1
|
Grobben M, Bakker M, Schriek AI, Levels LJ, Umotoy JC, Tejjani K, van Breemen MJ, Lin RN, de Taeye SW, Ozorowski G, Kootstra NA, Ward AB, Kent SJ, Hogarth PM, Wines BD, Sanders RW, Chung AW, van Gils MJ. Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression. PLoS Pathog 2024; 20:e1012739. [PMID: 39661636 PMCID: PMC11634010 DOI: 10.1371/journal.ppat.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies.
Collapse
Affiliation(s)
- Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Liesbeth J.J. Levels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C. Umotoy
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mariëlle J. van Breemen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Ryan N. Lin
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Steven W. de Taeye
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Neeltje A. Kootstra
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Andrew B. Ward
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Stephen J. Kent
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
- Alfred Hospital and Central Clinical School, Monash University, Melbourne Sexual Health Centre and Department of Infectious Diseases, Melbourne, Australia
| | - P. Mark Hogarth
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Bruce D. Wines
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, New York, United States of America
| | - Amy W. Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
3
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ao Y, Grover JR, Han Y, Zhong G, Qin W, Ghimire D, Haque A, Bhattacharjee R, Zhang B, Arthos J, Lemke EA, Kwong PD, Lu M. An intact amber-free HIV-1 system for in-virus protein bioorthogonal click labeling that delineates envelope conformational dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530526. [PMID: 36909529 PMCID: PMC10002649 DOI: 10.1101/2023.02.28.530526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The HIV-1 envelope (Env) glycoprotein is conformationally dynamic and mediates membrane fusion required for cell entry. Single-molecule fluorescence resonance energy transfer (smFRET) of Env using peptide tags has provided mechanistic insights into the dynamics of Env conformations. Nevertheless, using peptide tags risks potential effects on structural integrity. Here, we aim to establish minimally invasive smFRET systems of Env on the virus by combining genetic code expansion and bioorthogonal click chemistry. Amber stop-codon suppression allows site-specifically incorporating noncanonical/unnatural amino acids (ncAAs) at introduced amber sites into proteins. However, ncAA incorporation into Env (or other HIV-1 proteins) in the virus context has been challenging due to low copies of Env on virions and incomplete amber suppression in mammalian cells. Here, we developed an intact amber-free virus system that overcomes impediments from preexisting ambers in HIV-1. Using this system, we successfully incorporated dual ncAAs at amber-introduced sites into Env on intact virions. Dual-ncAA incorporated Env retained similar neutralization sensitivities to neutralizing antibodies as wildtype. smFRET of click-labeled Env on intact amber-free virions recapitulated conformational profiles of Env. The amber-free HIV-1 infectious system also permits in-virus protein bioorthogonal labeling, compatible with various advanced microscopic studies of virus entry, trafficking, and egress in living cells. Amber-free HIV-1 infectious systems actualized minimal invasive Env tagging for smFRET, versatile for in-virus bioorthogonal click labeling in advanced microscopic studies of virus-host interactions.
Collapse
|
5
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Thomas AS, Coote C, Moreau Y, Isaac JE, Ewing AC, Kourtis AP, Sagar M. Antibody-dependent cellular cytotoxicity (ADCC) responses along with ADCC susceptibility influence HIV-1 mother to child transmission. JCI Insight 2022; 7:159435. [PMID: 35324477 PMCID: PMC9090239 DOI: 10.1172/jci.insight.159435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HIV-1 vaccine efforts are primarily directed towards eliciting neutralizing antibodies (nAbs). However, vaccine trials and mother to child natural history cohort investigations indicate that antibody-dependent cellular cytotoxicity (ADCC), not nAbs, correlate with prevention. The ADCC characteristics associated with lack of HIV-1 acquisition remain unclear. METHODS Here we examine ADCC and nAb properties in pre-transmission plasma from HIV-1 exposed infants and from the corresponding transmitting and non-transmitting mothers' breast milk and plasma. Breadth and potency (BP) is assessed against a panel of heterologous, non-maternal, variants. ADCC and neutralization sensitivity is estimated for the strains present in the infected mothers. RESULTS Infants that eventually acquire HIV-1 and those that remain uninfected have similar pre-transmission ADCC BP. The viruses circulating in the transmitting and the non-transmitting mothers also have similar ADCC susceptibility. Infants with a combination of higher pre-transmission ADCC BP and exposure to more ADCC susceptible strains are less likely to acquire HIV-1. In contrast, higher pre-existing infant neutralization BP and greater maternal virus neutralization sensitivity does not associate with transmission. Infants have higher ADCC BP closer to birth and in the presence of high plasma IgG relative to IgA levels. Mothers with potent humoral responses against their autologous viruses harbor more ADCC sensitive strains. CONCLUSION ADCC sensitivity of the exposure variants along with preexisting ADCC BP influence mother to child HIV-1 transmission during breastfeeding. Vaccination strategies that enhance ADCC responses are likely not sufficient to prevent HIV-1 transmission because strains present in chronically infected individuals can have low ADCC susceptibility. TRIAL REGISTRATION NCT00164736 for BAN study.
Collapse
Affiliation(s)
- Allison S Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, United States of America
| | - Carolyn Coote
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - John E Isaac
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Alexander C Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Athena P Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, United States of America
| |
Collapse
|
8
|
Mielke D, Bandawe G, Zheng J, Jones J, Abrahams MR, Bekker V, Ochsenbauer C, Garrett N, Abdool Karim S, Moore PL, Morris L, Montefiori D, Anthony C, Ferrari G, Williamson C. ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathog 2021; 17:e1010046. [PMID: 34788337 PMCID: PMC8598021 DOI: 10.1371/journal.ppat.1010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.
Collapse
Affiliation(s)
- Dieter Mielke
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Malawi University of Science and Technology, Thyolo, Malawi
| | - Jie Zheng
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Jennifer Jones
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Christina Ochsenbauer
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Penny L. Moore
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Colin Anthony
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
9
|
Cheng HD, Dowell KG, Bailey-Kellogg C, Goods BA, Love JC, Ferrari G, Alter G, Gach J, Forthal DN, Lewis GK, Greene K, Gao H, Montefiori DC, Ackerman ME. Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology 2021; 18:35. [PMID: 34717659 PMCID: PMC8557579 DOI: 10.1186/s12977-021-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
Collapse
Affiliation(s)
- Hao D. Cheng
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| | - Karen G. Dowell
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Chris Bailey-Kellogg
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Brittany A. Goods
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Christopher Love
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Guido Ferrari
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Galit Alter
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139 USA
| | - Johannes Gach
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - Donald N. Forthal
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - George K. Lewis
- grid.411024.20000 0001 2175 4264Division of Vaccine Research, Institute of Human Virology, University Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kelli Greene
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Hongmei Gao
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Margaret E. Ackerman
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| |
Collapse
|
10
|
Md Zahid H, Kuwata T, Takahama S, Kaku Y, Biswas S, Matsumoto K, Tamamura H, Matsushita S. Functional analysis of a monoclonal antibody reactive against the C1C2 of Env obtained from a patient infected with HIV-1 CRF02_AG. Retrovirology 2021; 18:23. [PMID: 34419098 PMCID: PMC8379604 DOI: 10.1186/s12977-021-00568-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and the C1C2 region mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. Results We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to the C1C2 of gp120, and 1E5 binds to 27 out of 35 strains (77 %) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and 4E9C (anti-CoRBS antibody), but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-C1C2 antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of 1E5, A32 and 4E9C mediated a strong ADCC activity. Conclusions These results suggest that anti-C1C2 antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00568-y.
Collapse
Affiliation(s)
- Hasan Md Zahid
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shokichi Takahama
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kaho Matsumoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
11
|
Tomescu C, Kroll K, Colon K, Papasavvas E, Frank I, Tebas P, Mounzer K, Reeves RK, Montaner LJ. Identification of the predominant human NK cell effector subset mediating ADCC against HIV-infected targets coated with BNAbs or plasma from PLWH. Eur J Immunol 2021; 51:2051-2061. [PMID: 34086344 DOI: 10.1002/eji.202149188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022]
Abstract
The potential of immunotherapy strategies utilizing broadly neutralizing antibodies (BNAbs), such as 3BNC117 and 10-1074, to limit viral replication while also facilitating clearance of HIV infected cells has heightened interest in identifying the predominant NK effector subset(s) capable of mediating antibody dependent cellular cytotoxicity (ADCC). Utilizing advanced polychromatic flow cytometry, we identified that CD57 positive NK cells from ART-suppressed in People Living With HIV (PLWH) expressed significantly higher levels of the CD16 FcγR receptor, 2B4 ADCC coreceptor, and HLA-DR activation marker while NKG2C positive NK cells expressed significantly higher levels of the CD2 ADCC coreceptor (p < 0.001, n = 32). Functionally, CD57 positive NK cells from ART-suppressed PLWH with either high or low NKG2C expansion exhibited significantly enhanced degranulation and IFN-γ production against heterologous gp120-coated ADCC targets coated with HIV reference plasma compared to CD57 negative NK cells (p = 0.0029, n = 11). CD57 positive NK cells from control donors lacking NKG2C expansion also exhibited significantly more degranulation and IFN-γ production at every timepoint tested against both heterologous ADCC targets (p = 0.019, n = 9) and HIV-1 infected autologous CD4+ primary T cells coated with BNAbs. Together, our data support CD57 positive and NKG2C positive NK cells as the predominant ADCC effector subsets capable of targeting HIV-infected CD4+ cells in the presence of 3BNC117 and 10-1074 immunotherapy.
Collapse
Affiliation(s)
- Costin Tomescu
- HIV Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Krystal Colon
- HIV Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, USA
| | | | - Ian Frank
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Roger Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - Luis J Montaner
- HIV Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
12
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Abstract
Acquired immunodeficiency syndrome (AIDS) was first reported more than 30 years ago among homosexuals in the United States. The epidemiology of this disease indicates that there are three modes of transmission: Blood, mother-to-child, and sexual contact transmission. The pathogen of AIDS is human immunodeficiency virus (HIV), primarily HIV-1. HIV-1 could not break through the structurally and functionally integral skin, and primarily invades the human body through the mucosa irrespective of their integrity. Therefore, the mucosae are the natural transmission routes for HIV-1. The mucosae involved in HIV-1 transmission include the mucosae of the gastrointestinal tract and the urogenital tract. The risks of HIV-1 transmission vary significantly between mucosal sites and individuals, and are associated with mucosal integrity, abundance of target cells, immune status of the host, commensal microbes, and host genetic background. Many factors are closely related to the barrier function of the mucosa, and studies on their roles in HIV-1 invasion could promote the prevention and control of mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
14
|
Sherburn R, Tolbert WD, Gottumukkala S, Beaudoin-Bussières G, Finzi A, Pazgier M. Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms 2020; 8:microorganisms8101490. [PMID: 32998443 PMCID: PMC7650682 DOI: 10.3390/microorganisms8101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence: ; Tel.: +301-295-3291; Fax: +301-295-355
| |
Collapse
|
15
|
An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. J Virol 2020; 94:JVI.01175-20. [PMID: 32554699 DOI: 10.1128/jvi.01175-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV vaccine field now recognizes the potential importance of generating polyfunctional antibodies (Abs). The only clinical HIV vaccine trial to date to show significant efficacy (RV144) found that reduced infection rates correlated with the level of nonneutralizing Abs specific for the V2 region of the envelope glycoprotein. We have conducted a comprehensive preclinical reverse vaccinology-based vaccine program that has included the design and production and testing of numerous scaffolded V2 region immunogens. The most immunogenic vaccine regimen in nonhuman primates among those studied as part of this program consisted of a cocktail of three immunogens presenting V2 from different viruses and clades in the context of different scaffolds. Presently we demonstrate that the V2-specific Ab response from this regimen was highly durable and functionally diverse for the duration of the study (25 weeks after the final immunization). The total IgG binding response at this late time point exhibited only an ∼5× reduction in potency. Three immunizations appeared essential for the elicitation of a strong Ab-dependent cellular cytotoxicity (ADCC) response for all animals, as opposed to the Ab-dependent cellular phagocytosis (ADCP) and virus capture responses, which were comparably potent after only 2 immunizations. All functionalities measured were highly durable through the study period. Therefore, testing this vaccine candidate for its protective capacity is warranted.IMPORTANCE The only HIV vaccine trial for which protective efficacy was detected correlated this efficacy with V2-specific Abs that were effectively nonneutralizing. This result has fueled a decade of HIV vaccine research focused on designing an HIV vaccine capable of eliciting V2-focused, polyfunctional Abs that effectively bind HIV and trigger various leukocytes to kill the virus and restrict viral spread. From the numerous vaccine candidates designed and tested as part of our V2-focused preclinical vaccine program, we have identified immunogens and a vaccine regimen that induces a highly durable and polyfunctional V2-focused Ab response in rhesus macaques, described herein.
Collapse
|
16
|
Fisher KL, Mabuka JM, Sivro A, Ngcapu S, Passmore JAS, Osman F, Ndlovu B, Abdool Karim Q, Abdool Karim SS, Chung AW, Baxter C, Archary D. Topical Tenofovir Pre-exposure Prophylaxis and Mucosal HIV-Specific Fc-Mediated Antibody Activities in Women. Front Immunol 2020; 11:1274. [PMID: 32733445 PMCID: PMC7357346 DOI: 10.3389/fimmu.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
The RV144 HIV-vaccine trial highlighted the importance of envelope-specific non-neutralizing antibody (nNAb) Fc-mediated functions as immune correlates of reduced risk of infection. Since pre-exposure prophylaxis (PrEP) and HIV-vaccines are being used as a combination prevention strategy in at risk populations, the effects of PrEP on nNAb functions both mucosally and systemically remain undefined. Previous animal and human studies demonstrated reduced HIV-specific antibody binding avidity post-HIV seroconversion with PrEP, which in turn may affect antibody functionality. In seroconverters from the CAPRISA 004 tenofovir gel trial, we previously reported significantly higher detection and titres of HIV-specific binding antibodies in the plasma and genital tract (GT) that distinguished the tenofovir from the placebo arm. We hypothesized that higher HIV-specific antibody titres and detection reflected corresponding increased antibody-dependent neutrophil-mediated phagocytosis (ADNP) and NK-cell-activated antibody-dependent cellular cytotoxic (ADCC) activities. HIV-specific V1V2-gp70, gp120, gp41, p66, and p24 antibodies in GT and plasma samples of 48 seroconverters from the CAPRISA 004 tenofovir gel trial were tested for ADCP and ADCC at 3, 6- and 12-months post-HIV-infection. GT gp41- and p24-specific ADNP were significantly higher in the tenofovir than the placebo arm at 6 and 12 months respectively (p < 0.05). Plasma gp120-, gp41-, and p66-specific ADNP, and GT gp41-specific ADCC increased significantly over time (p < 0.05) in the tenofovir arm. In the tenofovir arm only, significant inverse correlations were observed between gp120-specific ADCC and gp120-antibody titres (r = −0.54; p = 0.009), and gp41-specific ADNP and gp41-specific antibody titres at 6 months post-infection (r = −0.50; p = 0.015). In addition, in the tenofovir arm, gp41-specific ADCC showed significant direct correlations between the compartments (r = 0.53; p = 0.045). Certain HIV-specific nNAb activities not only dominate specific immunological compartments but can also exhibit diverse functions within the same compartment. Our previous findings of increased HIV specific antibody detection and titres in women who used tenofovir gel, and the limited differences in nNAb activities between the arms, suggest that prior PrEP did not modulate these nNAb functions post-HIV seroconversion. Together these data provide insight into envelope-specific-nNAb Fc-mediated functions at the site of exposure which may inform on ensuing immunity during combination HIV prevention strategies including PrEP and HIV vaccines.
Collapse
Affiliation(s)
- Kimone Leigh Fisher
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer M Mabuka
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jo-Ann Shelley Passmore
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Rare patients naturally control HIV replication without antiretroviral therapy. Understanding the mechanisms implicated in natural HIV control will inform the development of immunotherapies against HIV. Elite controllers are known for developing efficient antiviral T-cell responses, but recent findings suggest that antibody responses also play a significant role in HIV control. We review the key studies that uncovered a potent memory B-cell response and highly functional anti-HIV antibodies in elite controllers, and explore the mechanisms that may account for the distinct properties of their humoral response. RECENT FINDINGS Elite controllers maintain a large HIV-specific memory B-cell pool that is sustained by efficient T follicular helper function. Neutralizing antibody rarely show high titers in controllers, but seem capable, at least in certain cases, of neutralizing contemporaneous viral strains. In addition, elite controllers display a unique HIV-specific antibody profile in terms of isotype, antigen specificity, and glycosylation pattern, resulting in polyfunctional antibody effector functions that may promote infected cell lysis and prime effectors of the antiviral immune response. SUMMARY Lessons from elite controller studies argue for the importance of integrating the many parameters defining a polyfunctional antibody response when evaluating candidate vaccines and immunotherapeutic approaches directed at HIV.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Although the goal of preventive HIV vaccine design is primarily the induction of broadly neutralizing antibodies (bNAbs), recent evidence suggests that a protective response will also benefit from Fc effector functions. Here, we provide an update on the antibody response to HIV infection, including both Fab and Fc-mediated antibody responses. We also highlight recent studies showing the interplay between these functions, focusing primarily on studies published in the last year. RECENT FINDINGS Identification and characterization of bNAb donors continues to provide insights into viral factors that are potentially translatable to vaccine design. Improved and more diverse measures of Fc effector function, and modulators thereof, are enabling a deeper understanding of their role in infection. New data providing mechanistic links between the innate and adaptive humoral immune responses are creating exciting opportunities for vaccine strategies, with the aim of eliciting a polyfunctional protective response. SUMMARY New insights into the overall humoral response to HIV infection are defining diverse and synergistic mechanisms required for antibody protection from HIV through vaccination.
Collapse
|
19
|
Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020; 12:v12030276. [PMID: 32121563 PMCID: PMC7150983 DOI: 10.3390/v12030276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza causes millions of cases of hospitalizations annually and remains a public health concern on a global scale. Vaccines are developed and have proven to be the most effective countermeasures against influenza infection. Their efficacy has been largely evaluated by hemagglutinin inhibition (HI) titers exhibited by vaccine-induced neutralizing antibodies, which correlate fairly well with vaccine-conferred protection. Contrarily, non-neutralizing antibodies and their therapeutic potential are less well defined, yet, recent advances in anti-influenza antibody research indicate that non-neutralizing Fc-effector activities, especially antibody-dependent cellular cytotoxicity (ADCC), also serve as a critical mechanism in antibody-mediated anti-influenza host response. Monoclonal antibodies (mAbs) with Fc-effector activities have the potential for prophylactic and therapeutic treatment of influenza infection. Inducing mAbs mediated Fc-effector functions could be a complementary or alternative approach to the existing neutralizing antibody-based prevention and therapy. This review mainly discusses recent advances in Fc-effector functions, especially ADCC and their potential role in influenza countermeasures. Considering the complexity of anti-influenza approaches, future vaccines may need a cocktail of immunogens in order to elicit antibodies with broad-spectrum protection via multiple protective mechanisms.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Zizhang Sheng
- Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- Correspondence: (D.W.); (F.L.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence: (D.W.); (F.L.)
| |
Collapse
|
20
|
Mielke D, Bandawe G, Pollara J, Abrahams MR, Nyanhete T, Moore PL, Thebus R, Yates NL, Kappes JC, Ochsenbauer C, Garrett N, Abdool Karim S, Tomaras GD, Montefiori D, Morris L, Ferrari G, Williamson C. Antibody-Dependent Cellular Cytotoxicity (ADCC)-Mediating Antibodies Constrain Neutralizing Antibody Escape Pathway. Front Immunol 2019; 10:2875. [PMID: 31921139 PMCID: PMC6919271 DOI: 10.3389/fimmu.2019.02875] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Both neutralization and antibody-dependent cellular cytotoxicity (ADCC) may be required for effective protection against HIV-1 infection. While there is extensive information on the targets of early neutralizing antibody (nAb) responses, much less is known about the targets of ADCC responses, which are more difficult to characterize. In four individuals recruited during acute HIV-infection, ADCC responses were detected 3-7 weeks prior to nAb responses. To determine the relative influence of ADCC and nAb responses on virus evolution, we performed an in-depth investigation of one individual (CAP63) who showed the highest nAb and ADCC responses. Both nAbs and ADCC antibodies targeted the V4 region of the Env, although there were some differences in epitope recognition. We identified accelerated viral evolution in this region concurrent with emergence of nAb activity, but not ADCC activity. Deep sequencing demonstrated that most nAb escape mutations were strongly selected for, however one nAb escape mutation that rendered the virus highly susceptible to autologous ADCC responses, was suppressed despite not affecting viral fitness. This escape mutation also rendered the virus more sensitive to autologous responses, as well as monoclonal antibodies targeting CD4-induced epitopes, compared to the wildtype virus. In conclusion, ADCC responses and nAbs in donor CAP63 recognized overlapping but unique epitopes in the V4 region, and while ADCC activity was present prior to nAbs, it did not drive viral evolution during this time. However, ADCC responses may select against nAb escape pathways that expose other common ADCC epitopes thereby restricting viral replication and expansion.
Collapse
Affiliation(s)
- Dieter Mielke
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Justin Pollara
- Duke University Medical Center, Durham, NC, United States
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Penny L Moore
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, University of Witwaterstrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Ruwayhida Thebus
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole L Yates
- Duke University Medical Center, Durham, NC, United States
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Research Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Department of Epidemiology, Columbia University, New York, NY, United States
| | | | | | - Lynn Morris
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, University of Witwaterstrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Guido Ferrari
- Duke University Medical Center, Durham, NC, United States
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
21
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Understudied Factors Influencing Fc-Mediated Immune Responses against Viral Infections. Vaccines (Basel) 2019; 7:vaccines7030103. [PMID: 31480293 PMCID: PMC6789852 DOI: 10.3390/vaccines7030103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Antibodies play a crucial role in host defense against viruses, both by preventing infection and by controlling viral replication. Besides their capacity to neutralize viruses, antibodies also exert their antiviral effects by crystallizable fragment (Fc)-mediated effector mechanisms. This involves a bridge between innate and adaptive immune systems, wherein antibodies form immune complexes that drive numerous innate immune effector functions, including antibody-dependent cellular cytotoxicity, antibody-dependent complement-mediated lysis, and antibody-dependent phagocytosis. Here, we review certain mechanisms that modulate these antibody-mediated effector functions against virally infected cells, such as viral glycoprotein shedding, viral glycoprotein internalization, antibody cooperativity, and antibody glycosylation. These mechanisms can either protect viral replication or enhance infected cell clearance. Here we discuss the importance of these understudied factors in modulating Fc-mediated effector functions.
Collapse
|
23
|
Anand SP, Grover JR, Tolbert WD, Prévost J, Richard J, Ding S, Baril S, Medjahed H, Evans DT, Pazgier M, Mothes W, Finzi A. Antibody-Induced Internalization of HIV-1 Env Proteins Limits Surface Expression of the Closed Conformation of Env. J Virol 2019; 93:e00293-19. [PMID: 30894474 PMCID: PMC6532100 DOI: 10.1128/jvi.00293-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/16/2019] [Indexed: 01/10/2023] Open
Abstract
To minimize immune responses against infected cells, HIV-1 limits the surface expression of its envelope glycoprotein (Env). Here, we demonstrate that this mechanism is specific for the Env conformation and affects the efficiency of antibody-dependent cellular cytotoxicity (ADCC). Using flow cytometry and confocal microscopy, we show that broadly neutralizing antibodies (bNAbs) targeting the "closed" conformation of Env induce its internalization from the surface. In contrast, non-neutralizing antibodies (nNAbs) are displayed on the cell surface for prolonged period of times. The bNAb-induced Env internalization can be decreased by blocking dynamin function, which translates into higher susceptibilities of infected cells to ADCC. Our results suggest that antibody-mediated Env internalization is a mechanism used by HIV-1 to evade immune responses against the "closed" conformation of Env expressed on HIV-1-infected cells.IMPORTANCE HIV-1 has evolved to acquire several strategies to limit the exposure of its envelope glycoproteins (Env) on the surface of infected cells. In this study, we show that antibody-induced Env internalization is conformation specific and reduces the susceptibility of infected cells to antibody-dependent cellular cytotoxicity (ADCC). Thus, a better understanding of this mechanism might help develop antibodies with improved capacities to mediate ADCC.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Sophie Baril
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | | | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The design of an HIV vaccine remains an elusive but top priority. Data from the non-human primate model and the first moderately protective HIV vaccine trial (RV144) point to a role for qualitative changes in humoral immune functions in protection from infection. Here, we review the current understanding of the antibody response throughout HIV infection, the known correlates of protection, and current strategies to manipulate antibodies to put an end to the epidemic. RECENT FINDINGS Recent studies point to innate immune-recruiting antibody function in preventing infection as well as controlling viremia following infection. These data have begun to inform next-generation design of HIV vaccines and antibody therapies by uncovering new viral targets and antibody architectures to improve potency and breadth. Emerging data illustrate a role for innate immune recruiting-antibodies in conferring protection against HIV infection as well as promoting viral control and clearance, offering an unprecedented opportunity to modulate and improve antibody function to fight HIV more effectively.
Collapse
Affiliation(s)
- Audrey L. Butler
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Stephanie Fischinger
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| |
Collapse
|
25
|
Anti-HIV-1 antibody-dependent cellular cytotoxicity: is there more to antibodies than neutralization? Curr Opin HIV AIDS 2019; 13:160-166. [PMID: 29194123 DOI: 10.1097/coh.0000000000000439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW An increasing body of evidence suggests that nonneutralizing Fc effector functions including antibody-dependent cellular cytotoxicity (ADCC) contribute to protection against HIV-1 acquisition. We discuss recent advances in anti-HIV-1 ADCC research with a particular focus on ADCC mediated by Env-specific antibodies in vitro and in vivo, the curative potential of HIV-1-specific ADCC antibodies and the mechanisms of HIV-1 resistance to ADCC. RECENT FINDINGS ADCC activities of broadly neutralizing and nonneutralizing monoclonal antibody panels were recently characterized in vitro against several lab-adapted and primary isolates of HIV-1. ADCC activity of these monoclonal antibodies generally correlated with binding to infected cells and were greater against the lab-adapted strains compared with primary HIV-1 isolates. Several recent studies in mouse and macaque models of HIV-1 infection suggest Fc-mediated effector functions contribute to the protective efficacy of broadly neutralizing antibodies and exert immune pressure on HIV-1 in vivo. SUMMARY An increasing body of evidence suggests that ADCC-mediating antibodies, particularly when combined with neutralizing functions, can facilitate prevention and control of HIV-1. The precise mechanisms of partial protection conferred by nonneutralizing antibodies in vivo remain unclear and will need to be fully investigated in order to realize their full potential for HIV-1 vaccines.
Collapse
|
26
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
27
|
Anand SP, Prévost J, Baril S, Richard J, Medjahed H, Chapleau JP, Tolbert WD, Kirk S, Smith AB, Wines BD, Kent SJ, Hogarth PM, Parsons MS, Pazgier M, Finzi A. Two Families of Env Antibodies Efficiently Engage Fc-Gamma Receptors and Eliminate HIV-1-Infected Cells. J Virol 2019; 93:e01823-18. [PMID: 30429344 PMCID: PMC6340017 DOI: 10.1128/jvi.01823-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
HIV-1 conceals epitopes of its envelope glycoproteins (Env) recognized by antibody (Ab)-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These Abs, including anti-coreceptor binding site (CoRBS) and anti-cluster A antibodies, preferentially recognize Env in its "open" conformation. The binding of anti-CoRBS Abs has been shown to induce conformational changes that further open Env, allowing interaction of anti-cluster A antibodies. We explored the possibility that CoRBS Abs synergize with anti-cluster A Abs to engage Fc-gamma receptors to mediate ADCC. We found that binding of anti-CoRBS and anti-cluster A Abs to the same gp120 is required for interaction with soluble dimeric FcγRIIIa in enzyme-linked immunosorbent assays (ELISAs). We also found that Fc regions of both Abs are required to optimally engage FcγRIIIa and mediate robust ADCC. Taken together, our results indicate that these two families of Abs act together in a sequential and synergistic fashion to promote FcγRIIIa engagement and ADCC.IMPORTANCE The "open" CD4-bound conformation of HIV-1 envelope glycoproteins is the primary target of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies present in HIV-positive (HIV+) sera, such as anti-coreceptor binding site and anti-cluster A antibodies. Here we report that the binding of these two families of antibodies is required to engage FcγRIIIa and mediate ADCC.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sophie Baril
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sharon Kirk
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce D Wines
- Immune Therapies Group Burnet Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group Burnet Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
28
|
Tolbert WD, Sherburn RT, Van V, Pazgier M. Structural Basis for Epitopes in the gp120 Cluster A Region that Invokes Potent Effector Cell Activity. Viruses 2019; 11:v11010069. [PMID: 30654465 PMCID: PMC6357199 DOI: 10.3390/v11010069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
While a number of therapeutic options to control the progression of human immunodeficiency virus (HIV-1) now exist, a broadly effective preventive vaccine is still not available. Through detailed structural analysis of antibodies able to induce potent effector cell activity, a number of Env epitopes have been identified which have the potential to be considered vaccine candidates. These antibodies mainly target the gp120 Cluster A region which is only exposed upon viral binding to the target cell with epitopes becoming available for antibody binding during viral entry and fusion and, therefore, after the effective window for neutralizing antibody activity. This review will discuss recent advances in the structural characterization of these important targets with a special focus on epitopes that are involved in Fc-mediated effector function without direct viral neutralizing activities.
Collapse
Affiliation(s)
- William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Verna Van
- Department of Biochemistry and Molecular Biology of University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
29
|
Alrubayyi A, Schuetz A, Lal KG, Jongrakthaitae S, Paolino KM, Ake JA, Robb ML, de Souza MS, Michael NL, Paquin-Proulx D, Eller MA. A flow cytometry based assay that simultaneously measures cytotoxicity and monocyte mediated antibody dependent effector activity. J Immunol Methods 2018; 462:74-82. [PMID: 30148978 DOI: 10.1016/j.jim.2018.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Antibody effector functions such as antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP) are considered important immunologic parameters following results from the RV144 clinical trial where a reduced risk of infection was associated with non-neutralizing antibody against the V1/V2 region of HIV envelope. The rapid and fluorometric ADCC (RFADCC) assay has been widely used to measure ADCC, however, the mechanism behind the activity measured remains unclear. Here, we demonstrate that monocytes acquire the PKH26 dye used in the RFADCC assay and that the commonly used RFADCC readout correlates with phagocytosis. The RFADCC assay was combined with an amine reactive dye staining to confirm target cell killing. Interestingly, the majority of RFADCC and amine indices were mutually exclusive. In fact, the amine reactive assay results correlated with results from another assays that directly measure NK cell antibody effector functions not associated with phagocytosis. Together, this combined assay offers the opportunity to discriminate monocytes and NK cell antibody effector functions simultaneously.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kerri G Lal
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Surat Jongrakthaitae
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kristopher M Paolino
- Clinical Trials Center, Translational Medicine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mark S de Souza
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| |
Collapse
|
30
|
Parsons MS, Chung AW, Kent SJ. Importance of Fc-mediated functions of anti-HIV-1 broadly neutralizing antibodies. Retrovirology 2018; 15:58. [PMID: 30134945 PMCID: PMC6103878 DOI: 10.1186/s12977-018-0438-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 01/11/2023] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (BnAbs) exhibit an impressive capacity to protect against chimeric SIV-HIV (SHIV) challenges in macaques and potently reduce viremia in both SHIV-infected macaques and HIV-1-infected humans. There is a body of evidence suggesting Fc-mediated functions of anti-HIV-1 binding antibodies are important in protecting from infection and controlling viremia. The degree to which the efficacy of BnAbs is assisted by Fc-mediated functions is of great interest. Challenge experiments with the older generation BnAb b12 showed that mutating the Fc region to abrogate Fcγ receptor binding reduced protective efficacy in macaques. Similar data have been generated with newer BnAbs using murine models of HIV-1. In addition, the degree to which therapeutically administered BnAbs reduce viremia suggests that elimination of infected cells through Fc-mediated functions may contribute to their efficacy. Fc-mediated functions that eliminate infected cells may be particularly important for challenge systems involving cell-associated virus. Herein we review data regarding the importance of Fc-mediated functions of BnAbs in mediating protective immunity and control of viremia.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia. .,Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia.
| |
Collapse
|
31
|
The Potential Role of Fc-Receptor Functions in the Development of a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020027. [PMID: 29772781 PMCID: PMC6027188 DOI: 10.3390/vaccines6020027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Despite global vaccination efforts, influenza virus continues to cause yearly epidemics and periodic pandemics throughout most of the world. Many of us consider the generation of broader, potent and long-lasting immunity against influenza viruses as critical in curtailing the global health and economic impact that influenza currently plays. To date, classical vaccinology has relied on the generation of neutralizing antibodies as the benchmark to measure vaccine effectiveness. However, recent developments in numerous related fields of biomedical research including, HIV, HSV and DENV have emphasized the importance of Fc-mediate effector functions in pathogenesis and immunity. The concept of Fc effector functions in contributing to protection from illness is not a new concept and has been investigated in the field for over four decades. However, in recent years the application and study of Fc effector functions has become revitalized with new knowledge and technologies to characterize their potential importance in immunity. In this perspective, we describe the current state of the field of Influenza Fc effector functions and discuss its potential utility in universal vaccine design in the future.
Collapse
|
32
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|
33
|
Worley MJ, Fei K, Lopez-Denman AJ, Kelleher AD, Kent SJ, Chung AW. Neutrophils mediate HIV-specific antibody-dependent phagocytosis and ADCC. J Immunol Methods 2018; 457:41-52. [PMID: 29605231 DOI: 10.1016/j.jim.2018.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/28/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
There is growing evidence to support the role of Fc-mediated effector functions, such as Antibody-Dependent Cellular cytotoxicity (ADCC) and Antibody-Dependent Phagocytosis (ADP) in the protection and control of HIV. The RV144 trial and other recent HIV vaccine studies have highlighted the importance of ADCC responses in protection against HIV. The role of neutrophils, the most abundant leukocyte in the blood, has not been thoroughly evaluated for Fc-mediated effector functions to HIV. We optimized HIV-specific neutrophil ADCC and Antibody-Dependent Neutrophil Phagocytosis (ADNP) assays using freshly isolated primary human neutrophils from blood. We also developed methods to study ADP using the neutrophil-like HL-60 cell line. We found that neutrophils mediate both HIV-specific ADP and ADCC responses. In vitro, neutrophil-mediated ADCC responses peaked at 4 h, much faster than primary NK cell or monocyte-mediated responses. We detected a wide range of responses in the ADNP, HL-60 mediated ADP and ADCC across a cohort of 41 viremic antiretroviral therapy naïve HIV positive subjects. HL-60 and Neutrophil-mediated ADP and ADCC responses correlated well with each other, suggesting that they measure overlapping functions. The ADNP and HL-60 ADP inversely correlated with HIV viral load, suggesting that these antibody-mediated neutrophil-based assays should prove useful in dissecting HIV-specific immunity.
Collapse
Affiliation(s)
- Matthew J Worley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Kuangyu Fei
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; School of Medicine, Tsinghua University, Beijing, China
| | - Adam J Lopez-Denman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
34
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
35
|
Parsons MS, Cromer D, Davenport MP, Kent SJ. HIV Reactivation after Partial Protection by Neutralizing Antibodies. Trends Immunol 2018; 39:359-366. [PMID: 29366547 DOI: 10.1016/j.it.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/13/2023]
Abstract
It is widely thought that generating broadly neutralizing anti-HIV antibodies (BnAbs) will protect humans against HIV, given promising data from in vitro experiments and in vivo macaque studies. The primary action of BnAbs is preventing cell-free virus from entering cells. Recent in vitro and macaque data suggest that BnAbs are less potent against cell-associated virus exposure. We speculate that BnAb-based suppression of HIV transmission, particularly if mediated by cell-cell transmission, may result in some exposed subjects carrying a form of latent (or 'occult') HIV infection. Such largely hidden HIV infections may subsequently reactivate when BnAb levels decline. This concept has implications for the achievement of long-term sterilizing immunity to HIV.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
36
|
Chung AW, Alter G. Systems serology: profiling vaccine induced humoral immunity against HIV. Retrovirology 2017; 14:57. [PMID: 29268769 PMCID: PMC5740944 DOI: 10.1186/s12977-017-0380-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023] Open
Abstract
The results of the RV144 HIV vaccine, in combination with several recent non-human primate vaccine studies continue to highlight the potentially protective role of non-neutralizing Fc functional antibodies in HIV vaccine design. For many currently licensed vaccines, assays that detect antigen-specific antibody titers or neutralization levels have been used as a correlate of protection. However, antibodies can confer protection through multiple other mechanisms beyond neutralization, or mechanisms which are not dependent on total antibody titers. Alternative strategies that allow us to further understand the precise mechanisms by which antibodies confer protection against HIV and other infectious pathogens is vitally important for the development of future vaccines. Systems serology aims to comprehensively survey a diverse array of antibody features and functions, in order to simultaneously examine the mechanisms behind and distinguish the most important antibody features required for protection, thus identifying key targets for future experimental vaccine testing. This review will focus on the technical aspects required for the application of Systems serology and summarizes the recent advances provided by application of this systemic analytical approach.
Collapse
Affiliation(s)
- Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne, VIC, 3000, Australia.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
38
|
Mikulak J, Oriolo F, Zaghi E, Di Vito C, Mavilio D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017; 31:2317-2330. [PMID: 28926399 DOI: 10.1097/qad.0000000000001645] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Natural killer (NK) cells are important effectors of innate immunity playing a key role in the eradication and clearance of viral infections. Over the recent years, several studies have shown that HIV-1 pathologically changes NK cell homeostasis and hampers their antiviral effector functions. Moreover, high levels of chronic HIV-1 viremia markedly impair those NK cell regulatory features that normally regulate the cross talks between innate and adaptive immune responses. These pathogenic events take place early in the infection and are associated with a pathologic redistribution of NK cell subsets that includes the expansion of anergic CD56/CD16 NK cells with an aberrant repertoire of activating and inhibitory receptors. Nevertheless, the presence of specific haplotypes for NK cell receptors and the engagement of NK cell antibody-dependent cell cytotocity have been reported to control HIV-1 infection. This dichotomy can be extremely useful to both predict the clinical outcome of the infection and to develop alternative antiviral pharmacological approaches. Indeed, the administration of antiretroviral therapy in HIV-1-infected patients restores NK cell phenotype and functions to normal levels. Thus, antiretroviral therapy can help to develop NK cell-directed therapeutic strategies that include the use of broadly neutralizing antibodies and toll-like receptor agonists. The present review discusses how our current knowledge of NK cell pathophysiology in HIV-1 infection is being translated both in experimental and clinical trials aimed at controlling the infection and disease.
Collapse
|
39
|
Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017; 8:1431. [PMID: 29163506 PMCID: PMC5671973 DOI: 10.3389/fimmu.2017.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 (HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute phase and will persist throughout the course of infection. However, sustained stimulation of immune system by IFN-I also contributes greatly to host-mediated immunopathology and diseases progression. Although the protective effects of IFN-I in the acute phase of HIV-1 infection have been observed, more studies recently focus on their detrimental role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different immunocytes, and therapeutic prospects targeting the IFN-I system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Liu D, Wang C, Hora B, Zuo T, Goonetilleke N, Liu MKP, Berrong M, Ferrari G, McMichael AJ, Bhattacharya T, Perelson AS, Gao F. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 2017; 14:46. [PMID: 29017536 PMCID: PMC5634943 DOI: 10.1186/s12977-017-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Results Strongly selected mutations were identified by analyzing 5′-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. Conclusions The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Collapse
Affiliation(s)
- Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.,Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Bhavna Hora
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | | | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China. .,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein. J Virol 2017; 91:JVI.00937-17. [PMID: 28794022 DOI: 10.1128/jvi.00937-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.
Collapse
|
42
|
HIV-1 Env- and Vpu-Specific Antibody-Dependent Cellular Cytotoxicity Responses Associated with Elite Control of HIV. J Virol 2017; 91:JVI.00700-17. [PMID: 28701393 DOI: 10.1128/jvi.00700-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Studying HIV-infected individuals who control HIV replication (elite controllers [ECs]) enables exploration of effective anti-HIV immunity. HIV Env-specific and non-Env-specific antibody-dependent cellular cytotoxicity (ADCC) may contribute to protection from progressive HIV infection, but the evidence is limited. We recruited 22 ECs and matched them with 44 viremic subjects. HIV Env- and Vpu-specific ADCC responses in sera were studied using a novel enzyme-linked immunosorbent assay (ELISA)-based dimeric recombinant soluble FcγRIIIa (rsFcγRIIIa)-binding assay, surface plasmon resonance, antibody-dependent natural killer (NK) cell activation assays, and ADCC-mediated killing assays. ECs had higher levels of HIV Env-specific antibodies capable of binding FcγRIIIa, activating NK cells, and mediating granzyme B activity (all P < 0.01) than viremic subjects. ECs also had higher levels of antibodies against a C-terminal 13-mer Vpu peptide capable of mediating FcγRIIIa binding and NK cell activation than viremic subjects (both P < 0.05). Our data associate Env-specific and Vpu epitope-specific ADCC in effective immune responses against HIV among ECs. Our findings have implications for understanding the role of ADCC in HIV control.IMPORTANCE Understanding immune responses associated with elite control of HIV may aid the development of immunotherapeutic and vaccine strategies for controlling HIV infection. Env is a major HIV protein target of functional antibody responses that are heightened in ECs. Interestingly, EC antibodies also target Vpu, an accessory protein crucial to HIV, which degrades CD4 and antagonizes tetherin. Antibodies specific to Vpu are a common feature of the immune response of ECs that may prove to be of functional importance to the design of improved ADCC-based immunotherapy and preventative HIV vaccines.
Collapse
|
43
|
Lewis GK, Pazgier M, Evans DT, Ferrari G, Bournazos S, Parsons MS, Bernard NF, Finzi A. Beyond Viral Neutralization. AIDS Res Hum Retroviruses 2017; 33:760-764. [PMID: 28084796 PMCID: PMC5695748 DOI: 10.1089/aid.2016.0299] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has been known for more than 30 years that HIV-1 infection drives a very potent B cell response resulting in the production of anti-HIV-1 antibodies targeting several viral proteins, particularly its envelope glycoproteins (Env). Env epitopes are exposed on the surfaces of viral particles and infected cells where they are targets of potentially protective antibodies. These antibodies can interdict infection by neutralization and there is strong evidence suggesting that Fc-mediated effector function can also contribute to protection. Current evidence suggests that Fc-mediated effector function plays a role in protection against infection by broadly neutralizing antibodies and it might be important for protection by non-neutralizing antibodies. Fc-mediated effector function includes diverse mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), antibody-mediated complement activation, antibody-dependent cellular phagocytosis, antibody-dependent cell-mediated virus inhibition, antibody-mediated trancytosis inhibition, and antibody-mediated virus opsonization. All these functions could be beneficial in fighting viral infections, including HIV-1. In this perspective, we discuss the latest developments in ADCC research discussed at the HIVR4P satellite session on non-neutralizing antibodies, with emphasis on the mechanisms of ADCC resistance used by HIV-1, the structural basis of epitopes recognized by antibodies that mediate ADCC, natural killer-cell education and ADCC, and murine models to study ADCC against HIV-1.
Collapse
Affiliation(s)
- George K. Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marzena Pazgier
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York
| | - Matthew S. Parsons
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| |
Collapse
|
44
|
Horwitz JA, Bar-On Y, Lu CL, Fera D, Lockhart AAK, Lorenzi JCC, Nogueira L, Golijanin J, Scheid JF, Seaman MS, Gazumyan A, Zolla-Pazner S, Nussenzweig MC. Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 2017; 170:637-648.e10. [PMID: 28757252 DOI: 10.1016/j.cell.2017.06.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Structural Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Whelan Laboratory, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ainsley A K Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Susan Zolla-Pazner
- Zolla-Pazner Laboratory, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
45
|
Anti-HIV-1 ADCC Antibodies following Latency Reversal and Treatment Interruption. J Virol 2017; 91:JVI.00603-17. [PMID: 28539449 DOI: 10.1128/jvi.00603-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
There is growing interest in utilizing antibody-dependent cellular cytotoxicity (ADCC) to eliminate infected cells following reactivation from HIV-1 latency. A potential barrier is that HIV-1-specific ADCC antibodies decline in patients on long-term antiretroviral therapy (ART) and may not be sufficient to eliminate reactivated latently infected cells. It is not known whether reactivation from latency with latency-reversing agents (LRAs) could provide sufficient antigenic stimulus to boost HIV-1-specific ADCC. We found that treatment with the LRA panobinostat or a short analytical treatment interruption (ATI), 21 to 59 days, was not sufficient to stimulate an increase in ADCC-competent antibodies, despite viral rebound in all subjects who underwent the short ATI. In contrast, a longer ATI, 2 to 12 months, among subjects enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) trial robustly boosted HIV-1 gp120-specific Fc receptor-binding antibodies and ADCC against HIV-1-infected cells in vitro These results show that there is a lag between viral recrudescence and the boosting of ADCC antibodies, which has implications for strategies toward eliminating latently infected cells.IMPORTANCE The "shock and kill" HIV-1 cure strategy aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. Several latency reversing agents (LRAs) have been examined in vivo, but LRAs alone have not been able to achieve HIV-1 remission and prevent viral rebound following analytical treatment interruption (ATI). In this study, we examined whether LRA treatment or ATI can provide sufficient antigenic stimulus to boost HIV-1-specific functional antibodies that can eliminate HIV-1-infected cells. Our study has implications for the antigenic stimulus required for antilatency strategies and/or therapeutic vaccines to boost functional antibodies and assist in eliminating the latent reservoir.
Collapse
|
46
|
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Front Immunol 2017; 8:780. [PMID: 28725225 PMCID: PMC5495868 DOI: 10.3389/fimmu.2017.00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting "protective" HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients.
Collapse
Affiliation(s)
- Martyn A. French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| | - M. Christian Tjiam
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laila N. Abudulai
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
47
|
Ferrari G, Pollara J, Tomaras GD, Haynes BF. Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection. J Infect Dis 2017; 215:S152-S159. [PMID: 28520963 PMCID: PMC5410976 DOI: 10.1093/infdis/jiw555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir.
Collapse
Affiliation(s)
- Guido Ferrari
- Departments of Surgery.,Molecular Genetics and Microbiology and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Justin Pollara
- Departments of Surgery.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Georgia D Tomaras
- Departments of Surgery.,Immunology, and.,Molecular Genetics and Microbiology and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Barton F Haynes
- Medicine.,Immunology, and.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| |
Collapse
|
48
|
BST-2 Expression Modulates Small CD4-Mimetic Sensitization of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity. J Virol 2017; 91:JVI.00219-17. [PMID: 28331088 DOI: 10.1128/jvi.00219-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Antibodies recognizing conserved CD4-induced (CD4i) epitopes on human immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV-positive (HIV+) sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4 mimetics (CD4mc) that are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 upregulation in response to alpha interferon (IFN-α) was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and interleukin-27 (IL-27) also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals.IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication.
Collapse
|
49
|
Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. J Virol 2017; 91:JVI.02440-16. [PMID: 28122982 DOI: 10.1128/jvi.02440-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/19/2017] [Indexed: 01/23/2023] Open
Abstract
Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from infection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neutralize a large array of viral strains and mediate ADCC in cell culture. We analyzed the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18 HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individuals and transmitted-founder isolates. We report that the nnAbs bind poorly to cells infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our data show that the breadth of recognition of HIV-1 by nnAbs is narrow.
Collapse
|
50
|
Alvarez RA, Maestre AM, Law K, Durham ND, Barria MI, Ishii-Watabe A, Tada M, Kapoor M, Hotta MT, Rodriguez-Caprio G, Fierer DS, Fernandez-Sesma A, Simon V, Chen BK. Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG. JCI Insight 2017; 2:e88226. [PMID: 28239647 DOI: 10.1172/jci.insight.88226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell-based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.
Collapse
Affiliation(s)
- Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenneth Law
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Natasha D Durham
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Maria Ines Barria
- Division of Infectious Diseases, Department of Medicine, Immunology Institute.,Department of Microbiology, University of Concepcion, Concepcion, Chile
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathew T Hotta
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | | | - Daniel S Fierer
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Division of Infectious Diseases, Department of Medicine, Immunology Institute.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| |
Collapse
|