1
|
Mamchur AA, Ivanov MV, Matkava LR, Yudin VS, Keskinov AA, Yudin SM, Kashtanova DA. Tackling APOE's structural challenges via in silico modeling in the era of neural networks: Can AlphaFold II help circumvent the problem of lacking full-length protein structure? Arch Biochem Biophys 2024; 761:110185. [PMID: 39447622 DOI: 10.1016/j.abb.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The APOE gene, encoding apolipoprotein E, is a predictor of longevity and age-related diseases. Despite numerous genetic studies, the data on molecular mechanisms by which apolipoprotein E affects the human phenotype remain incomplete due to the structural properties of the protein. Recently, a number of studies have used in silico drug discovery techniques based on protein-ligand docking, further highlighting the issue of lacking 3D structure of apolipoprotein E. Using molecular dynamics simulation, we found that AlphaFold II models of apolipoprotein E conformationally significantly differ both from the only available NMR structure, 2L7B, and structures obtained through circular dichroism spectroscopy: the ε4 isoform lacks the salt bridge between R61 and E255, while the ε2 and ε3 isoforms have extensive networks of interdomain interactions. Our findings challenge the benefits of using AlphaFold II for obtaining starting conformations for molecular docking.
Collapse
Affiliation(s)
- A A Mamchur
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia; The Faculty of Biology of Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russia.
| | - M V Ivanov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| | - L R Matkava
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| | - V S Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| | - A A Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| | - S M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| | - D A Kashtanova
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, bld.10/1, Pogodinskaya Str., Moscow, 119121, Russia
| |
Collapse
|
2
|
Katsuyama Y, Hattori M. REELIN ameliorates Alzheimer's disease, but how? Neurosci Res 2024; 208:8-14. [PMID: 39094979 DOI: 10.1016/j.neures.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia; therefore, there is a high demand for therapeutic medication targeting it. In this context, extensive research has been conducted to identify molecular targets for drugs. AD manifests through two primary pathological signs: senile plaques and neurofibrillary tangles, caused by accumulations of amyloid-beta (Aβ) and phosphorylated tau, respectively. Thus, studies concerning the molecular mechanisms underlying AD etiology have primarily focused on Aβ generation and tau phosphorylation, with the anticipation of uncovering a signaling pathway impacting these molecular processes. Over the past two decades, studies using not only experimental model systems but also examining human brains have accumulated fragmentary evidences suggesting that REELIN signaling pathway is deeply involved in AD. Here, we explore REELIN signaling pathway and its involvement in memory function within the brain and review studies investigating molecular connections between REELIN signaling pathway and AD etiology. This review aims to understand how the manipulation (activation) of this pathway might ameliorate the disease's etiology.
Collapse
Affiliation(s)
- Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
3
|
More S, Bonnereau J, Wouters D, Spotbeen X, Karras P, Rizzollo F, Killian T, Venken T, Naulaerts S, Vervoort E, Ganne M, Nittner D, Verhoeven J, Bechter O, Bosisio F, Lambrechts D, Sifrim A, Stockwell BR, Swinnen JV, Marine JC, Agostinis P. Secreted Apoe rewires melanoma cell state vulnerability to ferroptosis. SCIENCE ADVANCES 2024; 10:eadp6164. [PMID: 39413195 DOI: 10.1126/sciadv.adp6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
A major therapeutic barrier in melanoma is the coexistence of diverse cellular states marked by distinct metabolic traits. Transitioning from a proliferative to an invasive melanoma phenotype is coupled with increased ferroptosis vulnerability. However, the regulatory circuits controlling ferroptosis susceptibility across melanoma cell states are unknown. In this work, we identified Apolipoprotein E (APOE) as the top lipid-metabolism gene segregating the melanoma MITFhigh/AXLlow proliferative/ferroptosis-resistant from MITFlow/AXLhigh invasive/ferroptosis-sensitive state. Mechanistically, ApoE secreted by the MITFhigh/AXLlow cells protects the invasive phenotype from ferroptosis-inducing agents by reducing the content of peroxidation-prone polyunsaturated fatty acids and boosting GPX4 levels both in vitro and in vivo. Whole-exome sequencing indicates that APOEhigh expression in patients with melanoma is associated with resistance to ferroptosis, regardless of APOE germline status. In aggregate, we found a ferroptosis-resistance mechanism between melanoma cell states relying on secreted ApoE and APOEhigh expression as a potential biomarker for poor ferroptosis response in melanoma.
Collapse
Affiliation(s)
- Sanket More
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julie Bonnereau
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Wouters
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Theo Killian
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven, Leuven, Belgium
| | - Tom Venken
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Nittner
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Spatial Multiomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Dolai S, Pal S, Deepa S, Garai K. Quantitative Assessment of Conformational Heterogeneity in Apolipoprotein E4 Using Hydrogen-Deuterium Exchange Mass Spectrometry. J Phys Chem B 2024; 128:10075-10085. [PMID: 39360975 DOI: 10.1021/acs.jpcb.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Apolipoprotein E4 (apoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). However, structural differences between apoE4 and the AD-neutral isoform, apoE3, still remain unclear. Recent studies suggest that apoE4 harbors intermediates. However, the biophysical properties and isoform specificity of these intermediates are not known. Here, we use the kinetics of hydrogen-deuterium exchange by mass spectrometry (HDX-MS) to examine the conformational heterogeneities in apoE3 and apoE4. First, we use numerical simulations to compute the HDX-mass spectra of a protein following mixed EX1/EX2 kinetics. The results indicate that in the presence of EX1 kinetics, which is an indicator of conformational heterogeneity, time evolution of the standard deviation (σ(t)) of the spectra exhibits a clear peak, which is dependent on the number of residues (NEX1) and the rate constant of EX1 kinetics (kEX1). Then, we performed experiments with several variants of the apoE proteins and compared them with simulation to estimate NEX1 and kEX1. Kinetics of the mean deuteration is found to be faster for apoE4, consistent with its poorer stability than apoE3. Importantly, in the case of apoE4, σ(t) exhibits a clear peak at t ∼ 60 s, but apoE3 shows only a small peak at 1800 s. Therefore, both NEX1 and kEX1 are larger for apoE4, indicating greater conformational heterogeneity. Notably, the partial EX1 kinetics is observed in both the isolated N-terminal fragment and the full-length form of apoE4, although it is more pronounced in the full-length protein. Moreover, it is enhanced at higher pH and in the presence of bis-ANS. Mutations such as R61T and R112I diminish the EX1 kinetics, making apoE4 behave more like apoE3. Thus, the amino acid substitution at position 112 alters the structural dynamics of the N-terminal domain of apoE4; the changes are further propagated and amplified in the full-length protein. We conclude that HDX-MS is a label-free and robust methodology to characterize structural heterogeneities of proteins even under native conditions. This opens opportunities for screening of the "structure corrector" drug molecules that could convert apoE4 to apoE3-like.
Collapse
Affiliation(s)
- Subhrajyoti Dolai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Sudip Pal
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - S Deepa
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| |
Collapse
|
5
|
Xu J, Duan J, Cai Z, Arai C, Di C, Venters CC, Xu J, Jones M, So BR, Dreyfuss G. TOMM40-APOE chimera linking Alzheimer's highest risk genes: a new pathway for mitochondria regulation and APOE4 pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617477. [PMID: 39416128 PMCID: PMC11482918 DOI: 10.1101/2024.10.09.617477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The patho-mechanism of apolipoprotein variant, APOE4, the strongest genetic risk for late-onset Alzheimer's disease (AD) and longevity, remains unclear. APOE's neighboring gene, TOMM40 (mitochondria protein transport channel), is associated with brain trauma outcome and aging-related cognitive decline, however its role in AD APOE4-independently is controversial. We report that TOMM40 is prone to transcription readthrough into APOE that can generate spliced TOMM40-APOE mRNA chimera (termed T9A2) detected in human neurons and other cells and tissues. T9A2 translation tethers APOE (normal APOE3 or APOE4) to near-full-length TOM40 that is targeted to mitochondria. Importantly, T9A2-APOE3 boosts mitochondrial bioenergetic capacity and decreases oxidative stress significantly more than T9A2-APOE4 and APOE3, and lacking in APOE4. We describe detailed interactomes of these actors that may inform about the activities and roles in pathogenesis. T9A2 uncovers a new candidate pathway for mitochondria regulation and oxidative stress-protection that are impaired in APOE4 genotypes and could initiate neurodegeneration.
Collapse
|
6
|
Kloske CM, Belloy ME, Blue EE, Bowman GR, Carrillo MC, Chen X, Chiba‐Falek O, Davis AA, Paolo GD, Garretti F, Gate D, Golden LR, Heinecke JW, Herz J, Huang Y, Iadecola C, Johnson LA, Kanekiyo T, Karch CM, Khvorova A, Koppes‐den Hertog SJ, Lamb BT, Lawler PE, Guen YL, Litvinchuk A, Liu C, Mahinrad S, Marcora E, Marino C, Michaelson DM, Miller JJ, Morganti JM, Narayan PS, Naslavsky MS, Oosthoek M, Ramachandran KV, Ramakrishnan A, Raulin A, Robert A, Saleh RNM, Sexton C, Shah N, Shue F, Sible IJ, Soranno A, Strickland MR, TCW J, Thierry M, Tsai L, Tuckey RA, Ulrich JD, van der Kant R, Wang N, Wellington CL, Weninger SC, Yassine HN, Zhao N, Bu G, Goate AM, Holtzman DM. Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference. Alzheimers Dement 2024; 20:6590-6605. [PMID: 39031528 PMCID: PMC11497726 DOI: 10.1002/alz.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.
Collapse
Affiliation(s)
| | - Michael E. Belloy
- Department of Neurology and Neurological SciencesStanford University, StanfordPalo AltoCaliforniaUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Elizabeth E. Blue
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Institute for Public Health GeneticsUniversity of WashingtonSeattleWashingtonUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Xiaoying Chen
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Ornit Chiba‐Falek
- Division of Translational Brain SciencesDepartment of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Albert A. Davis
- Department of Neurology Hope Center for Neurological Disorders Washington University School of MedicineSt. LouisMissouriUSA
| | | | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's DiseaseNew YorkNew YorkUSA
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David Gate
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lesley R. Golden
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Jay W. Heinecke
- Department of MedicineUniversity of Washington, UV MedicineSeattleWashingtonUSA
| | - Joachim Herz
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseGladstone InstitutesSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Lance A. Johnson
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Takahisa Kanekiyo
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
| | - Anastasia Khvorova
- RNA Therapeutic InstituteUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Sascha J. Koppes‐den Hertog
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute Indiana University School of MedicineIndianapolisIndianaUSA
| | - Paige E. Lawler
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
- The Tracy Family SILQ CenterWashington University School of MedicineIndianapolisIndianaUSA
| | - Yann Le Guen
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
- Institut du Cerveau–Paris Brain Institute–ICMParisFrance
| | - Alexandra Litvinchuk
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Chia‐Chen Liu
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | | | - Edoardo Marcora
- Department of Genetics and Genomic SciencesNash Family Department of NeuroscienceIcahn Genomics Institute; Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Justin J. Miller
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
| | - Josh M. Morganti
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Priyanka S. Narayan
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Neurological Disorders and StrokeCenter for Alzheimer's and Related Dementias (CARD)National Institutes of HealthMarylandUSA
| | - Michel S. Naslavsky
- Human Genome and Stem‐cell Research CenterBiosciences InstituteUniversity of São PauloRua do MataoSão PauloBrazil
- Hospital Israelita Albert EinsteinAvenida Albert EinsteinSão PauloBrazil
| | - Marlies Oosthoek
- Neurochemistry LaboratoryDepartment of Laboratory MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Kapil V. Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeuroscienceColumbia University Vagelos College of Physicians and SurgeonsNew YorkUSA
| | - Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Aiko Robert
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Rasha N. M. Saleh
- Norwich Medical SchoolUniversity of East Anglia, UK Clinical and Chemical PathologyNorfolkUK
- Faculty of MedicineAlexandria UniversityAlexandria GovernorateEgypt
| | | | | | | | | | - Andrea Soranno
- Washington University in Saint Louis, St. Louis, Missouri, USASt. LouisMissouriUSA
| | - Michael R. Strickland
- Department of NeurologyWashington University School of Medicine, St. Louis, MissouriSt. LouisMissouriUSA
| | - Julia TCW
- Department of PharmacologyPhysiology & BiophysicsChobanian and Avedisian School of MedicineBoston UniversityBostonMassachusettsUSA
- Bioinformatics ProgramFaculty of Computing & Data SciencesBoston UniversityBostonMassachusettsUSA
| | - Manon Thierry
- Center for Cognitive NeurologyDepartment of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Li‐Huei Tsai
- Picower Institute for Learning and MemoryDepartment of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ryan A. Tuckey
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsMedical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jason D. Ulrich
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Rik van der Kant
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University AmsterdamAmsterdamUSA
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamUSA
| | - Na Wang
- Mayo Clinic RochesterRochesterMinnesotaUSA
| | - Cheryl L. Wellington
- Djavad Mowafaghian Centre for Brain Health Department of Pathology and Laboratory Medicine International Collaboration on Repair Discoveries School of Biomedical Engineering University of British ColumbiaVancouverCanada
| | | | - Hussein N. Yassine
- Department of NeurologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Na Zhao
- Department of NeuroscienceMayo Clinic JacksonvilleJacksonvilleFloridaUSA
| | - Guojun Bu
- Division of Life ScienceHong Kong University of Science and TechnologyClear Water BayKowloonHong Kong
| | - Alison M. Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
7
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
9
|
He K, Zhao Z, Zhang J, Li D, Wang S, Liu Q. Cholesterol Metabolism in Neurodegenerative Diseases. Antioxid Redox Signal 2024. [PMID: 38842175 DOI: 10.1089/ars.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Pan Y, Wallace TC, Karosas T, Bennett DA, Agarwal P, Chung M. Association of Egg Intake With Alzheimer's Dementia Risk in Older Adults: The Rush Memory and Aging Project. J Nutr 2024; 154:2236-2243. [PMID: 38782209 PMCID: PMC11347793 DOI: 10.1016/j.tjnut.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder with increasing prevalence due to population aging. Eggs provide many nutrients important for brain health, including choline, omega-3 fatty acids, and lutein. Emerging evidence suggests that frequent egg consumption may improve cognitive performance on verbal tests, but whether consumption influences the risk of Alzheimer's dementia and AD is unknown. OBJECTIVES To examine the association of egg consumption with Alzheimer's dementia risk among the Rush Memory and Aging Project cohort. METHODS Dietary assessment was collected using a modified Harvard semiquantitative food frequency questionnaire. Participants' first food frequency questionnaire was used as the baseline measure of egg consumption. Multivariable adjusted Cox proportional hazards regression models were used to investigate the associations of baseline egg consumption amount with Alzheimer's dementia risk, adjusting for potential confounding factors. Subgroup analyses using Cox and logistic regression models were performed to investigate the associations with AD pathology in the brain. Mediation analysis was conducted to examine the mediation effect of dietary choline in the relationship between egg intake and incident Alzheimer's dementia. RESULTS This study included 1024 older adults {mean [±standard deviation (SD)] age = 81.38 ± 7.20 y}. Over a mean (±SD) follow-up of 6.7 ± 4.8 y, 280 participants (27.3%) were clinically diagnosed with Alzheimer's dementia. Weekly consumption of >1 egg/wk (hazard ratio [HR]: 0.53; 95% confidence interval [CI]: 0.34, 0.83) and ≥2 eggs/wk (HR: 0.53; 95% CI: 0.35, 0.81) was associated with a decreased risk of Alzheimer's dementia. Subgroup analysis of brain autopsies from 578 deceased participants showed that intakes of >1 egg/wk (HR: 0.51; 95% CI: 0.35, 0.76) and ≥2 eggs/wk (HR: 0.62; 95% CI: 0.44, 0.90) were associated with a lower risk of AD pathology in the brain. Mediation analysis showed that 39% of the total effect of egg intake on incident Alzheimer's dementia was mediated through dietary choline. CONCLUSIONS These findings suggest that frequent egg consumption is associated with a lower risk of Alzheimer's dementia and AD pathology, and the association with Alzheimer's dementia is partially mediated through dietary choline.
Collapse
Affiliation(s)
- Yongyi Pan
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Taylor C Wallace
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States; Think Healthy Group, LLC, Washington, DC, United States; School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Tasija Karosas
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Puja Agarwal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Mei Chung
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
12
|
Ikeda M, Kondo H, Murakami T, Iwaide S, Itoh Y, Shibuya H. Identification of apolipoprotein E-derived amyloid within cholesterol granulomas of leopard geckos (Eublepharis macularius). Sci Rep 2024; 14:13746. [PMID: 38877049 PMCID: PMC11178906 DOI: 10.1038/s41598-024-64643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Apolipoprotein E (ApoE) is involved in cholesterol transport among cells and also plays an important role in amyloid formation, co-depositing with amyloid fibrils in various types of amyloidosis. Although the in vivo amyloidogenicity of ApoE has not been previously demonstrated, this study provides evidence of ApoE amyloidogenicity in leopard geckos (Eublepharis macularius), belonging to the class Reptilia. Histologically, amyloid deposits were localized within cholesterol granulomas and exhibited positive Congo red staining, with yellow to green birefringence under polarized light. On mass spectrometry-based proteomic analysis, ApoE was detected as a dominant component of amyloid; of the full length of the 274 amino acid residues, peptides derived from Leu185-Arg230 were frequently detected with non-tryptic truncations. Immunohistochemistry with anti-leopard gecko ApoE antibody showed positive reactions of amyloid deposits. These results show that ApoE is an amyloid precursor protein within the cholesterol granulomas of leopard geckos. Although further investigations are needed, the C-terminal region of ApoE involved in amyloid formation is a lipid-binding region, and there should be a relationship between amyloidogenesis and the development of cholesterol granulomas in leopard geckos. This study provides novel insights into the pathogenesis of ApoE-related diseases.
Collapse
Affiliation(s)
- Mitsuhiro Ikeda
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan.
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Susumu Iwaide
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| |
Collapse
|
13
|
Miller JJ, Mallimadugula UL, Zimmerman MI, Stuchell-Brereton MD, Soranno A, Bowman GR. Accounting for fast vs slow exchange in single molecule FRET experiments reveals hidden conformational states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597137. [PMID: 38895430 PMCID: PMC11185552 DOI: 10.1101/2024.06.03.597137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Proteins are dynamic systems whose structural preferences determine their function. Unfortunately, building atomically detailed models of protein structural ensembles remains challenging, limiting our understanding of the relationships between sequence, structure, and function. Combining single molecule Förster resonance energy transfer (smFRET) experiments with molecular dynamics simulations could provide experimentally grounded, all-atom models of a protein's structural ensemble. However, agreement between the two techniques is often insufficient to achieve this goal. Here, we explore whether accounting for important experimental details like averaging across structures sampled during a given smFRET measurement is responsible for this apparent discrepancy. We present an approach to account for this time-averaging by leveraging the kinetic information available from Markov state models of a protein's dynamics. This allows us to accurately assess which timescales are averaged during an experiment. We find this approach significantly improves agreement between simulations and experiments in proteins with varying degrees of dynamics, including the well-ordered protein T4 lysozyme, the partially disordered protein apolipoprotein E (ApoE), and a disordered amyloid protein (Aβ40). We find evidence for hidden states that are not apparent in smFRET experiments because of time averaging with other structures, akin to states in fast exchange in NMR, and evaluate different force fields. Finally, we show how remaining discrepancies between computations and experiments can be used to guide additional simulations and build structural models for states that were previously unaccounted for. We expect our approach will enable combining simulations and experiments to understand the link between sequence, structure, and function in many settings.
Collapse
Affiliation(s)
- Justin J. Miller
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Upasana L. Mallimadugula
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Ohgita T, Sakai K, Fukui N, Namba N, Nakano M, Kiguchi Y, Morita I, Oyama H, Yamaki K, Nagao K, Kobayashi N, Saito H. Generation of novel anti-apoE monoclonal antibodies that selectively recognize apoE isoforms. FEBS Lett 2024; 598:902-914. [PMID: 38529702 DOI: 10.1002/1873-3468.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 03/27/2024]
Abstract
Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid β in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states. Here, we generated novel anti-apoE monoclonal antibodies (mAbs) and obtained an apoE4-selective mAb whose epitope is within residues 110-117. ELISA and bio-layer interferometry measurements demonstrated that the dissociation constants of mAbs are within the nanomolar range. Using the generated antibodies, we successfully constructed sandwich ELISA systems, which can detect all apoE isoforms or selectively detect apoE4. These results suggest the usability of the generated anti-apoE mAbs for selective detection of apoE isoforms.
Collapse
Affiliation(s)
- Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Japan
| | - Koto Sakai
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Nodoka Fukui
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Miyu Nakano
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Yuki Kiguchi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Izumi Morita
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Hiroyuki Oyama
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Kouya Yamaki
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Japan
| | - Kohjiro Nagao
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| | - Norihiro Kobayashi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Japan
| |
Collapse
|
15
|
Windham IA, Cohen S. The cell biology of APOE in the brain. Trends Cell Biol 2024; 34:338-348. [PMID: 37805344 PMCID: PMC10995109 DOI: 10.1016/j.tcb.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Apolipoprotein E (APOE) traffics lipids in the central nervous system. The E4 variant of APOE is a major genetic risk factor for Alzheimer's disease (AD) and a multitude of other neurodegenerative diseases, yet the molecular mechanisms by which APOE4 drives disease are still unclear. A growing collection of studies in iPSC models, knock-in mice, and human postmortem brain tissue have demonstrated that APOE4 expression in astrocytes and microglia is associated with the accumulation of cytoplasmic lipid droplets, defects in endolysosomal trafficking, impaired mitochondrial metabolism, upregulation of innate immune pathways, and a transition into a reactive state. In this review, we collate these developments and suggest testable mechanistic hypotheses that could explain common APOE4 phenotypes.
Collapse
Affiliation(s)
- Ian A Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Ghosh S, Tamilselvi S, Williams C, Jayaweera SW, Iashchishyn IA, Šulskis D, Gilthorpe JD, Olofsson A, Smirnovas V, Svedružić ŽM, Morozova-Roche LA. ApoE Isoforms Inhibit Amyloid Aggregation of Proinflammatory Protein S100A9. Int J Mol Sci 2024; 25:2114. [PMID: 38396791 PMCID: PMC10889306 DOI: 10.3390/ijms25042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-β (Aβ) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.
Collapse
Affiliation(s)
- Shamasree Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Chloe Williams
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Sanduni W. Jayaweera
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | - Jonathan D. Gilthorpe
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | | | - Ludmilla A. Morozova-Roche
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| |
Collapse
|
17
|
Benedicto VL, Haguar Z, Abdulhasan A, Narayanaswami V. Apolipoprotein E3 Containing Nanodiscs as Vehicles for Transport and Targeted Delivery of Flavonoid Luteolin. ACS OMEGA 2024; 9:2988-2999. [PMID: 38250386 PMCID: PMC10795050 DOI: 10.1021/acsomega.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Luteolin is a flavonoid that possesses multiple beneficial biological properties, such as anticancer, antioxidant, and anti-inflammatory effects. The objective of this study is to test the hypothesis that luteolin can be transported across a cell via a nanodisc delivery system and delivered to intracellular sites. Luteolin was incorporated into reconstituted high-density lipoprotein complexes made up of apolipoprotein E3 (apoE3) N-terminal domain (apoE3NT) and 1,2-dimystrioyl-sn-glycero-3-phosphocholine. ApoE3NT confers the ability on nanodiscs to traverse the plasma membrane via low-density lipoprotein receptor or scavenger receptor-B1. Physicochemical characterization revealed that the nanodiscs were 17-22 nm in diameter as demonstrated by native polyacrylamide gel electrophoresis and dynamic lightering analysis and ∼660 kDa in size, with a luteolin content of ∼4 luteolin molecules/nanodisc. Luteolin appeared to be embedded in the nonpolar core of nanodiscs, as revealed by fluorescence quenching and polarization analysis and spectroscopic characterization. The presence of luteolin did not affect the ability of apoE3NT to mediate binding and cellular uptake of luteolin containing nanodiscs in macrophages, as inferred from immunofluorescence analysis that revealed apoE- and lipid-related fluorescence as punctate perinuclear vesicles and from flow cytometry studies. Lastly, luteolin appeared to be localized in the nucleus, having escaped the lysosomes following disassembly of the nanodiscs as suggested by fluorescence spectroscopy and microscopy analyses. Taken together, nanodiscs offer the potential to effectively transport luteolin and potentially therapeutic drugs into perinuclear sites in cells, where they can be available to enter the nucleus.
Collapse
Affiliation(s)
| | - Zahraa Haguar
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Abbas Abdulhasan
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Vasanthy Narayanaswami
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| |
Collapse
|
18
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
19
|
Pappolla MA, Refolo L, Sambamurti K, Zambon D, Duff K. Hypercholesterolemia and Alzheimer's Disease: Unraveling the Connection and Assessing the Efficacy of Lipid-Lowering Therapies. J Alzheimers Dis 2024; 101:S371-S393. [PMID: 39422957 DOI: 10.3233/jad-240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This article examines the relationship between cholesterol levels and Alzheimer's disease (AD), beginning with the early observation that individuals who died from heart attacks often had brain amyloid deposition. Subsequent animal model research proved that high cholesterol could hasten amyloid accumulation. In contrast, cholesterol-lowering treatments appeared to counteract this effect. Human autopsy studies reinforced the cholesterol-AD connection, revealing that higher cholesterol levels during midlife significantly correlated with higher brain amyloid pathology. This effect was especially pronounced in individuals aged 40 to 55. Epidemiological data supported animal research and human tissue observations and suggested that managing cholesterol levels in midlife could reduce the risk of developing AD. We analyze the main observational studies and clinical trials on the efficacy of statins. While observational data often suggest a potential protective effect against AD, clinical trials have not consistently shown benefit. The failure of these trials to demonstrate a clear advantage is partially attributed to multiple factors, including the timing of statin therapy, the type of statin and the appropriate selection of patients for treatment. Many studies failed to target individuals who might benefit most from early intervention, such as high-risk patients like APOE4 carriers. The review addresses how cholesterol is implicated in AD through various biological pathways, the potential preventive role of cholesterol management as suggested by observational studies, and the difficulties encountered in clinical trials, particularly related to statin use. The paper highlights the need to explore alternate therapeutic targets and mechanisms that escape statin intervention.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lorenzo Refolo
- Translational Research Branch, Division of Neuroscience, Bethesda, MD, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Zambon
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - Karen Duff
- Karen Duff, UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
20
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. Cell Mol Life Sci 2023; 80:376. [PMID: 38010414 PMCID: PMC11061799 DOI: 10.1007/s00018-023-05026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Mari N Nakamura
- Undergraduate program, Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT, 05753, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
21
|
Paslawski W, Svenningsson P. Elevated ApoE, ApoJ and lipoprotein-bound α-synuclein levels in cerebrospinal fluid from Parkinson's disease patients - Validation in the BioFIND cohort. Parkinsonism Relat Disord 2023; 116:105765. [PMID: 37479568 PMCID: PMC11140586 DOI: 10.1016/j.parkreldis.2023.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The progressive accumulation, aggregation, and spread of α-synuclein (aSN) are common hallmarks of Parkinson's disease (PD) pathology. The genotype of apolipoprotein E (ApoE) influences PD progression. Recently we found that aSN co-localize with apolipoproteins on lipoprotein vesicles. We reported an increased level of ApoE, ApoJ and lipoprotein-bound aSN in CSF from early PD patients compared to matched controls. We also found reduced plasma ApoAI in PD patients. OBJECTIVE In this study, we used the same approach on the BioFIND cohort to validate our previous results and extended the studies to examine correlations with ApoE genotype, demographic variables, clinical symptoms and other biochemical findings reported in the BioFIND cohort. METHODS For the assessment, we used Western-Blot (WB) technique for apolipoproteins measurements in CSF and plasma from PD patients and healthy controls. Further, for measurement of aSN bound to lipoproteins, we combined immunodepletion with the enzyme-linked immunosorbent assay (ELISA). RESULTS Levels of ApoE, ApoJ and lipoprotein bound aSN were significantly increased in CSF from PD patients compared to controls. We also observed decreased levels of ApoAI and ApoJ in plasma from PD patients compared to controls. CONCLUSIONS Concluding, the present data validated our previous findings. Altered lipoproteins appear to be important in early PD pathology and may be involved in mechanisms underlying aSN cell-to-cell transfer in the nervous system and be developed in algorithms for early diagnosis of PD.
Collapse
Affiliation(s)
- Wojciech Paslawski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
22
|
Kashtanova DA, Mamchur AA, Dzhumaniyazova IH, Ivanov MV, Erema VV, Zelenova EA, Yakovchik AY, Gusakova MS, Rumyantseva AM, Terekhov MV, Matkava LR, Akopyan AA, Strazhesko ID, Yudin VS, Makarov VV, Kraevoy SA, Tkacheva ON, Yudin SM. Cognitive impairment in long-living adults: a genome-wide association study, polygenic risk score model and molecular modeling of the APOE protein. Front Aging Neurosci 2023; 15:1273825. [PMID: 37953886 PMCID: PMC10637623 DOI: 10.3389/fnagi.2023.1273825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background Cognitive impairment is an irreversible, aging-associated condition that robs people of their independence. The purpose of this study was to investigate possible causes of this condition and propose preventive options. Methods We assessed cognitive status in long-living adults aged 90+ (n = 2,559) and performed a genome wide association study using two sets of variables: Mini-Mental State Examination scores as a continuous variable (linear regression) and cognitive status as a binary variable (> 24, no cognitive impairment; <10, impairment) (logistic regression). Results Both variations yielded the same polymorphisms, including a well-known marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations showed that this polymorphism leads to changes in the structure of alpha helices and the mobility of the lipid-binding domain in the APOE protein. Conclusion These changes, along with higher LDL and total cholesterol levels, could be the mechanism underlying the development of cognitive impairment in older adults. However, this polymorphism is not the only determining factor in cognitive impairment. The polygenic risk score model included 45 polymorphisms (ROC AUC 69%), further confirming the multifactorial nature of this condition. Our findings, particularly the results of PRS modeling, could contribute to the development of early detection strategies for predisposition to cognitive impairment in older adults.
Collapse
Affiliation(s)
- D. A. Kashtanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. A. Mamchur
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - I. H. Dzhumaniyazova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. V. Ivanov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - V. V. Erema
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - E. A. Zelenova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. Y. Yakovchik
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. S. Gusakova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. M. Rumyantseva
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - M. V. Terekhov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - L. R. Matkava
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - A. A. Akopyan
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - I. D. Strazhesko
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - V. S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - V. V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - S. A. Kraevoy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| | - O. N. Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - S. M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks”, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
23
|
Tiwari D, Srivastava G, Indari O, Tripathi V, Siddiqi MI, Jha HC. An in-silico insight into the predictive interaction of Apolipoprotein-E with Epstein-Barr virus proteins and their probable role in mediating Alzheimer's disease. J Biomol Struct Dyn 2023; 41:8918-8926. [PMID: 36307908 DOI: 10.1080/07391102.2022.2138978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Recent reports suggest that persistent Epstein-Barr virus (EBV) infection and its recurrent reactivation could instigate the formation of proteinaceous plaques in the brain: a hallmark of Alzheimer's disease (AD). Interestingly, a major genetic risk factor of AD, the apolipoprotein E (ApoE), could also influence the outcome of EBV infection in an individual. The ApoE is believed to influence the proteinaceous plaque clearance from the brain, and its defective functioning could result in the aggregate deposition. The persistent presence of EBV infection in a genetically predisposed individual could create a perfect recipe for severe neurodegenerative consequences. Therefore, in the present study, we investigated the possible interactions between ApoE and various EBV proteins using computational tools. Our results showed possibly stable de-novo interactions between the C-terminal domain of ApoE3 and EBV proteins: EBV nuclear antigen-1 (EBNA1) and BamHI Z fragment leftward open reading frame-1 (BZLF1). The EBNA1 protein of EBV plays a crucial role in establishing latency and replication of the virus. Whereas BZLF1 is involved in the lytic replication cycle. The proposed interaction of EBV proteins at the ligand-binding site of ApoE3 on CTD could interfere with- its capability to sequester amyloid fragments and, hence their clearance from the brain giving rise to AD pathology. This study provides a new outlook on EBV's underexplored role in AD development and paves the way for novel avenues of investigation which could further our understanding of AD pathogenesis.Communicated by Ramaswamy H. Sarma[Figure: see text].
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Gaurava Srivastava
- Division of Biochemistry and Structural Biology, CSIR-CDRI, Lucknow, India
| | - Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
24
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551703. [PMID: 37577501 PMCID: PMC10418262 DOI: 10.1101/2023.08.04.551703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Mari N. Nakamura
- Undergraduate program, Department of Chemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT 05753VT United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
25
|
Hou X, Zhang X, Zou H, Guan M, Fu C, Wang W, Zhang ZR, Geng Y, Chen Y. Differential and substrate-specific inhibition of γ-secretase by the C-terminal region of ApoE2, ApoE3, and ApoE4. Neuron 2023; 111:1898-1913.e5. [PMID: 37040764 DOI: 10.1016/j.neuron.2023.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Aberrant low γ-secretase activity is associated with most of the presenilin mutations that underlie familial Alzheimer's disease (fAD). However, the role of γ-secretase in the more prevalent sporadic AD (sAD) remains unaddressed. Here, we report that human apolipoprotein E (ApoE), the most important genetic risk factor of sAD, interacts with γ-secretase and inhibits it with substrate specificity in cell-autonomous manners through its conserved C-terminal region (CT). This ApoE CT-mediated inhibitory activity is differentially compromised in different ApoE isoforms, resulting in an ApoE2 > ApoE3 > ApoE4 potency rank order inversely correlating to their associated AD risk. Interestingly, in an AD mouse model, neuronal ApoE CT migrates to amyloid plaques in the subiculum from other regions and alleviates the plaque burden. Together, our data reveal a hidden role of ApoE as a γ-secretase inhibitor with substrate specificity and suggest that this precision γ-inhibition by ApoE may protect against the risk of sAD.
Collapse
Affiliation(s)
- Xianglong Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| |
Collapse
|
26
|
Nemergut M, Marques SM, Uhrik L, Vanova T, Nezvedova M, Gadara DC, Jha D, Tulis J, Novakova V, Planas-Iglesias J, Kunka A, Legrand A, Hribkova H, Pospisilova V, Sedmik J, Raska J, Prokop Z, Damborsky J, Bohaciakova D, Spacil Z, Hernychova L, Bednar D, Marek M. Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's Disease drug candidate. Mol Neurodegener 2023; 18:38. [PMID: 37280636 DOI: 10.1186/s13024-023-00620-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown. METHODS Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations. Treatment of ApoE ε3/ε3 and ε4/ε4 cerebral organoids with tramiprosate was used to compare the effect of tramiprosate on ApoE4 aggregation at the cellular level. RESULTS We found that C112R substitution in ApoE4 induces long-distance (> 15 Å) conformational changes leading to the formation of a V-shaped dimeric unit that is geometrically different and more aggregation-prone than the ApoE3 structure. AD drug candidate tramiprosate and its metabolite 3-sulfopropanoic acid induce ApoE3-like conformational behavior in ApoE4 and reduce its aggregation propensity. Analysis of ApoE ε4/ε4 cerebral organoids treated with tramiprosate revealed its effect on cholesteryl esters, the storage products of excess cholesterol. CONCLUSIONS Our results connect the ApoE4 structure with its aggregation propensity, providing a new druggable target for neurodegeneration and ageing.
Collapse
Affiliation(s)
- Michal Nemergut
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Trieda SNP 1, Kosice, 04011, Slovakia
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Tereza Vanova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | | | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Tulis
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Novakova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Anthony Legrand
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Pospisilova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiri Sedmik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Raska
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Dasa Bohaciakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| |
Collapse
|
27
|
Mah D, Zhu Y, Su G, Zhao J, Canning A, Gibson J, Song X, Stancanelli E, Xu Y, Zhang F, Linhardt RJ, Liu J, Wang L, Wang C. Apolipoprotein E Recognizes Alzheimer's Disease Associated 3-O Sulfation of Heparan Sulfate. Angew Chem Int Ed Engl 2023; 62:e202212636. [PMID: 37014788 PMCID: PMC10430763 DOI: 10.1002/anie.202212636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
Apolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.
Collapse
Affiliation(s)
- Dylan Mah
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yanan Zhu
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, NC 27606, USA
| | - Jing Zhao
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- China Agricultural University, Beijing, 100083, China
| | - Ashely Canning
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James Gibson
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Glycan Therapeutics, Raleigh, NC 27606, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
28
|
Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms. Proc Natl Acad Sci U S A 2023; 120:e2215371120. [PMID: 36749730 PMCID: PMC9963066 DOI: 10.1073/pnas.2215371120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.
Collapse
|
29
|
Zhou J, Wang Y, Huang G, Yang M, Zhu Y, Jin C, Jing D, Ji K, Shi Y. LilrB3 is a putative cell surface receptor of APOE4. Cell Res 2023; 33:116-130. [PMID: 36588123 PMCID: PMC9892561 DOI: 10.1038/s41422-022-00759-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 01/03/2023] Open
Abstract
The three isoforms of apolipoprotein E (APOE2, APOE3, and APOE4) only differ in two amino acid positions but exert quite different immunomodulatory effects. The underlying mechanism of such APOE isoform dependence remains enigmatic. Here we demonstrate that APOE4, but not APOE2, specifically interacts with the leukocyte immunoglobulin-like receptor B3 (LilrB3). Two discrete immunoglobin-like domains of the LilrB3 extracellular domain (ECD) recognize a positively charged surface patch on the N-terminal domain (NTD) of APOE4. The atomic structure reveals how two APOE4 molecules specifically engage two LilrB3 molecules, bringing their intracellular signaling motifs into close proximity through formation of a hetero-tetrameric complex. Consistent with our biochemical and structural analyses, APOE4, but not APOE2, activates human microglia cells (HMC3) into a pro-inflammatory state in a LilrB3-dependent manner. Together, our study identifies LilrB3 as a putative immune cell surface receptor for APOE4, but not APOE2, and may have implications for understanding the biological functions as well as disease relevance of the APOE isoforms.
Collapse
Affiliation(s)
- Jiayao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Yumeng Wang
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Min Yang
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yumin Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Chen Jin
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dan Jing
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Kai Ji
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00018. [PMID: 36710921 PMCID: PMC9869962 DOI: 10.1097/in9.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Microglia are a unique population of immune cells resident in the brain that integrate complex signals and dynamically change phenotypes in response to the brain microenvironment. In recent years, single-cell sequencing analyses have revealed profound cellular heterogeneity and context-specific transcriptional plasticity of microglia during brain development, aging, and disease. Emerging evidence suggests that microglia adapt phenotypic plasticity by flexibly reprogramming cellular metabolism to fulfill distinct immune functions. The control of lipid metabolism is central to the appropriate function and homeostasis of the brain. Microglial lipid metabolism regulated by apolipoprotein E (ApoE), a crucial lipid transporter in the brain, has emerged as a critical player in regulating neuroinflammation. The ApoE gene allelic variant, ε4, is associated with a greater risk for neurodegenerative diseases. In this review, we explore novel discoveries in microglial lipid metabolism mediated by ApoE. We elaborate on the functional impact of perturbed microglial lipid metabolism on the underlying pathogenesis of brain aging and disease.
Collapse
|
31
|
Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1189-1204. [PMID: 36817952 PMCID: PMC9932299 DOI: 10.1016/j.csbj.2023.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Three common Apolipoprotein E isoforms, ApoE2, ApoE3, and ApoE4, are key regulators of lipid homeostasis, among other functions. Apolipoprotein E can interact with amyloid proteins. The isoforms differ by one or two residues at positions 112 and 158, and possess distinct structural conformations and functions, leading to isoform-specific roles in amyloid-based neurodegenerative diseases. Over 30 different amyloid proteins have been found to share similar characteristics of structure and toxicity, suggesting a common interactome. The molecular and genetic interactions of ApoE with amyloid proteins have been extensively studied in neurodegenerative diseases, but have not yet been well connected and clarified. Here we summarize essential features of the interactions between ApoE and different amyloid proteins, identify gaps in the understanding of the interactome and propose the general interaction mechanism between ApoE isoforms and amyloid proteins. Perhaps more importantly, this review outlines what we can learn from the interactome of ApoE and amyloid proteins; that is the need to see both ApoE and amyloid proteins as a basis to understand neurodegenerative diseases.
Collapse
|
32
|
Horn JVC, Kakutani LM, Narayanaswami V, Weers PMM. Insights into the C-terminal domain of apolipoprotein E from chimera studies with apolipophorin III. Mol Cell Biochem 2023; 478:173-183. [PMID: 35763125 PMCID: PMC11479662 DOI: 10.1007/s11010-022-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
Apolipoprotein E3 (apoE) is a critical cholesterol transport protein in humans and is composed of two domains: a well characterized N-terminal (NT) domain that harbors the low-density lipoprotein LDL receptor, and a less understood C-terminal (CT) domain that is the site of protein oligomerization and initiation of lipid binding. To better understand the domain structure of apoE, the CT domain was fused to apolipophorin III (apoLp-III), a single-domain, monomeric apolipoprotein of insect origin, to yield a chimeric protein, apoLp-III/CT-apoE. Recombinant apoLp-III/CT-apoE maintained an overall helical content similar to that of the parent proteins, while chemical induced unfolding studies indicated that its structural integrity was not compromised. Analysis using 1-anilinonaphthalene-8-sulfonic acid (ANS), a sensitive fluorescent indicator of exposed hydrophobic sites and protein folding, demonstrated that whereas apoLp-III provided few ANS binding sites, apoLp-III/CT-apoE harbored an abundance of ANS binding sites. Thus, this indicated tertiary structure formation in CT-apoE when part of the chimera. Size-exclusion chromatography and chemical crosslinking analysis demonstrated that while apoLp-III is monomeric, the chimeric protein formed large oligomeric complexes, similar to native apoE3. Compared to apoLp-III, the chimera showed a two-fold enhancement in phospholipid vesicle solubilization rates and a significantly improved ability to bind to lipolyzed low-density lipoprotein, preventing the onset of lipoprotein aggregation at concentrations comparable to that of parent CT-apoE. These results confirm that high lipid binding and self-association sites are located in the CT domain of apoE, and that these properties can be transferred to an unrelated apolipoprotein, demonstrating that these properties operate independently from the NT domain.
Collapse
Affiliation(s)
- James V C Horn
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Leesa M Kakutani
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA.
| |
Collapse
|
33
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
34
|
Pandit S. 1 H, 15 N and 13 C chemical shift assignments of the N-terminal domain of the two isoforms of the human apolipoprotein E. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:191-196. [PMID: 35451799 DOI: 10.1007/s12104-022-10078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Apolipoprotein E (ApoE) is one of the major lipid transporters in humans. It is also implicated in pathological conditions like Alzheimer's and cardiovascular diseases. The N-terminal domain of ApoE binds low-density lipoprotein receptors (LDLR) while the C-terminal domain binds to the lipid. I report the backbone and aliphatic side-chain NMR chemical shifts of the N-terminal domain of two isoforms of ApoE, namely ApoE3 NTD (BMRB No. 51,122) and ApoE4 NTD (BMRB No. 51,123) at pH 3.5 (20 °C).
Collapse
Affiliation(s)
- Subhendu Pandit
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, 500107, Hyderabad, India.
| |
Collapse
|
35
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
36
|
Rueter J, Rimbach G, Huebbe P. Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function. Cell Mol Life Sci 2022; 79:499. [PMID: 36018414 PMCID: PMC9418098 DOI: 10.1007/s00018-022-04516-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
Human apolipoprotein E (APOE), originally known for its role in lipid metabolism, is polymorphic with three major allele forms, namely, APOEε2, APOEε3, and APOEε4, leading to three different human APOE isoforms. The ε4 allele is a genetic risk factor for Alzheimer's disease (AD); therefore, the vast majority of APOE research focuses on its role in AD pathology. However, there is increasing evidence for other functions of APOE through the involvement in other biological processes such as transcriptional regulation, mitochondrial metabolism, immune response, and responsiveness to dietary factors. Therefore, the aim of this review is to provide an overview of the potential novel functions of APOE and their characterization. The detection of APOE in various cell organelles points to previously unrecognized roles in mitochondria and others, although it is actually considered a secretory protein. Furthermore, numerous interactions of APOE with other proteins have been detected, providing indications for new metabolic pathways involving APOE. The present review summarizes the current evidence on APOE beyond its original role in lipid metabolism, to change the perspective and encourage novel approaches to future research on APOE and its isoform-dependent role in the cellular metabolism.
Collapse
Affiliation(s)
- Johanna Rueter
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Patricia Huebbe
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
37
|
Berntsson E, Sardis M, Noormägi A, Jarvet J, Roos PM, Tõugu V, Gräslund A, Palumaa P, Wärmländer SKTS. Mercury Ion Binding to Apolipoprotein E Variants ApoE2, ApoE3, and ApoE4: Similar Binding Affinities but Different Structure Induction Effects. ACS OMEGA 2022; 7:28924-28931. [PMID: 36033665 PMCID: PMC9404194 DOI: 10.1021/acsomega.2c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mercury intoxication typically produces more severe outcomes in people with the APOE-ε4 gene, which codes for the ApoE4 variant of apolipoprotein E, compared to individuals with the APOE-ε2 and APOE-ε3 genes. Why the APOE-ε4 allele is a risk factor in mercury exposure remains unknown. One proposed possibility is that the ApoE protein could be involved in clearing of heavy metals, where the ApoE4 protein might perform this task worse than the ApoE2 and ApoE3 variants. Here, we used fluorescence and circular dichroism spectroscopies to characterize the in vitro interactions of the three different ApoE variants with Hg(I) and Hg(II) ions. Hg(I) ions displayed weak binding to all ApoE variants and induced virtually no structural changes. Thus, Hg(I) ions appear to have no biologically relevant interactions with the ApoE protein. Hg(II) ions displayed stronger and very similar binding affinities for all three ApoE isoforms, with K D values of 4.6 μM for ApoE2, 4.9 μM for ApoE3, and 4.3 μM for ApoE4. Binding of Hg(II) ions also induced changes in ApoE superhelicity, that is, altered coil-coil interactions, which might modify the protein function. As these structural changes were most pronounced in the ApoE4 protein, they could be related to the APOE-ε4 gene being a risk factor in mercury toxicity.
Collapse
Affiliation(s)
- Elina Berntsson
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Merlin Sardis
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Jüri Jarvet
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- The
National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department
of Clinical Physiology, Capio Saint Göran
Hospital, 112 19 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
38
|
Bu G. APOE targeting strategy in Alzheimer's disease: lessons learned from protective variants. Mol Neurodegener 2022; 17:51. [PMID: 35922805 PMCID: PMC9351235 DOI: 10.1186/s13024-022-00556-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Guojun Bu
- Molecular Neurodegeneration, Jacksonville, USA.
| |
Collapse
|
39
|
Kim H, Lee S, Jun Y, Lee C. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nat Commun 2022; 13:3702. [PMID: 35764626 PMCID: PMC9239997 DOI: 10.1038/s41467-022-31462-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
The endoplasmic reticulum (ER)-mitochondria contact site (ERMCS) is crucial for exchanging biological molecules such as phospholipids and Ca2+ ions between these organelles. Mitoguardin-2 (MIGA2), a mitochondrial outer membrane protein, forms the ERMCS in higher eukaryotic cells. Here, we report the crystal structures of the MIGA2 Lipid Droplet (LD) targeting domain and the ER membrane protein VAPB bound to the phosphorylated FFAT motif of MIGA2. These structures reveal that the MIGA2 LD targeting domain has a large internal hydrophobic pocket that accommodates phospholipids and that two phosphorylations of the FFAT motif are required for tight interaction of MIGA2 with VAPB, which enhances the rate of lipid transport. Further biochemical studies show that MIGA2 transports phospholipids between membranes with a strong preference for binding and trafficking phosphatidylserine (PS). These results provide a structural and molecular basis for understanding how MIGA2 mediates the formation of ERMCS and facilitates lipid trafficking at the ERMCS. The ER-mitochondria contact sites are crucial for exchanging phospholipids. Here, Kim et al. present crystal structures of mitoguardin-2 (MIGA2) which reveal that MIGA2 directly binds phospholipids and transfers them between the ER and mitochondria.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seowhang Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea. .,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
40
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
41
|
Antibacterial and Anti-Inflammatory Effects of Apolipoprotein E. Biomedicines 2022; 10:biomedicines10061430. [PMID: 35740451 PMCID: PMC9220183 DOI: 10.3390/biomedicines10061430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein E (APOE) is a lipid-transport protein that functions as a key mediator of lipid transport and cholesterol metabolism. Recent studies have shown that peptides derived from human APOE display anti-inflammatory and antimicrobial effects. Here, we applied in vitro assays and fluorescent microscopy to investigate the anti-bacterial effects of full-length APOE. The interaction of APOE with endotoxins from Escherichia coli was explored using surface plasmon resonance, binding assays, transmission electron microscopy and all-atom molecular dynamics (MD) simulations. We also studied the immunomodulatory activity of APOE using in vitro cell assays and an in vivo mouse model in combination with advanced imaging techniques. We observed that APOE exhibits anti-bacterial activity against several Gram-negative bacterial strains of Pseudomonas aeruginosa and Escherichia coli. In addition, we showed that APOE exhibits a significant binding affinity for lipopolysaccharide (LPS) and lipid A as well as heparin. MD simulations identified the low-density lipoprotein receptor (LDLR) binding region in helix 4 of APOE as a primary binding site for these molecules via electrostatic interactions. Together, our data suggest that APOE may have an important role in controlling inflammation during Gram-negative bacterial infection.
Collapse
|
42
|
Aguilar-Pineda JA, Paco-Coralla SG, Febres-Molina C, Gamero-Begazo PL, Shrivastava P, Vera-López KJ, Davila-Del-Carpio G, López-C P, Gómez B, Lino Cardenas CL. In Silico Analysis of the Antagonist Effect of Enoxaparin on the ApoE4–Amyloid-Beta (Aβ) Complex at Different pH Conditions. Biomolecules 2022; 12:biom12040499. [PMID: 35454088 PMCID: PMC9027285 DOI: 10.3390/biom12040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Apolipoprotein E4 (ApoE4) is thought to increase the risk of developing Alzheimer’s disease. Several studies have shown that ApoE4-Amyloid β (Aβ) interactions can increment amyloid depositions in the brain and that this can be augmented at low pH values. On the other hand, experimental studies in transgenic mouse models have shown that treatment with enoxaparin significantly reduces cortical Aβ levels, as well as decreases the number of activated astrocytes around Aβ plaques. However, the interactions between enoxaparin and the ApoE4-Aβ proteins have been poorly explored. In this work, we combine molecular dynamics simulations, molecular docking, and binding free energy calculations to elucidate the molecular properties of the ApoE4-Aβ interactions and the competitive binding affinity of the enoxaparin on the ApoE4 binding sites. In addition, we investigated the effect of the environmental pH levels on those interactions. Our results showed that under different pH conditions, the closed form of the ApoE4 protein, in which the C-terminal domain folds into the protein, remains stabilized by a network of hydrogen bonds. This closed conformation allowed the generation of six different ApoE4-Aβ interaction sites, which were energetically favorable. Systems at pH5 and 6 showed the highest energetic affinity. The enoxaparin molecule was found to have a strong energetic affinity for ApoE4-interacting sites and thus can neutralize or disrupt ApoE4-Aβ complex formation.
Collapse
Affiliation(s)
- Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
- Correspondence: (J.A.A.-P.); (C.L.L.C.)
| | - Silvana G. Paco-Coralla
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
| | - Camilo Febres-Molina
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370134, Chile;
| | - Pamela L. Gamero-Begazo
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
| | - Karin J. Vera-López
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru
| | - Gonzalo Davila-Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Patricia López-C
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (J.A.A.-P.); (C.L.L.C.)
| |
Collapse
|
43
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
44
|
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron 2022; 110:1304-1317. [PMID: 35298921 PMCID: PMC9035117 DOI: 10.1016/j.neuron.2022.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.
Collapse
Affiliation(s)
- Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Austin J Yang
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
45
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
46
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
47
|
Lindner K, Beckenbauer K, van Ek LC, Titeca K, de Leeuw SM, Awwad K, Hanke F, Korepanova AV, Rybin V, van der Kam EL, Mohler EG, Tackenberg C, Lakics V, Gavin AC. Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Rep 2022; 38:110435. [PMID: 35235798 DOI: 10.1016/j.celrep.2022.110435] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
Apolipoprotein E transports lipids and couples metabolism between astrocytes and neurons. The E4 variant (APOE4) affects these functions and represents a genetic predisposition for Alzheimer's disease, but the molecular mechanisms remain elusive. We show that ApoE produces different types of lipoproteins via distinct lipidation pathways. ApoE forms high-density lipoprotein (HDL)-like, cholesterol-rich particles via the ATP-binding cassette transporter 1 (ABCA1), a mechanism largely unaffected by ApoE polymorphism. Alternatively, ectopic accumulation of fat in astrocytes, a stress-associated condition, redirects ApoE toward the assembly and secretion of triacylglycerol-rich lipoproteins, a process boosted by the APOE4 variant. We demonstrate in vitro that ApoE can detect triacylglycerol in membranes and spontaneously assemble lipoprotein particles (10-20 nm) rich in unsaturated triacylglycerol, and that APOE4 has remarkable properties behaving as a strong triacylglycerol binder. We propose that fatty APOE4 astrocytes have reduced ability to clear toxic fatty acids from the extracellular milieu, because APOE4 reroutes them back to secretion.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Katharina Beckenbauer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Larissa C van Ek
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Kevin Titeca
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sherida M de Leeuw
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Khader Awwad
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Franziska Hanke
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | | | - Vladimir Rybin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Eric G Mohler
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Viktor Lakics
- AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
48
|
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer's disease. Acta Pharm Sin B 2022; 12:496-510. [PMID: 35256931 PMCID: PMC8897057 DOI: 10.1016/j.apsb.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic variation in apolipoprotein E (APOE) influences Alzheimer's disease (AD) risk. APOE ε4 alleles are the strongest genetic risk factor for late onset sporadic AD. The AD risk is dose dependent, as those carrying one APOE ε4 allele have a 2-3-fold increased risk, while those carrying two ε4 alleles have a 10-15-fold increased risk. Individuals carrying APOE ε2 alleles have lower AD risk and those carrying APOE ε3 alleles have neutral risk. APOE is a lipoprotein which functions in lipid transport, metabolism, and inflammatory modulation. Isoform specific effects of APOE within the brain include alterations to Aβ, tau, neuroinflammation, and metabolism. Here we review the association of APOE with AD, the APOE isoform specific effects within brain and periphery, and potential therapeutics.
Collapse
Affiliation(s)
- Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Laylan Hamid
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
49
|
Martin W, Sheynkman G, Lightstone FC, Nussinov R, Cheng F. Interpretable artificial intelligence and exascale molecular dynamics simulations to reveal kinetics: Applications to Alzheimer's disease. Curr Opin Struct Biol 2022; 72:103-113. [PMID: 34628220 PMCID: PMC8860862 DOI: 10.1016/j.sbi.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023]
Abstract
The rapid increase in computing power, especially with the integration of graphics processing units, has dramatically increased the capabilities of molecular dynamics simulations. To date, these capabilities extend from running very long simulations (tens to hundreds of microseconds) to thousands of short simulations. However, the expansive data generated in these simulations must be made interpretable not only by the investigator who performs them but also by others as well. Here, we demonstrate how integrating learning techniques, such as artificial intelligence, machine learning, and neural networks, into analysis pipelines can reveal the kinetics of Alzheimer's disease (AD) protein aggregation. We review select AD targets, describe current simulation methods, and introduce learning concepts and their application in AD, highlighting limitations and potential solutions.
Collapse
Affiliation(s)
- William Martin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, 94550, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Amponsah AE, Feng B, Guo R, Zhang W, He J, Kong D, Dong T, Ma J, Cui H. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Rev Neurosci 2021; 31:589-603. [PMID: 32364519 DOI: 10.1515/revneuro-2019-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a very common cause of dementia in the elderly. It is characterized by progressive amnesia and accretions of neurofibrillary tangles (NFTs) of neurons and senile plaques in the neuropil. After aging, the inheritance of the apolipoprotein E (ApoE) epsilon 4 (ε4) allele is the greatest risk factor for late-onset AD. The ApoE protein is the translated product of the ApoE gene. This protein undergoes proteolysis, and the resulting fragments colocalize with neurofibrillary tangles and amyloid plaques, and for that matter may be involved in AD onset and/or progression. Previous studies have reported the pathogenic potential of various ApoE fragments in AD pathophysiology. However, the pathways activated by the fragments are not fully understood. In this review, ApoE fragments obtained from post-mortem brains and body fluids, cerebrospinal fluid (CSF) and plasma, are discussed. Additionally, current knowledge about the process of fragmentation is summarized. Finally, the mechanisms by which these fragments are involved in AD pathogenesis and pathophysiology are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Tianyu Dong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| |
Collapse
|