1
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
2
|
Jabloñski M, Luque GM, Gómez-Elías MD, Sanchez-Cardenas C, Xu X, de la Vega-Beltran JL, Corkidi G, Linares A, Abonza Amaro VX, Arenas-Hernandez A, Del Pilar Ramos-Godinez M, López-Saavedra A, Krapf D, Krapf D, Darszon A, Guerrero A, Buffone MG. Reorganization of the Flagellum Scaffolding Induces a Sperm Standstill During Fertilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546073. [PMID: 37904966 PMCID: PMC10614747 DOI: 10.1101/2023.06.22.546073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after AE and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.
Collapse
|
3
|
Krishnan D, Pandey M, Nayak S, Ghosh SK. Novel Insights into the Wattle and Daub Model of Entamoeba Cyst Wall Formation and the Importance of Actin Cytoskeleton. Pathogens 2023; 13:20. [PMID: 38251328 PMCID: PMC10818507 DOI: 10.3390/pathogens13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The "Wattle and Daub" model of cyst wall formation in Entamoeba invadens has been used to explain encystment in Entamoeba histolytica, the causal agent of amoebiasis, and this process could be a potential target for new antiamoebic drugs. In this study, we studied the morphological stages of chitin wall formation in E. invadens in more detail using fluorescent chitin-binding dyes and the immunolocalization of cyst wall proteins. It was found that chitin deposition was mainly initiated on the cell surface at a specific point or at different points at the same time. The cystic wall grew outward and gradually covered the entire surface of the cyst over time, following the model of Wattle and Daub. The onset of chitin deposition was guided by the localization of chitin synthase 1 to the plasma membrane, occurring on the basis of the Jacob lectin in the cell membrane. During encystation, F-actin was reorganized into the cortical region within the early stages of encystation and remained intact until the completion of the chitin wall. The disruption of actin polymerization in the cortical region inhibited proper wall formation, producing wall-less cysts or cysts with defective chitin walls, indicating the importance of the cortical actin cytoskeleton for proper cyst wall formation.
Collapse
Affiliation(s)
| | | | | | - Sudip K. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (D.K.); (M.P.); (S.N.)
| |
Collapse
|
4
|
Anand AS, Verma K, Amitabh, Prasad DN, Kohli E. The interplay of calponin, wnt signaling, and cytoskeleton protein governs transgenerational phenotypic abnormalities in drosophila exposed to zinc oxide nanoparticles. Chem Biol Interact 2023; 369:110284. [PMID: 36462549 DOI: 10.1016/j.cbi.2022.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
ZnO nanoparticles (ZnO NPs) are widely used engineered nanomaterials. Due to induced genotoxicity, increased oxidative stress, and teratogenicity, these NPs have been reported to be toxic. In the present study, we emphasise the role of vital proteins in regulating ZnO NP-induced abnormal phenotypes, particularly the deformed thorax and single wing in the Drosophila melanogaster progeny fed on 0.1-10 mM ZnO NPs. To understand how protein expression regulates this particular phenotype on ZnO NPs exposure, toxicoproteomics profile of control and abnormal phenotype flies was generated using LC/MS/MS. Gene ontology enrichment studies of proteomics data were carried out using CLUEGO and STRAP software. The bioinformatics tool STRING was used to generate a protein-protein interaction map of key proteins of enrichment analysis. Following ZnO NP exposure, the differential expression of key proteins of the Wnt pathway was prominent. Altered expression of various proteins of the Wnt pathway (CaMKII), cytoskeleton (Actin), and calponin resulted in developmental defects in drosophila progeny. In addition, immunohistology studies showed a significant deviation in the expression of wingless protein of ZnO NPs treated larvae in comparison to control. According to these findings, the interaction of the wnt pathway and cytoskeletal proteins with ZnO NPs caused developmental abnormalities in the subsequent generation of drosophila, highlighting the transgenerational toxic effects of these nanoparticles.
Collapse
Affiliation(s)
- Avnika Singh Anand
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Kalyani Verma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Amitabh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Dipti N Prasad
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Ekta Kohli
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
5
|
Benchimol M, Gadelha AP, de Souza W. Unusual Cell Structures and Organelles in Giardia intestinalis and Trichomonas vaginalis Are Potential Drug Targets. Microorganisms 2022; 10:2176. [PMID: 36363768 PMCID: PMC9698047 DOI: 10.3390/microorganisms10112176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This review presents the main cell organelles and structures of two important protist parasites, Giardia intestinalis, and Trichomonas vaginalis; many are unusual and are not found in other eukaryotic cells, thus could be good candidates for new drug targets aimed at improvement of the chemotherapy of diseases caused by these eukaryotic protists. For example, in Giardia, the ventral disc is a specific structure to this parasite and is fundamental for the adhesion and pathogenicity to the host. In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles.
Collapse
Affiliation(s)
- Marlene Benchimol
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Centro de Ciêcias da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Aplicada as Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25250-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas-UEA, Manaus 69850-000, Brazil
| |
Collapse
|
6
|
Kotila T, Wioland H, Selvaraj M, Kogan K, Antenucci L, Jégou A, Huiskonen JT, Romet-Lemonne G, Lappalainen P. Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nat Commun 2022; 13:3442. [PMID: 35705539 PMCID: PMC9200798 DOI: 10.1038/s41467-022-31068-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Muniyandi Selvaraj
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lina Antenucci
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Juha T Huiskonen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | | | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
7
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr 2021; 9:e0055821. [PMID: 34287056 PMCID: PMC8552679 DOI: 10.1128/spectrum.00558-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial. IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.
Collapse
Affiliation(s)
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
10
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
11
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
12
|
Lagunas-Rangel FA, Yee J, Bermúdez-Cruz RM. An update on cell division of Giardia duodenalis trophozoites. Microbiol Res 2021; 250:126807. [PMID: 34130067 DOI: 10.1016/j.micres.2021.126807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Giardia duodenalis is a flagellated protozoan that is responsible for many cases of diarrheal disease worldwide and is characterized by its great divergence from the model organisms commonly used in studies of basic cellular processes. The life cycle of Giardia involves an infectious cyst form and a proliferative and mobile trophozoite form. Each Giardia trophozoite has two nuclei and a complex microtubule cytoskeleton that consists of eight flagellar axonemes, basal bodies, the adhesive disc, the funis and the median body. Since the success of Giardia infecting other organisms depends on its ability to divide and proliferate efficiently, Giardia must coordinate its cell division to ensure the duplication and partitioning of both nuclei and the multiple cytoskeletal structures. The purpose of this review is to summarize current knowledge about cell division and its regulation in this protist.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico; Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
13
|
Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtková J, MacCoss MJ, Paredez AR. Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers. Front Cell Dev Biol 2021; 9:662945. [PMID: 33987184 PMCID: PMC8111296 DOI: 10.3389/fcell.2021.662945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia’s sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.
Collapse
Affiliation(s)
- Elizabeth B Thomas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Renaldo Sutanto
- Department of Biology, University of Washington, Seattle, WA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Jana Krtková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
14
|
Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin. Parasitol Res 2021; 120:1067-1076. [PMID: 33515065 DOI: 10.1007/s00436-021-07062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023]
Abstract
Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.
Collapse
|
15
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Baum B, Dey G. Moving simply: Naegleria crawls and feeds using an ancient Arp2/3-dependent mechanism. J Cell Biol 2020; 219:e202009031. [PMID: 33064835 PMCID: PMC7577051 DOI: 10.1083/jcb.202009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arp2/3-nucleated actin filaments drive crawling motility and phagocytosis in animal cells and slime molds. In this issue, Velle and Fritz-Laylin (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202007158) now show that Naegleria gruberi, belonging to a lineage that diverged from opisthokonts around a billion years ago, uses similar mechanisms to crawl and phagocytose bacteria.
Collapse
Affiliation(s)
- Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gautam Dey
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
17
|
Velle KB, Fritz-Laylin LK. Conserved actin machinery drives microtubule-independent motility and phagocytosis in Naegleria. J Cell Biol 2020; 219:e202007158. [PMID: 32960946 PMCID: PMC7594500 DOI: 10.1083/jcb.202007158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Much of our understanding of actin-driven phenotypes in eukaryotes has come from the "yeast-to-human" opisthokont lineage and the related amoebozoa. Outside of these groups lies the genus Naegleria, which shared a common ancestor with humans >1 billion years ago and includes the "brain-eating amoeba." Unlike nearly all other known eukaryotic cells, Naegleria amoebae lack interphase microtubules; this suggests that actin alone drives phenotypes like cell crawling and phagocytosis. Naegleria therefore represents a powerful system to probe actin-driven functions in the absence of microtubules, yet surprisingly little is known about its actin cytoskeleton. Using genomic analysis, microscopy, and molecular perturbations, we show that Naegleria encodes conserved actin nucleators and builds Arp2/3-dependent lamellar protrusions. These protrusions correlate with the capacity to migrate and eat bacteria. Because human cells also use Arp2/3-dependent lamellar protrusions for motility and phagocytosis, this work supports an evolutionarily ancient origin for these processes and establishes Naegleria as a natural model system for studying microtubule-independent cytoskeletal phenotypes.
Collapse
|
18
|
Abstract
It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.
Collapse
|
19
|
Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell 2020; 31:1611-1622. [PMID: 32459558 PMCID: PMC7521801 DOI: 10.1091/mbc.e19-07-0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Giardia has 198 Nek kinases whereas humans have only 11. Giardia has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases. Here we use live and fixed cell imaging to uncover the role of Nek8445 in regulating Giardia cell division. We demonstrate that Nek8445 localization is cell cycle regulated and this kinase has a role in regulating overall microtubule organization. Nek8445 depletion results in short flagella, aberrant ventral disk organization, loss of the funis, defective axoneme exit, and altered cell shape. The axoneme exit defect is specific to the caudal axonemes, which exit from the posterior of the cell, and this defect correlates with rounding of the cell posterior and loss of the funis. Our findings implicate a role for the funis in establishing Giardia’s cell shape and guiding axoneme docking. On a broader scale our results support the emerging view that Nek family kinases have a general role in regulating microtubule organization.
Collapse
Affiliation(s)
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Ilse Rogiers
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Renyu Li
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Ethan A Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
20
|
Vizcaíno-Castillo A, Osorio-Méndez JF, Ambrosio JR, Hernández R, Cevallos AM. The complexity and diversity of the actin cytoskeleton of trypanosomatids. Mol Biochem Parasitol 2020; 237:111278. [PMID: 32353561 DOI: 10.1016/j.molbiopara.2020.111278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Trypanosomatids are a monophyletic group of parasitic flagellated protists belonging to the order Kinetoplastida. Their cytoskeleton is primarily made up of microtubules in which no actin microfilaments have been detected. Although all these parasites contain actin, it is widely thought that their actin cytoskeleton is reduced when compared to most eukaryotic organisms. However, there is increasing evidence that it is more complex than previously thought. As in other eukaryotic organisms, trypanosomatids encode for a conventional actin that is expected to form microfilament-like structures, and for members of three conserved actin-related proteins probably involved in microfilament nucleation (ARP2, ARP3) and in gene expression regulation (ARP6). In addition to these canonical proteins, also encode for an expanded set of actins and actin-like proteins that seem to be restricted to kinetoplastids. Analysis of their amino acid sequences demonstrated that, although very diverse in primary sequence when compared to actins of model organisms, modelling of their tertiary structure predicted the presence of the actin fold in all of them. Experimental characterization has been done for only a few of the trypanosomatid actins and actin-binding proteins. The most studied is the conventional actin of Leishmania donovani (LdAct), which unusually requires both ATP and Mg2+ for polymerization, unlike other conventional actins that do not require ATP. Additionally, polymerized LdAct tends to assemble in bundles rather than in single filaments. Regulation of actin polymerization depends on their interaction with actin-binding proteins. In trypanosomatids, there is a reduced but sufficient core of actin-binding proteins to promote microfilament nucleation, turnover and stabilization. There are also genes encoding for members of two families of myosin motor proteins, including one lineage-specific. Homologues to all identified actin-family proteins and actin-binding proteins of trypanosomatids are also present in Paratrypanosoma confusum (an early branching trypanosomatid) and in Bodo saltans (a closely related free-living organism belonging to the trypanosomatid sister order of Bodonida) suggesting they were all present in their common ancestor. Secondary losses of these genes may have occurred during speciation within the trypanosomatids, with salivarian trypanosomes having lost many of them and stercorarian trypanosomes retaining most.
Collapse
Affiliation(s)
- Andrea Vizcaíno-Castillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Juan Felipe Osorio-Méndez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico; Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Javier R Ambrosio
- Departamento de Microbiología y Parasitología de la Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal, 4510, D.F., Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Abstract
Giardia intestinalis, the causative agent of giardiasis, has complex cytoskeleton organization with structures involved in motility, adhesion, cell division, and cell differentiation. Microtubules are key components of the cytoskeleton and are the main elements of the ventral disc, median body, funis, in addition to four pairs of flagella. These cytoskeletal elements are basically stable microtubule arrangements. Although tubulins are the main proteins of these elements, molecular and biochemical analyses of Giardia trophozoites have revealed the presence of several new and not yet characterized proteins in these structures, which may contribute to their nanoarchitecture (mainly in the ventral disc). Despite these findings, morphological data are still required for understanding the organization and biogenesis of the cytoskeletal structures. In the study of this complex and specialized network of filaments in Giardia, two distinct and complementary approaches have been used in recent years: (a) transmission electron microscopy tomography of conventionally processed as well as cryo-fixed samples and (b) high-resolution scanning electron microscopy and helium ion microscopy in combination with new plasma membrane extraction protocols. In this review we include the most recent studies that have allowed better understanding of new Giardia components and their association with other filamentous structures of this parasite, thus providing new insights in the role of the cytoskeletal structures and their function in Giardia trophozoites.
Collapse
|
22
|
Matadamas-Martínez F, Nogueda-Torres B, Castillo R, Hernández-Campos A, Barrera-Valdes MDLL, León-Ávila G, Hernández JM, Yépez-Mulia L. Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo giardicidal activity. Mem Inst Oswaldo Cruz 2020; 115:e190348. [PMID: 32049098 PMCID: PMC7012584 DOI: 10.1590/0074-02760190348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
| | - Rafael Castillo
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - Alicia Hernández-Campos
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - María de la Luz Barrera-Valdes
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Zoología, Laboratorio de Genética, Mexico City, Mexico
| | - José Manuel Hernández
- >Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Biología Celular, Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| |
Collapse
|
23
|
Hagen KD, McInally SG, Hilton ND, Dawson SC. Microtubule organelles in Giardia. ADVANCES IN PARASITOLOGY 2020; 107:25-96. [PMID: 32122531 DOI: 10.1016/bs.apar.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Giardia lamblia is a widespread parasitic protist with a complex MT cytoskeleton that is critical for motility, attachment, mitosis and cell division, and transitions between its two life cycle stages-the infectious cyst and flagellated trophozoite. Giardia trophozoites have both highly dynamic and highly stable MT organelles, including the ventral disc, eight flagella, the median body and the funis. The ventral disc, an elaborate MT organelle, is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. Giardia's four flagellar pairs enable swimming motility and may also promote attachment. They are maintained at different equilibrium lengths and are distinguished by their long cytoplasmic regions and novel extra-axonemal structures. The functions of the median body and funis, MT organelles unique to Giardia, remain less understood. In addition to conserved MT-associated proteins, the genome is enriched in ankyrins, NEKs, and novel hypothetical proteins that also associate with the MT cytoskeleton. High-resolution ultrastructural imaging and a current inventory of more than 300 proteins associated with Giardia's MT cytoskeleton lay the groundwork for future mechanistic analyses of parasite attachment to the host, motility, cell division, and encystation/excystation. Giardia's unique MT organelles exemplify the capacity of MT polymers to generate intricate structures that are diverse in both form and function. Thus, beyond its relevance to pathogenesis, the study of Giardia's MT cytoskeleton informs basic cytoskeletal biology and cellular evolution. With the availability of new molecular genetic tools to disrupt gene function, we anticipate a new era of cytoskeletal discovery in Giardia.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Shane G McInally
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Nicholas D Hilton
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States.
| |
Collapse
|
24
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
25
|
Exosome Biogenesis in the Protozoa Parasite Giardia lamblia: A Model of Reduced Interorganellar Crosstalk. Cells 2019; 8:cells8121600. [PMID: 31835439 PMCID: PMC6953089 DOI: 10.3390/cells8121600] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Collapse
|
26
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
28
|
Velle KB, Fritz-Laylin LK. Diversity and evolution of actin-dependent phenotypes. Curr Opin Genet Dev 2019; 58-59:40-48. [DOI: 10.1016/j.gde.2019.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
|
29
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 2018; 30:119-130. [PMID: 30379614 PMCID: PMC6337905 DOI: 10.1091/mbc.e18-09-0605] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems.
Collapse
Affiliation(s)
- S G McInally
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - C Nosala
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Williams
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Booker
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Jones
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
31
|
Douglas RG, Nandekar P, Aktories JE, Kumar H, Weber R, Sattler JM, Singer M, Lepper S, Sadiq SK, Wade RC, Frischknecht F. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biol 2018; 16:e2005345. [PMID: 30011270 PMCID: PMC6055528 DOI: 10.1371/journal.pbio.2005345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit–subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells. Actin is one of the most abundant and conserved proteins across eukaryotes. Its ability to assemble from individual monomers into dynamic polymers is essential for many cellular functions, including division and motility. In most cells, actin is able to form long and stable filaments. However, an actin of the malaria-causing parasite Plasmodium, while having a very similar monomer structure to actins from other eukaryotes, forms only short and unstable filaments. These short and dynamic filaments are crucial in allowing the parasite to move very rapidly in tissue. Here we investigated the basis of these differences. We used molecular dynamics simulations of actin filaments to investigate the actin–actin interfaces in filaments from Plasmodium and rabbit. We next engineered parasites to express chimeric actins that contained different parts of rabbit and parasite actin and thereby identified actin residues important for parasite viability and progression across the life cycle. We could rescue the most prominent defect specifically with overexpression of the actin binding protein coronin. This suggests that the more stable actin harms the parasite and that coronin helps in recycling filaments. By screening the effects of actin chimeras in mammalian cells, we also identified regions that allow these different actins to efficiently interact with each other. Taken together, our results improve our understanding of the interactions required for actin to incorporate into filaments across divergent eukaryotes.
Collapse
Affiliation(s)
- Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Prajwal Nandekar
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebekka Weber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - S. Kashif Sadiq
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
- * E-mail: (FF); (RCW)
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (FF); (RCW)
| |
Collapse
|
32
|
F-actin homeostasis through transcriptional regulation and proteasome-mediated proteolysis. Proc Natl Acad Sci U S A 2018; 115:E6487-E6496. [PMID: 29941587 DOI: 10.1073/pnas.1721935115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many organisms possess multiple and often divergent actins whose regulation and roles are not understood in detail. For example, Chlamydomonas reinhardtii has both a conventional actin (IDA5) and a highly divergent one (NAP1); only IDA5 is expressed in normal proliferating cells. We showed previously that the drug latrunculin B (LatB) causes loss of filamentous (F-) IDA5 and strong up-regulation of NAP1, which then provides essential actin function(s) by forming LatB-resistant F-NAP1. RNA-sequencing analyses now show that this up-regulation of NAP1 reflects a broad transcriptional response, much of which depends on three proteins (LAT1, LAT2, and LAT3) identified previously as essential for NAP1 transcription. Many of the LAT-regulated genes contain a putative cis-acting regulatory site, the "LRE motif." The LatB transcriptional program appears to be activated by loss of F-IDA5 and deactivated by formation of F-NAP1, thus forming an F-actin-dependent negative-feedback loop. Multiple genes encoding proteins of the ubiquitin-proteasome system are among those induced by LatB, resulting in rapid degradation of IDA5 (but not NAP1). Our results suggest that IDA5 degradation is functionally important because nonpolymerizable LatB-bound IDA5 interferes with the formation of F-NAP1. The genes for the actin-interacting proteins cofilin and profilin are also induced. Cofilin induction may further the clearance of IDA5 by promoting the scission of F-IDA5, whereas profilin appears to function in protecting monomeric IDA5 from degradation. This multifaceted regulatory system allows rapid and quantitative turnover of F-actin in response to cytoskeletal perturbations and probably also maintains F-actin homeostasis under normal growth conditions.
Collapse
|
33
|
Gervasi MG, Xu X, Carbajal-Gonzalez B, Buffone MG, Visconti PE, Krapf D. The actin cytoskeleton of the mouse sperm flagellum is organized in a helical structure. J Cell Sci 2018; 131:jcs.215897. [PMID: 29739876 DOI: 10.1242/jcs.215897] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Conception in mammals is determined by the fusion of a sperm cell with an oocyte during fertilization. Motility is one of the features of sperm that allows them to succeed in fertilization, and their flagellum is essential for this function. Longitudinally, the flagellum can be divided into the midpiece, the principal piece and the end piece. A precise cytoskeletal architecture of the sperm tail is key for the acquisition of fertilization competence. It has been proposed that the actin cytoskeleton plays essential roles in the regulation of sperm motility; however, the actin organization in sperm remains elusive. In the present work, we show that there are different types of actin structures in the sperm tail by using three-dimensional stochastic optical reconstruction microscopy (STORM). In the principal piece, actin is radially distributed between the axoneme and the plasma membrane. The actin-associated proteins spectrin and adducin are also found in these structures. Strikingly, polymerized actin in the midpiece forms a double-helix that accompanies mitochondria. Our findings illustrate a novel specialized structure of actin filaments in a mammalian cell.
Collapse
Affiliation(s)
- María G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Xinran Xu
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA .,School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
34
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
35
|
New advances in scanning microscopy and its application to study parasitic protozoa. Exp Parasitol 2018; 190:10-33. [PMID: 29702111 DOI: 10.1016/j.exppara.2018.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities.
Collapse
|
36
|
Nosala C, Hagen KD, Dawson SC. 'Disc-o-Fever': Getting Down with Giardia's Groovy Microtubule Organelle. Trends Cell Biol 2017; 28:99-112. [PMID: 29153830 DOI: 10.1016/j.tcb.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022]
Abstract
Protists have evolved a myriad of highly specialized cytoskeletal organelles that expand known functional capacities of microtubule (MT) polymers. One such innovation - the ventral disc - is a cup-shaped MT organelle that the parasite Giardia uses to attach to the small intestine of its host. The molecular mechanisms underlying the generation of suction-based forces by overall conformational changes of the disc remain unclear. The elaborate disc architecture is defined by novel proteins and complexes that decorate almost all disc MT protofilaments, and vary in composition and conformation along the length of the MTs. Future genetic, biochemical, and functional analyses of disc-associated proteins will be central toward understanding not only disc architecture and assembly, but also the overall disc conformational dynamics that promote attachment.
Collapse
Affiliation(s)
- Christopher Nosala
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Drug-Free Approach To Study the Unusual Cell Cycle of Giardia intestinalis. mSphere 2017; 2:mSphere00384-16. [PMID: 28959734 PMCID: PMC5607323 DOI: 10.1128/msphere.00384-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/21/2017] [Indexed: 11/20/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite that causes giardiasis, a form of severe and infectious diarrhea. Despite the importance of the cell cycle in the control of proliferation and differentiation during a giardia infection, it has been difficult to study this process due to the absence of a synchronization procedure that would not induce cellular damage resulting in artifacts. We utilized counterflow centrifugal elutriation (CCE), a size-based separation technique, to successfully obtain fractions of giardia cultures enriched in G1, S, and G2. Unlike drug-induced synchronization of giardia cultures, CCE did not induce double-stranded DNA damage or endoreplication. We observed increases in the appearance and size of the median body in the cells from elutriation fractions corresponding to the progression of the cell cycle from early G1 to late G2. Consequently, CCE could be used to examine the dynamics of the median body and other structures and organelles in the giardia cell cycle. For the cell cycle gene expression studies, the actin-related gene was identified by the program geNorm as the most suitable normalizer for reverse transcription-quantitative PCR (RT-qPCR) analysis of the CCE samples. Ten of 11 suspected cell cycle-regulated genes in the CCE fractions have expression profiles in giardia that resemble those of higher eukaryotes. However, the RNA levels of these genes during the cell cycle differ less than 4-fold to 5-fold, which might indicate that large changes in gene expression are not required by giardia to regulate the cell cycle. IMPORTANCE Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission.
Collapse
|
38
|
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere 2017; 2:mSphere00248-17. [PMID: 28932813 PMCID: PMC5597967 DOI: 10.1128/msphere.00248-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023] Open
Abstract
The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3's association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3-actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCEGiardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia's sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.
Collapse
|
39
|
Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svärd SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoanGiardia lamblia. Traffic 2017; 18:604-621. [DOI: 10.1111/tra.12501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Emiliano Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | | | - Staffan G. Svärd
- Department of Cell and Molecular Biology; Uppsala University; Uppsala Sweden
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
40
|
Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A 2017; 114:E5854-E5863. [PMID: 28679631 DOI: 10.1073/pnas.1705096114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Devoid of all known canonical actin-binding proteins, the prevalent parasite Giardia lamblia uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for Giardia to establish division kinetics and the core division machinery. Surprisingly, Giardia cytokinesis occurred with a median time that is ∼60 times faster than mammalian cells. In contrast to cells that use a contractile ring, actin was not concentrated in the furrow and was not directly required for furrow progression. Live-cell imaging and morpholino depletion of axonemal Paralyzed Flagella 16 indicated that flagella-based forces initiated daughter cell separation and provided a source for membrane tension. Inhibition of membrane partitioning blocked furrow progression, indicating a requirement for membrane trafficking to support furrow advancement. Rab11 was found to load onto the intracytoplasmic axonemes late in mitosis and to accumulate near the ends of nascent axonemes. These developing axonemes were positioned to coordinate trafficking into the furrow and mark the center of the cell in lieu of a midbody/phragmoplast. We show that flagella motility, Rab11, and actin coordination are necessary for proper abscission. Organisms representing three of the five eukaryotic supergroups lack myosin II of the actomyosin contractile ring. These results support an emerging view that flagella play a central role in cell division among protists that lack myosin II and additionally implicate the broad use of membrane tension as a mechanism to drive abscission.
Collapse
|
41
|
Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol 2017; 216:1673-1688. [PMID: 28473602 PMCID: PMC5461030 DOI: 10.1083/jcb.201701074] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells use diverse cellular mechanisms to crawl through complex environments. Fritz-Laylin et al. define α-motility as a mode of migration associated with dynamic, actin-filled pseudopods and show that WASP and SCAR constitute an evolutionarily conserved genetic signature of α-motility. Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
42
|
Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol 2017; 15:27. [PMID: 28372543 DOI: 10.1186/s12915-017-0361-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.
Collapse
|
43
|
Abstract
Giardia lamblia, a major parasite, is an emerging model organism due to its compact genomic arrangement and composition. The most popular reverse genetic technique, RNAi, is ineffective in Giardia. In contrast, protein depletion by translation blocking morpholinos is suitable for most gene targets and provides up to 80% depletion of the target protein. The method is fast, reliable, and specific. After antisense morpholino oligomer delivery into Giardia trophozoites by electroporation, the cells can be used for many subsequent analyses 8-48 h after treatment. In this chapter, suitable gene tags, plasmids, and techniques necessary for proper morpholino targeting are described.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | | |
Collapse
|
44
|
Hennessey KM, Smith TR, Xu JW, Alas GCM, Ojo KK, Merritt EA, Paredez AR. Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS Negl Trop Dis 2016; 10:e0005107. [PMID: 27806042 PMCID: PMC5091913 DOI: 10.1371/journal.pntd.0005107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Giardiasis is widely acknowledged to be a neglected disease in need of new therapeutics to address toxicity and resistance issues associated with the limited available treatment options. We examined seven protein kinases in the Giardia lamblia genome that are predicted to share an unusual structural feature in their active site. This feature, an expanded active site pocket resulting from an atypically small gatekeeper residue, confers sensitivity to "bumped" kinase inhibitors (BKIs), a class of compounds that has previously shown good pharmacological properties and minimal toxicity. An initial phenotypic screen for biological activity using a subset of an in-house BKI library found that 5 of the 36 compounds tested reduced trophozoite growth by at least 50% at a concentration of 5 μM. The cellular localization and the relative expression levels of the seven protein kinases of interest were determined after endogenously tagging the kinases. Essentiality of these kinases for parasite growth and infectivity were evaluated genetically using morpholino knockdown of protein expression to establish those that could be attractive targets for drug design. Two of the kinases were critical for trophozoite growth and attachment. Therefore, recombinant enzymes were expressed, purified and screened against a BKI library of >400 compounds in thermal stability assays in order to identify high affinity compounds. Compounds with substantial thermal stabilization effects on recombinant protein were shown to have good inhibition of cell growth in wild-type G. lamblia and metronidazole-resistant strains of G. lamblia. Our data suggest that BKIs are a promising starting point for the development of new anti-giardiasis therapeutics that do not overlap in mechanism with current drugs.
Collapse
Affiliation(s)
- Kelly M. Hennessey
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Tess R. Smith
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Jennifer W. Xu
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kayode K. Ojo
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| |
Collapse
|
45
|
Zamponi N, Feliziani C, Touz MC. Endocytosis in Giardia : Evidence of Absence. Trends Parasitol 2016; 32:838-840. [DOI: 10.1016/j.pt.2016.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
46
|
Preisner H, Karin EL, Poschmann G, Stühler K, Pupko T, Gould SB. The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist 2016; 167:526-543. [PMID: 27744090 DOI: 10.1016/j.protis.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
Certain protist lineages bear cytoskeletal structures that are germane to them and define their individual group. Trichomonadida are excavate parasites united by a unique cytoskeletal framework, which includes tubulin-based structures such as the pelta and axostyle, but also other filaments such as the striated costa whose protein composition remains unknown. We determined the proteome of the detergent-resistant cytoskeleton of Tetratrichomonas gallinarum. 203 proteins with homology to Trichomonas vaginalis were identified, which contain significantly more long coiled-coil regions than control protein sets. Five candidates were shown to associate with previously described cytoskeletal structures including the costa and the expression of a single T. vaginalis protein in T. gallinarum induced the formation of accumulated, striated filaments. Our data suggests that filament-forming proteins of protists other than actin and tubulin share common structural properties with metazoan intermediate filament proteins, while not being homologous. These filament-forming proteins might have evolved many times independently in eukaryotes, or simultaneously in a common ancestor but with different evolutionary trajectories downstream in different phyla. The broad variety of filament-forming proteins uncovered, and with no homologs outside of the Trichomonadida, once more highlights the diverse nature of eukaryotic proteins with the ability to form unique cytoskeletal filaments.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
47
|
Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion. mBio 2016; 7:mBio.01003-16. [PMID: 27555307 PMCID: PMC4999545 DOI: 10.1128/mbio.01003-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia’s sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-RacCA) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-RacCA-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of G. lamblia’s single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encystation proceeds more efficiently at high cell densities.
Collapse
|
48
|
Abstract
Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.
Collapse
|
49
|
Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB. Static Clathrin Assemblies at the Peripheral Vacuole-Plasma Membrane Interface of the Parasitic Protozoan Giardia lamblia. PLoS Pathog 2016; 12:e1005756. [PMID: 27438602 PMCID: PMC4954726 DOI: 10.1371/journal.ppat.1005756] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/18/2016] [Indexed: 11/19/2022] Open
Abstract
Giardia lamblia is a parasitic protozoan that infects a wide range of vertebrate hosts including humans. Trophozoites are non-invasive but associate tightly with the enterocyte surface of the small intestine. This narrow ecological specialization entailed extensive morphological and functional adaptations during host-parasite co-evolution, including a distinctly polarized array of endocytic organelles termed peripheral vacuoles (PVs), which are confined to the dorsal cortical region exposed to the gut lumen and are in close proximity to the plasma membrane (PM). Here, we investigated the molecular consequences of these adaptations on the Giardia endocytic machinery and membrane coat complexes. Despite the absence of canonical clathrin coated vesicles in electron microscopy, Giardia possesses conserved PV-associated clathrin heavy chain (GlCHC), dynamin-related protein (GlDRP), and assembly polypeptide complex 2 (AP2) subunits, suggesting a novel function for GlCHC and its adaptors. We found that, in contrast to GFP-tagged AP2 subunits and DRP, CHC::GFP reporters have no detectable turnover in living cells, indicating fundamental differences in recruitment to the membrane and disassembly compared to previously characterized clathrin coats. Histochemical localization in electron tomography showed that these long-lived GlCHC assemblies localized at distinctive approximations between the plasma and PV membrane. A detailed protein interactome of GlCHC revealed all of the conserved factors in addition to novel or highly diverged proteins, including a putative clathrin light chain and lipid-binding proteins. Taken together, our data provide strong evidence for giardial CHC as a component of highly stable assemblies at PV-PM junctions that likely have a central role in organizing continuities between the PM and PV membranes for controlled sampling of the fluid environment. This suggests a novel function for CHC in Giardia and the extent of molecular remodeling of endocytosis in this species. In canonical clathrin mediated endocytosis (CME) models, the concerted action of ca. 50 proteins mediates the uptake of extracellular components. The key player in this process is clathrin which coats transport intermediates called clathrin coated vesicles (CCV). The intestinal parasite Giardia lamblia has undergone extensive remodeling during colonization of the mammalian duodenum. Here, we report on unique features of this parasite’s endocytic system, consisting of fixed peripheral vacuoles (PV) in close proximity to the exposed plasma membrane (PM), with no discernible CCVs. Using state-of-the-art imaging strategies, we show that the surface of Giardia trophozoites is pock-marked with PM invaginations reaching to the underlying PV membrane. Co-immunoprecipitation and analysis of protein dynamics reveal that, in line with the absence of CCVs, giardial clathrin assemblies have no dynamic behavior. CHC still remains associated to AP2 and dynamin, both conserved dynamic CME components, and to a newly identified putative clathrin light chain. The emerging model calls for giardial clathrin organized into static cores surrounded by dynamic interaction partners, and most likely involved in the regulation of fusion between the PM and the PVs in a “kiss-and-flush”-like mechanism. This suggests that Giardia harbors a conceptually novel function for clathrin in endocytosis, which might be a consequence of host-parasite co-evolution.
Collapse
Affiliation(s)
| | - Lenka Cernikova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Samuel Rout
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (ABH)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (ABH)
| |
Collapse
|
50
|
McInally SG, Dawson SC. Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia. Cilia 2016; 5:21. [PMID: 27379179 PMCID: PMC4931700 DOI: 10.1186/s13630-016-0042-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
Giardia lamblia is an intestinal parasitic protist that causes significant acute and chronic diarrheal disease worldwide. Giardia belongs to the diplomonads, a group of protists in the supergroup Excavata. Diplomonads are characterized by eight motile flagella organized into four bilaterally symmetric pairs. Each of the eight Giardia axonemes has a long cytoplasmic region that extends from the centrally located basal body before exiting the cell body as a membrane-bound flagellum. Each basal body is thus unique in its cytological position and its association with different cytoskeletal features, including the ventral disc, axonemes, and extra-axonemal structures. Inheritance of these unique and complex cytoskeletal elements is maintained through basal body migration, duplication, maturation, and their subsequent association with specific spindle poles during cell division. Due to the complex composition and inheritance of specific basal bodies and their associated structures, Giardia may require novel basal body-associated proteins. Thus, protists such as Giardia may represent an undiscovered source of novel basal body-associated proteins. The development of new tools that make Giardia genetically tractable will enable the composition, structure, and function of the eight basal bodies to be more thoroughly explored.
Collapse
Affiliation(s)
- Shane G McInally
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|