1
|
Kong Y, Wang H, Qiao L, Du T, Luo J, Liu Y, Yang B. Exogenous application of luteolin enhances wheat resistance to Puccinia striiformis f. sp. tritici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109674. [PMID: 40020601 DOI: 10.1016/j.plaphy.2025.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
The accumulation of flavonoids facilitates plant resistance to biotic stress. However, few studies have explored the functions of flavonoids during the interaction between wheat and Puccinia striiformis Westendorp f. sp. tritici Eriksson (Pst). This study analyzed the expression profiles of flavonoids and their biosynthesis genes in the resistant accession Y0337 and the susceptible accession Y0402 infected with Pst. The results showed that flavonoid biosynthesis pathway (FBP) genes were induced during early Pst infection. Among these, 29 initial FBP DEGs exhibited higher expression during incompatible interaction. Further, the total levels of 12 identified flavonoids were higher during incompatible interaction; among these, apigenin, luteolin, cynaroside were accumulated and naringenin was decreased, they may play a crucial role in Pst resistance. Integrated analysis of the transcriptome and metabolome showed that 21 DEGs regulated four crucial flavonoids biosynthesis. The gene regulatory network suggested that the transcription factors EFRs, WRKYs, NACs, and bHLHs potentially regulated four flavonoids biosynthesis. Additionally, it was shown that luteolin inhibited spore germination and infection of Pstin vivo and in vitro. In summary, these results enhance our understanding of the flavonoids biosynthesis in wheat resistance to Pst and highlight the role of luteolin in this process.
Collapse
Affiliation(s)
- Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingting Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianfei Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiling Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Hunter CT, Gorman Z, Li QB, Sorg A, Rering C, Block A, Christensen S. Disruption of allene oxide cyclase in maize reveals the necessity of enzymatically produced 12-OPDA for the induction of jasmonic acid during herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70209. [PMID: 40344686 DOI: 10.1111/tpj.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
Allene oxide cyclase (AOC) catalyzes the formation of 12-oxo-phytodienoic acid (12-OPDA) and represents an understudied step in jasmonate biosynthesis. Here the effects of eliminating AOC function in maize (Zea mays) are investigated. Gene editing was used to disrupt a pair of redundant AOC-coding genes, and mutants were analyzed with targeted metabolomics in a biochemical characterization of jasmonate deficiency. Our findings confirm essential roles for AOC in male flower development and resistance to biotic stresses. Metabolomic examinations show that AOC deficiency leads to a 90% reduction in 12-OPDA and a 99% reduction in jasmonic acid (JA) and JA-Isoleucine after treatment with fall armyworm. The presence of 12-OPDA in equal proportions of cis-(+) and cis-(-) stereochemical isomers indicates nonenzymatic allene oxide cyclization in the absence of functional AOC. This residual 12-OPDA is not converted into JA or other downstream jasmonates during herbivory, revealing the necessity of enzymatic cyclization of allene oxide by AOC for insect-induced JA and JA-dependent defense responses. The AOC-deficient mutants developed here provide a new tool for investigating the roles of jasmonates in maize.
Collapse
Affiliation(s)
- Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Zachary Gorman
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Qin-Bao Li
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Ariel Sorg
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Caitlin Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Anna Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Shawn Christensen
- College of Life Sciences, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
3
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Gu Y, Yan B, Yang Y, Huang Y, Liu X, Liu S. Metabolomic Analysis of Maize Response to Northern Corn Leaf Blight. Metabolites 2025; 15:113. [PMID: 39997737 PMCID: PMC11857212 DOI: 10.3390/metabo15020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Background: As a major food crop, maize is highly susceptible to pathogenic bacteria, which greatly reduces its yield and quality. Metabolomics reveals physiological and biochemical changes in organisms and aids in analyzing metabolic changes caused by various factors. Methods: This study utilized metabolomics to examine maize's metabolic changes after NCLB infestation, aiming to uncover related pathways and potential biomarkers. The metabolite measurements were performed during the maize silking stage. Results: PCA showed an obvious dispersion between the treated and untreated groups. OPLS-DA identified 1274 differential metabolites, with 242 being downregulated (mainly phenolics and esters) and 1032 upregulated (primarily organic acids, amino acids, sugars, and derivatives). KEGG annotation revealed 50 affected metabolic pathways, and the biosynthesis of secondary metab-olites and amino acids was significantly enriched. Conclusions: We hypothesized that metabolic pathways related to sugar metabolism, proline metabolism, and jasmonic acid synthesis are associated with NCLB susceptibility. These findings provide critical insights into the metabolic responses of maize to biotic stress, offering a theoretical basis for future research on plant resistance mechanisms.
Collapse
Affiliation(s)
- Yingnan Gu
- Institude of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Science, Postdoctoral Workstation of Heilongjiang Academy of Agriculture and Science, No. 368, Xuefu Road, Nangang District, Harbin 150086, China; (Y.G.); (Y.Y.); (Y.H.)
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Science, Harbin 150086, China;
| | - Ye Yang
- Institude of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Science, Postdoctoral Workstation of Heilongjiang Academy of Agriculture and Science, No. 368, Xuefu Road, Nangang District, Harbin 150086, China; (Y.G.); (Y.Y.); (Y.H.)
| | - Ying Huang
- Institude of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Science, Postdoctoral Workstation of Heilongjiang Academy of Agriculture and Science, No. 368, Xuefu Road, Nangang District, Harbin 150086, China; (Y.G.); (Y.Y.); (Y.H.)
| | - Xin Liu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
| | - Shubin Liu
- Institude of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Science, Postdoctoral Workstation of Heilongjiang Academy of Agriculture and Science, No. 368, Xuefu Road, Nangang District, Harbin 150086, China; (Y.G.); (Y.Y.); (Y.H.)
| |
Collapse
|
5
|
Begcy K, Mondragón-Palomino M, Zhou LZ, Seitz PL, Márton ML, Dresselhaus T. Maize stigmas react differently to self- and cross-pollination and fungal invasion. PLANT PHYSIOLOGY 2024; 196:3071-3090. [PMID: 39371027 PMCID: PMC11638485 DOI: 10.1093/plphys/kiae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
During sexual reproduction in flowering plants, tip-growing pollen tubes travel from the stigma inside the maternal tissues of the pistil toward ovules. In maize (Zea mays L.), the stigma is highly elongated, forming thread-like strands known as silks. Only compatible pollen tubes successfully penetrate and grow through the transmitting tract of the silk to reach the ovules. Like pollen, fungal spores germinate at the surface of silks and generate tube-like structures (hyphae) penetrating silk tissue. To elucidate commonalities and differences between silk responses to these distinctive invading cells, we compared growth behavior of the various invaders as well as the silk transcriptome after self-pollination, cross-pollination, and infection using 2 different fungi. We report that self-pollination triggers mainly senescence genes, whereas incompatible pollen from Tripsacum dactyloides leads to downregulation of rehydration, microtubule, and cell wall-related genes, explaining the slower pollen tube growth and arrest. Invasion by the ascomycete Fusarium graminearum triggers numerous defense responses including the activation of monolignol biosynthesis and NAC as well as WRKY transcription factor genes, whereas responses to the basidiomycete Ustilago maydis are generally much weaker. We present evidence that incompatible pollination and fungal infection trigger transcriptional reprograming of maize silks cell wall. Pathogen invasion also activates the phytoalexin biosynthesis pathway.
Collapse
Affiliation(s)
- Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Patricia-Lena Seitz
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Mihaela-Luiza Márton
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany
| |
Collapse
|
6
|
Rudolph AY, Schunke C, Nordzieke DE. Conserved perception of host and non-host signals via the a-pheromone receptor Ste3 in Colletotrichum graminicola. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1454633. [PMID: 39435183 PMCID: PMC11491335 DOI: 10.3389/ffunb.2024.1454633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Understanding the interactions between fungal plant pathogens and host roots is crucial for developing effective disease management strategies. This study investigates the molecular mechanisms underpinning the chemotropic responses of the maize anthracnose fungus Colletotrichum graminicola to maize root exudates. Combining the generation of a deletion mutant with monitoring of disease symptom development and detailed analysis of chemotropic growth using a 3D-printed device, we identify the 7-transmembrane G-protein coupled receptor (GPCR) CgSte3 as a key player in sensing both plant-derived class III peroxidases and diterpenoids. Activation of CgSte3 initiates signaling through CgSo, a homolog to the Cell Wall Integrity Mitogen-Activated Protein Kinase (CWI MAPK) pathway scaffold protein identified in other filamentous fungi, facilitating the pathogen's growth towards plant defense molecules. The NADPH oxidase CgNox2 is crucial for peroxidase sensing but not for diterpenoid detection. These findings reveal that CgSte3 and CWI MAPK pathways are central to C. graminicola's ability to hijack plant defense signals, highlighting potential targets for controlling maize anthracnose.
Collapse
Affiliation(s)
| | | | - Daniela Elisabeth Nordzieke
- Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Zhou H, Hua J, Li H, Song X, Luo S. Structurally diverse specialized metabolites of maize and their extensive biological functions. J Cell Physiol 2024; 239:e30955. [PMID: 36745523 DOI: 10.1002/jcp.30955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.
Collapse
Affiliation(s)
- Huiwen Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xinyu Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Yasmin F, Cowie AE, Zerbe P. Understanding the chemical language mediating maize immunity and environmental adaptation. THE NEW PHYTOLOGIST 2024; 243:2093-2101. [PMID: 39049575 DOI: 10.1111/nph.20000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Diverse networks of specialized metabolites promote plant fitness by mediating beneficial and antagonistic environmental interactions. In maize (Zea mays), constitutive and dynamically formed cocktails of terpenoids, benzoxazinoids, oxylipins, and phenylpropanoids contribute to plant defense and ecological adaptation. Recent research has highlighted the multifunctional nature of many specialized metabolites, serving not only as elaborate chemical defenses that safeguard against biotic and abiotic stress but also as regulators in adaptive developmental processes and microbiome interactions. Great strides have also been made in identifying the modular pathway networks that drive maize chemical diversity. Translating this knowledge into strategies for enhancing stress resilience traits has the potential to address climate-driven yield losses in one of the world's major food, feed, and bioenergy crops.
Collapse
Affiliation(s)
- Farida Yasmin
- Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Anna E Cowie
- Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Liu Y, Esposto D, Mahdi LK, Porzel A, Stark P, Hussain H, Scherr-Henning A, Isfort S, Bathe U, Acosta IF, Zuccaro A, Balcke GU, Tissier A. Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots. MOLECULAR PLANT 2024; 17:1307-1327. [PMID: 39001606 DOI: 10.1016/j.molp.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Dario Esposto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Lisa K Mahdi
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Anja Scherr-Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Simon Isfort
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Iván F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| |
Collapse
|
10
|
Wang X, Cao L, Tang J, Deng J, Hao E, Bai G, Tang PL, Yang J, Li H, Yao L, He C, Hou X. Research on the Mechanism and Material Basis of Corn ( Zea mays L.) Waste Regulating Dyslipidemia. Pharmaceuticals (Basel) 2024; 17:868. [PMID: 39065719 PMCID: PMC11279488 DOI: 10.3390/ph17070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Corn (Zea mays L.) is an essential gramineous food crop. Traditionally, corn wastes have primarily been used in feed, harmless processing, and industrial applications. Except for corn silk, these wastes have had limited medicinal uses. However, in recent years, scholars have increasingly studied the medicinal value of corn wastes, including corn silk, bracts, husks, stalks, leaves, and cobs. Hyperlipidemia, characterized by abnormal lipid and/or lipoprotein levels in the blood, is the most common form of dyslipidemia today. It is a significant risk factor for atherosclerosis and can lead to cardiovascular and cerebrovascular diseases if severe. According to the authors' literature survey, corn wastes play a promising role in regulating glucose and lipid metabolism. This article reviews the mechanisms and material basis of six different corn wastes in regulating dyslipidemia, aiming to provide a foundation for the research and development of these substances.
Collapse
Affiliation(s)
- Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Lewei Cao
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jiajun Tang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Pei Ling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur 50250, Malaysia
| | - Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Lihao Yao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Cuiwei He
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530011, China; (X.W.)
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530011, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530011, China
| |
Collapse
|
11
|
Ni X, Huffaker A, Schmelz EA, Xu W, Williams WP, Guo B, Li X, Huang F. Field Evaluation of Experimental Maize Hybrids for Resistance to the Fall Armyworm (Lepidoptera: Noctuidae) in a Warm Temperate Climate. INSECTS 2024; 15:289. [PMID: 38667419 PMCID: PMC11050381 DOI: 10.3390/insects15040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.
Collapse
Affiliation(s)
- Xinzhi Ni
- United States Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA;
| | - Alisa Huffaker
- Division of Biological Science, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.); (E.A.S.)
| | - Eric A. Schmelz
- Division of Biological Science, University of California-San Diego, La Jolla, CA 92093, USA; (A.H.); (E.A.S.)
| | - Wenwei Xu
- Agricultural Research & Extension Center, Texas A&M AgriLife Research, Texas A&M University System, Lubbock, TX 79403, USA;
| | - W. Paul Williams
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762, USA;
| | - Baozhu Guo
- United States Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA;
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| |
Collapse
|
12
|
Chen R, Wang J, Xu J, Nie S, Chen C, Li Y, Li Y, He J, Li W, Wen M, Qiao J. Heterologous Biosynthesis of Kauralexin A1 in Saccharomyces cerevisiae through Metabolic and Enzyme Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7308-7317. [PMID: 38529564 DOI: 10.1021/acs.jafc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jingru Wang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
- School of life science, Liaoning University, Shenyang 110036, China
| | - Junsong Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Chen Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yukun Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianwei He
- School of life science, Liaoning University, Shenyang 110036, China
| | - Weiguo Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
13
|
Vanacore MFG, Sartori M, Giordanino F, Barros G, Nesci A, García D. Physiological Effects of Microbial Biocontrol Agents in the Maize Phyllosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:4082. [PMID: 38140407 PMCID: PMC10747270 DOI: 10.3390/plants12244082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
In a world with constant population growth, and in the context of climate change, the need to supply the demand of safe crops has stimulated an interest in ecological products that can increase agricultural productivity. This implies the use of beneficial organisms and natural products to improve crop performance and control pests and diseases, replacing chemical compounds that can affect the environment and human health. Microbial biological control agents (MBCAs) interact with pathogens directly or by inducing a physiological state of resistance in the plant. This involves several mechanisms, like interference with phytohormone pathways and priming defensive compounds. In Argentina, one of the world's main maize exporters, yield is restricted by several limitations, including foliar diseases such as common rust and northern corn leaf blight (NCLB). Here, we discuss the impact of pathogen infection on important food crops and MBCA interactions with the plant's immune system, and its biochemical indicators such as phytohormones, reactive oxygen species, phenolic compounds and lytic enzymes, focused mainly on the maize-NCLB pathosystem. MBCA could be integrated into disease management as a mechanism to improve the plant's inducible defences against foliar diseases. However, there is still much to elucidate regarding plant responses when exposed to hemibiotrophic pathogens.
Collapse
Affiliation(s)
- María Fiamma Grossi Vanacore
- PHD Student Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - Melina Sartori
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Francisco Giordanino
- Microbiology Student Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - Germán Barros
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Andrea Nesci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Daiana García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| |
Collapse
|
14
|
Guo J, Liu S, Jing D, He K, Zhang Y, Li M, Qi J, Wang Z. Genotypic variation in field-grown maize eliminates trade-offs between resistance, tolerance and growth in response to high pressure from the Asian corn borer. PLANT, CELL & ENVIRONMENT 2023; 46:3072-3089. [PMID: 36207806 DOI: 10.1111/pce.14458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Insect herbivory challenges plant survival, and coordination of the interactions between growth, herbivore resistance/tolerance is a key problem faced by plants. Based on field experiments into resistance to the Asian corn borer (ACB, Ostrinia furnacalis), we selected 10 inbred maize lines, of which five were resistant and five were susceptible to ACB. We conducted ACB larval bioassays, analysed defensive chemicals, phytohormones, and relative gene expression using RNA-seq and qPCR as well as agronomic traits, and found resistant lines had weaker inducibility, but were more resistant after ACB attack than susceptible lines. Resistance was related to high levels of major benzoxazinoids, but was not related to induced levels of JA or JA-Ile. Following combination analyses of transcriptome, metabolome and larval performance data, we discovered three benzoxazinoids biosynthesis-related transcription factors, NAC60, WRKY1 and WRKY46. Protoplast transformation analysis suggested that these may regulate maize defence-growth trade-offs by increasing levels of benzoxazinoids, JA and SA but decreasing IAA. Moreover, the resistance/tolerance-growth trade-offs were not observed in the 10 lines, and genotype-specific metabolic and genetic features probably eliminated the trade-offs. This study highlights the possibility of breeding maize varieties simultaneously with improved defences and higher yield under complex field conditions.
Collapse
Affiliation(s)
- Jingfei Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Yactayo-Chang JP, Block AK. The impact of climate change on maize chemical defenses. Biochem J 2023; 480:1285-1298. [PMID: 37622733 DOI: 10.1042/bcj20220444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Climate change is increasingly affecting agriculture, both at the levels of crops themselves, and by altering the distribution and damage caused by insect or microbial pests. As global food security depends on the reliable production of major crops such as maize (Zea mays), it is vital that appropriate steps are taken to mitigate these negative impacts. To do this a clear understanding of what the impacts are and how they occur is needed. This review focuses on the impact of climate change on the production and effectiveness of maize chemical defenses, including volatile organic compounds, terpenoid phytoalexins, benzoxazinoids, phenolics, and flavonoids. Drought, flooding, heat stress, and elevated concentrations of atmospheric carbon dioxide, all impact the production of maize chemical defenses, in a compound and tissue-specific manner. Furthermore, changes in stomatal conductance and altered soil conditions caused by climate change can impact environmental dispersal and effectiveness certain chemicals. This can alter both defensive barrier formation and multitrophic interactions. The production of defense chemicals is controlled by stress signaling networks. The use of similar networks to co-ordinate the response to abiotic and biotic stress can lead to complex integration of these networks in response to the combinatorial stresses that are likely to occur in a changing climate. The impact of multiple stressors on maize chemical defenses can therefore be different from the sum of the responses to individual stressors and challenging to predict. Much work remains to effectively leverage these protective chemicals in climate-resilient maize.
Collapse
Affiliation(s)
- Jessica P Yactayo-Chang
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| | - Anna K Block
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| |
Collapse
|
16
|
Murphy KM, Dowd T, Khalil A, Char SN, Yang B, Endelman BJ, Shih PM, Topp C, Schmelz EA, Zerbe P. A dolabralexin-deficient mutant provides insight into specialized diterpenoid metabolism in maize. PLANT PHYSIOLOGY 2023; 192:1338-1358. [PMID: 36896653 PMCID: PMC10231366 DOI: 10.1093/plphys/kiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Tyler Dowd
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ahmed Khalil
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin J Endelman
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Patrick M Shih
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
17
|
Saldivar EV, Ding Y, Poretsky E, Bird S, Block AK, Huffaker A, Schmelz EA. Maize Terpene Synthase 8 (ZmTPS8) Contributes to a Complex Blend of Fungal-Elicited Antibiotics. PLANTS (BASEL, SWITZERLAND) 2023; 12:1111. [PMID: 36903970 PMCID: PMC10005556 DOI: 10.3390/plants12051111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/β-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.
Collapse
Affiliation(s)
- Evan V. Saldivar
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford University, Palo Alto, CA 94305, USA
| | - Yezhang Ding
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elly Poretsky
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Skylar Bird
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Anna K. Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Alisa Huffaker
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Eric A. Schmelz
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| |
Collapse
|
18
|
Zhang Y, Liu J, Guan L, Fan D, Xia F, Wang A, Bao Y, Xu Y. By-Products of Zea mays L.: A Promising Source of Medicinal Properties with Phytochemistry and Pharmacological Activities: A Comprehensive Review. Chem Biodivers 2023; 20:e202200940. [PMID: 36721262 DOI: 10.1002/cbdv.202200940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Zea mays (Z. mays) is one of the main cereal crops in the world, and it's by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.
Collapse
Affiliation(s)
- Yunqiang Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Lu Guan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongxue Fan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feiruo Xia
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Ying Bao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
19
|
Liu H, Micic N, Miller S, Crocoll C, Bjarnholt N. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:807-820. [PMID: 36863218 DOI: 10.1016/j.plaphy.2023.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is crucial for plant productivity, and the biochemical changes during germination affect seedling survival, plant health and yield. While the general metabolism of germination is extensively studied, the role of specialized metabolism is less investigated. We therefore analyzed the metabolism of the defense compound dhurrin during sorghum (Sorghum bicolor) grain germination and early seedling development. Dhurrin is a cyanogenic glucoside, which is catabolized into different bioactive compounds at other stages of plant development, but its fate and role during germination is unknown. We dissected sorghum grain into three different tissues and investigated dhurrin biosynthesis and catabolism at the transcriptomic, metabolomic and biochemical level. We further analyzed transcriptional signature differences of cyanogenic glucoside metabolism between sorghum and barley (Hordeum vulgare), which produces similar specialized metabolites. We found that dhurrin is de novo biosynthesized and catabolized in the growing embryonic axis as well as the scutellum and aleurone layer, two tissues otherwise mainly acknowledged for their involvement in release and transport of general metabolites from the endosperm to the embryonic axis. In contrast, genes encoding cyanogenic glucoside biosynthesis in barley are exclusively expressed in the embryonic axis. Glutathione transferase enzymes (GSTs) are involved in dhurrin catabolism and the tissue-resolved analysis of GST expression identified new pathway candidate genes and conserved GSTs as potentially important in cereal germination. Our study demonstrates a highly dynamic tissue- and species-specific specialized metabolism during cereal grain germination, highlighting the importance of tissue-resolved analyses and identification of specific roles of specialized metabolites in fundamental plant processes.
Collapse
Affiliation(s)
- Huijun Liu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nikola Micic
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Sara Miller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| |
Collapse
|
20
|
Fu J, Wang L, Pei W, Yan J, He L, Ma B, Wang C, Zhu C, Chen G, Shen Q, Wang Q. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling. THE NEW PHYTOLOGIST 2023; 237:1302-1319. [PMID: 36319608 DOI: 10.1111/nph.18590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays) terpenoid phytoalexins (MTPs) induced by multiple fungi display extensive antimicrobial activities, yet how maize precisely regulates MTP accumulation upon pathogen infection remains elusive. In this study, pretreatment with jasmonic acid (JA)/ethylene (ET)-related inhibitors significantly reduced Fusarium graminearum-induced MTP accumulation and resulted in enhanced susceptibility to F. graminearum, indicating the involvement of JA/ET in MTP regulatory network. ZmEREB92 positively regulated MTP biosynthetic gene (MBG) expression by correlation analysis. Knockout of ZmEREB92 significantly compromised maize resistance to F. graminearum with delayed induction of MBGs and attenuated MTP accumulation. The activation of ZmEREB92 on MBGs is dependent on the interaction with ZmMYC2, which directly binds to MBG promoters. ZmJAZ14 interacts both with ZmEREB92 and with ZmMYC2 in a competitive manner to negatively regulate MBG expression. Altogether, our findings illustrate the regulatory mechanism for JA/ET-mediated MTP accumulation upon F. graminearum infection with the involvement of ZmEREB92, ZmMYC2, and ZmJAZ14, which provides new insights into maize disease responses.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
21
|
Yoshida Y, Nosaka-T M, Yoshikawa T, Sato Y. Measurements of Antibacterial Activity of Seed Crude Extracts in Cultivated Rice and Wild Oryza Species. RICE (NEW YORK, N.Y.) 2022; 15:63. [PMID: 36513947 PMCID: PMC9748026 DOI: 10.1186/s12284-022-00610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Seeds are continuously exposed to a wide variety of microorganisms in the soil. In addition, seeds contain large amounts of carbon and nitrogen sources that support initial growth after germination. Thus, seeds in the soil can easily promote microbial growth, and seeds are susceptible to decay. Therefore, seed defense against microorganisms is important for plant survival. Seed-microbe interactions are also important issues from the perspective of food production, in seed quality and shelf life. However, seed-microbe interactions remain largely unexplored. In this study, we established a simple and rapid assay system for the antibacterial activity of rice seed crude extracts by colorimetric quantification methods by the reduction of tetrazolium compound. Using this experimental system, the diversity of effects of rice seed extracts on microbial growth was analyzed using Escherichia coli as a bacterial model. We used collections of cultivated rice, comprising 50 accessions of Japanese landraces, 52 accessions of world rice core collections, and of 30 wild Oryza accessions. Furthermore, we attempted to find genetic factors responsible for the diversity by genome-wide association analysis. Our results demonstrate that this experimental system can easily analyze the effects of seed extracts on bacterial growth. It also suggests that there are various compounds in rice seeds that affect microbial growth. Overall, this experimental system can be used to clarify the chemical entities and genetic control of seed-microbe interactions and will open the door for understanding the diverse seed-microbe interactions through metabolites.
Collapse
Affiliation(s)
| | - Misuzu Nosaka-T
- National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Takanori Yoshikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yutaka Sato
- National Institute of Genetics, Shizuoka, Japan.
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
22
|
Kobori H, Wu J, Takemura H, Choi JH, Tada N, Kawagishi H. Utilization of Corn Steep Liquor for the Production of Fairy Chemicals by Lepista sordida Mycelia. J Fungi (Basel) 2022; 8:1269. [PMID: 36547602 PMCID: PMC9783885 DOI: 10.3390/jof8121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
There are various potential practical uses of fairy chemicals (FCs) in the fields of agriculture, cosmetics, and medicine; however, the production costs of FCs are very high. To enable the practical use of FCs, more efficient and inexpensive methods of culturing the mycelia of FCs-producing fungi and producing FCs need to be developed. The purpose of the present study was to determine methods of reducing the production costs of FCs and mycelia of the FCs-producing fungus Lepista sordida. We investigated the effects of four food industrial by-products, i.e., corn steep liquor (CSL), rice bran, wheat bran, and Japanese liquor lees, as nutritional additives in the liquid culture medium of the fungus. We found that CSL was more effective than the other tested additives in increasing the production of FCs and mycelia. Medium containing 1% CSL was optimal for increasing the mycelial yield while medium containing 6% CSL was optimal for increasing the production of FCs. The reason for this difference in the optimal CSL concentration was considered to be related to the stress on the mycelia caused by the amount of nutrients in the liquid medium. These results are expected to facilitate the practical use of FCs and the mycelia of FCs-producing fungi.
Collapse
Affiliation(s)
- Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Naoto Tada
- Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan
| | - Hirokazu Kawagishi
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
23
|
Comparative Analysis of Multiple GWAS Results Identifies Metabolic Pathways Associated with Resistance to A. flavus Infection and Aflatoxin Accumulation in Maize. Toxins (Basel) 2022; 14:toxins14110738. [PMID: 36355988 PMCID: PMC9695789 DOI: 10.3390/toxins14110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 01/26/2023] Open
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by several species of Aspergillus, including Aspergillus flavus, an important ear rot pathogen in maize. Most commercial corn hybrids are susceptible to infection by A. flavus, and aflatoxin contaminated grain causes economic damage to farmers. The creation of inbred lines resistant to Aspergillus fungal infection or the accumulation of aflatoxins would be aided by knowing the pertinent alleles and metabolites associated with resistance in corn lines. Multiple Quantitative Trait Loci (QTL) and association mapping studies have uncovered several dozen potential genes, but each with a small effect on resistance. Metabolic pathway analysis, using the Pathway Association Study Tool (PAST), was performed on aflatoxin accumulation resistance using data from four Genome-wide Association Studies (GWAS). The present research compares the outputs of these pathway analyses and seeks common metabolic mechanisms underlying each. Genes, pathways, metabolites, and mechanisms highlighted here can contribute to improving phenotypic selection of resistant lines via measurement of more specific and highly heritable resistance-related traits and genetic gain via marker assisted or genomic selection with multiple SNPs linked to resistance-related pathways.
Collapse
|
24
|
REN J, WU Y, ZHU Z, CHEN R, ZHANG L. Biosynthesis and regulation of diterpenoids in medicinal plants. Chin J Nat Med 2022; 20:761-772. [DOI: 10.1016/s1875-5364(22)60214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/03/2022]
|
25
|
Tang HV, Berryman DL, Mendoza J, Yactayo-Chang JP, Li QB, Christensen SA, Hunter CT, Best N, Soubeyrand E, Akhtar TA, Basset GJ, Block AK. Dedicated farnesyl diphosphate synthases circumvent isoprenoid-derived growth-defense tradeoffs in Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:207-220. [PMID: 35960639 DOI: 10.1111/tpj.15941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.
Collapse
Affiliation(s)
- Hoang V Tang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - David L Berryman
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Jessica P Yactayo-Chang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Qin-Bao Li
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Shawn A Christensen
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Charles T Hunter
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Norman Best
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Columbia, MO, USA
| | - Eric Soubeyrand
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
26
|
Zhan C, Shen S, Yang C, Liu Z, Fernie AR, Graham IA, Luo J. Plant metabolic gene clusters in the multi-omics era. TRENDS IN PLANT SCIENCE 2022; 27:981-1001. [PMID: 35365433 DOI: 10.1016/j.tplants.2022.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolism in plants gives rise to a vast array of small-molecule natural products. The discovery of operon-like gene clusters in plants has provided a new perspective on the evolution of specialized metabolism and the opportunity to rapidly advance the metabolic engineering of natural product production. Here, we review historical aspects of the study of plant metabolic gene clusters as well as general strategies for identifying plant metabolic gene clusters in the multi-omics era. We also emphasize the exploration of their natural variation and evolution, as well as new strategies for the prospecting of plant metabolic gene clusters and a deeper understanding of how their structure influences their function.
Collapse
Affiliation(s)
- Chuansong Zhan
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- College of Tropical Crops, Hainan University, Haikou 570228, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alisdair R Fernie
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Ian A Graham
- Center for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
27
|
Wang Y, Li T, Sun Z, Huang X, Yu N, Tai H, Yang Q. Comparative transcriptome meta-analysis reveals a set of genes involved in the responses to multiple pathogens in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:971371. [PMID: 36186003 PMCID: PMC9521429 DOI: 10.3389/fpls.2022.971371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maize production is constantly threatened by the presence of different fungal pathogens worldwide. Genetic resistance is the most favorable approach to reducing yield losses resulted from fungal diseases. The molecular mechanism underlying disease resistance in maize remains largely unknown. The objective of this study was to identify key genes/pathways that are consistently associated with multiple fungal pathogen infections in maize. Here, we conducted a meta-analysis of gene expression profiles from seven publicly available RNA-seq datasets of different fungal pathogen infections in maize. We identified 267 common differentially expressed genes (co-DEGs) in the four maize leaf infection experiments and 115 co-DEGs in all the seven experiments. Functional enrichment analysis showed that the co-DEGs were mainly involved in the biosynthesis of diterpenoid and phenylpropanoid. Further investigation revealed a set of genes associated with terpenoid phytoalexin and lignin biosynthesis, as well as potential pattern recognition receptors and nutrient transporter genes, which were consistently up-regulated after inoculation with different pathogens. In addition, we constructed a weighted gene co-expression network and identified several hub genes encoding transcription factors and protein kinases. Our results provide valuable insights into the pathways and genes influenced by different fungal pathogens, which might facilitate mining multiple disease resistance genes in maize.
Collapse
Affiliation(s)
- Yapeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zedan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaojian Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Naibing Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huanhuan Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Belisário R, Robertson AE, Vaillancourt LJ. Maize Anthracnose Stalk Rot in the Genomic Era. PLANT DISEASE 2022; 106:2281-2298. [PMID: 35291814 DOI: 10.1094/pdis-10-21-2147-fe] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthracnose stalk rot (ASR) of maize results in millions of dollars in losses annually in the United States. ASR, together with anthracnose leaf blight and anthracnose top dieback, is caused by the fungus Colletotrichum graminicola. Current ASR management recommendations emphasize host resistance and reduction of plant stressors (e.g., drought, heat, low fertility, or soil acidity). Stress reduction may be more difficult to achieve in the future due to more high-intensity production protocols and climate change. Moreover, cultural and chemical management practices may conflict with other important goals, including environmental sustainability and maximization of yield potential. Thus, future ASR management may rely more heavily on host resistance, for which there are relatively few highly effective sources. The last comprehensive review of C. graminicola and maize anthracnose was written over two decades ago. The genomic age has brought important new insights into mechanisms governing the host-pathogen interaction from the application of molecular and cytological technologies. This review provides a summary of our current model of maize anthracnose etiology, including how increased knowledge of molecular and cellular events could contribute to better ASR management. Improved understanding of C. graminicola taxonomy has confirmed that the fungus is specific to Zea mays, and that it colonizes living maize tissues via a critical biotrophic phase. Successful biotrophic establishment relies on an array of secreted protein effectors and secondary metabolites produced at different stages of infection and dispersed to multiple locations. These molecules could provide therapeutic targets for the next generation of transgenic or gene-edited ASR-resistant hybrids.
Collapse
Affiliation(s)
- Renata Belisário
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY 40546-0312
| | - Alison E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, 1344 Advanced Teaching and Research Building, 2213 Pammel Drive, Ames, IA 50011
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY 40546-0312
| |
Collapse
|
29
|
Yu J, Tu X, Huang AC. Functions and biosynthesis of plant signaling metabolites mediating plant-microbe interactions. Nat Prod Rep 2022; 39:1393-1422. [PMID: 35766105 DOI: 10.1039/d2np00010e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2015-2022Plants and microbes have coevolved since their appearance, and their interactions, to some extent, define plant health. A reasonable fraction of small molecules plants produced are involved in mediating plant-microbe interactions, yet their functions and biosynthesis remain fragmented. The identification of these compounds and their biosynthetic genes will open up avenues for plant fitness improvement by manipulating metabolite-mediated plant-microbe interactions. Herein, we integrate the current knowledge on their chemical structures, bioactivities, and biosynthesis with the view of providing a high-level overview on their biosynthetic origins and evolutionary trajectory, and pinpointing the yet unknown and key enzymatic steps in diverse biosynthetic pathways. We further discuss the theoretical basis and prospects for directing plant signaling metabolite biosynthesis for microbe-aided plant health improvement in the future.
Collapse
Affiliation(s)
- Jingwei Yu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xingzhao Tu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
30
|
Zhang Y, Zhang J, Yan C, Fang M, Wang L, Huang Y, Wang F. Metabolome and Microbiome Signatures in the Leaves of Wild Tea Plant Resources Resistant to Pestalotiopsis theae. Front Microbiol 2022; 13:907962. [PMID: 35910661 PMCID: PMC9335280 DOI: 10.3389/fmicb.2022.907962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Tea (Camellia sinensis) is an important crop that is mainly used in the food industry. This study using the metabolome and microbiome investigates the resistance factors of wild tea plant resources against tea gray blight disease, which is caused by Pestalotiopsis theae (Sawada) Steyaert. According to the interaction analysis of tea leaves and pathogenic fungus, the resistance of wild tea plant resource “R1” (Resistance 1) to tea gray blight disease was significantly higher than that of wild tea plant resource “S1” (Susceptibility 1). The difference between “R1” and “S1” in the metabolome was obvious. There were 145 metabolites that significantly changed. The phenolic acids and flavonoids were the major increased categories in “R1,” and it included 4-O-glucosyl-sinapate and petunidin-3-o-(6”-o-p-coumaroyl) rutinoside. Six metabolic pathways were significantly enriched, including aminoacyl-tRNA biosynthesis, flavone, and flavonol biosynthesis. In terms of bacteria, there was no significant difference between “S1” and “R1” in the principal component analysis (PCA). Pseudomonas was the major bacterial genus in “S1” and “R1.” In addition, each of the two resources had its own predominant genus: Cellvibirio was a predominant bacterial genus in “S1” and Candidatus_competibacter was a predominant bacterial genus in “R1.” In terms of fungi, the fungal diversity and the abundance of the two tea plant resource samples could be distinguished clearly. The fungal component of “S1” was more abundant than that of “R1” at the genus level. Toxicocladosporium was the predominant fungal genus of “S1,” and Filobasidium was the predominant fungal genus of “R1.” The relative abundance of unclassified-norank-norank-Chloroplast and Penicillium were significantly different between “S1” and “R1.” Penicillium was identified as a potential biomarker. They correlated with some metabolites enriched in “S1” or “R1,” such as L-arginine and quercetin-3-o-(2”-o-rhamnosyl) rutinoside-7-o-glucoside. Overall, phenolic acids, flavonoids, and Penicillium could be functional metabolites or microorganisms that contributed to improving the resistance of wild tea plant resources to tea gray blight disease.
Collapse
Affiliation(s)
- Yuqian Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Changyu Yan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Meishan Fang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lijie Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Yahui Huang
| | - Feiyan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Feiyan Wang
| |
Collapse
|
31
|
Li J, Chen M, Fan T, Mu X, Gao J, Wang Y, Jing T, Shi C, Niu H, Zhen S, Fu J, Zheng J, Wang G, Tang J, Gou M. Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3991-4007. [PMID: 35303096 DOI: 10.1093/jxb/erac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.
Collapse
Affiliation(s)
- Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyao Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tianyuan Fan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
32
|
Sun Y, Zhang PT, Kou DR, Han YC, Fang JC, Ni JP, Jiang B, Wang X, Zhang YJ, Wang W, Kong XD. Terpene Synthases in Rice Pan-Genome and Their Responses to Chilo suppressalis Larvae Infesting. FRONTIERS IN PLANT SCIENCE 2022; 13:905982. [PMID: 35668795 PMCID: PMC9164016 DOI: 10.3389/fpls.2022.905982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Terpene synthase (TPS) catalyzes the synthesis of terpenes and plays an important role in plant defense. This study identified 45 OsTPS genes (32 core genes and 13 variable genes) based on the high-quality rice gene-based pan-genome. This indicates limitations in OsTPS gene studies based on a single reference genome. In the present study, through collinearity between multiple rice genomes, one OsTPS gene absent in the reference (Nipponbare) genome was found and two TPS genes in the reference genome were found to have atypical structures, which would have been ignored in single genome analysis. OsTPS genes were divided into five groups and TPS-b was lost according to the phylogenetic tree. OsTPSs in TPS-c and TPS-g were all core genes indicating these two groups were stable during domestication. In addition, through the analysis of transcriptome data, some structural variations were found to affect the expression of OsTPS genes. Through the Ka/Ks calculation of OsTPS genes, we found that different OsTPS genes were under different selection pressure during domestication; for example, OsTPS22 and OsTPS29 experienced stronger positive selection than the other OsTPS genes. After Chilo suppressalis larvae infesting, 25 differentially expressed OsTPS genes were identified, which are involved in the diterpene phytoalexins precursors biosynthesis and ent-kaurene biosynthesis pathways. Overall, the present study conducted a bioinformatics analysis of OsTPS genes using a high-quality rice pan-genome, which provided a basis for further study of OsTPS genes.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Pei-tao Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Dou-rong Kou
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang-chun Han
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ji-chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | | | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xu Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yong-jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wang
- Wuhu Qingyijiang Seed Industry Co., Ltd., Wuhu, China
| | | |
Collapse
|
33
|
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, Wang X, Zhang X, Ren S, Zhang N, Guo YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1102-1115. [PMID: 35293128 DOI: 10.1111/jipb.13248] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.
Collapse
Affiliation(s)
- Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, 23806, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
34
|
Murphy KM, Poretsky E, Liu H, Micic N, Nyhuis A, Bohlmann J, Schmelz EA, Zerbe P, Huffaker A, Bjarnholt N. Shielding the oil reserves: the scutellum as a source of chemical defenses. PLANT PHYSIOLOGY 2022; 188:1944-1949. [PMID: 35139208 PMCID: PMC8968280 DOI: 10.1093/plphys/kiac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The cereal scutellum is a hub for diverse specialized defense metabolism and pathway discovery.
Collapse
Affiliation(s)
| | | | - Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Nikola Micic
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Annika Nyhuis
- Bruker Daltonik GmbH & Co. KG, Bremen 28359, Germany
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92161, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92161, USA
| | | |
Collapse
|
35
|
de Oliveira Silva A, Aliyeva-Schnorr L, Wirsel SGR, Deising HB. Fungal Pathogenesis-Related Cell Wall Biogenesis, with Emphasis on the Maize Anthracnose Fungus Colletotrichum graminicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070849. [PMID: 35406829 PMCID: PMC9003368 DOI: 10.3390/plants11070849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 05/25/2023]
Abstract
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant invasion. Several factors required for virulence or pathogenicity have been identified in different Colletotrichum species, and adaptation of cell wall biogenesis to distinct stages of pathogenesis has been identified as a major pre-requisite for the establishment of a compatible parasitic fungus-plant interaction. Here, we highlight aspects of fungal cell wall biogenesis during plant infection, with emphasis on the maize leaf anthracnose and stalk rot fungus, Colletotrichum graminicola.
Collapse
|
36
|
Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:485-504. [PMID: 35400890 PMCID: PMC8943088 DOI: 10.1007/s12298-022-01146-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/15/2023]
Abstract
In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of "pathogen-proof" plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Manoj Choudhary
- ICAR-National Research Center for Integrated Pest Management, New Delhi, India
- Department of Plant Pathology, University of Florida, Gainesville, United States
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal 735225 India
| | - Anshu Sharma
- Department of FST, Dr. YS Parmar UHF Nauni, Solan, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| |
Collapse
|
37
|
Förster C, Handrick V, Ding Y, Nakamura Y, Paetz C, Schneider B, Castro-Falcón G, Hughes CC, Luck K, Poosapati S, Kunert G, Huffaker A, Gershenzon J, Schmelz EA, Köllner TG. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. PLANT PHYSIOLOGY 2022; 188:167-190. [PMID: 34718797 PMCID: PMC8774720 DOI: 10.1093/plphys/kiab496] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.
Collapse
Affiliation(s)
- Christiane Förster
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Vinzenz Handrick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Yoko Nakamura
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Gabriel Castro-Falcón
- Scripps Institution of Oceanography, University of California, San Diego, California 92093, USA
| | - Chambers C Hughes
- Scripps Institution of Oceanography, University of California, San Diego, California 92093, USA
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Sowmya Poosapati
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
- Author for communication:
| |
Collapse
|
38
|
Efficient synthesis of zealexin B1, a maize sesquiterpenoid phytoalexin, viaSuzuki-Miyaura coupling. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Shahi A, Mafu S. Specialized metabolites as mediators for plant-fungus crosstalk and their evolving roles. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102141. [PMID: 34814027 PMCID: PMC8671350 DOI: 10.1016/j.pbi.2021.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Plants, fungi, and bacteria produce numerous natural products with bioactive properties essential for ecological adaptation. Because of their chemical complexity, these natural products have been adapted for diverse applications in industry. The discovery of their biosynthetic pathways has been accelerated due to improved 'omics' approaches, metabolic engineering, and the availability of genetic manipulation techniques. Ongoing research into these metabolites is not only resolving the enzymatic diversity underlying their biosynthesis but also delving into the physiological and mechanistic basis of their modes of action. This review highlights progress made in the elucidation of biosynthetic pathways and biological roles of specialized metabolites, focusing on some that play important roles at the interface of plant-fungus interactions.
Collapse
Affiliation(s)
- Ayousha Shahi
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA
| | - Sibongile Mafu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA.
| |
Collapse
|
40
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
41
|
Ishihara A. Defense mechanisms involving secondary metabolism in the grass family. JOURNAL OF PESTICIDE SCIENCE 2021; 46:382-392. [PMID: 34908899 PMCID: PMC8640679 DOI: 10.1584/jpestics.j21-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 05/13/2023]
Abstract
Plants synthesize and accumulate a wide variety of compounds called secondary metabolites. Secondary metabolites serve as chemical barriers to protect plants from pathogens and herbivores. Antimicrobial secondary metabolites are accumulated to prevent pathogen infection. These metabolites are classified into phytoalexins (induced in response to pathogen attack) and phytoanticipins (present prior to pathogen infection). The antimicrobial compounds in the grass family (Poaceae) were studied from the viewpoint of evolution. The studies were performed at three hierarchies, families, genera, and species and include the following: 1) the distribution of benzoxazinoids (Bxs) in the grass family, 2) evolutionary replacement of phytoanticipins from Bxs to hydroxycinnamic acid amide dimers in the genus Hordeum, and 3) chemodiversity of flavonoid and diterpenoid phytoalexins in rice. These studies demonstrated dynamic changes in secondary metabolism during evolution, indicating the adaptation of plants to their environment by repeating scrap-and-build cycles.
Collapse
Affiliation(s)
- Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680–8553, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Yang L, Wei Z, Li S, Xiao R, Xu Q, Ran Y, Ding W. Plant secondary metabolite, daphnetin reduces extracellular polysaccharides production and virulence factors of Ralstonia solanacearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104948. [PMID: 34802533 DOI: 10.1016/j.pestbp.2021.104948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Plants deploy a variety of secondary metabolites to fend off pathogen attack. Certain plants could accumulate coumarins in response to infection of bacteria, fungi, virus and oomycetes. Although coumarins are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we showed that a plant secondary metabolite daphnetin functions primarily by inhibiting Ralstonia solanacearum extracellular polysaccharides (EPS) production and biofilm formation in vitro, through suppressing genes expression of xpsR, epsE, epsB and lexM. Indeed, daphnetin significantly impaired virulence of R. solanacearum on tobacco plants. Transcriptional analysis suggested that daphnetin suppresses EPS synthesis cluster genes expression through transcriptional regulator XpsR. And daphnetin alter mainly virulence factors genes involved in type III secretion system, and type IV secretion system. R. solanacearum lacking EPS synthesis genes (epsB and epsC) that do not produce EPS, showed less virulence on tobacco plants. Molecular docking results indicated that the critical residues of domain in the binding pocket of the EpsB protein interact with daphnetin via conventional hydrogen bonding and hydrophobic interactions. Collectively, we found that daphnetin has potential as a novel virulence inhibitor of R. solanacearum, directly regulates EPS synthesis genes expression.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Rui Xiao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qinqin Xu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuao Ran
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
43
|
Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis. Int J Mol Sci 2021; 22:ijms221810080. [PMID: 34576244 PMCID: PMC8468953 DOI: 10.3390/ijms221810080] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Drought stress causes heavy damages to crop growth and productivity under global climatic changes. Transcription factors have been extensively studied in many crops to play important roles in plant growth and defense. However, there is a scarcity of studies regarding WRKY transcription factors regulating drought responses in maize crops. Previously, ZmWRKY79 was identified as the regulator of maize phytoalexin biosynthesis with inducible expression under different elicitation. Here, we elucidated the function of ZmWRKY79 in drought stress through regulating ABA biosynthesis. The overexpression of ZmWRKY79 in Arabidopsis improved the survival rate under drought stress, which was accompanied by more lateral roots, lower stomatal aperture, and water loss. ROS scavenging was also boosted by ZmWRKY79 to result in less H2O2 and MDA accumulation and increased antioxidant enzyme activities. Further analysis detected more ABA production in ZmWRKY79 overexpression lines under drought stress, which was consistent with up-regulated ABA biosynthetic gene expression by RNA-seq analysis. ZmWRKY79 was observed to target ZmAAO3 genes in maize protoplast through acting on the specific W-boxes of the corresponding gene promoters. Virus-induced gene silencing of ZmWRKY79 in maize resulted in compromised drought tolerance with more H2O2 accumulation and weaker root system architecture. Together, this study substantiates the role of ZmWRKY79 in the drought-tolerance mechanism through regulating ABA biosynthesis, suggesting its broad functions not only as the regulator in phytoalexin biosynthesis against pathogen infection but also playing the positive role in abiotic stress response, which provides a WRKY candidate gene to improve drought tolerance for maize and other crop plants.
Collapse
|
44
|
Block AK, Tang HV, Hopkins D, Mendoza J, Solemslie RK, du Toit LJ, Christensen SA. A maize leucine-rich repeat receptor-like protein kinase mediates responses to fungal attack. PLANTA 2021; 254:73. [PMID: 34529190 DOI: 10.1007/s00425-021-03730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/09/2021] [Indexed: 05/19/2023]
Abstract
A maize receptor kinase controls defense response to fungal pathogens by regulating jasmonic acid and antimicrobial phytoalexin production. Plants use a range of pattern recognition receptors to detect and respond to biotic threats. Some of these receptors contain leucine-rich repeat (LRR) domains that recognize microbial proteins or peptides. Maize (Zea mays) has 226 LRR-receptor like kinases, making it challenging to identify those important for pathogen recognition. In this study, co-expression analysis with genes for jasmonic acid and phytoalexin biosynthesis was used to identify a fungal induced-receptor like protein kinase (FI-RLPK) likely involved in the response to fungal pathogens. Loss-of-function mutants in fi-rlpk displayed enhanced susceptibility to the necrotrophic fungal pathogen Cochliobolus heterostrophus and reduced accumulation of jasmonic acid and the anti-microbial phytoalexins -kauralexins and zealexins- in infected tissues. In contrast, fi-rlpk mutants displayed increased resistance to stem inoculation with the hemibiotrophic fungal pathogen Fusarium graminearum. These data indicate that FI-RLPK is important for fungal recognition and activation of defenses, and that F. graminearum may be able to exploit FI-RLPK function to increase its virulence.
Collapse
Affiliation(s)
- Anna K Block
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA.
| | - Hoang V Tang
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Dorothea Hopkins
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Sakata Seed America, Inc., Ft. Myers Research Station, Fort Myers, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Ryan K Solemslie
- Department of Plant Pathology, Washington State University, Mount Vernon, WA, USA
- Sakata Seed America, Inc., Mount Vernon Research Station, Mount Vernon, WA, USA
| | - Lindsey J du Toit
- Department of Plant Pathology, Washington State University, Mount Vernon, WA, USA
| | - Shawn A Christensen
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
45
|
Liang J, Shen Q, Wang L, Liu J, Fu J, Zhao L, Xu M, Peters RJ, Wang Q. Rice contains a biosynthetic gene cluster associated with production of the casbane-type diterpenoid phytoalexin ent-10-oxodepressin. THE NEW PHYTOLOGIST 2021; 231:85-93. [PMID: 33892515 PMCID: PMC9044444 DOI: 10.1111/nph.17406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Diterpenoids play important roles in rice microbial disease resistance as phytoalexins, as well as acting in allelopathy and abiotic stress responses. Recently, the casbane-type phytoalexin ent-10-oxodepressin was identified in rice, but its biosynthesis has not yet been elucidated. Here ent-10-oxodepressin biosynthesis was investigated via co-expression analysis and biochemical characterisation, with use of the CRISPR/Cas9 technology for genetic analysis. The results identified a biosynthetic gene cluster (BGC) on rice chromosome 7 (c7BGC), containing the relevant ent-casbene synthase (OsECBS), and four cytochrome P450 (CYP) genes from the CYP71Z subfamily. Three of these CYPs were shown to act on ent-casbene, with CYP71Z2 able to produce a keto group at carbon-5 (C5), while the closely related paralogues CYP71Z21 and CYP71Z22 both readily produce a keto group at C10. Together these C5 and C10 oxidases can elaborate ent-casbene to ent-10-oxodepressin (5,10-diketo-ent-casbene). OsECBS knockout lines no longer produce casbane-type diterpenoids and exhibit impaired resistance to the rice fungal blast pathogen Magnaporthe oryzae. Elucidation of ent-10-oxodepressin biosynthesis and the associated c7BGC provides not only a potential target for molecular breeding, but also, gives the intriguing parallels to the independently assembled BGCs for casbene-derived diterpenoids in the Euphorbiaceae, further insight into plant BGC evolution, as discussed here.
Collapse
Affiliation(s)
- Jin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
46
|
Biochemistry of Terpenes and Recent Advances in Plant Protection. Int J Mol Sci 2021; 22:ijms22115710. [PMID: 34071919 PMCID: PMC8199371 DOI: 10.3390/ijms22115710] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Biodiversity is adversely affected by the growing levels of synthetic chemicals released into the environment due to agricultural activities. This has been the driving force for embracing sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents. They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers. However, most of these research findings are shelved and fail to pass beyond the laboratory and greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on using terpenes for the development of environmentally friendly biopesticides and herbicides.
Collapse
|
47
|
Mu X, Li J, Dai Z, Xu L, Fan T, Jing T, Chen M, Gou M. Commonly and Specifically Activated Defense Responses in Maize Disease Lesion Mimic Mutants Revealed by Integrated Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:638792. [PMID: 34079566 PMCID: PMC8165315 DOI: 10.3389/fpls.2021.638792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Disease lesion mimic (Les/les) mutants display disease-like spontaneous lesions in the absence of pathogen infection, implying the constitutive activation of defense responses. However, the genetic and biochemical bases underlying the activated defense responses in those mutants remain largely unknown. Here, we performed integrated transcriptomics and metabolomics analysis on three typical maize Les mutants Les4, Les10, and Les17 with large, medium, and small lesion size, respectively, thereby dissecting the activated defense responses at the transcriptional and metabolomic level. A total of 1,714, 4,887, and 1,625 differentially expressed genes (DEGs) were identified in Les4, Les10, and Les17, respectively. Among them, 570, 3,299, and 447 specific differentially expressed genes (SGs) were identified, implying a specific function of each LES gene. In addition, 480 common differentially expressed genes (CGs) and 42 common differentially accumulated metabolites (CMs) were identified in all Les mutants, suggesting the robust activation of shared signaling pathways. Intriguingly, substantial analysis of the CGs indicated that genes involved in the programmed cell death, defense responses, and phenylpropanoid and terpenoid biosynthesis were most commonly activated. Genes involved in photosynthetic biosynthesis, however, were generally repressed. Consistently, the dominant CMs identified were phenylpropanoids and flavonoids. In particular, lignin, the phenylpropanoid-based polymer, was significantly increased in all three mutants. These data collectively imply that transcriptional activation of defense-related gene expression; increase of phenylpropanoid, lignin, flavonoid, and terpenoid biosynthesis; and inhibition of photosynthesis are generalnatures associated with the lesion formation and constitutively activated defense responses in those mutants. Further studies on the identified SGs and CGs will shed new light on the function of each LES gene as well as the regulatory network of defense responses in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
48
|
Engineering insect resistance using plant specialized metabolites. Curr Opin Biotechnol 2021; 70:115-121. [PMID: 33866214 DOI: 10.1016/j.copbio.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Plants in nature are protected against insect herbivory by a wide variety of specialized metabolites. Although insect herbivores generally tolerate the defensive metabolites of their preferred host plants, the presence of additional chemical defenses in otherwise closely related plant species can nevertheless provide resistance. This chemical resistance to insect herbivory can be enhanced by genetic engineering to increase the production of endogenous defensive metabolites, modify existing biochemical pathways, or move the biosynthesis of entirely new classes of specialized metabolites into recipient plants. However, current plant genetic engineering strategies are limited by insufficient knowledge of the biosynthetic pathways of plant specialized metabolism, unintended side-effects that result from redirecting plant metabolism, inadequate transgene construction and delivery methods, and requirements for tissue-specific production of defensive metabolites to enhance herbivore resistance.
Collapse
|
49
|
Ube N, Katsuyama Y, Kariya K, Tebayashi SI, Sue M, Tohnooka T, Ueno K, Taketa S, Ishihara A. Identification of methoxylchalcones produced in response to CuCl 2 treatment and pathogen infection in barley. PHYTOCHEMISTRY 2021; 184:112650. [PMID: 33529859 DOI: 10.1016/j.phytochem.2020.112650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Changes in specialized metabolites were analyzed in barley (Hordeum vulgare) leaves treated with CuCl2 solution as an elicitor. LC-MS analysis of the CuCl2-treated leaves showed the induced accumulation of three compounds. Among them, two were purified by silica gel and ODS column chromatography and preparative HPLC and were identified as 2',3,4,4',6'-pentamethoxychalcone and 2'-hydroxy-3,4,4',6'-tetramethoxychalcone by spectroscopic analyses. The remaining compound was determined as 12-oxo-phytodienoic acid (OPDA), a major oxylipin in plants, by comparing its spectrum and retention time from LC-MS/MS analysis with those of the authentic compound. The accumulation of these compounds was reproduced in leaves inoculated with Bipolaris sorokiniana, the causal agent of spot blotch of the Poaceae species. This inoculation increased the amounts of other oxylipins, including jasmonic acid (JA), JA-Ile, 9-oxooctadeca-10,12-dienoic acid (9-KODE), and 13-oxooctadeca-9,11-dienoic acid (13-KODE). The treatments of the barley leaves with JA and OPDA induced the accumulation of methoxylchalcones, but treatment with 9-KODE did not. These methoxylchalcones inhibited conidial germination of B. sorokiniana and Fusarium graminearum, thereby indicating that these compounds possessed antifungal activity. Consequently, they are considered to be involved in the chemical defense processes as phytoalexins in barley. Accumulation of methoxylchalcones in response to JA treatment was observed in all seven barley cultivars tested, but was not detected in other wild Hordeum species, wheat, and rice, thus indicating that their production was specific to cultivated barley.
Collapse
Affiliation(s)
- Naoki Ube
- Arid Land Research Center, Tottori University, Tottori, 680-8553, Japan
| | - Yuhka Katsuyama
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Keisuke Kariya
- Graduate School of Sustainability Science, Tottori University, Tottori, 680-8553, Japan
| | - Shin-Ichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 243-0034, Japan
| | - Takuji Tohnooka
- National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Shin Taketa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
50
|
Kim S, Van den Broeck L, Karre S, Choi H, Christensen SA, Wang G, Jo Y, Cho WK, Balint‐Kurti P. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. MOLECULAR PLANT PATHOLOGY 2021; 22:465-479. [PMID: 33641256 PMCID: PMC7938627 DOI: 10.1111/mpp.13040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Common rust, caused by Puccinia sorghi, is a widespread and destructive disease of maize. The Rp1-D gene confers resistance to the P. sorghi IN2 isolate, mediating a hypersensitive cell death response (HR). To identify differentially expressed genes (DEGs) and metabolites associated with the compatible (susceptible) interaction and with Rp1-D-mediated resistance in maize, we performed transcriptomics and targeted metabolome analyses of P. sorghi IN2-infected leaves from the near-isogenic lines H95 and H95:Rp1-D, which differed for the presence of Rp1-D. We observed up-regulation of genes involved in the defence response and secondary metabolism, including the phenylpropanoid, flavonoid, and terpenoid pathways. Metabolome analyses confirmed that intermediates from several transcriptionally up-regulated pathways accumulated during the defence response. We identified a common response in H95:Rp1-D and H95 with an additional H95:Rp1-D-specific resistance response observed at early time points at both transcriptional and metabolic levels. To better understand the mechanisms underlying Rp1-D-mediated resistance, we inferred gene regulatory networks occurring in response to P. sorghi infection. A number of transcription factors including WRKY53, BHLH124, NKD1, BZIP84, and MYB100 were identified as potentially important signalling hubs in the resistance-specific response. Overall, this study provides a novel and multifaceted understanding of the maize susceptible and resistance-specific responses to P. sorghi.
Collapse
Affiliation(s)
- Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Lisa Van den Broeck
- Department of Plant and Microbial BiologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Hoseong Choi
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Shawn A. Christensen
- Chemistry Research UnitDepartment of Agriculture–Agricultural Research Service (USDA‐ARS)Center for Medical, Agricultural, and Veterinary EntomologyGainesvilleFloridaUSA
| | - Guan‐Feng Wang
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|