart TM, Baksh MM, Rhee JK, Fiedler JD, Sligar SG, Finn MG, Zwick MB, Dawson PE. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding. Angew Chem Int Ed Engl 2016; 55:2688-92. [PMID: 26799917 PMCID: PMC5405556 DOI: 10.1002/anie.201508421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/04/2015] [Indexed: 12/18/2022]
Abstract
The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.
Collapse
Affiliation(s)
- Timothy M Reichart
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael M Baksh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Jason D Fiedler
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
| | - M G Finn
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Michael B Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
26
|
Liu CC, Zheng XJ, Ye XS. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem 2016; 11:357-62. [PMID: 26762799 DOI: 10.1002/cmdc.201500498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/12/2022]
Abstract
The HIV envelope (Env) is heavily glycosylated, facilitating the spread and survival of HIV in many ways. Some potent broadly neutralizing antibodies (bnAbs) such as 2G12, PG9, PG16, and PGTs can recognize the conserved glycan residues on Env. The bnAbs, which often emerge after many years of chronic infection, provide insight into the vulnerability of HIV and can therefore guide the design of vaccines. Many carbohydrate-conjugated vaccines have been designed to induce bnAb-like antibodies, but none have yet been successful. The low antigenicity of these vaccines is one possible explanation. New strategies have been applied to obtain high-affinity antigens of glycan-dependent and other bnAbs. However, when used as immunogens in vivo, high-affinity antigens are still insufficient in eliciting bnAb-like antibodies. bnAbs generally possess some unusual features and may therefore be suppressed by the host immune system. In view of this situation, some immunization regimens based on the affinity maturation of antibodies have been tested. Herein we summarize recent studies into the design of carbohydrate-based HIV vaccines and some valuable experiences gained in work with other bnAb-based HIV vaccines.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
27
|
López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 2015; 14:58-68. [PMID: 26862374 PMCID: PMC4706605 DOI: 10.1016/j.csbj.2015.11.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.
Collapse
Affiliation(s)
| | - Enrico Malito
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
28
|
Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Sci Rep 2015; 5:12501. [PMID: 26238798 PMCID: PMC4533164 DOI: 10.1038/srep12501] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314–324) and E2 (residues 412–423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.
Collapse
|
29
|
Van Regenmortel MHV. Why Does the Molecular Structure of Broadly Neutralizing Monoclonal Antibodies Isolated from Individuals Infected with HIV-1 not Inform the Rational Design of an HIV-1 Vaccine? AIMS Public Health 2015; 2:183-193. [PMID: 29546103 PMCID: PMC5690275 DOI: 10.3934/publichealth.2015.2.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
It is commonly assumed that neutralizing Mabs that bind to the HIV-1 Env glycoprotein are more specific reagents than anti-HIV-1 polyclonal antisera and that knowledge of the structure of these Mabs facilitates the rational design of effective HIV-1 vaccine immunogens. However, after more than ten years of unsuccessful experimentation using the structure-based reverse vaccinology approach, it is now evident that it is not possible to infer from the structure of neutralizing Mabs which HIV immunogens induced their formation nor which vaccine immunogens will elicit similar Abs in an immunized host. The use of Mabs for developing an HIV-1 vaccine was counterproductive because it overlooked the fact that the apparent specificity of a Mab very much depends on the selection procedure used to obtain it and also did not take into account that an antibody is never monospecific for a single epitope but is always polyspecific for many epitopes. When the rationale of the proponents of the unsuccessful rational design strategy is analyzed, it appears that investigators who claim they are designing a vaccine immunogen are only improving the binding reactivity of a single epitope-paratope pair and are not actually designing an immunogen able to generate protective antibodies. The task of a designer consists in imagining what type of immunogen is likely to elicit a protective immune response but in the absence of knowledge regarding which features of the immune system are responsible for producing a functional neutralizing activity in antibodies, it is not feasible to intentionally optimize a potential immunogen candidate in order to obtain the desired outcome. The only available option is actually to test possible solutions by trial-and-error experiments until the preset goal is perhaps attained. Rational design and empirical approaches in HIV vaccine research should thus not be opposed as alternative options since empirical testing is an integral part of a so-called design strategy.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, UMR7242 - Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, Illkirch 67400, France ; Tel: +27-793376766
| |
Collapse
|
30
|
Computational tools for epitope vaccine design and evaluation. Curr Opin Virol 2015; 11:103-12. [PMID: 25837467 DOI: 10.1016/j.coviro.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Rational approaches will be required to develop universal vaccines for viral pathogens such as human immunodeficiency virus, hepatitis C virus, and influenza, for which empirical approaches have failed. The main objective of a rational vaccine strategy is to design novel immunogens that are capable of inducing long-term protective immunity. In practice, this requires structure-based engineering of the target neutralizing epitopes and a quantitative readout of vaccine-induced immune responses. Therefore, computational tools that can facilitate these two areas have played increasingly important roles in rational vaccine design in recent years. Here we review the computational techniques developed for protein structure prediction and antibody repertoire analysis, and demonstrate how they can be applied to the design and evaluation of epitope vaccines.
Collapse
|
31
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Van Regenmortel MHV. An Outdated Notion of Antibody Specificity is One of the Major Detrimental Assumptions of the Structure-Based Reverse Vaccinology Paradigm, Which Prevented It from Helping to Develop an Effective HIV-1 Vaccine. Front Immunol 2014; 5:593. [PMID: 25477882 PMCID: PMC4235417 DOI: 10.3389/fimmu.2014.00593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
The importance of paradigms for guiding scientific research is explained with reference to the seminal work of Karl Popper and Thomas Kuhn. A prevalent paradigm, followed for more than a decade in HIV-1 vaccine research, which gave rise to the strategy known as structure-based reverse vaccinology is described in detail. Several reasons why this paradigm did not allow the development of an effective HIV-1 vaccine are analyzed. A major reason is the belief shared by many vaccinologists that antibodies possess a narrow specificity for a single epitope and are not polyspecific for a diverse group of potential epitopes. When this belief is abandoned, it becomes obvious that the one particular epitope structure observed during the crystallographic analysis of a neutralizing antibody–antigen complex does not necessarily reveal, which immunogenic structure should be used to elicit the same type of neutralizing antibody. In the physical sciences, scientific explanations are usually presented as logical deductions derived from a relevant law of nature together with certain initial conditions. In immunology, causal explanations in terms of a single cause acting according to a law of nature are not possible because numerous factors always play a role in bringing about an effect. The implications of this state of affairs for the rational design of HIV vaccines are outlined. An alternative approach to obtain useful scientific understanding consists in intervening empirically in the immune system and it is suggested that manipulating the system experimentally is needed to learn to control it and achieve protective immunity by vaccination.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, Biotechnologie des Interactions Moleculaires, IREBS, School of Biotechnology, ESBS, University of Strasbourg , Illkirch , France
| |
Collapse
|
33
|
Finton KAK, Friend D, Jaffe J, Gewe M, Holmes MA, Larman HB, Stuart A, Larimore K, Greenberg PD, Elledge SJ, Stamatatos L, Strong RK. Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. PLoS Pathog 2014; 10:e1004403. [PMID: 25254371 PMCID: PMC4177983 DOI: 10.1371/journal.ppat.1004403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/16/2014] [Indexed: 01/07/2023] Open
Abstract
The process of antibody ontogeny typically improves affinity, on-rate, and thermostability, narrows polyspecificity, and rigidifies the combining site to the conformer optimal for binding from the broader ensemble accessible to the precursor. However, many broadly-neutralizing anti-HIV antibodies incorporate unusual structural elements and recognition specificities or properties that often lead to autoreactivity. The ontogeny of 4E10, an autoreactive antibody with unexpected combining site flexibility, was delineated through structural and biophysical comparisons of the mature antibody with multiple potential precursors. 4E10 gained affinity primarily by off-rate enhancement through a small number of mutations to a highly conserved recognition surface. Controverting the conventional paradigm, the combining site gained flexibility and autoreactivity during ontogeny, while losing thermostability, though polyspecificity was unaffected. Details of the recognition mechanism, including inferred global effects due to 4E10 binding, suggest that neutralization by 4E10 may involve mechanisms beyond simply binding, also requiring the ability of the antibody to induce conformational changes distant from its binding site. 4E10 is, therefore, unlikely to be re-elicited by conventional vaccination strategies.
Collapse
Affiliation(s)
- Kathryn A. K. Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Della Friend
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James Jaffe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mesfin Gewe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Margaret A. Holmes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - H. Benjamin Larman
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Andrew Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kevin Larimore
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Philip D. Greenberg
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, Cancer Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer. Proc Natl Acad Sci U S A 2014; 111:1391-6. [PMID: 24474763 DOI: 10.1073/pnas.1309842111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 glycoprotein (gp) 41 is involved in viral-host cell membrane fusion. It contains short amino acid sequences that are binding sites for the HIV-1 broadly neutralizing antibodies 2F5, 4E10, and 10E8, making these binding sites important targets for HIV-1 vaccine development. We report a high-resolution structure of a designed MPER trimer assembled on a detergent micelle. The NMR solution structure of this trimeric domain, designated gp41-M-MAT, shows that the three MPER peptides each adopt symmetric α-helical conformations exposing the amino acid side chains of the antibody binding sites. The helices are closely associated at their N termini, bend between the 2F5 and 4E10 epitopes, and gradually separate toward the C termini, where they associate with the membrane. The mAbs 2F5 and 4E10 bind gp41-M-MAT with nanomolar affinities, consistent with the substantial exposure of their respective epitopes in the trimer structure. The traditional structure determination of gp41-M-MAT using the Xplor-NIH protocol was validated by independently determining the structure using the DISCO sparse-data protocol, which exploits geometric arrangement algorithms that guarantee to compute all structures and assignments that satisfy the data.
Collapse
|
35
|
Hashimoto C, Nomura W, Narumi T, Fujino M, Nakahara T, Yamamoto N, Murakami T, Tamamura H. CXCR4-derived synthetic peptides inducing anti-HIV-1 antibodies. Bioorg Med Chem 2013; 21:6878-85. [PMID: 24119449 DOI: 10.1016/j.bmc.2013.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/17/2023]
Abstract
Despite almost 30 years since the identification of the human immunodeficiency virus type I (HIV-1), development of effective AIDS vaccines has been hindered by the high mutability of HIV-1. The HIV-1 co-receptors CCR5 and CXCR4 are genetically stable, but viral proteins may mutate rapidly during the course of infection. CXCR4 is a seven transmembrane G protein-coupled receptor, possessing an N-terminal region (NT) and three extracellular loops (ECL1-3). Previous studies have shown that the CXCR4-ED-derived peptides inhibit the entry of HIV-1 by interacting with gp120, an HIV-1 envelope glycoprotein. In the present study, antigenicity of CXCR4-derived peptides has been investigated and the anti-HIV-1 effects of induced antisera have been assessed. It was found that CXCR4-ED-derived antigen molecules immunize mice, showing that the linear peptides have higher antigenicity than the cyclic peptides. The L1- and L2-induced antisera inhibited the HIV-1 entry significantly, while anti-N1 antibodies have no inhibitory activity. This study produced promising examples for the design of AIDS vaccines which target the human protein and can overcome mutability of HIV-1.
Collapse
Affiliation(s)
- Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Koellhoffer JF, Higgins CD, Lai JR. Protein engineering strategies for the development of viral vaccines and immunotherapeutics. FEBS Lett 2013; 588:298-307. [PMID: 24157357 DOI: 10.1016/j.febslet.2013.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/12/2023]
Abstract
Vaccines that elicit a protective broadly neutralizing antibody (bNAb) response and monoclonal antibody therapies are critical for the treatment and prevention of viral infections. However, isolation of protective neutralizing antibodies has been challenging for some viruses, notably those with high antigenic diversity or those that do not elicit a bNAb response in the course of natural infection. Here, we discuss recent work that employs protein engineering strategies to design immunogens that elicit bNAbs or engineer novel bNAbs. We highlight the use of rational, computational, and combinatorial strategies and assess the potential of these approaches for the development of new vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Jayne F Koellhoffer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Chelsea D Higgins
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
37
|
Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology 2013; 10:72. [PMID: 23866844 PMCID: PMC3722125 DOI: 10.1186/1742-4690-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
38
|
Gori A, Longhi R, Peri C, Colombo G. Peptides for immunological purposes: design, strategies and applications. Amino Acids 2013; 45:257-68. [DOI: 10.1007/s00726-013-1526-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/30/2022]
|
39
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
40
|
Petitdemange C, Achour A, Dispinseri S, Malet I, Sennepin A, Ho Tsong Fang R, Crouzet J, Marcelin AG, Calvez V, Scarlatti G, Debré P, Vieillard V. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion. Clin Infect Dis 2013; 57:745-55. [PMID: 23696512 DOI: 10.1093/cid/cit335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. METHODS Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. RESULTS Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. CONCLUSIONS These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.
Collapse
|
41
|
Delany I, Rappuoli R, Seib KL. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a012476. [PMID: 23637311 DOI: 10.1101/cshperspect.a012476] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Advances in genomics and innovative strategies such as reverse vaccinology have changed the concepts and approaches to vaccine candidate selection and design. Genome mining and blind selection of novel antigens provide a novel route to investigate the mechanisms that underpin pathogenesis. The resulting lists of novel candidates are revealing new aspects of pathogenesis of target organisms, which in turn drives the rational design of optimal vaccine antigens. Here we use the discovery, characterization, and exploitation of fHbp, a vaccine candidate and key virulence factor of meningococcus, as an illustrative case in point. Applying genomic approaches to study both the pathogen and host will ultimately increase our fundamental understanding of pathogen biology, mechanisms responsible for the development of protective immunity, and guide next-generation vaccine design.
Collapse
Affiliation(s)
- Isabel Delany
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | |
Collapse
|
42
|
Grimm SK, Ackerman ME. Vaccine design: emerging concepts and renewed optimism. Curr Opin Biotechnol 2013; 24:1078-88. [PMID: 23474232 DOI: 10.1016/j.copbio.2013.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 01/15/2023]
Abstract
Arguably, vaccination represents the single most effective medical intervention ever developed. Yet, vaccines have failed to provide any or adequate protection against some of the most significant global diseases. The pathogens responsible for these vaccine-recalcitrant diseases have properties that allow them to evade immune surveillance and misdirect or eliminate the immune response. However, genomic and systems biology tools, novel adjuvants and delivery systems, and refined molecular insight into protective immunity have started to redefine the landscape, and results from recent efficacy trials of HIV and malaria vaccines have instilled hope that another golden age of vaccines may be on the horizon.
Collapse
|
43
|
Peri C, Gagni P, Combi F, Gori A, Chiari M, Longhi R, Cretich M, Colombo G. Rational epitope design for protein targeting. ACS Chem Biol 2013; 8:397-404. [PMID: 23138758 DOI: 10.1021/cb300487u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a new multidisciplinary strategy integrating computational biology with high-throughput microarray analysis aimed to translate molecular understanding of protein-antibody recognition into the design of efficient and selective protein-based analytical and diagnostic tools. The structures of two proteins with different folds and secondary structure contents, namely, the beta-barrel FABP and the α-helical S100B, were used as the basis for the prediction and design of potential antibody-binding epitopes using the recently developed MLCE computational method. Starting from the idea that the structure, dynamics, and stability of a protein-antigen play a key role in the interaction with antibodies, MLCE integrates the analysis of the dynamical and energetic properties of proteins to identify nonoptimized, low-intensity energetic interaction-networks on the surface of the isolated antigens, which correspond to substructures that can aptly be recognized by a binding partner. The identified epitopes were next synthesized as free peptides and used to elicit specific antibodies in rabbits. Importantly, the resulting antibodies were proven to specifically and selectively recognize the original, full-length proteins in microarray-based tests. Competition experiments further demonstrated the specificity of the molecular recognition between the target immobilized proteins and the generated antibodies. Our integrated computational and microarray-based results demonstrate the possibility to rationally discover and design synthetic epitopes able to elicit antibodies specific for full-length proteins starting only from three-dimensional structural information on the target. We discuss implications for diagnosis and vaccine development purposes.
Collapse
Affiliation(s)
- Claudio Peri
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Paola Gagni
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Fabio Combi
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Gori
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Marcella Chiari
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Renato Longhi
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Marina Cretich
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Isituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
44
|
Chen W, Ying T, Dimitrov DS. Antibody-based candidate therapeutics against HIV-1: implications for virus eradication and vaccine design. Expert Opin Biol Ther 2013; 13:657-71. [PMID: 23293858 DOI: 10.1517/14712598.2013.761969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The currently available anti-HIV-1 drugs can control the infection but do not eradicate the virus. Their long-term use can lead to side effects and resistance to therapy. Therefore, eradication of the virus has been a major goal of research. Biological therapeutics including broadly neutralizing monoclonal antibodies (bnAbs) are promising tools to reach this goal. They could also help design novel vaccine immunogens potentially capable of eliciting bnAbs targeting the HIV-1 envelope glycoproteins (Envs). AREAS COVERED We review HIV-1 bnAbs and their potential as candidate prophylactics and therapeutics used individually, in combination, or as bispecific fusion proteins. We also discuss their potential use in the 'activation-elimination' approach for HIV-1 eradication in infected patients receiving antiretroviral treatment as well as current vaccine design efforts based on understanding of interactions of candidate vaccine immunogens with matured bnAbs and their putative germline predecessors, and related antibody maturation pathways. EXPERT OPINION Exploration of HIV-1 bnAbs has provided and will continue to provide useful knowledge that helps develop novel types of biotherapeutics and vaccines. It is possible that bnAb-based candidate therapeutics could help eradicate HIV-1. Development of vaccine immunogens capable of eliciting potent bnAbs in humans remains a fundamental challenge.
Collapse
Affiliation(s)
- Weizao Chen
- National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Protein Interactions Group, Miller Drive, Building 469, Room 144, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
45
|
Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. PLoS One 2012; 7:e52740. [PMID: 23285173 PMCID: PMC3528738 DOI: 10.1371/journal.pone.0052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal external region (MPER) of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP) can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.
Collapse
Affiliation(s)
- Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Aitziber Araujo
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Rocio Arranz
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Heribert Quendler
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - José M. Valpuesta
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - José L. Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- * E-mail:
| |
Collapse
|
46
|
Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012; 3:194. [PMID: 22787464 PMCID: PMC3391733 DOI: 10.3389/fimmu.2012.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023] Open
Abstract
This review describes the structure-based reverse vaccinology approach aimed at developing vaccine immunogens capable of inducing antibodies that broadly neutralize HIV-1. Some basic principles of protein immunochemistry are reviewed and the implications of the extensive polyspecificity of antibodies for vaccine development are underlined. Although it is natural for investigators to want to know the cause of an effective immunological intervention, the classic notion of causality is shown to have little explanatory value for a system as complex as the immune system, where any observed effect always results from many interactions between a large number of components. Causal explanations are reductive because a single factor is singled out for attention and given undue explanatory weight on its own. Other examples of the negative impact of reductionist thinking on HIV vaccine development are discussed. These include (1) the failure to distinguish between the chemical nature of antigenicity and the biological nature of immunogenicity, (2) the belief that when an HIV-1 epitope is reconstructed by rational design to better fit a neutralizing monoclonal antibody (nMab), this will produce an immunogen able to elicit Abs with the same neutralizing capacity as the Ab used as template for designing the antigen, and (3) the belief that protection against infection can be analyzed at the level of individual molecular interactions although it has meaning only at the level of an entire organism. The numerous unsuccessful strategies that have been used to design HIV-1 vaccine immunogens are described and it is suggested that the convergence of so many negative experimental results justifies the conclusion that reverse vaccinology is unlikely to lead to the development of a preventive HIV-1 vaccine. Immune correlates of protection in vaccines have not yet been identified because this will become feasible only retrospectively once an effective vaccine exists. The finding that extensive antibody affinity maturation is needed to obtain mature anti-HIV-1 Abs endowed with a broad neutralizing capacity explains why antigens designed to fit matured Mabs are not effective vaccine immunogens since these are administered to naive recipients who possess only B-cell receptors corresponding to the germline version of the matured Abs.
Collapse
Affiliation(s)
- Marc H. V. Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University,Stellenbosch, South Africa
| |
Collapse
|
47
|
Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS One 2012; 7:e36750. [PMID: 22590602 PMCID: PMC3348910 DOI: 10.1371/journal.pone.0036750] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/27/2022] Open
Abstract
A number of antibodies that efficiently neutralize microbial targets contain long heavy chain complementarity determining region 3 (HCDR3) loops. For HIV, several of the most broad and potently neutralizing antibodies have exceptionally long HCDR3s. Two broad potently neutralizing HIV-specific antibodies, PG9 and PG16, exhibit secondary structure. Two other long HCDR3 antibodies, 2F5 and 4E10, protect against mucosal challenge with SHIV. Induction of such long HCDR3 antibodies may be critical to the design of an effective vaccine strategy for HIV and other pathogens, however it is unclear at present how to induce such antibodies. Here, we present genetic evidence that human peripheral blood antibodies containing long HCDR3s are not primarily generated by insertions introduced during the somatic hypermutation process. Instead, they are typically formed by processes occurring as part of the original recombination event. Thus, the response of B cells encoding antibodies with long HCDR3s results from selection of unusual clones from the naïve repertoire rather than through accumulation of insertions. These antibodies typically use a small subset of D and J gene segments that are particularly suited to encoding long HCDR3s, resulting in the incorporation of highly conserved genetic elements in the majority of antibody sequences encoding long HCDR3s.
Collapse
|
48
|
Zinkernagel RM. Immunological memory ≠ protective immunity. Cell Mol Life Sci 2012; 69:1635-40. [PMID: 22481438 PMCID: PMC11114992 DOI: 10.1007/s00018-012-0972-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 01/12/2023]
Abstract
So-called 'immunological memory' is, in my view, a typical example where a field of enquiry, i.e. to understand long-term protection to survive reexposure to infection, has been overtaken by 'l'art pour l'art' of 'basic immunology'. The aim of this critical review is to point out some key differences between academic text book-defined immunological memory and protective immunity as viewed from a co-evolutionary point of view, both from the host and the infectious agents. A key conclusion is that 'immunological memory' of course exists, but only in particular experimental laboratory models measuring 'quicker and better' responses after an earlier immunization. These often do correlate with, but are not the key mechanisms of, protection. Protection depends on pre-existing neutralizing antibodies or pre-activated T cells at the time of infection-as documented by the importance of maternal antibodies around birth for survival of the offspring. Importantly, both high levels of antibodies and of activated T cells are antigen driven. This conclusion has serious implications for our thinking about vaccines and maintaining a level of protection in the population to deal with old and new infectious diseases.
Collapse
|
49
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
50
|
Kong L, Sattentau QJ. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. JOURNAL OF AIDS & CLINICAL RESEARCH 2012; S8:3. [PMID: 23227445 PMCID: PMC3515071 DOI: 10.4172/2155-6113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome.
Collapse
Affiliation(s)
- Leopold Kong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|