1
|
Petit I, Faucher Q, Bernard JS, Giunchi P, Humeau A, Sauvage FL, Marquet P, Védrenne N, Di Meo F. Proximal tubule-on-chip as a model for predicting cation transport and drug transporter dynamics. Sci Rep 2025; 15:2580. [PMID: 39833212 PMCID: PMC11747318 DOI: 10.1038/s41598-025-85653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics. OoC are particularly relevant at the fundamental and preclinical stages of drug development by providing more accurate assessment of key pharmacokinetic events. We have developed a proximal tubule-on-a-chip model combining commercial microfluidic and chip technologies. Using the RPTEC/TERT1 cell line, we set up a dual-flow system with antiparallel flows to mimic the dynamics of blood and urine. We assessed transporters mRNA expression, cellular polarization and protein expression via immunofluorescence, and monitored the transcellular transport of prototypic xenobiotics by determining their efflux ratios. Our results show that flow exposure significantly modulate mRNA expression of drug membrane transporters. Dynamic conditions also enhance cell polarization, as evidenced by preferential basal and apical expressions of Na + /K + -ATPase, P-gp, OCT2, and MATE1 , as well as the cellular secretory profile. We demonstrated unidirectional transcellular transport of metformin with a higher efflux than influx ratio, inhibited with OCT2 inhibitor, thus confirming the relevance of our proximal tubule-on-a-chip set up for cation transport investigations. Our proximal tubule-on-a-chip can also be used to explore the interactions between transporters, xenobiotics, and endogenous metabolites, possibly involved in the variability of individual drug responses. This study provides additional evidence that OoC can help bridge the gaps between systemic and local pharmacokinetics.
Collapse
Affiliation(s)
- Isy Petit
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
| | - Quentin Faucher
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Perrine Giunchi
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
- Institut de Recherche en Santé Digestive, INSERM, INRAE, ENVT, Univ. Toulouse III, Toulouse, France
- Institut de Mécanique Des Fluides de Toulouse (IMFT), CNRS, Univ. Toulouse, Toulouse, France
| | - Antoine Humeau
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
| | | | - Pierre Marquet
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France
| | - Nicolas Védrenne
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
| | - Florent Di Meo
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
- UAR2015/US42 Integrative Biology Health Chemistry and Environment BISCEm, CNRS, Inserm, CHU Limoges, Univ. Limoges, Limoges, France.
| |
Collapse
|
2
|
Nguyen HT, Rissanen SL, Peltokangas M, Laakkonen T, Kettunen J, Barthod L, Sivakumar R, Palojärvi A, Junttila P, Talvitie J, Bassis M, Nickels SL, Kalvala S, Ilina P, Tammela P, Lehtonen S, Schwamborn JC, Mosser S, Singh P. Highly scalable and standardized organ-on-chip platform with TEER for biological barrier modeling. Tissue Barriers 2024; 12:2315702. [PMID: 38346163 PMCID: PMC11583584 DOI: 10.1080/21688370.2024.2315702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 11/22/2024] Open
Abstract
The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.
Collapse
Affiliation(s)
- Hoang-Tuan Nguyen
- Finnadvance Ltd, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | - Michele Bassis
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah L Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sara Kalvala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Polina Ilina
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sarka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|
3
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol 2024; 12:1373386. [PMID: 38605984 PMCID: PMC11007038 DOI: 10.3389/fbioe.2024.1373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- *Correspondence: Fang-Fang He, ; Chun Zhang,
| |
Collapse
|
6
|
Du J, Li SK, Guan LY, Guo Z, Yin JF, Gao L, Kawanishi T, Shimada A, Zhang QP, Zheng LS, Liu YY, Feng XQ, Zhao L, Chen DY, Takeda H, Fan YB. Mechanically sensitive HSF1 is a key regulator of left-right symmetry breaking in zebrafish embryos. iScience 2023; 26:107864. [PMID: 37766982 PMCID: PMC10520531 DOI: 10.1016/j.isci.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The left-right symmetry breaking of vertebrate embryos requires nodal flow. However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. Here, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kupffer's vesicle of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 is a mechanosensitive protein. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation by mechanical clues during embryonic development and other physiological and pathological transformations.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shu-Kai Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jiang-Fan Yin
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Li Gao
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Qiu-Ping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Li-Sha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yi-Yao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Lin Zhao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Rbaibi Y, Long KR, Shipman KE, Ren Q, Baty CJ, Kashlan OB, Weisz OA. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol Biol Cell 2023; 34:ar74. [PMID: 37126375 PMCID: PMC10295476 DOI: 10.1091/mbc.e22-11-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
The kidney proximal tubule (PT) elaborates a uniquely high-capacity apical endocytic pathway to retrieve albumin and other proteins that escape the glomerular filtration barrier. Megalin and cubilin/amnionless (CUBAM) receptors engage Dab2 in these cells to mediate clathrin-dependent uptake of filtered ligands. Knockout of megalin or Dab2 profoundly inhibits apical endocytosis and is believed to atrophy the endocytic pathway. We generated CRISPR/Cas9 knockout (KO) clones lacking cubilin, megalin, or Dab2 expression in highly differentiated PT cells and determined the impact on albumin internalization and endocytic pathway function. KO of each component had different effects on the concentration dependence of albumin uptake as well its distribution within PT cells. Reduced uptake of a fluid phase marker was also observed, with megalin KO cells having the most dramatic decline. Surprisingly, protein levels and distribution of key endocytic proteins were preserved in KO PT cell lines and in megalin KO mice, despite the reduced endocytic activity. Our data highlight specific functions of megalin, cubilin, and Dab2 in apical endocytosis and demonstrate that these proteins drive endocytic flux without compromising the physical integrity of the apical endocytic pathway. Our studies suggest a novel model to explain how these components coordinate endocytic uptake in PT cells.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kimberly R. Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Katherine E. Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Catherine J. Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ossama B. Kashlan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
8
|
Du Z, Yan Q, Shen E, Weinstein AM, Wang T. Regulation of glomerulotubular balance. IV. Implication of aquaporin 1 in flow-dependent proximal tubule transport and cell volume. Am J Physiol Renal Physiol 2022; 323:F642-F653. [PMID: 36108052 PMCID: PMC9705020 DOI: 10.1152/ajprenal.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The water channel aquaporin-1 (AQP1) is the principal water pathway for isotonic water reabsorption in the kidney proximal tubule (PT). We investigated flow-mediated fluid (Jv) and [Formula: see text] ([Formula: see text]) reabsorption in PTs of the mouse kidney by microperfusion in wild-type (WT) and AQP1 knockout (KO) mice. Experiments were simulated in an adaptation of a mathematical model of the rat PT. An increase in perfusion rate from 5 to 20 nL/min increased Jv and [Formula: see text] in PTs of WT mice. AQP1 KO mice significantly decreased Jv at low and high flow rates compared with control. In contrast, [Formula: see text] was not reduced at either low or high flow rates. Cell volume showed no significant difference between WT and AQP1 KO mice. Renal clearance experiments showed significantly higher urine flow in AQP1 KO mice, but there was no significant difference in either Na+ and K+ or [Formula: see text] excretion. Acid-base parameters of blood pH, Pco2, [Formula: see text], and urine pH were the same in both WT and KO mice. In model calculations, tubules whose tight junction (TJ) water permeability (Pf) was that assigned to the rat TJ, showed no difference in Jv between WT and KO, whereas TJ Pf set to 25% of the rat predicted Jv concordant with our observations from AQP1 KO. These results affirm the dominance of AQP1 in mediating isotonic water reabsorption by the mouse PT and demonstrate that flow-stimulated [Formula: see text] reabsorption is intact and independent of AQP1. With reference to the model, the findings also suggest that TJ water flux in the PT is less prominent in the mouse than in the rat kidney.NEW & NOTEWORTHY We found an absence of flow-dependent modulation of fluid absorption but no effect on either proximal tubule (PT) [Formula: see text] absorption or acid-base parameters in the aquaporin 1 (AQP1) knockout mouse. We affirmed the dominance of the water channel AQP1 in mediating isotonic water reabsorption by the mouse PT and demonstrated that flow-stimulated [Formula: see text] reabsorption is independent of AQP1. With reference to the model, the findings also suggest that tight junctional water flux in the PT is less prominent in the mouse than rat kidney.
Collapse
Affiliation(s)
- Zhaopeng Du
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Qingshang Yan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Emma Shen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, New York
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
9
|
Driver R, Mishra S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Apical Medium Flow Influences the Morphology and Physiology of Human Proximal Tubular Cells in a Microphysiological System. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100516. [PMID: 36290484 PMCID: PMC9598399 DOI: 10.3390/bioengineering9100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 12/28/2022]
Abstract
There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.
Collapse
|
11
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
13
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
14
|
Choudhury MI, Li Y, Mistriotis P, Vasconcelos ACN, Dixon EE, Yang J, Benson M, Maity D, Walker R, Martin L, Koroma F, Qian F, Konstantopoulos K, Woodward OM, Sun SX. Kidney epithelial cells are active mechano-biological fluid pumps. Nat Commun 2022; 13:2317. [PMID: 35484146 PMCID: PMC9050750 DOI: 10.1038/s41467-022-29988-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of mechanical forces driving kidney epithelial fluid transport and morphogenesis in kidney diseases is unclear. Here, using a microfluidic platform to recapitulate fluid transport activity of kidney cells, we report that renal epithelial cells can actively generate hydraulic pressure gradients across the epithelium. The fluidic flux declines with increasing hydraulic pressure until a stall pressure, in a manner similar to mechanical fluid pumps. For normal human kidney cells, the fluidic flux is from apical to basal, and the pressure is higher on the basal side. For human Autosomal Dominant Polycystic Kidney Disease cells, the fluidic flux is reversed from basal to apical. Molecular and proteomic studies reveal that renal epithelial cells are sensitive to hydraulic pressure gradients, changing gene expression profiles and spatial arrangements of ion exchangers and the cytoskeleton in different pressure conditions. These results implicate mechanical force and hydraulic pressure as important variables during kidney function and morphological change, and provide insights into pathophysiological mechanisms underlying the development and transduction of hydraulic pressure gradients. How mechanical forces drive fluid transport in the kidney remains unclear. Here, the authors use a microfluidic platform to show that kidney epithelial cells generate hydraulic pressure gradients across the epithelium, and that the fluid flux is from apical to basal for normal cells, and inverted in autosomal dominant polycystic kidney disease cells.
Collapse
Affiliation(s)
- Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Yizeng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, United States
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Ana Carina N Vasconcelos
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Eryn E Dixon
- Department of Biochemistry and Molecular Biology, Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Physiology, Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jing Yang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Morgan Benson
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Debonil Maity
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Rebecca Walker
- Department of Biochemistry and Molecular Biology, Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leigha Martin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Fatima Koroma
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Feng Qian
- Department of Biochemistry and Molecular Biology, Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Owen M Woodward
- Department of Physiology, Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Maryland PKD Research and Clinical Core Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States. .,Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
15
|
Phillips JA, Taub ME, Bogdanffy MS, Yuan J, Knight B, Smith JD, Ku WW. Mode of Action and Human Relevance Assessment of Male CD-1 Mouse Renal Adenocarcinoma Associated With Lifetime Exposure to Empagliflozin. J Appl Toxicol 2022; 42:1570-1584. [PMID: 35393688 DOI: 10.1002/jat.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Inhibition of sodium-glucose cotransporter-2 (SGLT2) has been shown to be a safe and efficacious approach to support managing Type 2 diabetes. In the 2-year carcinogenicity study with the SGLT2 inhibitor empagliflozin in CD-1 mice, an increased incidence of renal tubular adenomas and carcinomas was identified in the male high-dose group but was not observed in female mice. An integrated review of available nonclinical data was conducted to establish a mode-of-action hypothesis for male mouse-specific tumorigenesis. Five key events were identified through systematic analysis to form the proposed mode-of-action: (1) Background kidney pathology in CD-1 mice sensitizes the strain to (2) pharmacology-related diuretic effects associated with SGLT2 inhibition. (3) In male mice, metabolic demand increases with the formation of a sex- and species-specific empagliflozin metabolite. These features converge to (4) deplete oxidative stress handling reserve, driving (5) constitutive cellular proliferation in male CD-1 mice. The proposed mode of action requires all five key events for empagliflozin to present a carcinogenicity risk in the CD-1 mouse. Considering that empagliflozin is not genotoxic in the standard battery of genotoxicity tests, and not all five key events are present in the context of female mice, rats or humans, nor for other osmotic diuretics or other SGLT2 inhibitors, the observed male mouse renal tumors are not considered relevant to humans.
Collapse
Affiliation(s)
- Jonathan A Phillips
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals, Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, CT
| | - Matthew S Bogdanffy
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | | | - Brian Knight
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - James D Smith
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - Warren W Ku
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| |
Collapse
|
16
|
Core fucosylation involvement in the paracrine regulation of proteinuria-induced renal interstitial fibrosis evaluated with the use of a microfluidic chip. Acta Biomater 2022; 142:99-112. [PMID: 35189379 DOI: 10.1016/j.actbio.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022]
Abstract
Proteinuria is a clinical manifestation of chronic kidney disease that aggravates renal interstitial fibrosis (RIF), in which injury of peritubular microvessels is an important event. However, the changes in peritubular microvessels induced by proteinuria and their molecular mechanisms remain unclear. Thus, we aimed to develop a co-culture microfluidic device that contains renal tubules and peritubular microvessels to create a proteinuria model. We found that protein overload in the renal tubule induced trans-differentiation and apoptosis of endothelial cells (ECs) and pericytes. Moreover, profiling of secreted proteins in this model revealed that a paracrine network between tubules and microvessels was activated in proteinuria-induced microvascular injury. Multiple cytokine receptors in this paracrine network were core-fucosylated. Inhibition of core fucosylation significantly reduced ligand-receptor binding ability and blocked downstream pathways, alleviating trans-differentiation and apoptosis of ECs and pericytes. Furthermore, the protective effect of genetic FUT8 deficiency on proteinuria overload-induced RIF and pericyte-myofibroblast trans-differentiation was validated in FUT8 knockout heterozygous mice. In conclusion, we constructed and used a multiple-unit integrated microfluidic device to uncover the mechanism of proteinuria-induced RIF. Furthermore, FUT8 may serve as a hub-like therapeutic target to alleviate peritubular microvascular injury in RIF. STATEMENT OF SIGNIFICANCE: In this study, we constructed a multiple-unit integrated renal tubule-vascular chip. We reproduced human proteinuria on the chip and found that multiple receptors were modified by FUT8-catalyzed core fucosylation (CF) involved in the cross-talk between renal tubules and peritubular microvessels in proteinuria-induced RIF, and inhibiting the FUT8 of receptors could block the tubule-microvessel paracrine network and reverse the damage of peritubular microvessels and renal interstitial fibrosis. This tubule-vascular chip may provide a prospective platform to facilitate future investigations into the mechanisms of kidney diseases, and target-FUT8 inhibition may be an innovative and potential therapeutic strategy for RIF induced by proteinuria.
Collapse
|
17
|
Ajay AK. Functional Drug Screening using Kidney Cells On-A-Chip: Advances in Disease Modeling and Development of Biomarkers. KIDNEY360 2022; 3:194-198. [PMID: 35373124 PMCID: PMC8967633 DOI: 10.34067/kid.0007172021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Amrendra K. Ajay
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Du Z, Tian X, Ma M, Somlo S, Weinstein AM, Wang T. Restoration of proximal tubule flow-activated transport prevents cyst growth in polycystic kidney disease. JCI Insight 2021; 6:146041. [PMID: 33886508 PMCID: PMC8262298 DOI: 10.1172/jci.insight.146041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/21/2021] [Indexed: 01/11/2023] Open
Abstract
Flow-activated Na+ and HCO3– transport in kidney proximal tubules (PT) underlies relatively constant fractional reabsorption during changes in glomerular filtration rate (GFR) or glomerulotubular balance (GTB). In view of hypothesized connections of epithelial cilia to flow sensing, we examined flow-activated transport in 3 polycystic kidney disease–related mouse models based on inducible conditional KO of Pkd1, Pkd2, and Kif3a. PTs were harvested from mice after gene inactivation but prior to cyst formation, and flow-mediated PT transport was measured. We confirm that higher flow increased both Na+ and HCO3– absorption in control mice, and we observed that this flow effect was preserved in PTs of Pkd1–/– and Kif3a–/–mice. However, flow activation was absent in Pkd2+/– and Pkd2–/– PT. In heterozygous (Pkd2+/–) mice, a dopamine receptor 1 (DA1) antagonist (SCH23390) restored transport flow sensitivity. When given chronically, this same antagonist reduced renal cyst formation in Pkd2–/–, as evidenced by reduced kidney weight, BUN, and the cystic index, when compared with untreated mice. In contrast, SCH23390 did not prevent cyst formation in Pkd1–/– mice. These results indicate that Pkd2 is necessary for normal GTB and that restoration of flow-activated transport by DA1 antagonist can slow renal cyst formation in Pkd2–/– mice.
Collapse
Affiliation(s)
| | - Xin Tian
- Department of Internal Medicine (Nephrology), Yale University, New Haven, Connecticut, USA
| | - Ming Ma
- Department of Internal Medicine (Nephrology), Yale University, New Haven, Connecticut, USA
| | - Stefan Somlo
- Department of Internal Medicine (Nephrology), Yale University, New Haven, Connecticut, USA
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | | |
Collapse
|
19
|
Role of Shear Stress on Renal Proximal Tubular Cells for Nephrotoxicity Assays. J Toxicol 2021; 2021:6643324. [PMID: 33976696 PMCID: PMC8084667 DOI: 10.1155/2021/6643324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Drug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow. Diverse techniques to reintroduce shear stress have been studied in a variety of proximal tubular like cell culture models. These studies often have limited replicates because of the huge cost of equipment and do not report all relevant parameters to allow reproduction and comparison of studies between labs. This review codifies the techniques used to reintroduce shear stress, the cell lines utilized, and the biological outcomes reported. Further, we propose a set of interventions to enhance future cell biology understanding of nephrotoxicity using cell culture models.
Collapse
|
20
|
Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, Luu RJ, Lech MP, Kann SH, Mulhern TJ, Tandon V, Tan K, Haroutunian NJ, Keegan P, Rogers M, Gard AL, Baldwin KB, de Souza JC, Hoefler BC, Bale SS, Kratchman LB, Zorn A, Patterson A, Kim ES, Petrie TA, Wiellette EL, Williams C, Isenberg BC, Charest JL. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. LAB ON A CHIP 2021; 21:1454-1474. [PMID: 33881130 DOI: 10.1039/d1lc00067e] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
Collapse
Affiliation(s)
- H Azizgolshani
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J R Coppeta
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E M Vedula
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E E Marr
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B P Cain
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - R J Luu
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M P Lech
- Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - S H Kann
- Draper, 555 Technology Square, Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - T J Mulhern
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - V Tandon
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K Tan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | - P Keegan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M Rogers
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A L Gard
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K B Baldwin
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J C de Souza
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Hoefler
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - S S Bale
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - L B Kratchman
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Zorn
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Patterson
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E S Kim
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - T A Petrie
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E L Wiellette
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - C Williams
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Isenberg
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J L Charest
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Xu S, Li J, Yang L, Wang CJ, Liu T, Weinstein AM, Palmer LG, Wang T. Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice. Pflugers Arch 2021; 473:1749-1760. [PMID: 34455480 PMCID: PMC8528772 DOI: 10.1007/s00424-021-02611-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
We compared the regulation of the NaCl cotransporter (NCC) in adaptation to a low-K (LK) diet in male and female mice. We measured hydrochlorothiazide (HCTZ)-induced changes in urine volume (UV), glomerular filtration rate (GFR), absolute (ENa, EK), and fractional (FENa, FEK) excretion in male and female mice on control-K (CK, 1% KCl) and LK (0.1% KCl) diets for 7 days. With CK, NCC-dependent ENa and FENa were larger in females than males as observed previously. However, with LK, HCTZ-induced ENa and FENa increased in males but not in females, abolishing the sex differences in NCC function as observed in CK group. Despite large diuretic and natriuretic responses to HCTZ, EK was only slightly increased in response to the drug when animals were on LK. This suggests that the K-secretory apparatus in the distal nephron is strongly suppressed under these conditions. We also examined LK-induced changes in Na transport protein expression by Western blotting. Under CK conditions females expressed more NCC protein, as previously reported. LK doubled both total (tNCC) and phosphorylated NCC (pNCC) abundance in males but had more modest effects in females. The larger effect in males abolished the sex-dependence of NCC expression, consistent with the measurements of function by renal clearance. LK intake did not change NHE3, NHE2, or NKCC2 expression, but reduced the amount of the cleaved (presumably active) form of γENaC. LK reduced plasma K to lower levels in females than males. These results indicated that males had a stronger NCC-mediated adaptation to LK intake than females.
Collapse
Affiliation(s)
- Shuhua Xu
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Jing Li
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Lei Yang
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Claire J. Wang
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Tommy Liu
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| | - Alan M. Weinstein
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Lawrence G. Palmer
- grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY USA
| | - Tong Wang
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale School of Medicine University, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06520-8026 USA
| |
Collapse
|
22
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
24
|
Gualdani R, Seghers F, Yerna X, Schakman O, Tajeddine N, Achouri Y, Tissir F, Devuyst O, Gailly P. Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci Signal 2020; 13:13/653/eabc6967. [DOI: 10.1126/scisignal.abc6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Defects in protein reabsorption by the proximal tubule are toxic for epithelial cells in the nephron and may result in nephropathy. In this study, we showed that the ion channel TRPV4 modulated the endocytosis of albumin and low–molecular weight proteins in the proximal tubule. TRPV4 was found at the basolateral side of proximal tubule cells, and its mechanical activation by cell stretching induced Ca2+ entry into the cytosol, which promoted endocytosis. Trpv4−/− mice presented with mild proximal tubule dysfunction under basal conditions. To challenge endocytic function, the permeability of the glomerular filter was altered by systemic delivery of angiotensin II. The proteinuria induced by this treatment was more severe in Trpv4−/− than in Trpv4+/+ mice. Injecting antibodies against the glomerular basement membrane to induce glomerulonephritis is a more pathophysiologically relevant method of impairing glomerular filter permeability. Albuminuria was more severe in mice that lacked TRPV4 specifically in the proximal tubule than in control mice. These results emphasize the importance of TRPV4 in sensing pressure in the proximal tubule in response to variations in the amount of ultrafiltrate and unveil a mechanism that controls protein reabsorption.
Collapse
Affiliation(s)
- Roberta Gualdani
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - François Seghers
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, av. Hippocrate 75/B1.75.09, B-1200 Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, av. Hippocrate 73/B1.73.16, B-1200 Brussels, Belgium
| | - Olivier Devuyst
- University of Zurich, Institute of Physiology, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| |
Collapse
|
25
|
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V. A role for tubular Na +/H + exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 2020; 319:F712-F728. [PMID: 32893663 DOI: 10.1152/ajprenal.00264.2020] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.
Collapse
Affiliation(s)
- Akira Onishi
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Maria Crespo-Masip
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California.,Biomedical Research Institute, University of Lleida, Lleida, Spain
| | - Winnie Huang
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Panai Song
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Scott Culver Thomson
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
26
|
Martins JR, Haenni D, Bugarski M, Figurek A, Hall AM. Quantitative intravital Ca2+ imaging maps single cell behavior to kidney tubular structure. Am J Physiol Renal Physiol 2020; 319:F245-F255. [DOI: 10.1152/ajprenal.00052.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ca2+ is an important second messenger that translates extracellular stimuli into intracellular responses. Although there has been significant progress in understanding Ca2+ dynamics in organs such as the brain, the nature of Ca2+ signals in the kidney is still poorly understood. Here, we show that by using a genetically expressed highly sensitive reporter (GCaMP6s), it is possible to perform imaging of Ca2+ signals at high resolution in the mouse kidney in vivo. Moreover, by applying machine learning-based automated analysis using a Ca2+-independent signal, quantitative data can be extracted in an unbiased manner. By projecting the resulting data onto the structure of the kidney, we show that different tubular segments display highly distinct spatiotemporal patterns of Ca2+ signals. Furthermore, we provide evidence that Ca2+ activity in the proximal tubule decreases with increasing distance from the glomerulus. Finally, we demonstrate that substantial changes in intracellular Ca2+ can be detected in proximal tubules in a cisplatin model of acute kidney injury, which can be linked to alterations in cell structure and transport function. In summary, we describe a powerful new tool to investigate how single cell behavior is integrated with whole organ structure and function and how it is altered in disease states relevant to humans.
Collapse
Affiliation(s)
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Rein JL, Heja S, Flores D, Carrisoza-Gaytán R, Lin NYC, Homan KA, Lewis JA, Satlin LM. Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. Am J Physiol Cell Physiol 2020; 319:C136-C147. [PMID: 32401606 DOI: 10.1152/ajpcell.00405.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szilvia Heja
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rolando Carrisoza-Gaytán
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neil Y C Lin
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Kimberly A Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Lisa M Satlin
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Yin L, Du G, Zhang B, Zhang H, Yin R, Zhang W, Yang SM. Efficient Drug Screening and Nephrotoxicity Assessment on Co-culture Microfluidic Kidney Chip. Sci Rep 2020; 10:6568. [PMID: 32300186 PMCID: PMC7162892 DOI: 10.1038/s41598-020-63096-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
The function and susceptibility of various drugs are tested with renal proximal tubular epithelial cells; yet, replicating the morphology and kidneys function using the currently available in vitro models remains difficult. To overcome this difficulty, in the study presented in this paper, a device and a three-layer microfluidic chip were developed, which provides a simulated environment for kidney organs. This device includes two parts: (1) microfluidic drug concentration gradient generator and (2) a flow-temperature controlled platform for culturing of kidney cells. In chip study, renal proximal tubular epithelial cells (RPTECs) and peritubular capillary endothelial cells (PCECs) were screened with the drugs to assess the drug-induced nephrotoxicity. Unlike cells cultured in petri dishes, cells cultured in the microfluidic device exhibited higher performance in terms of both cell growth and drug nephrotoxicity evaluation. It is worth mentioning that a significant decrease in cisplatin-induced nephrotoxicity was found because of the intervention of cimetidine in the microfluidic device. In conclusion, the different in the cell performance between the microfluidic device and the petri dishes demonstrates the physiological relevance of the nephrotoxicity screening technology along with the microfluidic device developed in this study. Furthermore, this technology can also facilitate the development of reliable kidney drugs and serve as a useful and efficient test-bed for further investigation of the drug nephrotoxicity evaluation.
Collapse
Affiliation(s)
- Lei Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Guanru Du
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Ruixue Yin
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Shih-Mo Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P.R. China. .,Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China.
| |
Collapse
|
29
|
Xu Y, Qin S, Niu Y, Gong T, Zhang Z, Fu Y. Effect of fluid shear stress on the internalization of kidney-targeted delivery systems in renal tubular epithelial cells. Acta Pharm Sin B 2020; 10:680-692. [PMID: 32322470 PMCID: PMC7161666 DOI: 10.1016/j.apsb.2019.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) are important target cells for the development of kidney-targeted drug delivery systems. Under physiological conditions, RTECs are under constant fluid shear stress (FSS) from original urine in the renal tubule and respond to changes of FSS by altering their morphology and receptor expression patterns, which may affect reabsorption and cellular uptake. Using a microfluidic system, controlled shear stress was applied to proximal tubule epithelial cell line HK-2. Next, 2-glucosamine, bovine serum albumin, and albumin nanoparticles were selected as representative carriers to perform cell uptake studies in HK-2 cells using the microfluidic platform system with controlled FSS. FSS is proven to impact the morphology of HK-2 cells and upregulate the levels of megalin and clathrin, which then led to enhanced cellular uptake efficiencies of energy-driven carrier systems such as macromolecular and albumin nanoparticles in HK-2 cells. To further investigate the effects of FSS on endocytic behavior mediated by related receptors, a mice model of acute kidney injury with reduced fluid shear stress was established. Consistent with in vitro findings, in vivo studies have also shown reduced fluid shear stress down-regulated the levels of megalin receptors, thereby reducing the renal distribution of albumin nanoparticles.
Collapse
|
30
|
Verschuren EHJ, Castenmiller C, Peters DJM, Arjona FJ, Bindels RJM, Hoenderop JGJ. Sensing of tubular flow and renal electrolyte transport. Nat Rev Nephrol 2020; 16:337-351. [DOI: 10.1038/s41581-020-0259-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
|
31
|
Phillips JA, Grandhi TSP, Davis M, Gautier JC, Hariparsad N, Keller D, Sura R, Van Vleet TR. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. LAB ON A CHIP 2020; 20:468-476. [PMID: 31989145 DOI: 10.1039/c9lc00925f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human kidney contains approximately one million nephrons. As the functional unit of the kidney, the nephron affords an opportunity to approximate the kidney at a microphysiological scale. Recent emergence of physiologically accurate human tissue models has radically advanced the possibilities of mimicking organ biology and multi-organ combinations in vitro. Anatomically, the nephron is one of the most complex, sequentially integrated microfluidic units in the body making the miniaturized microfluidic systems excellent candidates for capturing the kidney biology in vitro. While these models are promising, there are a number of considerations for practical implementation into a drug development paradigm. Opportunities for pharmaceutical industry applications of new MPS models often start with drug safety testing. As such, the intent of this article is to focus on safety and ADME applications. This article reviews biological functions of the kidney and options for characterizing known roles in nephrotoxicity. The concept of "context-of-use" is introduced as a framework for describing and verifying the specific features of an MPS platform for use in drug development. Overall, we present a perspective on key attributes of microphysiological kidney models, which the pharmaceutical industry could leverage to improve confident safety and ADME evaluations of experimental therapies.
Collapse
Affiliation(s)
| | - Taraka Sai Pavan Grandhi
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Myrtle Davis
- Bristol-Myers Squibb Company, Province Line Road, Princeton, New Jersey 08648, USA
| | | | | | - Douglas Keller
- Sanofi US, 55 Corporate Drive, Bridgewater, NJ 08807, USA
| | - Radhakrishna Sura
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| | - Terry R Van Vleet
- Preclinical Safety, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| |
Collapse
|
32
|
Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2019; 33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
33
|
Li J, Xu S, Yang L, Yang J, Wang CJ, Weinstein AM, Palmer LG, Wang T. Sex difference in kidney electrolyte transport II: impact of K + intake on thiazide-sensitive cation excretion in male and female mice. Am J Physiol Renal Physiol 2019; 317:F967-F977. [PMID: 31390232 PMCID: PMC6843050 DOI: 10.1152/ajprenal.00125.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
We studied sex differences in response to high K+ (HK) intake on thiazide-sensitive cation (Na+ and K+) excretion in wild-type (WT) and ANG II receptor subtype 1a (AT1aR) knockout (KO) mice. Renal clearance experiments were performed to examine Na+-Cl- cotransporter (NCC) activity on mice fed with control and HK (5% KCl, 7 days) diets. Hydrochlorothiazide (HCTZ)-induced changes in urine volume, glomerular filtration rate, absolute Na+ and K+ excretion, and fractional excretion were compared. HK-induced changes in NCC, Na+/H+ exchanger isoform 3 (NHE3), and ENaC expression were examined by Western blot analysis. In WT animals under the control diet, HCTZ-induced cation excretion was greater in female animals, reflecting larger increases in Na+ excretion, since there was little sex difference in HCTZ-induced K+ excretion. Under the HK diet, the sex difference in HCTZ-induced cation excretion was reduced because of larger increments in K+ excretion in male animals. The fraction of K+ excretion was 57 ± 5% in male WT animals and 36 ± 4% in female WT animals (P < 0.05), but this difference was absent in AT1aR KO mice. NCC abundance was higher in female animals than in male animals but decreased by similar fractions on HK diet. NHE3 abundance decreased, whereas cleaved forms of γ-ENaC increased, with HK in all groups; these changes were similar in male and female animals and were not significantly affected by AT1aR ablation. These results indicate that, with the HK diet, male animals display greater distal Na+ delivery and greater activation of K+ secretion mechanisms, all suggesting a more powerful male adaptation to HK intake.
Collapse
Affiliation(s)
- Jing Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York
| | - Janey Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Claire J Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
34
|
Hu J, Chen S, Hu W, Lü S, Long M. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization. Biophys J 2019; 117:1405-1418. [PMID: 31585706 DOI: 10.1016/j.bpj.2019.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Global cytoskeleton reorganization is well-recognized when cells are exposed to distinct mechanical stimuli, but the localized responses at a specified region of a cell are still unclear. In this work, we mapped the cell-surface mechanical property of single cells in situ before and after static point loading these cells using atomic force microscopy in PeakForce-Quantitative Nano Mechanics mode. Cell-surface stiffness was elevated at a maximum of 1.35-fold at the vicinity of loading site, indicating an enhanced structural protection of the cortex to the cell. Mechanical modeling also elucidated the structural protection from the stiffened cell cortex, in which 9-15% and 10-19% decrease of maximum stress and strain of the nucleus were obtained. Furthermore, the flat-ended atomic force microscopy probes were used to capture cytoskeleton reorganization after point loading quantitatively, revealing that the larger the applied force and the longer the loading time are, the more pronounced cytoskeleton reorganization is. Also, point loading using a microneedle combined with real-time confocal microscopy uncovered the fast dynamics of actin cytoskeleton reorganization for actin-stained live cells after point loading (<10 s). These results furthered the understandings in the transmission of localized mechanical forces into an adherent cell.
Collapse
Affiliation(s)
- Jinrong Hu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shenbao Chen
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Hu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Orbital Shear Stress Regulates Differentiation and Barrier Function of Primary Renal Tubular Epithelial Cells. ASAIO J 2019; 64:766-772. [PMID: 29240625 DOI: 10.1097/mat.0000000000000723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary cells cultured in vitro gradually lose features characteristic of the in vivo phenotype. Culture techniques that help maintain cell-specific phenotype are advantageous for development of tissue engineered and bioartificial organs. Here we evaluated the phenotype of primary human renal tubular epithelial cells subjected to fluid shear stress by culturing the cells on an orbital shaker. Transepithelial electrical resistance (TEER), cell density, and gene and protein expression of proximal tubule-specific functional markers were measured in cells subjected to orbital shear stress. Cells cultured on an orbital shaker had increased TEER, higher cell density, and enhanced tubular epithelial specific gene and protein expression. This is likely due at least in part to the mechanical stress applied to the apical surface of the cells although other factors including increased nutrient and oxygen delivery and improved mixing could also play a role. These results suggest that orbital shaker culture may be a simple approach to augmenting the differentiated phenotype of cultured renal epithelial cells.
Collapse
|
36
|
Permeability of Epithelial/Endothelial Barriers in Transwells and Microfluidic Bilayer Devices. MICROMACHINES 2019; 10:mi10080533. [PMID: 31412604 PMCID: PMC6722679 DOI: 10.3390/mi10080533] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
Lung-on-a-chip (LoC) models hold the potential to rapidly change the landscape for pulmonary drug screening and therapy, giving patients more advanced and less invasive treatment options. Understanding the drug absorption in these microphysiological systems, modeling the lung-blood barrier is essential for increasing the role of the organ-on-a-chip technology in drug development. In this work, epithelial/endothelial barrier tissue interfaces were established in microfluidic bilayer devices and transwells, with porous membranes, for permeability characterization. The effect of shear stress on the molecular transport was assessed using known paracellular and transcellular biomarkers. The permeability of porous membranes without cells, in both models, is inversely proportional to the molecular size due to its diffusivity. Paracellular transport, between epithelial/endothelial cell junctions, of large molecules such as transferrin, as well as transcellular transport, through cell lacking required active transporters, of molecules such as dextrans, is negligible. When subjected to shear stress, paracellular transport of intermediate-size molecules such as dextran was enhanced in microfluidic devices when compared to transwells. Similarly, shear stress enhances paracellular transport of small molecules such as Lucifer yellow, but its effect on transcellular transport is not clear. The results highlight the important role that LoC can play in drug absorption studies to accelerate pulmonary drug development.
Collapse
|
37
|
Jayagopal A, Brakeman PR, Soler P, Ferrell N, Fissell W, Kroetz DL, Roy S. Apical Shear Stress Enhanced Organic Cation Transport in Human OCT2/MATE1-Transfected Madin-Darby Canine Kidney Cells Involves Ciliary Sensing. J Pharmacol Exp Ther 2019; 369:523-530. [PMID: 30910922 PMCID: PMC11047058 DOI: 10.1124/jpet.118.255026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/27/2019] [Indexed: 11/22/2022] Open
Abstract
Active transport by renal proximal tubules plays a significant role in drug disposition. During drug development, estimates of renal excretion are essential to dose determination. Kidney bioreactors that reproduce physiologic cues in the kidney, such as flow-induced shear stress, may better predict in vivo drug behavior than do current in vitro models. In this study, we investigated the role of shear stress on active transport of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) by Madin-Darby canine kidney cells exogenously expressing the human organic cation transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1). Cells cultured in a parallel plate under continuous media perfusion formed a tight monolayer with a high barrier to inulin. In response to increasing levels of shear stress (0.2-2 dynes/cm2), cells showed a corresponding increase in transport of ASP+, reaching a maximal 4.2-fold increase at 2 dynes/cm2 compared with cells cultured under static conditions. This transport was inhibited with imipramine, indicating active transport was present under shear stress conditions. Cells exposed to shear stress of 2 dynes/cm2 also showed an increase in RNA expression of both transfected human and endogenous OCT2 (3.7- and 2.0-fold, respectively). Removal of cilia by ammonium sulfate eliminated the effects of shear on ASP+ transport at 0.5 dynes/cm2 with no effect on ASP+ transport under static conditions. These results indicate that shear stress affects active transport of organic cations in renal tubular epithelial cells in a cilia-dependent manner.
Collapse
Affiliation(s)
- Aishwarya Jayagopal
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - Paul R Brakeman
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - Peter Soler
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - Nicholas Ferrell
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - William Fissell
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - Deanna L Kroetz
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| | - Shuvo Roy
- Departments of Bioengineering and Therapeutic Sciences (A.J., P.S., D.L.K., S.R.) and Pediatrics (P.R.B.), University of California San Francisco (UCSF), San Francisco, California; and Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee (N.F., W.F.)
| |
Collapse
|
38
|
Ferrell N, Sandoval RM, Molitoris BA, Brakeman P, Roy S, Fissell WH. Application of physiological shear stress to renal tubular epithelial cells. Methods Cell Biol 2019; 153:43-67. [PMID: 31395384 DOI: 10.1016/bs.mcb.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Renal tubular epithelial cells are consistently exposed to flow of glomerular filtrate that creates fluid shear stress at the apical cell surface. This biophysical stimulus regulates several critical renal epithelial cell functions, including transport, protein uptake, and barrier function. Defining the in vivo mechanical conditions in the kidney tubule is important for accurately recapitulating these conditions in vitro. Here we provide a summary of the fluid flow conditions in the kidney and how this translates into different levels of fluid shear stress down the length of the nephron. A detailed method is provided for measuring fluid flow in the proximal tubule by intravital microscopy. Devices to mimic in vivo fluid shear stress for in vitro studies are discussed, and we present two methods for culture and analysis of renal tubule epithelial cells exposed physiological levels of fluid shear stress. The first is a microfluidic device that permits application of controlled shear stress to cells cultured on porous membranes. The second is culture of renal tubule cells on an orbital shaker. Each method has advantages and disadvantages that should be considered in the context of the specific experimental objectives.
Collapse
Affiliation(s)
- Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bruce A Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul Brakeman
- Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - William H Fissell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
39
|
Ren Q, Gliozzi ML, Rittenhouse NL, Edmunds LR, Rbaibi Y, Locker JD, Poholek AC, Jurczak MJ, Baty CJ, Weisz OA. Shear stress and oxygen availability drive differential changes in opossum kidney proximal tubule cell metabolism and endocytosis. Traffic 2019; 20:448-459. [PMID: 30989771 DOI: 10.1111/tra.12648] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.
Collapse
Affiliation(s)
- Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Megan L Gliozzi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Natalie L Rittenhouse
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lia R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Rayner SG, Phong KT, Xue J, Lih D, Shankland SJ, Kelly EJ, Himmelfarb J, Zheng Y. Reconstructing the Human Renal Vascular-Tubular Unit In Vitro. Adv Healthc Mater 2018; 7:e1801120. [PMID: 30379416 PMCID: PMC6478624 DOI: 10.1002/adhm.201801120] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 12/19/2022]
Abstract
Engineered human kidney-on-a-chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make-up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney-on-a-chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial-epithelial exchange interface using entirely cell-remodelable matrix and patient-derived kidney cells. This platform consists of a double-layer human renal vascular-tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney-specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ-on-a-chip models.
Collapse
Affiliation(s)
- Samuel G. Rayner
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington 98109
| | - Kiet T Phong
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
| | - Stuart J. Shankland
- Department of Medicine, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
| | - Edward J. Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Department of Medicine, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98109
- Kidney Research Institute, University of Washington, Seattle, Washington 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109
| |
Collapse
|
41
|
Saez F, Hong NJ, Garvin JL. NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs. Am J Physiol Renal Physiol 2018; 314:F934-F941. [PMID: 29672130 DOI: 10.1152/ajprenal.00631.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Luminal flow augments Na+ reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na+, playing a key role in its homeostasis. Whether flow elevations enhance Na+-K+-2Cl- cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.
Collapse
Affiliation(s)
- Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Nancy J Hong
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
42
|
Yeste J, Martínez-Gimeno L, Illa X, Laborda P, Guimerà A, Sánchez-Marín JP, Villa R, Giménez I. A perfusion chamber for monitoring transepithelial NaCl transport in an in vitro model of the renal tubule. Biotechnol Bioeng 2018; 115:1604-1613. [PMID: 29460274 DOI: 10.1002/bit.26574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 02/03/2023]
Abstract
Transepithelial electrical measurements in the renal tubule have provided a better understanding of how kidney regulates electrolyte and water homeostasis through the reabsorption of molecules and ions (e.g., H2 O and NaCl). While experiments and measurement techniques using native tissue are difficult to prepare and to reproduce, cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear stress which is a key physiological stimulus in the renal tubule. To overcome these limitations, we present a modular perfusion chamber for long-term culture of renal epithelial cells under flow that allows the continuous and simultaneous monitoring of both transepithelial electrical parameters and transepithelial NaCl transport. The latter is obtained from electrical conductivity measurements since Na+ and Cl- are the ions that contribute most to the electrical conductivity of a standard physiological solution. The system was validated with epithelial monolayers of raTAL and NRK-52E cells that were characterized electrophysiologically for 5 days under different flow conditions (i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of NaCl (140/70 and 70/140 mM) were imposed in order to demonstrate the feasibility of this methodology for quantifying and monitoring in real time the transepithelial reabsorption of NaCl, which is a primary function of the renal tubule.
Collapse
Affiliation(s)
- Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Departamento de Microelectrónica y Sistemas Electrónicos, Universitat Autònoma de Barcelona, Spain
| | | | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Pablo Laborda
- Instituto Aragonés de Ciencias de la Salud, IIS Aragón, Zaragoza, Spain
| | - Anton Guimerà
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | | | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC)., 08193,, Bellaterra, Barcelona, Spain.,CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Ignacio Giménez
- Instituto Aragonés de Ciencias de la Salud, IIS Aragón, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
43
|
Zhu Z, Wang Q, Wu Q. On the examination of the Darcy permeability of soft fibrous porous media; new correlations. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Brackman DJ, Giacomini KM. Reverse Translational Research of ABCG2 (BCRP) in Human Disease and Drug Response. Clin Pharmacol Ther 2017; 103:233-242. [PMID: 29023674 DOI: 10.1002/cpt.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Reverse translational research takes a bedside-to-bench approach, using sophisticated basic research to explain the biological mechanisms behind observed clinical data. For transporters, which play a role in human disease and drug response, this approach offers a distinct advantage over the typical translational research, which often falters due to inadequate in vitro and preclinical animal models. Research on ABCG2, which encodes the Breast Cancer Resistance Protein, has benefited immensely from a reverse translational approach due to its broad implications for disease susceptibility and both therapeutic and adverse drug response. In this review, we describe the success of reverse translational research for ABCG2 and opportunities for further studies.
Collapse
Affiliation(s)
- Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Kim JM, Xu S, Guo X, Hu H, Dong K, Wang T. Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice. Am J Physiol Regul Integr Comp Physiol 2017; 314:R334-R341. [PMID: 29092859 DOI: 10.1152/ajpregu.00315.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The renal outer medullary potassium channel (ROMK; Kir1.1) plays an important role in Na+ and K+ homeostasis. ROMK knockout (KO) mice show a similar phenotype to Bartter's syndrome of salt wasting and dehydration due to reduced Na-2Cl-K-cotransporter activity but not in ROMK1 KO mice. ROMK KO mice also show hydronephrosis; however, the mechanism of this phenotype has not been understood. We have previously demonstrated a gender-sex difference in hydronephrosis and PGE2 production in ROMK KO mice. In this study we compared the gender-sex difference in bladder hypertrophy and hydronephrosis in ROMK KO mice. The bladder weight, bladder capacity, and the thickness of urothelium in male ROMK KO showed average increased two to approximately fourfold greater than wild-type (WT) mice, but there was no difference in either female or ROMK1 KO mice. The thickness of the urothelium was 648.8 ± 33.2 µm vs. 302.7 ± 16.5 µm ( P < 0.001) and the detrusor muscle 1,940.7 ± 98.9 µm vs. 1,308.2 ± 102.1 µm ( P = 0.013), respectively, in 12-mo male ROMK KO mice compared with the same age WT mice. Western blotting detected ROMK expression at 45~48 kDa, and both ROMK1 and ROMK2 mRNA were detected by quantitative PCR in the bladder. Immunofluorescence staining showed ROMK stained in the bladder, ureter, and urethra in WT but not in KO. In addition, there was a correlation between the severity of hydronephrosis and the bladder weight in male but not in female ROMK KO mice. In conclusion, ROMK expressed in the urinary tract at both protein and mRNA levels; significant enlargement and hypertrophy of the bladder may contribute to hydronephrosis in male ROMK KO mice.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| | - Xiaoyun Guo
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| | - Haiyan Hu
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| | - Ke Dong
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine , New Haven, Connecticut
| |
Collapse
|
46
|
Vedula EM, Alonso JL, Arnaout MA, Charest JL. A microfluidic renal proximal tubule with active reabsorptive function. PLoS One 2017; 12:e0184330. [PMID: 29020011 PMCID: PMC5636065 DOI: 10.1371/journal.pone.0184330] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
In the kidney, the renal proximal tubule (PT) reabsorbs solutes into the peritubular capillaries through active transport. Here, we replicate this reabsorptive function in vitro by engineering a microfluidic PT. The microfluidic PT architecture comprises a porous membrane with user-defined submicron surface topography separating two microchannels representing a PT filtrate lumen and a peritubular capillary lumen. Human PT epithelial cells and microvascular endothelial cells in respective microchannels created a PT-like reabsorptive barrier. Co-culturing epithelial and endothelial cells in the microfluidic architecture enhanced viability, metabolic activity, and compactness of the epithelial layer. The resulting tissue expressed tight junctions, kidney-specific morphology, and polarized expression of kidney markers. The microfluidic PT actively performed sodium-coupled glucose transport, which could be modulated by administration of a sodium-transport inhibiting drug. The microfluidic PT reproduces human physiology at the cellular and tissue levels, and measurable tissue function which can quantify kidney pharmaceutical efficacy and toxicity.
Collapse
Affiliation(s)
- Else M. Vedula
- Biomedical Microsystems Group, Draper, Cambridge, Massachusetts, United States of America
| | - José Luis Alonso
- Leukocyte Biology and Inflammation Program, Department of Medicine, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - M. Amin Arnaout
- Leukocyte Biology and Inflammation Program, Department of Medicine, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail: (JLC); (MAA)
| | - Joseph L. Charest
- Biomedical Microsystems Group, Draper, Cambridge, Massachusetts, United States of America
- * E-mail: (JLC); (MAA)
| |
Collapse
|
47
|
Li J, Hatano R, Xu S, Wan L, Yang L, Weinstein AM, Palmer L, Wang T. Gender difference in kidney electrolyte transport. I. Role of AT 1a receptor in thiazide-sensitive Na +-Cl - cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 2017; 313:F505-F513. [PMID: 28566500 DOI: 10.1152/ajprenal.00087.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
We studied gender differences in Na+-Cl- cotransporter (NCC) activity and expression in wild-type (WT) and AT1a receptor knockout (KO) mice. In renal clearance experiments, urine volume (UV), glomerular filtration rate, absolute Na+ (ENa) and K+ (EK), and fractional Na+ (FENa) and K+ excretion were measured and compared at peak changes after bolus intravenous injection of hydrochlorothiazide (HCTZ; 30 mg/kg). In WT, females responded more strongly than males to HCTZ, with larger fractional increases of UV (7.8- vs. 3.4-fold), ENa (11.7- vs. 5.7-fold), FENa (7.9- vs. 4.9-fold), and EK (2.8- vs. 1.4-fold). In contrast, there were no gender differences in the responses to the diuretic in KO mice; HCTZ produced greater effects on male KO than on WT but similar effects on females. In WT, total (tNCC) and phosphorylated (pNCC) NCC protein expressions were 1.8- and 4.6-fold higher in females compared with males (P < 0.05), consistent with the larger response to HCTZ. In KO mice, tNCC and pNCC increased significantly in males to levels not different from those in females. There were no gender differences in the expression of the Na+/H+ exchanger (NHE3) in WT; NHE3 protein decreased to similar extents in male and female KO animals, suggesting AT1a-mediated NHE3 expression in proximal tubules. The resulting increase in delivery of NaCl to the distal nephron may underlie increased NCC expression and activity in mice lacking the AT1a receptor.
Collapse
Affiliation(s)
- Jing Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.,Department of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Ryo Hatano
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Shuhua Xu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Laxiang Wan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Lei Yang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Lawrence Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
48
|
Wang T, Weinbaum S, Weinstein AM. Regulation of glomerulotubular balance: flow-activated proximal tubule function. Pflugers Arch 2017; 469:643-654. [PMID: 28271233 DOI: 10.1007/s00424-017-1960-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to summarize our knowledge and understanding of the physiological importance and the mechanisms underlying flow-activated proximal tubule transport. Since the earliest micropuncture studies of mammalian proximal tubule, it has been recognized that tubular flow is an important regulator of sodium, potassium, and acid-base transport in the kidney. Increased fluid flow stimulates Na+ and HCO3- absorption in the proximal tubule via stimulation of Na/H-exchanger isoform 3 (NHE3) and H+-ATPase. In the proximal tubule, brush border microvilli are the major flow sensors, which experience changes in hydrodynamic drag and bending moment as luminal flow velocity changes and which transmit the force of altered flow to cytoskeletal structures within the cell. The signal to NHE3 depends upon the integrity of the actin cytoskeleton; the signal to the H+-ATPase depends upon microtubules. We have demonstrated that alterations in fluid drag impact tubule function by modulating ion transporter availability within the brush border membrane of the proximal tubule. Beyond that, there is evidence that transporter activity within the peritubular membrane is also modulated by luminal flow. Secondary messengers that regulate the flow-mediated tubule function have also been delineated. Dopamine blunts the responsiveness of proximal tubule transporters to changes in luminal flow velocity, while a DA1 antagonist increases flow sensitivity of solute reabsorption. IP3 receptor-mediated intracellular Ca2+ signaling is critical to transduction of microvillus drag. In this review, we summarize our findings of the regulatory mechanism of flow-mediated Na+ and HCO3- transport in the proximal tubule and review available information about flow sensing and regulatory mechanism of glomerulotubular balance.
Collapse
Affiliation(s)
- Tong Wang
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, City College of New York, CUNY, New York, NY, USA
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
49
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
50
|
Huang TH, Sun CK, Chen YL, Wang CJ, Yin TC, Lee MS, Yip HK. Shock Wave Enhances Angiogenesis through VEGFR2 Activation and Recycling. Mol Med 2016; 22:850-862. [PMID: 27925633 DOI: 10.2119/molmed.2016.00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/11/2016] [Indexed: 01/04/2023] Open
Abstract
Although low-energy shock wave (SW) is adopted to treat ischemic diseases because of its pro-angiogenic properties, the underlying mechanism remains unclear. This study aimed at testing whether SW-induced angiogenesis may be through endothelial vascular endothelial growth factor receptor 2 (VEGFR2) signaling and trafficking. Phosphorylation of VEGFR2-Akt-eNOS axis and production of nitric oxide (NO) were determined in human umbilical vein endothelial cells (HUVECs) treated with SW. Carotid artery in ob/ob mice was treated with SW before evaluation with sprouting assay. Critical limb ischemia was induced in ob/ob mice to evaluate blood flow recovery after SW treatment. Tube formation and migration assays were also performed with/without SW treatment in the presence/absence of SU5416 (VEGFR2 kinase inhibitor) and siRNA-driven silencing of VEGFR2. Chloroquine was used for disrupting endosome, and Rab11a controlling slow endocytic recycling was silenced with siRNA in vitro. Following SW treatment, augmented ligand-independent phosphorylation in VEGFR2-Akt-eNOS axis and endogenous NO production, increased cellular migration and tube formation, elevated sprouting of carotid artery and blood flow in ischemic limb in ob/ob mice were noted. Moreover, SU5416 and VEGFR2 silencing both inhibited SW-induced angiogenesis. SW-induced angiogenesis, which was accompanied by increased VEGFR2 protein expression without transcriptional change, was suppressed by chloroquine and Rab11a silencing. We concluded that SW enhanced angiogenesis via ligand-independent activation of VEGFR2 and further prolonged through endosome-to-plasma membrane recycling in endothelial cells.
Collapse
Affiliation(s)
- Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, 82445, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Department of Nursing, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|