1
|
Panda SP, Kesharwani A, Singh B, Marisetti AL, Chaitanya M, Dahiya S, Ponnusankar S, Kumar S, Singh M, Shakya PK, Prasad PD, Guru A. 14-3-3 protein and its isoforms: A common diagnostic marker for Alzheimer's disease, Parkinson's disease and glaucomatous neurodegeneration. Ageing Res Rev 2024; 102:102572. [PMID: 39489380 DOI: 10.1016/j.arr.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
There is a molecular coupling between neurodegenerative diseases, including glaucomatous neurodegeneration (GN), Alzheimer's disease (AD), and Parkinson's disease (PD). Many cells in the eye and the brain have the right amount of 14-3-3 proteins (14-3-3 s) and their isoforms, such as β, ε, γ, η, θ, π, and γ. These cells include keratocytes, endothelial cells, corneal epithelial cells, and primary conjunctival epithelial cells. 14-3-3 s regulate autophagy and mitophagy, help break down built-up proteins, and connect to other proteins to safeguard against neurodegeneration in AD, PD, GN, and glioblastoma. By interacting with these proteins, 14-3-3 s stop Bad and Bax proteins from entering mitochondria and make them less effective. These interactions inhibit neuronal apoptosis. They play many important roles in managing the breakdown of lysosomal proteins, tau, and Aβ, which is why the 14-3-3 s could be used as therapeutic targets in AD. Furthermore, researchers have discovered 14-3-3 s in Lewy bodies, which are associated with various proteins like LRRK2, ASN, and Parkin, all of which play a role in developing Parkinson's disease (PD). The 14-3-3 s influence the premature aging and natural wrinkles of human skin. Studies have shown that lowering 14-3-3 s in the brain can lead to an increase in cell-death proteins like BAX and ERK, which in turn causes excitotoxicity-induced neurodegeneration. This review aimed to clarify the role of 14-3-3 s in the neuropathology of AD, PD, and GN, as well as potential diagnostic markers for improving neuronal survival and repair.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Bhoopendra Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Mvnl Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, Panjab 144411, India
| | - Saurabh Dahiya
- Department of Pharmaceutical Chemistry and Quality Assurance, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - S Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and ResearchOoty, Tamil Nadu 643001, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Shakya
- Shri Santanpal Singh Pharmacy College, Mirjapur, Shahjahanpur, Uttar Pradesh 242221, India
| | - P Dharani Prasad
- Department of Pharmacology, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580675. [PMID: 38405965 PMCID: PMC10888794 DOI: 10.1101/2024.02.16.580675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| |
Collapse
|
3
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Chakraborty G, Patra N. Elucidating the Molecular Basis of 14-3-3 Interaction with α-Synuclein: Insights from Molecular Dynamics Simulations and the Design of a Novel Protein-Protein Interaction Inhibitor. J Phys Chem B 2024; 128:7068-7085. [PMID: 38857533 DOI: 10.1021/acs.jpcb.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Parkinson's disease is a widespread age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain along with the appearance of protein aggregates, termed as "Lewy bodies" in the surviving neuronal cells. The components of Lewy bodies include proteins such as α-synuclein, 14-3-3, Parkin, and LRRK2, along with other cellular organelles, which, in their native state, perform a plethora of vital biological functions within the human biome. Formation of these aggregates renders these components inactive, thereby interfering with homeostasis. In this regard, the current study attempts to investigate the complexation behavior of all human-based 14-3-3 isoforms with α-synuclein via a combination of classical and enhanced sampling techniques and thereby determine the causality of these protein-protein interactions. The study indicated that upon complexation, the aggregation propensity of both 14-3-3 and α-synuclein increases, and this increment is propelled by the interfacial residues on either protein. Furthermore, mutagenesis studies revealed that Lys214 of 14-3-3 (henceforth termed K214A) is crucial for the formation of this binary complex. Principal component analysis combined with clustering studies unveiled the stability of these complexes in terms of their conformational distribution across the entire MD trajectory. For K214A, these clustered states were sparsely located, thereby making the transitions between them slightly difficult. Dynamic cross-correlation maps (DCCM) revealed the role of residues in the range 80-130 of 14-3-3 having a potential allosteric role in driving this complexation process. Finally, a novel peptide-based supramolecular inhibitor was designed, which exhibited higher proficiency in limiting the 14-3-3/α-synuclein interaction compared to the previous inhibitor model. It was also revealed that the presence of this inhibitor induces structural rigidity in α-synuclein, making changes in its conformations extremely difficult, as observed through Umbrella Sampling studies. Based on available information, the current study provides an insight into the molecular-level understanding of protein-protein interactions underlying Parkinson's disease and adds on to the methods of devising novel therapeutic approaches to treat the same.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
5
|
Nishiyama K, Aihara Y, Suzuki T, Takahashi K, Kinoshita T, Dohmae N, Sato A, Hagihara S. Discovery of a Plant 14-3-3 Inhibitor Possessing Isoform Selectivity and In Planta Activity. Angew Chem Int Ed Engl 2024; 63:e202400218. [PMID: 38658314 DOI: 10.1002/anie.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
6
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
7
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad DM, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A pan-respiratory antiviral chemotype targeting a transient host multi-protein complex. Open Biol 2024; 14:230363. [PMID: 38889796 DOI: 10.1098/rsob.230363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, 94118-4417 USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, 28130 USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, 40225 Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, 40225 Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, 40225 Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, 40225 Germany
| | - Robert J Hogan
- Vitalant Research Institute, San Francisco, CA, 94118-4417 USA
| | - Ralph A Tripp
- Vitalant Research Institute, San Francisco, CA, 94118-4417 USA
| | | | | | | | | | | | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Jaisri R Lingappa
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | - Homer Boushey
- University of California, San Francisco, CA, 94143, USA
| | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, 94143, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, 94118-4417 USA
- University of California, San Francisco, CA, 94143, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, 40225 Germany
| | | | | | - Vishwanath R Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
8
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
9
|
Kamayirese S, Maity S, Dieckman LM, Hansen LA, Lovas S. Optimizing Phosphopeptide Structures That Target 14-3-3ε in Cutaneous Squamous Cell Carcinoma. ACS OMEGA 2024; 9:2719-2729. [PMID: 38250398 PMCID: PMC10795040 DOI: 10.1021/acsomega.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
14-3-3ε is involved in various types of malignancies by increasing cell proliferation, promoting cell invasion, or inhibiting apoptosis. In cutaneous squamous cell carcinoma (cSCC), 14-3-3ε is overexpressed and mislocalized from the nucleus to the cytoplasm where it interacts with the cell division cycle 25 A (CDC25A) and suppresses apoptosis. Hence, inhibition of the 14-3-3ε-CDC25A interaction is an attractive target for promoting apoptosis in cSCC. In this work, we optimized the structure of our previously designed inhibitor of the 14-3-3ε-CDC25A interaction, pT, a phosphopeptide fragment corresponding to one of the two binding regions of CDC25A to 14-3-3ε. Starting from pT, we developed peptide analogs that bind 14-3-3ε with nanomolar affinities. Peptide analogs were designed by shortening the pT peptide and introducing modifications at position 510 of the pT(502-510) analog. Both molecular dynamics (MD) simulations and biophysical methods were used to determine peptide binding to 14-3-3ε. Shortening the pT peptide from 14 to 9 amino acid residues resulted in a peptide (pT(502-510)) that binds 14-3-3ε with a KD value of 45.2 nM. Gly to Phe substitution in position 510 of pT(502-510) led to further improvement in affinity (KD: 22.0 nM) of the peptide for 14-3-3ε. Our results suggest that the designed peptide analogs are potential candidates for inhibiting 14-3-3ε-CDC25A interactions in cSCC cells and thus inducing their apoptosis.
Collapse
Affiliation(s)
- Seraphine Kamayirese
- Department
of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, United States
| | - Sibaprasad Maity
- Department
of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, United States
| | - Lynne M. Dieckman
- Department
of Chemistry and Biochemistry, Creighton
University, Omaha, Nebraska 68178, United States
| | - Laura A. Hansen
- Department
of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, United States
| | - Sándor Lovas
- Department
of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, United States
| |
Collapse
|
10
|
Kamayirese S, Maity S, Dieckman LM, Hansen LA, Lovas S. Optimizing Phosphopeptide Structures That Target 14-3-3ε in Cutaneous Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560749. [PMID: 37873379 PMCID: PMC10592926 DOI: 10.1101/2023.10.03.560749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
14-3-3ε is involved in various types of malignancies by increasing cell proliferation, promoting cell invasion or inhibiting apoptosis. In cutaneous squamous cell carcinoma (cSCC), 14-3-3ε is over expressed and mislocalized from the nucleus to the cytoplasm where it interacts with the cell division cycle 25 A (CDC25A) and suppresses apoptosis. Hence inhibition of the 14-3-3ε - CDC25A interaction is an attractive target for promoting apoptosis in cSCC. In this work, we optimized the structure of our previously designed inhibitor of 14-3-3ε - CDC25A interaction, pT, a phosphopeptide fragment corresponding to one of the two binding regions of CDC25A to 14-3-3ε. Starting from pT, we developed peptide analogs that bind 14-3-3ε with nanomolar affinities. Peptide analogs were designed by shortening the pT peptide, and introducing modifications at position 510 of the pT(502-510) analog. Both molecular dynamics (MD) simulations and biophysical methods were used to determine peptides binding to 14-3-3ε. Shortening the pT peptide from 14 to 9 amino acid residues resulted in a peptide (pT(502-510)) that binds 14-3-3ε with a KD value of 45.2 nM. Gly to Phe substitution in position 510 of pT(502-510) led to further improvement in affinity (KD: 22.0 nM) of the peptide for 14-3-3ε. Our results suggest that the designed peptide analogs are potential candidates for inhibiting 14-3-3ε -CDC25A interactions in cSCC cells; thus, inducing their apoptosis.
Collapse
Affiliation(s)
- Seraphine Kamayirese
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, Unites States
| | - Sibaprasad Maity
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, Unites States
| | - Lynne M. Dieckman
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, Unites States
| | - Laura A. Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, Unites States
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, Unites States
| |
Collapse
|
11
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
12
|
Zhou X, Shi M, Wang X, Xu D. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Front Chem 2022; 10:921695. [PMID: 35646830 PMCID: PMC9133541 DOI: 10.3389/fchem.2022.921695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Using supramolecules for protein function regulation is an effective strategy in chemical biology and drug discovery. However, due to the presence of multiple binding sites on protein surfaces, protein function regulation via selective binding of supramolecules is challenging. Recently, the functions of 14-3-3 proteins, which play an important role in regulating intracellular signaling pathways via protein–protein interactions, have been modulated using a supramolecular tweezer, CLR01. However, the binding mechanisms of the tweezer molecule to 14-3-3 proteins are still unclear, which has hindered the development of novel supramolecules targeting the 14-3-3 proteins. Herein, the binding mechanisms of the tweezer to the lysine residues on 14-3-3σ (an isoform in 14-3-3 protein family) were explored by well-tempered metadynamics. The results indicated that the inclusion complex formed between the protein and supramolecule is affected by both kinetic and thermodynamic factors. In particular, simulations confirmed that K214 could form a strong binding complex with the tweezer; the binding free energy was calculated to be −10.5 kcal·mol−1 with an association barrier height of 3.7 kcal·mol−1. In addition, several other lysine residues on 14-3-3σ were identified as being well-recognized by the tweezer, which agrees with experimental results, although only K214/tweezer was co-crystallized. Additionally, the binding mechanisms of the tweezer to all lysine residues were analyzed by exploring the representative conformations during the formation of the inclusion complex. This could be helpful for the development of new inhibitors based on tweezers with more functions against 14-3-3 proteins via modifications of CLR01. We also believe that the proposed computational strategies can be extended to understand the binding mechanism of multi-binding sites proteins with supramolecules and will, thus, be useful toward drug design.
Collapse
Affiliation(s)
- Xin Zhou
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| |
Collapse
|
13
|
Shen M, Wei Y, Kim H, Wan L, Jiang YZ, Hang X, Raba M, Remiszewski S, Rowicki M, Wu CG, Wu S, Zhang L, Lu X, Yuan M, Smith HA, Zheng A, Bertino J, Jin JF, Xing Y, Shao ZM, Kang Y. Small-molecule inhibitors that disrupt the MTDH-SND1 complex suppress breast cancer progression and metastasis. NATURE CANCER 2022; 3:43-59. [PMID: 35121987 PMCID: PMC8818087 DOI: 10.1038/s43018-021-00279-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Metastatic breast cancer is a leading health burden worldwide. Previous studies have shown that metadherin (MTDH) promotes breast cancer initiation, metastasis and therapy resistance; however, the therapeutic potential of targeting MTDH remains largely unexplored. Here, we used genetically modified mice and demonstrate that genetic ablation of Mtdh inhibits breast cancer development through disrupting the interaction with staphylococcal nuclease domain-containing 1 (SND1), which is required to sustain breast cancer progression in established tumors. We performed a small-molecule compound screening to identify a class of specific inhibitors that disrupts the protein-protein interaction (PPI) between MTDH and SND1 and show that our lead candidate compounds C26-A2 and C26-A6 suppressed tumor growth and metastasis and enhanced chemotherapy sensitivity in preclinical models of triple-negative breast cancer (TNBC). Our results demonstrate a significant therapeutic potential in targeting the MTDH-SND1 complex and identify a new class of therapeutic agents for metastatic breast cancer.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hahn Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,Princeton University Small Molecule Screening Center, Princeton University, Princeton, NJ 08544, USA
| | - Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Michelle Rowicki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Songyang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, New Jersey; and Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Xin Lu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aiping Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Joseph Bertino
- Pharmacokinetics and Pharmacodynamics (PK/PD) Shared Resource, Rutgers Cancer Institute of New Jersey Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA,Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - John F. Jin
- Firebrand Therapeutics, 174 Nassaue Street, #331, Princeton, NJ, 08542, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA,Ludwig Institute for Cancer Research Princeton Branch, Princeton, USA,Correspondence: Yibin Kang, Ph.D., Department of Molecular Biology, Washington Road, LTL 255, Princeton University, Princeton, NJ 08544, Phone: (609) 258-8834; Fax: (609) 258-2340,
| |
Collapse
|
14
|
Pair FS, Yacoubian TA. 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends Pharmacol Sci 2021; 42:226-238. [PMID: 33518287 PMCID: PMC8011313 DOI: 10.1016/j.tips.2021.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins are a family of proteins expressed throughout the body and implicated in many diseases, from cancer to neurodegenerative disorders. While these proteins do not have direct enzymatic activity, they form a hub for many signaling pathways via protein-protein interactions (PPIs). 14-3-3 interactions have proven difficult to target with traditional pharmacological methods due to the unique nature of their binding. However, recent advances in compound development utilizing a range of tools, from thermodynamic binding site analysis to computational molecular modeling techniques, have opened the door to targeting these interactions. Compounds are already being developed targeting 14-3-3 interactions with potential therapeutic implication for neurodegenerative disorders, but challenges still remain in optimizing specificity and target engagement to avoid unintended negative consequences arising from targeting 14-3-3 signaling networks.
Collapse
Affiliation(s)
- F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| |
Collapse
|
16
|
Song K, Nho CW, Ha IJ, Kim YS. Cellular Target Proteome in Breast Cancer Cells of an Oplopane Sesquiterpenoid Isolated from Tussilago farfara. JOURNAL OF NATURAL PRODUCTS 2020; 83:2559-2566. [PMID: 32881525 DOI: 10.1021/acs.jnatprod.0c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tussilago farfara is a traditional herbal medicine used to treat coughs, bronchitis, and asthma. Its bioactive compounds include sesquiterpenoids with anti-inflammatory, antiproliferative, neuroprotective, and other effects. Biochemical studies have highlighted the mechanisms of action, but the investigations of related molecular pathways have not specified direct molecular targets. Therefore, this study profiled cellular target proteins of a sesquiterpenoid isolated from T. farfara using quantitative chemical proteomics in MDA-MB-231 and MCF-7 human breast cancer cells. Compound 8, 7β-(3'-ethyl-cis-crotonoyloxy)-1α-(2'-methyl butyryloxy)-3,14-dehydro-Z-notonipetranone, exhibited potent antiproliferative activity based on its α,β-unsaturated carbonyl moiety, and its potential cellular target proteins were identified using a compound 8-based clickable probe. Among >200 identified proteins, 17 showed enrichment ratios of >3 in both cell lines, while recombinant 14-3-3 protein zeta and peroxiredoxin-1 were verified using isothermic calorimetry and their alkylation sites. Considering the interaction between the α,β-unsaturated carbonyl moiety of compound 8 and cysteine residues of the proteins, peptides containing Cys25 and Cys94 of 14-3-3 protein zeta and Cys83 of peroxiredoxin-1 were significantly reduced by this sesquiterpene ester. Although the results did not elucidate the effects of compound 8 in breast cancer cells, identification of potential target proteins contributes to enhanced understanding of its antiproliferative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Kwangho Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, South Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
17
|
Sijbesma E, Visser E, Plitzko K, Thiel P, Milroy LG, Kaiser M, Brunsveld L, Ottmann C. Structure-based evolution of a promiscuous inhibitor to a selective stabilizer of protein-protein interactions. Nat Commun 2020; 11:3954. [PMID: 32770072 PMCID: PMC7414219 DOI: 10.1038/s41467-020-17741-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
The systematic stabilization of protein–protein interactions (PPI) has great potential as innovative drug discovery strategy to target novel and hard-to-drug protein classes. The current lack of chemical starting points and focused screening opportunities limits the identification of small molecule stabilizers that engage two proteins simultaneously. Starting from our previously described virtual screening strategy to identify inhibitors of 14-3-3 proteins, we report a conceptual molecular docking approach providing concrete entries for discovery and rational optimization of stabilizers for the interaction of 14-3-3 with the carbohydrate-response element-binding protein (ChREBP). X-ray crystallography reveals a distinct difference in the binding modes between weak and general inhibitors of 14-3-3 complexes and a specific, potent stabilizer of the 14-3-3/ChREBP complex. Structure-guided stabilizer optimization results in selective, up to 26-fold enhancement of the 14-3-3/ChREBP interaction. This study demonstrates the potential of rational design approaches for the development of selective PPI stabilizers starting from weak, promiscuous PPI inhibitors. Small molecule stabilizers of protein–protein interactions hold great therapeutic potential. Based on virtual screening and molecular docking, the authors here develop a strategy to evolve weak, promiscuous inhibitors of 14-3-3 interactions into selective stabilizers of the 14-3-3/ChREBP complex.
Collapse
Affiliation(s)
- Eline Sijbesma
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Emira Visser
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Kathrin Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Duisburg, Germany
| | - Philipp Thiel
- Institute for Biomedical Informatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Duisburg, Germany.
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands. .,Department of Organic Chemistry, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
18
|
Yu X, Wang L, Zou L, Li M, Li T, Hou L, Guo Y, Shen D, Sun G, Qu D, Cheng X, Chen L. Growth inhibition by bacterial Cas2Em proteins expressed in mammalian cells. Am J Transl Res 2020; 12:2499-2520. [PMID: 32655787 PMCID: PMC7344093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) proteins are bacterial adaptive immune system for survival. In our previous study, we demonstrate that polyploid giant bacterial cells (PGBC) induced by Cas2 protein is a step required by new spacer acquisition reaction catalyzed by Cas1/Cas2 complex. We also demonstrated that a carboxyl terminal domain on Cas2Em (the protein Cas2 cloned from Elizabethkingia meningoseptica) is sufficient and enough for PGBC. Thus, the potential role of Cas2Em in microbial-host interaction was explored in this study. METHODS The impacts of Cas2Em on growth of both CHO-K1 and Hela cells were investigated. The subcellular localization and potential molecular target of Ca2Em were studied. RESULTS The growth of mammalian cells were inhibited by Cas2Em protein via G1 arresting and apoptosis. In addition, we also demonstrated that Cas2Em was tightly associated with nuclear outer membrane and could be immunoprecipitated with 14-3-3γ through a 30 amino acid domain (homology of CLK2). CONCLUSION Cas2Em significantly suppressed the growth of mammalian cells indicating Cas2 proteins play an important role in mammalian cells.
Collapse
Affiliation(s)
- Xin Yu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
- Roche Innovation Center ShanghaiShanghai 201203, China
| | - Lei Wang
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Lin Zou
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Mengjie Li
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Tiansheng Li
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Linlin Hou
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Yameng Guo
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Danfeng Shen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Guiqin Sun
- College of Medical Technology, Zhejiang Chinese Medical UniversityHangzhou 310053, Zhejiang, China
| | - Di Qu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Xunjia Cheng
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan UniversityShanghai 200032, China
| |
Collapse
|
19
|
Hartman AM, Elgaher WAM, Hertrich N, Andrei SA, Ottmann C, Hirsch AKH. Discovery of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions via Dynamic Combinatorial Chemistry. ACS Med Chem Lett 2020; 11:1041-1046. [PMID: 32435423 DOI: 10.1021/acsmedchemlett.9b00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein-protein interactions (PPIs) play an important role in numerous biological processes such as cell-cycle regulation and multiple diseases. The family of 14-3-3 proteins is an attractive target as they serve as binding partner to various proteins and are therefore capable of regulating their biological activities. Discovering small-molecule modulators, in particular stabilizers, of such complexes via traditional screening approaches is a challenging task. Herein, we pioneered the first application of dynamic combinatorial chemistry (DCC) to a PPI target, to find modulators of 14-3-3 proteins. Evaluation of the amplified hits from the DCC experiments for their binding affinity via surface plasmon resonance (SPR), revealed that the low-micromolar (K D 15-16 μM) acylhydrazones are 14-3-3/synaptopodin PPI stabilizers. Thus, DCC appears to be ideally suited for the discovery of not only modulators but even the more elusive stabilizers of notoriously challenging PPIs.
Collapse
Affiliation(s)
- Alwin M. Hartman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Nathalie Hertrich
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, 47057 Essen, Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
20
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
21
|
Plaza-Garrido M, Salinas-García MC, Martínez JC, Cámara-Artigas A. The effect of an engineered ATCUN motif on the structure and biophysical properties of the SH3 domain of c-Src tyrosine kinase. J Biol Inorg Chem 2020; 25:621-634. [PMID: 32279137 DOI: 10.1007/s00775-020-01785-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Metal binding to sites engineered in proteins can provide an increase in their stability and facilitate new functions. Besides the sites introduced in purpose, sometimes they are present accidentally as a consequence of the expression system used to produce the protein. This happens with the copper- and nickel-binding (ATCUN) motif generated by the amino-terminal residues Gly-Ser-His. This ATCUN motif is fortuitously present in many proteins, but how it affects the structural and biophysical characterization of the proteins has not been studied. In this work, we have compared the structure and biophysical properties of a small modular domain, the SH3 domain of the c-Src tyrosine kinase, cloned with and without an ATCUN motif at the N terminus. At pH 7.0, the SH3 domain with the ATCUN motif binds nickel with a binding constant Ka = 28.0 ± 3.0 mM-1. The formation of the nickel complex increases the thermal and chemical stability of the SH3 domain. A comparison of the crystal structures of the SH3 domain with and without the ATCUN motif shows that the binding of nickel does not affect the overall structure of the SH3 domain. In all crystal structures analyzed, residues Gly-Ser-His in complex with Ni2+ show a square planar geometry. The CD visible spectrum of the nickel complex shows that this geometry is also present in the solution. Therefore, our results not only show that the ATCUN motif might influence the biophysical properties of the protein, but also points to an advantageous stabilization of the protein with potential biotechnological applications.
Collapse
Affiliation(s)
- Marina Plaza-Garrido
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - Mª Carmen Salinas-García
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - José C Martínez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain.
| |
Collapse
|
22
|
Masuda R, Kawasaki Y, Igawa K, Manabe Y, Fujii H, Kato N, Tomooka K, Ohkanda J. Copper‐Free Huisgen Cycloaddition for the 14‐3‐3‐Templated Synthesis of Fusicoccin‐Peptide Conjugates. Chem Asian J 2020; 15:742-747. [DOI: 10.1002/asia.202000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Ryoma Masuda
- Academic AssemblyInstitute of AgricultureShinshu University 8304 Minami-Minowa Kami-Ina Nagano 399-4598 Japan
| | - Yuuya Kawasaki
- Institute for Materials Chemistry and EngineeringKyushu University Kasuga-koen 6–1 Kasuga Fukuoka 816-8580 Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and EngineeringKyushu University Kasuga-koen 6–1 Kasuga Fukuoka 816-8580 Japan
| | - Yoshiyuki Manabe
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Hiroshi Fujii
- Academic AssemblyInstitute of AgricultureShinshu University 8304 Minami-Minowa Kami-Ina Nagano 399-4598 Japan
| | - Nobuo Kato
- The Institute of Scientific Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki Osaka 567-0047 Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and EngineeringKyushu University Kasuga-koen 6–1 Kasuga Fukuoka 816-8580 Japan
| | - Junko Ohkanda
- Academic AssemblyInstitute of AgricultureShinshu University 8304 Minami-Minowa Kami-Ina Nagano 399-4598 Japan
| |
Collapse
|
23
|
Singh V, Singh K, Nand A, Dai H, Wang J, Zhang L, Merino A, Zhu J. Small molecule microarray screening methodology based on surface plasmon resonance imaging. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
24
|
Shi M, Xu D. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Front Chem 2019; 7:237. [PMID: 31058132 PMCID: PMC6478809 DOI: 10.3389/fchem.2019.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
The supramolecular complex formed between protein and designed molecule has become one of the most efficient ways to modify protein functions. As one of the more well-studied model systems, 14-3-3 family proteins play an important role in regulating intracellular signaling pathways via protein-protein interactions. In this work, we selected 14-3-3σ as the target protein. Molecular dynamics simulations and binding free energy calculations were applied to identify the possible binding sites and understand its recognition ability of the supramolecular inhibitor, the tweezer molecule (CLR01). On the basis of our simulation, major interactions between lysine residues and CLR01 come from the van der Waals interactions between the long alkyl chain of lysine and the cavity formed by the norbornadiene and benzene rings of the inhibitor. Apart from K214, which was found to be crystallized with this inhibitor, other lysine sites have also shown their abilities to form inclusion complexes with the inhibitor. Such non-specific recognition features of CLR01 against 14-3-3σ can be used in the modification of protein functions via supramolecular chemistry.
Collapse
Affiliation(s)
- Mingsong Shi
- College of Chemistry, Sichuan University, Chengdu, China
| | - Dingguo Xu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Sijbesma E, Hallenbeck KK, Leysen S, de Vink PJ, Skóra L, Jahnke W, Brunsveld L, Arkin MR, Ottmann C. Site-Directed Fragment-Based Screening for the Discovery of Protein–Protein Interaction Stabilizers. J Am Chem Soc 2019; 141:3524-3531. [DOI: 10.1021/jacs.8b11658] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Kenneth K. Hallenbeck
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California, San Francisco 94143, United States
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pim J. de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lukasz Skóra
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California, San Francisco 94143, United States
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, 47057 Essen, Germany
| |
Collapse
|
26
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
27
|
Yilmaz E, Bier D, Guillory X, Briels J, Ruiz-Blanco YB, Sanchez-Garcia E, Ottmann C, Kaiser M. Mono- and Bivalent 14-3-3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping" of Oligoethylene Glycol (OEG) Moieties in Proteins. Chemistry 2018; 24:13807-13814. [PMID: 29924885 DOI: 10.1002/chem.201801074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Indexed: 12/26/2022]
Abstract
Previous studies have indicated the presence of defined interactions between oligo or poly(ethylene glycol) (OEG or PEG) and lysine residues. In these interactions, the OEG or PEG residues "wrap around" the lysine amino group, thereby enabling complexation of the amino group by the ether oxygen residues. The resulting biochemical binding affinity and thus biological relevance of this supramolecular interaction however remains unclear so far. Here, we report that OEG-containing phosphophenol ether inhibitors of 14-3-3 proteins also display such a "lysine-wrapping" binding mode. For better investigating the biochemical relevance of this binding mode, we made use of the dimeric nature of 14-3-3 proteins and designed as well as synthesized a set of bivalent 14-3-3 inhibitors for biochemical and X-ray crystallography-based structural studies. We found that all synthesized derivatives adapted the "lysine-wrapping" binding mode in the crystal structures; in solution, a different binding mode is however observed, most probably as the "lysine-wrapping" binding mode turned out to be a rather weak interaction. Accordingly, our studies demonstrate that structural studies of OEG-lysine interactions are difficult to interpret and their presence in structural studies may not automatically be correlated with a relevant interaction also in solution but requires further biochemical studies.
Collapse
Affiliation(s)
- Elvan Yilmaz
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - David Bier
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Xavier Guillory
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Jeroen Briels
- Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
28
|
Ehlers M, Grad JN, Mittal S, Bier D, Mertel M, Ohl L, Bartel M, Briels J, Heimann M, Ottmann C, Sanchez-Garcia E, Hoffmann D, Schmuck C. Rational Design, Binding Studies, and Crystal-Structure Evaluation of the First Ligand Targeting the Dimerization Interface of the 14-3-3ζ Adapter Protein. Chembiochem 2018; 19:591-595. [DOI: 10.1002/cbic.201700588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Martin Ehlers
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Jean-Noël Grad
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Sumit Mittal
- Computational Biochemistry; University of Duisburg-Essen; Universitätsstrasse 3 45141 Essen Germany
| | - David Bier
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
| | - Marcel Mertel
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Ludwig Ohl
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Maria Bartel
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Jeroen Briels
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Marius Heimann
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Christian Ottmann
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Elsa Sanchez-Garcia
- Computational Biochemistry; University of Duisburg-Essen; Universitätsstrasse 3 45141 Essen Germany
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
29
|
Gilberg E, Gütschow M, Bajorath J. X-ray Structures of Target–Ligand Complexes Containing Compounds with Assay Interference Potential. J Med Chem 2018; 61:1276-1284. [DOI: 10.1021/acs.jmedchem.7b01780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Erik Gilberg
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany
- Pharmaceutical
Institute, Rheinische Friedrich-Wilhelms-Universität, An der Immenburg 4, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, Rheinische Friedrich-Wilhelms-Universität, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jürgen Bajorath
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany
| |
Collapse
|
30
|
Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. Modulators of 14-3-3 Protein-Protein Interactions. J Med Chem 2017; 61:3755-3778. [PMID: 28968506 PMCID: PMC5949722 DOI: 10.1021/acs.jmedchem.7b00574] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Direct
interactions between proteins are essential for the regulation
of their functions in biological pathways. Targeting the complex network
of protein–protein interactions (PPIs) has now been widely
recognized as an attractive means to therapeutically intervene in
disease states. Even though this is a challenging endeavor and PPIs
have long been regarded as “undruggable” targets, the
last two decades have seen an increasing number of successful examples
of PPI modulators, resulting in growing interest in this field. PPI
modulation requires novel approaches and the integrated efforts of
multiple disciplines to be a fruitful strategy. This perspective focuses
on the hub-protein 14-3-3, which has several hundred identified protein
interaction partners, and is therefore involved in a wide range of
cellular processes and diseases. Here, we aim to provide an integrated
overview of the approaches explored for the modulation of 14-3-3 PPIs
and review the examples resulting from these efforts in both inhibiting
and stabilizing specific 14-3-3 protein complexes by small molecules,
peptide mimetics, and natural products.
Collapse
Affiliation(s)
- Loes M Stevers
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Carol MacKintosh
- Division of Cell and Developmental Biology, School of Life Sciences , University of Dundee , Dundee DD1 4HN , United Kingdom
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Prague 116 36 , Czech Republic
| | | | - Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom.,Astbury Center For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom
| | | | - Jan Eickhoff
- Lead Discovery Center GmbH , Dortmund 44227 , Germany
| | - Jeremy Davis
- UCB Celltech , 216 Bath Road , Slough SL1 3WE , United Kingdom
| | - Michael Hann
- GlaxoSmithKline , Gunnels Wood Road , Stevenage, Hertfordshire SG1 2NY , United Kingdom
| | - Gavin O'Mahony
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , SE-431 83 Mölndal , Sweden
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , The Netherlands.,Department of Chemistry , University of Duisburg-Essen , Universitätstraße 7 , 45141 Essen , Germany
| |
Collapse
|
31
|
de Vink PJ, Briels JM, Schrader T, Milroy L, Brunsveld L, Ottmann C. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14-3-3. Angew Chem Int Ed Engl 2017; 56:8998-9002. [PMID: 28510303 PMCID: PMC5575475 DOI: 10.1002/anie.201701807] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/16/2023]
Abstract
Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14-3-3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation-dependent mono- or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)-based supramolecular system, which in conjunction with the 14-3-3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine-glycine-glycine (FGG) tripeptide motif to the N-terminus of the 14-3-3-binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8-induced dimerization of the ERα epitope augmented its affinity towards 14-3-3 through a binary bivalent binding mode. The crystal structure of the Q8-induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8.
Collapse
Affiliation(s)
- Pim J. de Vink
- Laboratory of Chemical Biology and Institute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Jeroen M. Briels
- Laboratory of Chemical Biology and Institute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
- Department of ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Thomas Schrader
- Department of ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Lech‐Gustav Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
- Department of ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
32
|
Sijbesma E, Skora L, Leysen S, Brunsveld L, Koch U, Nussbaumer P, Jahnke W, Ottmann C. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry 2017; 56:3972-3982. [PMID: 28681606 PMCID: PMC5543393 DOI: 10.1021/acs.biochem.7b00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Proteins
typically interact with multiple binding partners, and
often different parts of their surfaces are employed to establish
these protein–protein interactions (PPIs). Members of the class
of 14-3-3 adapter proteins bind to several hundred other proteins
in the cell. Multiple small molecules for the modulation of 14-3-3
PPIs have been disclosed; however, they all target the conserved phosphopeptide
binding channel, so that selectivity is difficult to achieve. Here
we report on the discovery of two individual secondary binding sites
that have been identified by combining nuclear magnetic resonance-based
fragment screening and X-ray crystallography. The two pockets that
these fragments occupy are part of at least three physiologically
relevant and structurally characterized 14-3-3 PPI interfaces, including
those with serotonin N-acetyltransferase and plant
transcription factor FT. In addition, the high degree of conservation
of the two sites implies their relevance for 14-3-3 PPIs. This first
identification of secondary sites on 14-3-3 proteins bound by small
molecule ligands might facilitate the development of new chemical
tool compounds for more selective PPI modulation.
Collapse
Affiliation(s)
- Eline Sijbesma
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lukasz Skora
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research , 4002 Basel, Switzerland
| | - Seppe Leysen
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Uwe Koch
- Lead Discovery Center GmbH , Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH , Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research , 4002 Basel, Switzerland
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
33
|
de Vink PJ, Briels JM, Schrader T, Milroy LG, Brunsveld L, Ottmann C. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14-3-3. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Pim J. de Vink
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems; Department of Biomedical Engineering; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Jeroen M. Briels
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems; Department of Biomedical Engineering; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany
| | - Thomas Schrader
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems; Department of Biomedical Engineering; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems; Department of Biomedical Engineering; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems; Department of Biomedical Engineering; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
34
|
Ng YS, Sorvina A, Bader CA, Weiland F, Lopez AF, Hoffmann P, Shandala T, Brooks DA. Proteome Analysis of Drosophila Mutants Identifies a Regulatory Role for 14-3-3ε in Metabolic Pathways. J Proteome Res 2017; 16:1976-1987. [PMID: 28365999 DOI: 10.1021/acs.jproteome.6b01032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolutionary conserved family of 14-3-3 proteins appears to have a role in integrating numerous intracellular pathways, including signal transduction, intracellular trafficking, and metabolism. However, little is known about how this interactive network might be affected by the direct abrogation of 14-3-3 function. The loss of Drosophila 14-3-3ε resulted in reduced survival of mutants during larval-to-adult transition, which is known to depend on an energy supply coming from the histolysis of fat body tissue. Here we report a differential proteomic analysis of larval fat body tissue at the onset of larval-to-adult transition, with the loss of 14-3-3ε resulting in the altered abundance of 16 proteins. These included proteins linked to protein biosynthesis, glycolysis, tricarboxylic acid cycle, and lipid metabolic pathways. The ecdysone receptor (EcR), which is responsible for initiating the larval-to-adult transition, colocalized with 14-3-3ε in wild-type fat body tissues. The altered protein abundance in 14-3-3ε mutant fat body tissue was associated with transcriptional deregulation of alcohol dehydrogenase, fat body protein 1, and lamin genes, which are known targets of the EcR. This study indicates that 14-3-3ε has a critical role in cellular metabolism involving either molecular crosstalk with the EcR or direct interaction with metabolic proteins.
Collapse
Affiliation(s)
- Yeap S Ng
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Alexandra Sorvina
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Christie A Bader
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Florian Weiland
- Adelaide Proteomics Center, School of Molecular and Biomedical Sciences, University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Angel F Lopez
- Centre for Cancer Biology , Adelaide, South Australia 5000, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Center, School of Molecular and Biomedical Sciences, University of Adelaide , Adelaide, South Australia 5005, Australia
| | | | - Douglas A Brooks
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5001, Australia
| |
Collapse
|
35
|
Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Eur J Med Chem 2017; 136:573-584. [PMID: 28549334 DOI: 10.1016/j.ejmech.2017.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
The 14-3-3 protein family is implicated in several diseases and biological processes. Several recent reviews have summarised knowledge on certain aspects of 14-3-3 proteins, ranging from a historic overview to the structure, function and regulation. This review focuses on the structures and molecular recognition of the modulators by the 14-3-3 proteins, and small modifications of certain modulators are proposed where cocrystal structures have been reported. Our analysis opens up possibilities for the optimisation of the reported compounds. It is very timely to analyse the current status of recently developed modulators given that the field has seen a lot of activity in recent years. This review provides an overview combined with a critical analysis of each class of modulators, keeping their suitability for future development in mind.
Collapse
|
36
|
Structural interface between LRRK2 and 14-3-3 protein. Biochem J 2017; 474:1273-1287. [PMID: 28202711 DOI: 10.1042/bcj20161078] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 02/03/2023]
Abstract
Binding of 14-3-3 proteins to leucine-rich repeat protein kinase 2 (LRRK2) is known to be impaired by many Parkinson's disease (PD)-relevant mutations. Abrogation of this interaction is connected to enhanced LRRK2 kinase activity, which in turn is implicated in increased ubiquitination of LRRK2, accumulation of LRRK2 into inclusion bodies and reduction in neurite length. Hence, the interaction between 14-3-3 and LRRK2 is of significant interest as a possible drug target for the treatment of PD. However, LRRK2 possesses multiple sites that, upon phosphorylation, can bind to 14-3-3, thus rendering the interaction relatively complex. Using biochemical assays and crystal structures, we characterize the multivalent interaction between these two proteins.
Collapse
|
37
|
Tang YF, Zhang YB, Feng XD, Lin SH, Qiao N, Sun ZY, Zhou WP. Role of 14-3-3 proteins in human diseases. Shijie Huaren Xiaohua Zazhi 2017; 25:509-520. [DOI: 10.11569/wcjd.v25.i6.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
14-3-3 proteins are a family of highly conserved small proteins. By interacting with target proteins, 14-3-3 proteins are involved in regulating multiple cellular processes, such as signal transduction, cell cycle regulation, apoptosis, cellular metabolism, cytoskeleton organization and malignant transformation. Mounting evidence suggests that 14-3-3 proteins play an important role in a wide variety of human diseases, such as human cancers and nervous system diseases. This review aims to summarize the current knowledge on the expression, regulation and biological function of 14-3-3 to highlight the role of 14-3-3 proteins in human diseases.
Collapse
|
38
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
39
|
Yu C, Luo C, Gu X, Zang Y, Qu B, Khudhair N, Li Q, Gao X. 14-3-3γaffects eIF5 to regulateβ-casein synthesis in bovine mammary epithelial cells. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2016-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 14-3-3γ protein participates in many biological processes; however, its regulatory mechanism in milk protein synthesis is not well studied. We hypothesized that 14-3-3γ might affect eIF5 (an initiation factor) to regulate β-casein synthesis in dairy cows. In this study, a possible interaction between 14-3-3γ and eIF5 was investigated using bovine mammary epithelial cells (BMECs). The expression levels of 14-3-3γ and eIF5 in the mammary gland tissues from cows producing higher quality milk were higher than those from cows producing low-quality milk. Moreover, the expression of 14-3-3γ, eIF5, and β-casein were increased at both mRNA and protein levels in BMECs cultured in vitro with methionine (Met) supplementation. Coimmunoprecipitation, colocalization, and FRET analysis further showed the evidences that 14-3-3γ physically bound to eIF5 in BMECs. Gene function studies revealed that 14-3-3γ positively regulated eIF5 through alteration of eIF2α/p-eIF2α ratio. Collectively, our data suggest that 14-3-3γ regulates β-casein translation in BMECs through interaction with eIF5.
Collapse
Affiliation(s)
- Cuiping Yu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, People’s Republic of China
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Chaochao Luo
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xinyu Gu
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yanli Zang
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Bo Qu
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Nagam Khudhair
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Qingzhang Li
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuejun Gao
- Key Laboratory of Agricultural Biologically Functional Genes, Northeast Agricultural University, Harbin 150030, People’s Republic of China
| |
Collapse
|
40
|
Watanabe N, Osada H. Small molecules that target phosphorylation dependent protein-protein interaction. Bioorg Med Chem 2016; 24:3246-54. [PMID: 27017542 DOI: 10.1016/j.bmc.2016.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Abstract
Protein-protein interaction is one of the key events in the signal transduction pathway. The interaction changes the conformations, activities, localization and stabilities of the proteins, and transduces the signal to the next step. Frequently, this interaction occurs upon the protein phosphorylation. When upstream signals are stimulated, protein kinase(s) is/are activated and phosphorylate(s) their substrates, and induce the phosphorylation dependent protein-protein interaction. For this interaction, several domains in proteins are known to specifically recognize the phosphorylated residues of target proteins. These specific domains for interaction are important in the progression of the diseases caused by disordered signal transduction such as cancer. Thus small molecules that modulate this interaction are attractive lead compounds for the treatment of such diseases. In this review, we focused on three examples of phosphorylation dependent protein-protein interaction modules (14-3-3, polo box domain of Plk1 and F-box proteins in SCF ubiquitin ligases) and summarize small molecules that modulate their interaction. We also introduce our original screening system to identify such small molecules.
Collapse
Affiliation(s)
- Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan.
| | - Hiroyuki Osada
- Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan; Chemical Biology Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Ishikawa F, Miyamoto K, Konno S, Kasai S, Kakeya H. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains. ACS Chem Biol 2015; 10:2816-26. [PMID: 26474351 DOI: 10.1021/acschembio.5b00595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique and adenylating enzymes together using a combination of active site-directed probes for the A domains in NRPSs should accelerate both the functional characterization and manipulation of the A domains in NRPSs.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of System Chemotherapy
and Molecular Sciences, Division of Bioinformatics and Chemical Genomics,
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kengo Miyamoto
- Department of System Chemotherapy
and Molecular Sciences, Division of Bioinformatics and Chemical Genomics,
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Sho Konno
- Department of System Chemotherapy
and Molecular Sciences, Division of Bioinformatics and Chemical Genomics,
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shota Kasai
- Department of System Chemotherapy
and Molecular Sciences, Division of Bioinformatics and Chemical Genomics,
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy
and Molecular Sciences, Division of Bioinformatics and Chemical Genomics,
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Parvatkar P, Kato N, Uesugi M, Sato SI, Ohkanda J. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions. J Am Chem Soc 2015; 137:15624-7. [PMID: 26632868 DOI: 10.1021/jacs.5b09817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.
Collapse
Affiliation(s)
- Prakash Parvatkar
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobuo Kato
- Institute of Scientific and Industrial Research, Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junko Ohkanda
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
Chen Z, Liu J, Lin L, Xie H, Zhang W, Zhang H, Wang G. [Analysis of differentially expressed proteome in urine
from non-small cell lung cancer patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:138-45. [PMID: 25800569 PMCID: PMC6000009 DOI: 10.3779/j.issn.1009-3419.2015.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
背景与目的 筛查非小细胞肺癌(non-small cell lung cancer, NSCLC)患者尿液中差异表达蛋白,确定可用于NSCLC早期诊断、监测预后和治疗评估的生物标记物。 方法 分别收集40例已病理证实初诊NSCLC患者、8例肺部良性疾病患者和22例健康志愿者的尿液样本。利用0.9%一维十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dode-cyl sulfate polyacrylamide gel electrophoresis, 1D SDS-PAGE)技术和MS-Thermo-Orbitrap-Velos质谱分析仪对NSCLC组和非肿瘤组尿液中蛋白质进行分离、提取及识别,鉴定出NSCLC患者尿液中的差异表达蛋白。应用SPSS 20.0软件中受试者工作特征曲线(receiver operating characteristic curve, ROC)分别对其敏感性、特异性进行分析,并进行实验验证,从而确定出与NSCLC相关的生物标记物。 结果 NSCLC患者组和非肿瘤组尿液差异性表达蛋白质集中表现在90 kDa、60 kDa和20 kDa-30 kDa凝胶条带中。在NSCLC患者尿液蛋白分析中发现了4种与NSCLC相关的差异表达蛋白,包括上调蛋白LRG1、CA1和下调蛋白VPS4B、YWHAZ。这4种差异表达蛋白作为独立的NSCLC生物标记物其敏感性较低:LRG1蛋白敏感性83.0%(25/30)、特异性90.0%(18/20);CA1蛋白敏感性60.0%(18/30)、特异性90.0%(18/20);VPS4B蛋白敏感性73.3%(22/30)、特异性90.0%(18/20);YWHAZ蛋白敏感性60.0%(18/30)、特异性95.0%(19/20)。而采用蛋白质组合模式对NSCLC进行筛查、诊断,则其敏感性和特异性分别可高达96.7%(29/30)和85%(17/20)。 结论 LRG1、CA1蛋白在NSCLC患者尿液中高表达,而VPS4B、YWHAZ蛋白呈低表达,差异表达蛋白均提示有可能成为用于NSCLC早期筛查、监测预后和治疗评估的生物标记物。LRG1、CA1、VPS4B和YWHAZ尿液蛋白作为单一生物标记物应用于NSCLC筛查和诊断的敏感性较低,而采用蛋白质组合模式明显优于独立模式对NSCLC的筛查和诊断,故蛋白质组合模式在临床诊疗中将更具有良好应用价值和前景。
Collapse
Affiliation(s)
- Zhengang Chen
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Jinbo Liu
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Ling Lin
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hui Xie
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Wencheng Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hongbo Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Guangshun Wang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| |
Collapse
|
44
|
Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods. Sci Rep 2015; 5:16481. [PMID: 26568041 PMCID: PMC4644958 DOI: 10.1038/srep16481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins.
Collapse
|
45
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
46
|
Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 2015; 21:278-87. [PMID: 26456530 DOI: 10.1016/j.drudis.2015.09.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
47
|
Babula JJ, Liu JY. Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy. J Genet Genomics 2015; 42:531-547. [PMID: 26554908 DOI: 10.1016/j.jgg.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumental in the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3 isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells. The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by high-throughput techniques, bioinformatics, structural genomics and chemical genomics and point out that integrating the information with molecular dynamics (MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.
Collapse
Affiliation(s)
- JoAnne J Babula
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA; Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
Cesa LC, Mapp AK, Gestwicki JE. Direct and Propagated Effects of Small Molecules on Protein-Protein Interaction Networks. Front Bioeng Biotechnol 2015; 3:119. [PMID: 26380257 PMCID: PMC4547496 DOI: 10.3389/fbioe.2015.00119] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022] Open
Abstract
Networks of protein–protein interactions (PPIs) link all aspects of cellular biology. Dysfunction in the assembly or dynamics of PPI networks is a hallmark of human disease, and as such, there is growing interest in the discovery of small molecules that either promote or inhibit PPIs. PPIs were once considered undruggable because of their relatively large buried surface areas and difficult topologies. Despite these challenges, recent advances in chemical screening methodologies, combined with improvements in structural and computational biology have made some of these targets more tractable. In this review, we highlight developments that have opened the door to potent chemical modulators. We focus on how allostery is being used to produce surprisingly robust changes in PPIs, even for the most challenging targets. We also discuss how interfering with one PPI can propagate changes through the broader web of interactions. Through this analysis, it is becoming clear that a combination of direct and propagated effects on PPI networks is ultimately how small molecules re-shape biology.
Collapse
Affiliation(s)
- Laura C Cesa
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA
| | - Anna K Mapp
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA ; Department of Chemistry, University of Michigan , Ann Arbor, MI , USA
| | - Jason E Gestwicki
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA ; Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|
49
|
Abstract
A powerful early approach to evaluating the druggability of proteins involved determining the hit rate in NMR-based screening of a library of small compounds. Here, we show that a computational analog of this method, based on mapping proteins using small molecules as probes, can reliably reproduce druggability results from NMR-based screening and can provide a more meaningful assessment in cases where the two approaches disagree. We apply the method to a large set of proteins. The results show that, because the method is based on the biophysics of binding rather than on empirical parametrization, meaningful information can be gained about classes of proteins and classes of compounds beyond those resembling validated targets and conventionally druglike ligands. In particular, the method identifies targets that, while not druggable by druglike compounds, may become druggable using compound classes such as macrocycles or other large molecules beyond the rule-of-five limit.
Collapse
Affiliation(s)
- Dima Kozakov
- Department of Applied Mathematics & Statistics, Stony Brook University , Stony Brook, New York 11794, United States
| | - David R Hall
- Acpharis Inc. , Holliston, Massachusetts 01746, United States
| | | | | | | | | |
Collapse
|
50
|
14-3-3γ affects mTOR pathway and regulates lactogenesis in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 2015; 51:697-704. [DOI: 10.1007/s11626-015-9879-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
|