1
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Moustaka J, Sperdouli I, İşgören S, Şaş B, Moustakas M. Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2590. [PMID: 39339565 PMCID: PMC11434670 DOI: 10.3390/plants13182590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 μM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 μM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 μM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 μM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 μmol photons m-2 s-1), and by 13% at a high irradiance (HI, 1000 μmol photons m-2 s-1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (-38%), in drought-stressed oregano plants sprayed with 100 μM MT, than the corresponding decrease in 1O2 production at the GI (-20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 μM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 μM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.
Collapse
Affiliation(s)
- Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Begüm Şaş
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 197101 Saint-Petersburg, Russia
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Saha S, Mahapatra NS, Bhattacharya K, Kundu R, Nimitha K, Ganguly S, Ganguly S, Biswas T, Bhattacharyya PK, Bhattacharyya S. The Ratio of A 400/A 1800 Mapping Identifies Chromosomal Regions Containing Known Photoprotection Recovery-Related Genes in Rice. RICE (NEW YORK, N.Y.) 2024; 17:62. [PMID: 39285086 PMCID: PMC11405727 DOI: 10.1186/s12284-024-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
The rice, like other plants, undergoes photoprotection mode by increasing nonphotochemical quenching (NPQ) in high light intensity (> 1200 µmol m- 2s- 1 PPFD), which attenuates photosystem II yield (φPSII) drastically. The plant remains in photoprotection mode even after light intensity becomes not stressful for an extended period. While there are significant differences in the time it takes for photoprotection to recover among different genotypes, its use is limited in plant breeding because measuring the chlorophyll fluorescence parameters in progressive actinic light after dark adaptation takes more than forty-five minutes per genotype. The study finds that instantly measured A400/A1800 ratio by five minutes in flag leaves of 25 diverse genotypes strongly associated with the φPSII400 differences between theoretical and actual, qPd400 and NPQ400 with R2 values 0.74, 0.65 and 0.60, respectively. In two consecutive years, GWAS of A400/A1800 ratio identified the regions with genes reported earlier for plant photoprotection recovery. Additionally, QTL analysis in a RIL population also identified the regions carrying known genes related to photoprotection. Thus, the A400/A1800 ratio can quickly phenotype many plants for easier introgression of the traits in popular cultivars. The identified genotypes, genes, and QTLs can be used to improve yield potential and allele mining.
Collapse
Affiliation(s)
- Shoumik Saha
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Nilanjan Sinha Mahapatra
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Kriti Bhattacharya
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Rimpa Kundu
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - K Nimitha
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Shamba Ganguly
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Sebantee Ganguly
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Tirthankar Biswas
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Prabir K Bhattacharyya
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Somnath Bhattacharyya
- Crop Research Unit, Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India.
| |
Collapse
|
4
|
Patel-Tupper D, Kelikian A, Leipertz A, Maryn N, Tjahjadi M, Karavolias NG, Cho MJ, Niyogi KK. Multiplexed CRISPR-Cas9 mutagenesis of rice PSBS1 noncoding sequences for transgene-free overexpression. SCIENCE ADVANCES 2024; 10:eadm7452. [PMID: 38848363 PMCID: PMC11160471 DOI: 10.1126/sciadv.adm7452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Understanding CRISPR-Cas9's capacity to produce native overexpression (OX) alleles would accelerate agronomic gains achievable by gene editing. To generate OX alleles with increased RNA and protein abundance, we leveraged multiplexed CRISPR-Cas9 mutagenesis of noncoding sequences upstream of the rice PSBS1 gene. We isolated 120 gene-edited alleles with varying non-photochemical quenching (NPQ) capacity in vivo-from knockout to overexpression-using a high-throughput screening pipeline. Overexpression increased OsPsbS1 protein abundance two- to threefold, matching fold changes obtained by transgenesis. Increased PsbS protein abundance enhanced NPQ capacity and water-use efficiency. Across our resolved genetic variation, we identify the role of 5'UTR indels and inversions in driving knockout/knockdown and overexpression phenotypes, respectively. Complex structural variants, such as the 252-kb duplication/inversion generated here, evidence the potential of CRISPR-Cas9 to facilitate significant genomic changes with negligible off-target transcriptomic perturbations. Our results may inform future gene-editing strategies for hypermorphic alleles and have advanced the pursuit of gene-edited, non-transgenic rice plants with accelerated relaxation of photoprotection.
Collapse
Affiliation(s)
- Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Armen Kelikian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Leipertz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nina Maryn
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Michelle Tjahjadi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Nicholas G. Karavolias
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Sahay S, Grzybowski M, Schnable JC, Głowacka K. Genotype-specific nonphotochemical quenching responses to nitrogen deficit are linked to chlorophyll a to b ratios. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154261. [PMID: 38705078 DOI: 10.1016/j.jplph.2024.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznań, Poland.
| |
Collapse
|
6
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Dendrinou-Samara C, Moustakas M. Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods. PLANTS (BASEL, SWITZERLAND) 2023; 12:3502. [PMID: 37836242 PMCID: PMC10575289 DOI: 10.3390/plants12193502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
We recently proposed the use of engineered irregularly shaped zinc oxide nanoparticles (ZnO NPs) coated with oleylamine (OAm), as photosynthetic biostimulants, to enhance crop yield. In the current research, we tested newly engineered rod-shaped ZnO nanorods (NRs) coated with oleylamine (ZnO@OAm NRs) regarding their in vivo behavior related to photosynthetic function and reactive oxygen species (ROS) generation in tomato (Lycopersicon esculentum Mill.) plants. ZnO@OAm NRs were produced via solvothermal synthesis. Their physicochemical assessment revealed a crystallite size of 15 nm, an organic coating of 8.7% w/w, a hydrodynamic diameter of 122 nm, and a ζ-potential of -4.8 mV. The chlorophyll content of tomato leaflets after a foliar spray with 15 mg L-1 ZnO@OAm NRs presented a hormetic response, with an increased content 30 min after the spray, which dropped to control levels 90 min after the spray. Simultaneously, 90 min after the spray, the efficiency of the oxygen-evolving complex (OEC) decreased significantly (p < 0.05) compared to control values, with a concomitant increase in ROS generation, a decrease in the maximum efficiency of PSII photochemistry (Fv/Fm), a decrease in the electron transport rate (ETR), and a decrease in the effective quantum yield of PSII photochemistry (ΦPSII), indicating reduced PSII efficiency. The decreased ETR and ΦPSII were due to the reduced efficiency of PSII reaction centers (Fv'/Fm'). There were no alterations in the excess excitation energy at PSII or the fraction of open PSII reaction centers (qp). We discovered that rod-shaped ZnO@OAm NRs reduced PSII photochemistry, in contrast to irregularly shaped ZnO@OAm NPs, which enhanced PSII efficiency. Thus, the shape and organic coating of the nanoparticles play a critical role in the mechanism of their action and their impact on crop yield when they are used in agriculture.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Moustakas M, Dendrinou-Samara C. Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5846. [PMID: 37687539 PMCID: PMC10488754 DOI: 10.3390/ma16175846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Székely Á, Szalóki T, Jancsó M, Pauk J, Lantos C. Temporal Changes of Leaf Spectral Properties and Rapid Chlorophyll-A Fluorescence under Natural Cold Stress in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:2415. [PMID: 37446976 DOI: 10.3390/plants12132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Nowadays, hyperspectral remote sensing data are widely used in nutrient management, crop yield forecasting and stress monitoring. These data can be acquired with satellites, drones and handheld spectrometers. In this research, handheld spectrometer data were validated by chlorophyll-a fluorescence measurements under natural cold stress. The performance of 16 rice cultivars with different origins and tolerances was monitored in the seedling stage. The studies were carried out under field conditions across two seasons to simulate different temperature regimes. Twenty-four spectral indices and eleven rapid chlorophyll-a fluorescence parameters were compared with albino plants. We identified which wavelengths are affected by low temperatures. Furthermore, the differences between genotypes were characterized by certain well-known and two newly developed (AAR and RAR) indices based on the spectral difference between the genotype and albino plant. The absorbance, reflectance and transmittance differences from the control are suitable for the discrimination of tolerant-sensitive varieties, especially based on their shape, peak and shifting distance. The following wavelengths are capable of determining the tolerant varieties, namely 548-553 nm, 667-670 nm, 687-688 nm and 800-950 nm in case of absorbance; above 700 nm for reflectance; and the whole spectrum (400-1100 nm) for transmittance.
Collapse
Affiliation(s)
- Árpád Székely
- Research Centre for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-Liget Str. 35, H-5540 Szarvas, Hungary
| | - Tímea Szalóki
- Research Centre for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-Liget Str. 35, H-5540 Szarvas, Hungary
| | - Mihály Jancsó
- Research Centre for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-Liget Str. 35, H-5540 Szarvas, Hungary
| | - János Pauk
- Cereal Research Non-Profit Company, H-6726 Szeged, Hungary
| | - Csaba Lantos
- Cereal Research Non-Profit Company, H-6726 Szeged, Hungary
| |
Collapse
|
10
|
Wang Q, Chen P, Wang H, Chao S, Guo W, Zhang Y, Miao C, Yuan H, Peng B. Physiological and transcriptomic analysis of OsLHCB3 knockdown lines in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:38. [PMID: 37312752 PMCID: PMC10248686 DOI: 10.1007/s11032-023-01387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
The photosystem II (PSII) outer antenna LHCB3 protein plays critical roles in distributing the excitation energy and modulating the rate of state transition for photosynthesis. Here, OsLHCB3 knockdown mutants were produced using the RNAi system. Phenotypic analyses showed that OsLHCB3 knockdown led to pale green leaves and lower chlorophyll contents at both tillering and heading stages. In addition, mutant lines exhibited decreased non-photochemical quenching (NPQ) capacity and net photosynthetic rate (Pn) by downregulating the expression of PSII-related genes. Moreover, RNA-seq experiments were performed at both tillering and heading stages. The differentially expressed genes (DEGs) mainly involved in chlorophyll binding response to abscisic acid, photosystem II, response to chitin, and DNA-binding transcription factor. Besides, our transcriptomic and physiological data indicated that OsLHCB3 was essential for binding chlorophyll, but not for the metabolism of chlorophyll in rice. OsLHCB3 RNAi knockdown plants affected the expression of PS II-related genes, but not PS I-related genes. Overall, these results suggest that OsLHCB3 also plays vital roles in regulating photosynthesis and antenna proteins in rice as well as responses to environment stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01387-z.
Collapse
Affiliation(s)
- Quanxiu Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Honglin Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Shuangshuang Chao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wenru Guo
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Yuxue Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Chenglin Miao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Hongyu Yuan
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Bo Peng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
11
|
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic Insights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030518. [PMID: 36771603 PMCID: PMC9919124 DOI: 10.3390/plants12030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Dramatic climate change has led to an increase in the intensity and frequency of drought episodes and, together with the high light conditions of the Mediterranean area, detrimentally influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS). Foliar application of SA decreased chlorophyll content under normal growth conditions, but under MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased (7%) efficiency of these open reaction centers (Fv'/Fm'), which resulted in an enhanced (24%) electron transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production with less excess excitation energy (EXC).
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Navarra, Spain
| |
Collapse
|
12
|
Kumar A, Pandey SS, Kumar D, Tripathi BN. Genetic manipulation of photosynthesis to enhance crop productivity under changing environmental conditions. PHOTOSYNTHESIS RESEARCH 2023; 155:1-21. [PMID: 36319887 DOI: 10.1007/s11120-022-00977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Current global agricultural production needs to be increased to feed the unconstrained growing population. The changing climatic condition due to anthropogenic activities also makes the conditions more challenging to meet the required crop productivity in the future. The increase in crop productivity in the post green revolution era most likely became stagnant, or no major enhancement in crop productivity observed. In this review article, we discuss the emerging approaches for the enhancement of crop production along with dealing to the future climate changes like rise in temperature, increase in precipitation and decrease in snow and ice level, etc. At first, we discuss the efforts made for the genetic manipulation of chlorophyll metabolism, antenna engineering, electron transport chain, carbon fixation, and photorespiratory processes to enhance the photosynthesis of plants and to develop tolerance in plants to cope with changing environmental conditions. The application of CRISPR to enhance the crop productivity and develop abiotic stress-tolerant plants to face the current changing climatic conditions is also discussed.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Dhananjay Kumar
- Laboratory of Algal Biotechnology, Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India.
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484886, India
| |
Collapse
|
13
|
Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Int J Mol Sci 2022; 23:ijms23137038. [PMID: 35806045 PMCID: PMC9266436 DOI: 10.3390/ijms23137038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv’/Fm’). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Correspondence:
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| |
Collapse
|
14
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
16
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
17
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
18
|
Root-Associated Entomopathogenic Fungi Modulate Their Host Plant's Photosystem II Photochemistry and Response to Herbivorous Insects. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010207. [PMID: 35011439 PMCID: PMC8746981 DOI: 10.3390/molecules27010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets' reaction to herbivory by Spodoptera exigua (beet armyworm) larvae using chlorophyll fluorescence imaging. Plants were inoculated with Metarhizium brunneum or Beauveria bassiana, and photosystem II reactions were evaluated before and after larval feeding. Before herbivory, the fraction of absorbed light energy used for photochemistry (ΦPSII) was lower in M. brunneum-inoculated than in control plants, but not in B. bassiana-inoculated plants. After herbivory, however, ΦPSII increased in the fungal-inoculated plants compared with that before herbivory, similar to the reaction of control plants. At the same time, the fraction of energy dissipated as heat (ΦNPQ) decreased in the inoculated plants, resulting in an increased fraction of nonregulated energy loss (ΦNO) in M. brunneum. This indicates an increased singlet oxygen (1O2) formation not detected in B. bassiana-inoculated plants, showing that the two entomopathogenic fungi differentially modulate the leaflets' response to herbivory. Overall, our results show that M. brunneum inoculation had a negative effect on the photosynthetic efficiency before herbivory, while B. bassiana inoculation had no significant effect. However, S. exigua leaf biting activated the same compensatory PSII response mechanism in tomato plants of both fungal-inoculated treatments as in control plants.
Collapse
|
19
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
20
|
Ramazan S, Bhat HA, Zargar MA, Ahmad P, John R. Combined gas exchange characteristics, chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. PHOTOSYNTHESIS RESEARCH 2021; 150:213-225. [PMID: 33783665 DOI: 10.1007/s11120-021-00829-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Maize is a low-temperature (LT)-sensitive plant and its physiological responses towards LT of temperate regions developed is an adaptive trait. To further our understanding about the response of maize to LT at the physiological and photosynthesis level, we conducted Infrared Gas Analysis (IRGA using LICOR6400-XT in 45-day-old grown two maize genotypes, one from temperate region (Gurez-Kashmir Himalayas), viz., Gurez local (Gz local), and another from tropics (Gujarat), viz., GM6. This study was carried out to evaluate the underlying physiological mechanisms in the two differentially temperature-tolerant maize genotypes. Net photosynthetic rate (A/PN), 18.253 in Gz local and 25.587 (µmol CO2 m-2 s-1) in GM6; leaf conductance (gs), 0.0102 in Gz local and 0.0566 (mmol H2O m-2 s-1) in GM6; transpiration rate (E), 0.5371 in Gz local and 2.9409 (mmol H2O m-2 s-1) in GM6; and water use efficiency (WUE), 33.9852 in Gz local and 8.7224 (µmol CO2 mmol H2O-1) in GM6, were recorded under ambient conditions. Also, photochemical efficiency of photosystem II (PSII) (Fv/Fm), 0.675 in Gz local and 0.705 in GM6; maximum photochemical efficiency (Fv'/Fm'), 0.310234 in Gz local and 0.401391 in GM6; photochemical quenching (qP), 0.2375 in Gz local and 0.2609 in GM6; non-photochemical quenching (NPQ), 2.0036 in Gz local and 1.1686 in GM6; effective yield of PSII (ФPSII), 0.0789 in Gz local and 0.099 in GM6; and electron transport rate (ETR), 55.3152 in Gz local and 68.112 in GM6, were also evaluated in addition to various response curves, like light intensities and temperature. We observed that light response curves show the saturation light intensity requirement of 1600 µmol for both the genotypes, whereas temperature response curves showed the optimum temperature requirement for Gz local as 20 °C and for GM6 it was found to be 35 °C. The results obtained for each individual parameter and other correlational studies indicate that IRGA forms a promising route for quick and reliable screening of various stress-tolerant valuable genotypes, forming the first study of its kind.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India
| | - Hilal Ahmad Bhat
- Government Higher Secondary School, Kachwa-Muqam, Baramulla, Jammu and Kashmir, India
| | - Mohammad Arief Zargar
- Plant Physiology Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190 006, India.
| |
Collapse
|
21
|
Quero G, Bonnecarrère V, Simondi S, Santos J, Fernández S, Gutierrez L, Garaycochea S, Borsani O. Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. PHOTOSYNTHESIS RESEARCH 2021; 150:97-115. [PMID: 32072456 DOI: 10.1007/s11120-020-00721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association between light-harvesting complexes and the potential quantum yield of PSII, as well as the relationship between coding regions for PSI-linked proteins in energy distribution during the photochemical process of photosynthesis is analyzed.
Collapse
Affiliation(s)
- Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 809, Montevideo, Uruguay.
| | - Victoria Bonnecarrère
- Unidad de Biotecnología, Estación Experimental Wilson Ferreira Aldunate, Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 48, Km 10, Rincón del Colorado, 90200, Canelones, Uruguay
| | - Sebastián Simondi
- Área de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo), Padre Contreras 1300, Mendoza, Argentina
| | - Jorge Santos
- Área de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo), Padre Contreras 1300, Mendoza, Argentina
| | - Sebastián Fernández
- Facultad de Ingeniería, Instituto de Ingeniería Eléctrica, Universidad de La República, Julio Herrera y Reissig 565, Montevideo, Uruguay
| | - Lucía Gutierrez
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr., Madison, WI, 53706, USA
- Departamento de Biometría, Estadística y Cómputos, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, Uruguay
| | - Silvia Garaycochea
- Unidad de Biotecnología, Estación Experimental Wilson Ferreira Aldunate, Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 48, Km 10, Rincón del Colorado, 90200, Canelones, Uruguay
| | - Omar Borsani
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Garzón 809, Montevideo, Uruguay
| |
Collapse
|
22
|
Suárez JC, Urban MO, Contreras AT, Grajales MÁ, Cajiao C, Beebe SE, Rao IM. Adaptation of Interspecific Mesoamerican Common Bean Lines to Acid Soils and High Temperature in the Amazon Region of Colombia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2412. [PMID: 34834775 PMCID: PMC8623317 DOI: 10.3390/plants10112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the physiological basis for improved genetic adaptation of common bean (Phaseolus vulgaris L.) lines to acid soils and high temperature conditions in the Amazon region of Colombia is limited. In this study, we evaluated the differences among 41 common bean lines in energy use, leaf cooling, photosynthate partitioning to pod formation and grain filling, and grain yield over two seasons under acid soil and high temperature stress in the Amazon region of Colombia. Common bean lines evaluated included medium and large seeded interspecific lines of Mesoamerican and Andean gene pools with different levels of adaptation to abiotic stress conditions and some lines are improved for iron and zinc (biofortified) concentration in seeds. We found three bean lines (GGR 147, SMG 21 and SMG 12) that were superior in their photosynthetic response, leaf cooling, photosynthate partitioning ability to pod formation and grain filling, resulting in grain yields exceeding 1900 kg ha-1 under acid soil and high temperature stress conditions. The superior photosynthetic performance was attributed to the efficient use of absorbed energy on the electron level in thylakoids, which is mainly oriented to a higher quantum yield of PSII (ΦII), lower energy dissipation in the form of heat (ΦNPQ), high linear electron flow (LEF) and high fraction of PSI centers in open state (PSIopen). We speculate that these photosynthetic and photosynthate partitioning responses of superior bean lines are part of the genetic adaptation to acidic soils and high temperature stress conditions. Among the evaluated bean lines, three lines (GGR 147, SMG 21 and SMG 12) combined the desirable attributes for genetic improvement of stress tolerance and biofortification. These lines can serve as parents to further improve traits (energy use efficiency and multiple stress resistance) that are important for bean production in the Amazon region.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia;
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investi-gaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia 180002, Colombia
| | - Milan O. Urban
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (M.Á.G.); (C.C.); (S.E.B.); (I.M.R.)
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia;
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia
| | - Miguel Ángel Grajales
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (M.Á.G.); (C.C.); (S.E.B.); (I.M.R.)
| | - Cesar Cajiao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (M.Á.G.); (C.C.); (S.E.B.); (I.M.R.)
| | - Stephen E. Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (M.Á.G.); (C.C.); (S.E.B.); (I.M.R.)
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (M.Á.G.); (C.C.); (S.E.B.); (I.M.R.)
| |
Collapse
|
23
|
Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. CLIMATE 2021. [DOI: 10.3390/cli9110154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. Μ82, the introgression line IL12-4 (from cv. M82 Χ LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (QA), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanumpennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. Μ82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of QA, as it can be estimated by the chlorophyll fluorescence parameter 1 - qL, is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
Collapse
|
24
|
Elmardy NA, Yousef AF, Lin K, Zhang X, Ali MM, Lamlom SF, Kalaji HM, Kowalczyk K, Xu Y. Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod. PLoS One 2021; 16:e0257745. [PMID: 34570827 PMCID: PMC8476030 DOI: 10.1371/journal.pone.0257745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, much effort has been devoted to understanding the response of plants to various light sources, largely due to advances in industry light-emitting diodes (LEDs). In this study, the effect of different light modes on rocket (Eruca sativa. Mill.) photosynthetic performance and other physiological traits was evaluated using an orthogonal design based on a combination between light intensity, quality, and photoperiod factors. Some morphological and biochemical parameters and photosynthetic efficiency of the plants were analyzed. Plants grew in a closed chamber where three light intensities (160, 190, and 220 μmol m-2 s-1) provided by LEDs with a combination of different ratios of red, green, and blue (R:G:B- 7:0:3, 3:0:7, and 5:2:3) and three different photoperiods (light/dark -10/14 h, 12/12 h, and 14/10 h) were used and compared with white fluorescent light (control). This experimental setup allowed us to study the effect of 9 light modes (LM) compared to white light. The analyzes performed showed that the highest levels of chlorophyll a, chlorophyll b, and carotenoids occurred under LM4, LM3, and LM1, respectively. Chlorophyll a fluorescence measurement showed that the best effective quantum yield of PSII photochemistry Y(II), non-photochemical quenching (NPQ), photochemical quenching coefficient (qP), and electron transport ratio (ETR) were obtained under LM2. The data showed that the application of R7:G0:B3 light mode with a shorter photoperiod than 14/10 h (light/dark), regardless of the light intensity used, resulted in a significant increase in growth as well as higher photosynthetic capacity of rocket plants. Since, a clear correlation between the studied traits under the applied light modes was not found, more features should be studied in future experiments.
Collapse
Affiliation(s)
- Naif Ali Elmardy
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ahmed F. Yousef
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, Egypt
| | - Kui Lin
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xiwen Zhang
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, Fuzhou, China
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Sobhi F. Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Raszyn, Poland
| | - Katarzyna Kowalczyk
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Yong Xu
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, Fuzhou, China
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Hong WJ, Jiang X, Choi SH, Kim YJ, Kim ST, Jeon JS, Jung KH. A Systemic View of Carbohydrate Metabolism in Rice to Facilitate Productivity. PLANTS 2021; 10:plants10081690. [PMID: 34451735 PMCID: PMC8401045 DOI: 10.3390/plants10081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Carbohydrate metabolism is an important biochemical process related to developmental growth and yield-related traits. Due to global climate change and rapid population growth, increasing rice yield has become vital. To understand whole carbohydrate metabolism pathways and find related clues for enhancing yield, genes in whole carbohydrate metabolism pathways were systemically dissected using meta-transcriptome data. This study identified 866 carbohydrate genes from the MapMan toolkit and the Kyoto Encyclopedia of Genes and Genomes database split into 11 clusters of different anatomical expression profiles. Analysis of functionally characterized carbohydrate genes revealed that source activity and eating quality are the most well-known functions, and they each have a strong correlation with tissue-preferred clusters. To verify the transcriptomic dissection, three pollen-preferred cluster genes were used and found downregulated in the gori mutant. Finally, we summarized carbohydrate metabolism as a conceptual model in gene clusters associated with morphological traits. This systemic analysis not only provided new insights to improve rice yield but also proposed novel tissue-preferred carbohydrate genes for future research.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Xu Jiang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Seok-Hyun Choi
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
26
|
Yousef AF, Ali MM, Rizwan HM, Tadda SA, Kalaji HM, Yang H, Ahmed MAA, Wróbel J, Xu Y, Chen F. Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. PLoS One 2021; 16:e0249373. [PMID: 33858008 PMCID: PMC8049771 DOI: 10.1371/journal.pone.0249373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 02/04/2023] Open
Abstract
It is already known that the process of photosynthesis depends on the quality and intensity of light. However, the influence of the new light sources recently used in horticulture, known as Light Emitting Diodes (LEDs), on this process is not yet fully understood. Chlorophyll a fluorescence measurement has been widely used as a rapid, reliable, and noninvasive tool to study the efficiency of the photosystem II (PSII) and to evaluate plant responses to various environmental factors, including light intensity and quality. In this work, we tested the responses of the tomato photosynthetic apparatus to different light spectral qualities. Our results showed that the best performance of the photosynthetic apparatus was observed under a mixture of red and blue light (R7:B3) or a mixture of red, green and blue light (R3:G2:B5). This was demonstrated by the increase in the effective photochemical quantum yield of PSII (Y[II]), photochemical quenching (qP) and electron transport rate (ETR). On the other hand, the mixture of red and blue light with a high proportion of blue light led to an increase in non-photochemical quenching (NPQ). Our results can be used to improve the production of tomato plants under artificial light conditions. However, since we found that the responses of the photosynthetic apparatus of tomato plants to a particular light regime were cultivar-dependent and there was a weak correlation between the growth and photosynthetic parameters tested in this work, special attention should be paid in future research.
Collapse
Affiliation(s)
- Ahmed F. Yousef
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut, Egypt
| | - Muhammad M. Ali
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hafiz M. Rizwan
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shehu Abubakar Tadda
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Department of Crop Production and Protection, Faculty of Agriculture and Agric. Technology, Federal University, Dutsin-Ma, Katsina, Nigeria
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Hao Yang
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Yong Xu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, Fuzhou, China
| | - Faxing Chen
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
28
|
Adamakis IDS, Malea P, Sperdouli I, Panteris E, Kokkinidi D, Moustakas M. Evaluation of the spatiotemporal effects of bisphenol A on the leaves of the seagrass Cymodocea nodosa. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124001. [PMID: 33059254 DOI: 10.1016/j.jhazmat.2020.124001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 05/23/2023]
Abstract
The organic pollutant bisphenol A (BPA) causes adverse effects on aquatic biota. The present study explored the toxicity mechanism of environmentally occurring BPA concentrations (0.03-3 μg L-1) on the seagrass Cymodocea nodosa intermediate leaf photosynthetic machinery. A "mosaic" type BPA effect pattern was observed, with "unaffected" and "affected"" leaf areas. In negatively affected leaf areas cells had a dark appearance and lost their chlorophyll auto-fluorescence, while hydrogen peroxide (H2O2) content increased time-dependently. In the "unaffected" leaf areas, cells exhibited increased phenolic compound production. At 1 μg L-1 of BPA exposure, there was no effect on the fraction of open reaction centers (qP) compared to control and also no significant effect on the quantum yield of non-regulated non-photochemical energy loss in PSII (ΦΝΟ). However, a 3 μg L-1 BPA application resulted in a significant ΦΝΟ increase, even from the first exposure day. Ultrastructural observations revealed electronically dense damaged thylakoids in the plastids, while effects on Golgi dictyosomes and the endoplasmic reticulum were also observed at 3 μg L-1 BPA. The up-regulated H2O2 BPA-derived production seems to be a key factor causing both oxidative damages but probably also triggering retrograde signalling, conferring tolerance to BPA in the "unaffected" leaf areas.
Collapse
Affiliation(s)
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, 57001 Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danae Kokkinidi
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
Fu X, Liu C, Li Y, Liao S, Cheng H, Tu Y, Zhu X, Chen K, He Y, Wang G. The coordination of OsbZIP72 and OsMYBS2 with reverse roles regulates the transcription of OsPsbS1 in rice. THE NEW PHYTOLOGIST 2021; 229:370-387. [PMID: 33411361 DOI: 10.1111/nph.16877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Nonphotochemical quenching (NPQ), an intricate photoprotective process, plays fundamental roles in maintaining plant fitness. The PsbS protein is essential for the rapid induction of NPQ, and acts in a dose-dependent manner in leaves. However, little information is known on the transcriptional control of PsbS in land plants. Here we demonstrated that the expression of OsPsbS1 is directly upregulated by OsbZIP72 while repressed by OsMYBS2 in rice. We identified a new cis-element GACAGGTG in japonica OsPsbS1 promoter, to which OsbZIP72 could strongly bind and activate the expression of OsPsbS1. The new cis-element CTAATC confers specific binding for OsMYBS2 in japonica OsPsbS1 promoter. OsbZIP72 can be activated by SAPK1, and acts depending on the abscisic acid (ABA) signalling pathway. GF14A protein affects the repression activity of OsMYBS2 by regulating its nucleocytoplasmic shuttling, and Ser53 is necessary for OsMYBS2 to be retained in the cytoplasm. The inducibility of OsPsbS1 transcription under high light conditions in OsbZIP72 knockout lines was greatly impaired, while the repression of OsPsbS1 transcription under a low light environment in OsMYBS2 knockout lines was significantly alleviated. These results reveal cross-talk among NPQ processes, the ABA signalling pathway and abiotic stress signalling. The elaborate mechanisms may help enhance photoprotection and improve photosynthesis in rice.
Collapse
Affiliation(s)
- Xiangkui Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyu Liao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huiya Cheng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiya Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
30
|
Ganguly S, Saha S, Vangaru S, Purkayastha S, Das D, Saha AK, Roy A, Das S, Bhattacharyya PK, Mukherjee S, Bhattacharyya S. Identification and analysis of low light tolerant rice genotypes in field conditions and their SSR-based diversity in various abiotic stress tolerant lines. J Genet 2020. [DOI: 10.1007/s12041-020-01249-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress. J Genet Eng Biotechnol 2020; 18:77. [PMID: 33245438 PMCID: PMC7695757 DOI: 10.1186/s43141-020-00091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Background Phytochromes are plant photoreceptors that have long been associated with photomorphogenesis in plants; however, more recently, their crucial role in the regulation of variety of abiotic stresses has been explored. Chilling stress is one of the abiotic factors that severely affect growth, development, and productivity of crops. In the present work, we have analyzed and compared physiological, biochemical, and molecular responses in two contrasting phytochrome mutants of tomato, namely aurea (aur) and high pigment1 (hp1), along with wild-type cultivar Micro-Tom (MT) under chilling stress. In tomato, aur is phytochrome-deficient mutant while hp1 is a phytochrome-sensitive mutant. The genotype-specific physiological, biochemical, and molecular responses under chilling stress in tomato mutants strongly validated phytochrome-mediated regulation of abiotic stress. Results Here, we demonstrate that phytochrome-sensitive mutant hp1 show improved performance compared to phytochrome-deficient mutant aur and wild-type MT plants under chilling stress. Interestingly, we noticed significant increase in several photosynthetic-related parameters in hp1 under chilling stress that include photosynthetic rate, stomatal conductance, stomatal aperture, transpiration rate, chlorophyll a and carotenoids. Whereas most parameters were negatively affected in aur and MT except a slight increase in carotenoids in MT plants under chilling stress. Further, we found that PSII quantum efficiency (Fv/Fm), PSII operating efficiency (Fq′/Fm′), and non-photochemical quenching (NPQ) were all positively regulated in hp1, which demonstrate enhanced photosynthetic performance of hp1 under stress. On the other hand, Fv/Fm and Fq′/Fm′ were decreased significantly in aur and wild-type plants. In addition, NPQ was not affected in MT but declined in aur mutant after chilling stress. Noticeably, the transcript analysis show that PHY genes which were previously reported to act as molecular switches in response to several abiotic stresses were mainly induced in hp1 and repressed in aur and MT in response to stress. As expected, we also found reduced levels of malondialdehyde (MDA), enhanced activities of antioxidant enzymes, and higher accumulation of protecting osmolytes (soluble sugars, proline, glycine betaine) which further elaborate the underlying tolerance mechanism of hp1 genotype under chilling stress. Conclusion Our findings clearly demonstrate that phytochrome-sensitive and phytochrome-deficient tomato mutants respond differently under chilling stress thereby regulating physiological, biochemical, and molecular responses and thus establish a strong link between phytochromes and their role in stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-020-00091-1.
Collapse
|
32
|
Li H, Liu Y, Qin H, Lin X, Tang D, Wu Z, Luo W, Shen Y, Dong F, Wang Y, Feng T, Wang L, Li L, Chen D, Zhang Y, Murray JD, Chao D, Chong K, Cheng Z, Meng Z. A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. THE NEW PHYTOLOGIST 2020; 228:163-178. [PMID: 32464682 DOI: 10.1111/nph.16708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Transport and homeostasis of transition metals in chloroplasts, which are accurately regulated to ensure supply and to prevent toxicity induced by these metals, are thus crucial for chloroplast function and photosynthetic performance. However, the mechanisms that maintain the balance of transition metals in chloroplasts remain largely unknown. We have characterized an albino-revertible green 1 (arg1) rice mutant. ARG1 encodes an evolutionarily conserved protein belonging to the ATP-binding cassette (ABC) transporter family. Protoplast transfection and immunogold-labelling assays showed that ARG1 is localized in the envelopes and thylakoid membranes of chloroplasts. Measurements of metal contents, metal transport, physiological and transcriptome changes revealed that ARG1 modulates cobalt (Co) and nickel (Ni) transport and homeostasis in chloroplasts to prevent excessive Co and Ni from competing with essential metal cofactors in chlorophyll and metal-binding proteins acting in photosynthesis. Natural allelic variation in ARG1 between indica and temperate japonica subspecies of rice is coupled with their different capabilities for Co transport and Co content within chloroplasts. This variation underpins the different photosynthetic capabilities in these subspecies. Our findings link the function of the ARG1 transporter to photosynthesis, and potentially facilitate breeding of rice cultivars with improved Co homeostasis and consequently improved photosynthetic performance.
Collapse
Affiliation(s)
- Haixiu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huihui Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengjing Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yaling Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Doudou Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
33
|
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. PLANTS 2020; 9:plants9080962. [PMID: 32751534 PMCID: PMC7463761 DOI: 10.3390/plants9080962] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
We investigated the influence of Salvia fruticosa colonization by the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on photosynthetic function by using chlorophyll fluorescence imaging analysis to evaluate the light energy use in photosystem II (PSII) of inoculated and non-inoculated plants. We observed that inoculated plants used significantly higher absorbed energy in photochemistry (ΦPSII) than non-inoculated and exhibited significant lower excess excitation energy (EXC). However, the increased ΦPSII in inoculated plants did not result in a reduced non-regulated energy loss in PSII (ΦNO), suggesting the same singlet oxygen (1O2) formation between inoculated and non-inoculated plants. The increased ΦPSII in inoculated plants was due to an increased efficiency of open PSII centers to utilize the absorbed light (Fv'/Fm') due to a decreased non-photochemical quenching (NPQ) since there was no difference in the fraction of open reaction centers (qp). The decreased NPQ in inoculated plants resulted in an increased electron-transport rate (ETR) compared to non-inoculated. Yet, inoculated plants exhibited a higher efficiency of the water-splitting complex on the donor side of PSII as revealed by the increased Fv/Fo ratio. A spatial heterogeneity between the leaf tip and the leaf base for the parameters ΦPSII and ΦNPQ was observed in both inoculated and non-inoculated plants, reflecting different developmental zones. Overall, our findings suggest that the increased ETR of inoculated S. fruticosa contributes to increased photosynthetic performance, providing growth advantages to inoculated plants by increasing their aboveground biomass, mainly by increasing leaf biomass.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Hilal Eroğlu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Biology Division, Institute of Graduate Studies in Science, Istanbul University, 34134 Istanbul, Turkey
| | - Eleftherios P. Eleftheriou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| |
Collapse
|
34
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
35
|
Cisse A, Zhao X, Fu W, Kim RER, Chen T, Tao L, Feng B. Non-Photochemical Quenching Involved in the Regulation of Photosynthesis of Rice Leaves under High Nitrogen Conditions. Int J Mol Sci 2020; 21:ijms21062115. [PMID: 32204443 PMCID: PMC7139968 DOI: 10.3390/ijms21062115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023] Open
Abstract
Excess and deficient nitrogen (N) inhibit photosynthesis in the leaves of rice plants, but the underlying mechanism is still unclear. N can improve the chlorophyll content and thus affect photon absorption, but the photosynthetic rate does not increase accordingly. To investigate this mechanism, three concentrations of N treatments were applied to two rice varieties, Zhefu802 and Fgl. The results indicated increased chlorophyll content of leaves with an increased N supply. Little discrepancy was detected in Rubisco enzyme activity and Non-photochemical quenching (NPQ) in the high nitrogen (HN) and moderate nitrogen (MN) treatments. The model that photoinhibition occurs in Zhefu802 due to a lack of balance of light absorption and utilization is supported by the higher malondialdehyde (MDA) content, higher H2O2 content, and photoinhibitory quenching (qI) in HN treatment compared with MN treatment. A lower proportion of N in leaf was used to synthesize chlorophyll for Fgl compared with Zhefu802, reducing the likelihood of photoinhibition under HN treatment. In conclusion, HN supply does not allow ideal photosynthetic rate and increases the likelihood of photoinhibition because it does not sustain the balance of light absorption and utilization. Apart from Rubisco enzyme activity, NPQ mainly contributes to the unbalance. These results of this study will provide reference for the effective N management of rice.
Collapse
Affiliation(s)
- Amara Cisse
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
| | - Xia Zhao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
- Yibin University, Yibin 644000, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
| | - Romesh Eric Romy Kim
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
- Correspondence: (L.T.); (B.F.); Tel.: +86-571-63370358 (L.T.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (L.T. & B.F.)
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (A.C.); (X.Z.); (W.F.); (R.E.R.K.); (T.C.)
- Correspondence: (L.T.); (B.F.); Tel.: +86-571-63370358 (L.T.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (L.T. & B.F.)
| |
Collapse
|
36
|
Murchie EH, Ruban AV. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:885-896. [PMID: 31686424 DOI: 10.1111/tpj.14601] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Photoprotection refers to a set of well defined plant processes that help to prevent the deleterious effects of high and excess light on plant cells, especially within the chloroplast. Molecular components of chloroplast photoprotection are closely aligned with those of photosynthesis and together they influence productivity. Proof of principle now exists that major photoprotective processes such as non-photochemical quenching (NPQ) directly determine whole canopy photosynthesis, biomass and yield via prevention of photoinhibition and a momentary downregulation of photosynthetic quantum yield. However, this phenomenon has neither been quantified nor well characterized across different environments. Here we address this problem by assessing the existing literature with a different approach to that taken previously, beginning with our understanding of the molecular mechanism of NPQ and its regulation within dynamic environments. We then move to the leaf and the plant level, building an understanding of the circumstances (when and where) NPQ limits photosynthesis and linking to our understanding of how this might take place on a molecular and metabolic level. We argue that such approaches are needed to fine tune the relevant features necessary for improving dynamic NPQ in important crop species.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
37
|
Sperdouli I, Moustaka J, Antonoglou O, Adamakis IDS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2498. [PMID: 31390827 PMCID: PMC6695995 DOI: 10.3390/ma12152498] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L-1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool.. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis-Dimosthenis S Adamakis
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
38
|
Kromdijk J, Głowacka K, Long SP. Predicting light-induced stomatal movements based on the redox state of plastoquinone: theory and validation. PHOTOSYNTHESIS RESEARCH 2019; 141:83-97. [PMID: 30891661 PMCID: PMC6612513 DOI: 10.1007/s11120-019-00632-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/25/2019] [Indexed: 05/23/2023]
Abstract
Prediction of stomatal conductance is a key element to relate and scale up leaf-level gas exchange processes to canopy, ecosystem and land surface models. The empirical models that are typically employed for this purpose are simple and elegant formulations which relate stomatal conductance on a leaf area basis to the net rate of CO2 assimilation, humidity and CO2 concentration. Although light intensity is not directly modelled as a stomatal opening cue, it is well-known that stomata respond strongly to light. One response mode depends specifically on the blue-light part of the light spectrum, whereas the quantitative or 'red' light response is less spectrally defined and relies more on the quantity of incident light. Here, we present a modification of an empirical stomatal conductance model which explicitly accounts for the stomatal red-light response, based on a mesophyll-derived signal putatively initiated by the chloroplastic plastoquinone redox state. The modified model showed similar prediction accuracy compared to models using a relationship between stomatal conductance and net assimilation rate. However, fitted parameter values with the modified model varied much less across different measurement conditions, lessening the need for frequent re-parameterization to different conditions required of the current model. We also present a simple and easy to parameterize extension to the widely used Farquhar-Von Caemmerer-Berry photosynthesis model to facilitate coupling with the modified stomatal conductance model, which should enable use of the new stomatal conductance model to simulate ecosystem water vapour exchange in terrestrial biosphere models.
Collapse
Affiliation(s)
- Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB23EA, UK.
| | - Katarzyna Głowacka
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
- Department of Biochemistry, University of Nebraska-Lincoln, N246 Beadle Center, 1901 Vine Street, Lincoln, NE, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Lancaster Environment Centre, University of Lancaster, Bailrigg, LA1 1YX, UK
| |
Collapse
|
39
|
Light Energy Partitioning under Various Environmental Stresses Combined with Elevated CO2 in Three Deciduous Broadleaf Tree Species in Japan. CLIMATE 2019. [DOI: 10.3390/cli7060079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding plant response to excessive light energy not consumed by photosynthesis under various environmental stresses, would be important for maintaining biosphere sustainability. Based on previous studies regarding nitrogen (N) limitation, drought in Japanese white birch (Betula platyphylla var. japonica), and elevated O3 in Japanese oak (Quercus mongolica var. crispula) and Konara oak (Q. serrata) under future-coming elevated CO2 concentrations, we newly analyze the fate of absorbed light energy by a leaf, partitioning into photochemical processes, including photosynthesis, photorespiration and regulated and non-regulated, non-photochemical quenchings. No significant increases in the rate of non-regulated non-photochemical quenching (JNO) were observed in plants grown under N limitation, drought and elevated O3 in ambient or elevated CO2. This suggests that the risk of photodamage caused by excessive light energy was not increased by environmental stresses reducing photosynthesis, irrespective of CO2 concentrations. The rate of regulated non-photochemical quenching (JNPQ), which contributes to regulating photoprotective thermal dissipation, could well compensate decreases in the photosynthetic electron transport rate through photosystem II (JPSII) under various environmental stresses, since JNPQ+JPSII was constant across the treatment combinations. It is noteworthy that even decreases in JNO were observed under N limitation and elevated O3, irrespective of CO2 conditions, which may denote a preconditioning-mode adaptive response for protection against further stress. Such an adaptive response may not fully compensate for the negative effects of lethal stress, but may be critical for coping with non-lethal stress and regulating homeostasis. Regarding the three deciduous broadleaf tree species, elevated CO2 appears not to influence the plant responses to environmental stresses from the viewpoint of susceptibility to photodamage.
Collapse
|
40
|
Khuong TTH, Robaglia C, Caffarri S. Photoprotection and growth under different lights of Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1). PLANT CELL REPORTS 2019; 38:741-753. [PMID: 30915529 DOI: 10.1007/s00299-019-02403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1, blocked in State II) show enhanced growth and flowers + siliques production under controlled low-light conditions. Non-photochemical quenching (NPQ) is a short-term regulation important to maintain efficient photosynthesis and to avoid photooxidative damages by dissipation of excess energy. Full activation of NPQ in plants requires the protonation of the PsbS protein, which is the sensor of the low lumenal pH triggering the thermal dissipation. State transitions are a second important photosynthetic regulation to respond to changes in light quality and unbalanced excitation of photosystems. State transitions allow energy redistribution between PSI and PSII through the reversible exchange of LHCII antenna complexes between photosystems thanks to the opposite action of the STN7 kinase and PPH1 phosphatase: phosphorylation of LHCII promotes its mobilization from PSII to PSI, while dephosphorylation has the opposite effect. In this work, we produced the pph1/npq4 double mutant and characterized some photosynthetic, growth and reproduction properties in comparison with wild-type and single-mutant plants in high- and low-light conditions. Results indicate that in high light, the pph1 mutant maintains good photoprotection ability, while npq4 plants show more susceptibility to photodamages. The pph1/npq4 double mutant showed a resistance to high-light stress similar to that of the single npq4 mutant. In low-light condition, the single mutants showed a significant increase of growth and flowering compared to wild-type plants and this effect was further enhanced in the pph1/npq4 double mutant. Results suggest that photosynthetic optimisation to improve crop growth and productivity might be possible, at least under controlled low-light conditions, by modifying NPQ and regulation of state transitions.
Collapse
Affiliation(s)
- Thi Thu Huong Khuong
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
- Cell Technology Laboratory-CFB, Vietnam National University of Forestry, Hanoi, Vietnam.
- The Key Laboratory of Enzyme and Protein Technology (KLEPT), Hanoi University of Science (HUS), Vietnam National University in Hanoi (VNU), Hanoi, Vietnam.
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France.
| |
Collapse
|
41
|
Tanaka Y, Adachi S, Yamori W. Natural genetic variation of the photosynthetic induction response to fluctuating light environment. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:52-59. [PMID: 31202005 DOI: 10.1016/j.pbi.2019.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Field-grown plants experience fluctuating light intensity for periods extending from seconds to hours because of cloud movements and self-shading. When full light intensity returns after shading, the net CO2 assimilation rate in leaves does not reach its maximum value immediately, but rises gradually over several minutes to approach a new steady state. This phenomenon has been termed photosynthetic induction, which substantially affects the efficiency of carbon fixation, and thus crop production. The significant natural variation of the speed of induction response exists among not only interspecies but also intraspecies. Recent advances in molecular analysis and high-throughput measurement techniques have revealed the genetic and eco-physiological basis of observed genetic variations in photosynthetic induction response. Here, we review the current understanding of the physiological and genetic mechanisms behind photosynthetic induction, and discusses routes to further advances.
Collapse
Affiliation(s)
- Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan.
| | - Shunsuke Adachi
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Hamdani S, Wang H, Zheng G, Perveen S, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Chu C, Zhu XG. Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:105-119. [PMID: 30834537 DOI: 10.1111/ppl.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The maximum quantum yield of photosystem II (as reflected by variable to maximum chlorophyll a fluorescence, Fv /Fm ) is regarded as one of the most important photosynthetic parameters. The genetic basis underlying natural variation in Fv /Fm , which shows low level of variations in plants under non-stress conditions, is not easy to be exploited using the conventional gene cloning approaches. Thus, in order to answer this question, we have followed another strategy: we used genome-wide association study (GWAS) and transgenic analysis in a rice mini-core collection. We report here that four single-nucleotide polymorphisms, located in the promoter region of β-glucosidase 5 (BGlu-5), are associated with observed variation in Fv /Fm . Indeed, our transgenic analysis showed a good correlation between BGlu-5 and Fv /Fm . Thus, our work demonstrates the feasibility of using GWAS to study natural variation in Fv /Fm , suggesting that cis-element polymorphism, affecting the BGlu-5 expression level, may, indirectly, contribute to Fv /Fm variation in rice through the gibberellin signaling pathway. Further research is needed to understand the mechanism of our novel observation.
Collapse
Affiliation(s)
- Saber Hamdani
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyong Zheng
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Naveed Khan
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Waqasuddin Khan
- Jamil-ur-Rahman Center for Genome Research, DR. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jianjun Jiang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Li
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Liu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaocen Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
43
|
Agarwal A, Patil S, Gharat K, Pandit RA, Lali AM. Modulation in light utilization by a microalga Asteracys sp. under mixotrophic growth regimes. PHOTOSYNTHESIS RESEARCH 2019; 139:553-567. [PMID: 29860703 DOI: 10.1007/s11120-018-0526-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/28/2018] [Indexed: 05/22/2023]
Abstract
This study is the first to explore the influence of incident light intensity on the photosynthetic responses under mixotrophic growth of microalga Asteracys sp. When grown mixotrophically, there was an enhanced regulation of non-photochemical quenching (NPQ) of the excited state of chlorophyll (Chl) a within the cells in response to white cool fluorescent high light (HL; 600 µmol photons m-2 s-1). Simultaneous measurement of reactive oxygen species (ROS) production as malondialdehyde (MDA) and ascorbate peroxidase (APX), an ROS scavenger, showed improved management of stress within mixotrophic cells under HL. Despite the observed decrease in quantum yield of photosynthesis measured through the Chl a fluorescence transient, no reduction in biomass accumulation was observed under HL for mixotrophy. However, biomass loss owing to photoinhibition was observed in cells grown phototrophically under the same irradiance. The measurements of dark recovery of NPQ suggested that "state transitions" may be partly responsible for regulating overall photosynthesis in Asteracys sp. The partitioning of photochemical and non-photochemical processes to sustain HL stress was analysed. Collectively, this study proposes that mixotrophy using glucose leads to a change in the photosynthetic abilities of Asteracys sp. while enhancing the adaptability of the alga to high irradiances.
Collapse
Affiliation(s)
- Akanksha Agarwal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Smita Patil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Krushna Gharat
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Reena A Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| |
Collapse
|
44
|
Yarkhunova Y, Guadagno CR, Rubin MJ, Davis SJ, Ewers BE, Weinig C. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:2518-2529. [PMID: 29664141 DOI: 10.1111/pce.13216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock regulates many aspects of leaf gas supply and biochemical demand for CO2 , and is hypothesized to improve plant performance. Yet the extent to which the clock may regulate the efficiency of photosystem II (PSII) and photoprotective mechanisms such as heat dissipation is less explored. Based on measurements of chlorophyll a fluorescence, we estimated the maximum efficiency of PSII in light (Fv'/Fm') and heat dissipation by nonphotochemical quenching (NPQ). We further dissected total NPQ into its main components, qE (pH-dependent quenching), qT (state-transition quenching), and qI (quenching related to photoinhibition), in clock mutant genotypes of Arabidopsis thaliana, the cognate wild-type genotypes, and a panel of recombinant inbred lines expressing quantitative variation in clock period. Compared with mutants with altered clock function, we observed that wild-type genotypes with clock period lengths of approximately 24 hr had both higher levels of Fv'/Fm', indicative of improved PSII function, and reduced NPQ, suggestive of lower stress on PSII light harvesting complexes. In the recombinant inbred lines, genetic variances were significant for Fv'/Fm' and all 3 components of NPQ, with qE explaining the greatest proportion of NPQ. Bivariate tests of association and structural equation models of hierarchical trait relationships showed that quantitative clock variation was empirically associated with Fv'/Fm' and NPQ, with qE mediating the relationship with gas exchange. The results demonstrate significant segregating variation for all photoprotective components, and suggest the adaptive significance of the clock may partly derive from its regulation of the light reactions of photosynthesis and of photoprotective mechanisms.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Carmela R Guadagno
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
45
|
Hubbart S, Smillie IRA, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 2018; 1:22. [PMID: 30271909 PMCID: PMC6123638 DOI: 10.1038/s42003-018-0026-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity.
Collapse
Affiliation(s)
- Stella Hubbart
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ian R A Smillie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Matthew Heatley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ranjan Swarup
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Chuan Ching Foo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Liang Zhao
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
46
|
Burgess AJ, Retkute R, Herman T, Murchie EH. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction. FRONTIERS IN PLANT SCIENCE 2017; 8:734. [PMID: 28567045 PMCID: PMC5434157 DOI: 10.3389/fpls.2017.00734] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/20/2017] [Indexed: 05/19/2023]
Abstract
The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties-four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)-was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax ) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax , especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Crops For the FutureSemenyih, Malaysia
| | - Renata Retkute
- School of Life Sciences, The University of WarwickCoventry, UK
| | - Tiara Herman
- School of Biosciences, University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| |
Collapse
|
47
|
Kasajima I. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. BMC Res Notes 2017; 10:168. [PMID: 28446247 PMCID: PMC5406975 DOI: 10.1186/s13104-017-2489-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. METHODS 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. RESULTS Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. CONCLUSIONS Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan. .,Department of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, Japan.
| |
Collapse
|
48
|
Wang Q, Zhao H, Jiang J, Xu J, Xie W, Fu X, Liu C, He Y, Wang G. Genetic Architecture of Natural Variation in Rice Nonphotochemical Quenching Capacity Revealed by Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2017; 8:1773. [PMID: 29081789 PMCID: PMC5645755 DOI: 10.3389/fpls.2017.01773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/28/2017] [Indexed: 05/18/2023]
Abstract
The photoprotective processes conferred by nonphotochemical quenching (NPQ) serve fundamental roles in maintaining plant fitness and sustainable yield. So far, few loci have been reported to be involved in natural variation of NPQ capacity in rice (Oryza sativa), and the extents of variation explored are very limited. Here we conducted a genome-wide association study (GWAS) for NPQ capacity using a diverse worldwide collection of 529 O. sativa accessions. A total of 33 significant association loci were identified. To check the validity of the GWAS signals, three F2 mapping populations with parents selected from the association panel were constructed and assayed. All QTLs detected in mapping populations could correspond to at least one GWAS signal, indicating the GWAS results were quite reliable. OsPsbS1 was repeatedly detected and explained more than 40% of the variation in the whole association population in two years, and demonstrated to be a common major QTL in all three mapping populations derived from inter-group crosses. We revealed 43 single nucleotide polymorphisms (SNPs) and 7 insertions and deletions (InDels) within a 6,997-bp DNA fragment of OsPsbS1, but found no non-synonymous SNPs or InDels in the coding region, indicating the PsbS1 protein sequence is highly conserved. Haplotypes with the 2,674-bp insertion in the promoter region exhibited significantly higher NPQ values and higher expression levels of OsPsbS1. The OsPsbS1 RNAi plants and CRISPR/Cas9 mutants exhibited drastically decreased NPQ values. OsPsbS1 had specific and high-level expression in green tissues of rice. However, we didn't find significant function for OsPsbS2, the other rice PsbS homologue. Manipulation of the significant loci or candidate genes identified may enhance photoprotection and improve photosynthesis and yield in rice.
Collapse
|
49
|
Herritt M, Dhanapal AP, Fritschi FB. Identification of Genomic Loci Associated with the Photochemical Reflectance Index by Genome-Wide Association Study in Soybean. THE PLANT GENOME 2016; 9. [PMID: 27898827 DOI: 10.3835/plantgenome2015.08.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/24/2016] [Indexed: 05/10/2023]
Abstract
The photochemical reflectance index (PRI) is determined from canopy spectral reflectance measurements and can provide important information about photosynthesis. The PRI can be used to assess the epoxidation state of xanthophyll pigments, which provides information on nonphotochemical quenching (NPQ) and the amount of energy used for photosynthesis. Genome-wide association analyses were conducted to identify single-nucleotide polymorphisms (SNPs) and genomic loci associated with PRI using data from a soybean [ (L.) Merr.] diversity panel grown under field conditions over 2 yr. Based on a mixed linear model (MLM), 31 unique candidate SNPs that identify 15 putative loci on 11 chromosomes were identified. Several candidate genes known to be associated with NPQ, photosynthesis, and sugar transport processes were identified in the proximity of 10 putative loci. Violaxanthin de-epoxidase, one of the identified genes, is directly involved in the xanthophyll cycle, which plays a major role in NPQ. This study is the first to identify genomic loci for PRI and illustrates the potential of canopy spectral reflectance measurements for high-throughput phenotyping of a photosynthesis related trait. Significant SNPs, candidate genes, and genotypes contrasting for PRI identified in this study may prove useful for crop improvement efforts.
Collapse
|
50
|
Zhao X, Chen T, Feng B, Zhang C, Peng S, Zhang X, Fu G, Tao L. Non-photochemical Quenching Plays a Key Role in Light Acclimation of Rice Plants Differing in Leaf Color. FRONTIERS IN PLANT SCIENCE 2016; 7:1968. [PMID: 28119700 PMCID: PMC5222832 DOI: 10.3389/fpls.2016.01968] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 05/08/2023]
Abstract
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in rice; however, little is known regarding its role in the photosynthetic response of rice plants with differing in leaf color to different irradiances. In this study, two rice genotypes containing different chlorophyll contents, namely Zhefu802 (high chlorophyll) and Chl-8 (low chlorophyll), were subjected to moderate or high levels of light intensity at the 6-leaf stage. Chl-8 possessed a lower chlorophyll content and higher chlorophyll a:b ratio compared with Zhefu802, while Pn, Fv/Fm, and ΦPSII contents were higher in Chl-8. Further results indicated that no significant differences were observed in the activities of Rubisco, Mg2+-ATPase, and Ca2+-ATPase between these genotypes. This suggested that no significant difference in the capacity for CO2 assimilation exists between Zhe802 and Chl-8. Additionally, no significant differences in stomatal limitation were observed between the genotypes. Interestingly, higher NPQ and energy quenching (qE), as well as lower photoinhibitory quenching (qI) and production of reactive oxygen species (ROS) was observed in Chl-8 compared with Zhefu802 under both moderate and high light treatments. This indicated that NPQ could improve photosynthesis in rice under both moderate and high light intensities, particularly the latter, whereby NPQ alleviates photodamage by reducing ROS production. Both zeaxanthin content and the expression of PsbS1 were associated with the induction of NPQ under moderate light, while only zeaxanthin was associated with NPQ induction under high light. In summary, NPQ could improve photosynthesis in rice under moderate light and alleviate photodamage under high light via a decrease in ROS generation.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of The Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Zigong Institute of Agricultural SciencesZigong, China
| | - Tingting Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Baohua Feng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Caixia Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of The Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiufu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Guanfu Fu
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- Longxing Tao
| |
Collapse
|