1
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
2
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Costello HM, Sharma RK, McKee AR, Gumz ML. Circadian Disruption and the Molecular Clock in Atherosclerosis and Hypertension. Can J Cardiol 2023; 39:1757-1771. [PMID: 37355229 PMCID: PMC11446228 DOI: 10.1016/j.cjca.2023.06.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Circadian rhythms are crucial for maintaining vascular function and disruption of these rhythms are associated with negative health outcomes including cardiovascular disease and hypertension. Circadian rhythms are regulated by the central clock within the suprachiasmatic nucleus of the hypothalamus and peripheral clocks located in nearly every cell type in the body, including cells within the heart and vasculature. In this review, we summarize the most recent preclinical and clinical research linking circadian disruption, with a focus on molecular circadian clock mechanisms, in atherosclerosis and hypertension. Furthermore, we provide insight into potential future chronotherapeutics for hypertension and vascular disease. A better understanding of the influence of daily rhythms in behaviour, such as sleep/wake cycles, feeding, and physical activity, as well as the endogenous circadian system on cardiovascular risk will help pave the way for targeted approaches in atherosclerosis and hypertension treatment/prevention.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA.
| | - Ravindra K Sharma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| | - Annalisse R McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Kamat PK, Khan MB, Smith C, Siddiqui S, Baban B, Dhandapani K, Hess DC. The time dimension to stroke: Circadian effects on stroke outcomes and mechanisms. Neurochem Int 2023; 162:105457. [PMID: 36442686 PMCID: PMC9839555 DOI: 10.1016/j.neuint.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
The circadian system is widely involved in the various pathological outcomes affected by time dimension changes. In the brain, the master circadian clock, also known as the "pacemaker," is present in the hypothalamus's suprachiasmatic nucleus (SCN). The SCN consists of molecular circadian clocks that operate in each neuron and other brain cells. These circadian mechanisms are controlled by the transcription and translation of specific genes such as the clock circadian regulator (Clock) and brain and muscle ARNT-Like 1 (Bmal1). Period (Per1-3) and cryptochrome (Cry1 and 2) negatively feedback and regulate the clock genes. Variations in the circadian cycle and these clock genes can affect stroke outcomes. Studies suggest that the peak stroke occurs in the morning after patients awaken from sleep, while stroke severity and poor outcomes worsen at midnight. The main risk factor associated with stroke is high blood pressure (hypertension). Blood pressure usually dips by 15-20% during sleep, but many hypertensives do not display this normal dipping pattern and are non-dippers. A sleep blood pressure is the primary determinant of stroke risk. This article discusses the possible mechanism associated with circadian rhythm and stroke outcomes.
Collapse
Affiliation(s)
- Pradip K Kamat
- Departments of Neurology, Medical College of Georgia, Augusta University, USA.
| | | | - Cameron Smith
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Shahneela Siddiqui
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Babak Baban
- Departments of Oral Biology, Dental College of Georgia, Augusta University, USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, USA
| | - David C Hess
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
6
|
Lecour S, Du Pré BC, Bøtker HE, Brundel BJJM, Daiber A, Davidson SM, Ferdinandy P, Girao H, Gollmann-Tepeköylü C, Gyöngyösi M, Hausenloy DJ, Madonna R, Marber M, Perrino C, Pesce M, Schulz R, Sluijter JPG, Steffens S, Van Linthout S, Young ME, Van Laake LW. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118:2566-2581. [PMID: 34505881 DOI: 10.1093/cvr/cvab293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Bastiaan C Du Pré
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Faculty of Medicine, Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin 10178, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Heywood HK, Gardner L, Knight MM, Lee DA. Oscillations of the circadian clock protein, BMAL-1, align to daily cycles of mechanical stimuli: a novel means to integrate biological time within predictive in vitro model systems. IN VITRO MODELS 2022; 1:405-412. [PMID: 36570670 PMCID: PMC9767245 DOI: 10.1007/s44164-022-00032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
PURPOSE In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems. METHODS Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period. RESULTS Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (p < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro. CONCLUSION This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s44164-022-00032-x.
Collapse
Affiliation(s)
- Hannah K. Heywood
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Laurence Gardner
- Wirral University Teaching Hospital NHS Foundation Trust, Liverpool, UK
| | - Martin M. Knight
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
9
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Wang Z, Ban Y, Liang X, Luo G, Sun F. Potential Effect of the Circadian Clock on Erectile Dysfunction. Aging Dis 2022; 13:8-23. [PMID: 35111358 PMCID: PMC8782551 DOI: 10.14336/ad.2021.0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
The circadian rhythm is an internal timing system, which is generated by circadian clock genes. Because the circadian rhythm regulates numerous cellular, behavioral, and physiological processes, organisms have evolved with intrinsic biological rhythms to adapt the daily environmental changes. A variety of pathological events occur at specific times, while disturbed rhythms can lead to metabolic syndrome, vascular dysfunction, inflammatory disorders, and cancer. Therefore, the circadian clock is considered closely related to various diseases. Recently, accumulated data have shown that the penis is regulated by the circadian clock, while erectile function is impaired by an altered sleep-wake cycle. The circadian rhythm appears to be a novel therapeutic target for preventing and managing erectile dysfunction (ED), although research is still progressing. In this review, we briefly summarize the superficial interactions between the circadian clock and erectile function, while focusing on how disturbed rhythms contribute to risk factors of ED. These risk factors include NO/cGMP pathway, atherosclerosis, diabetes mellitus, lipid abnormalities, testosterone deficiency, as well as dysfunction of endothelial and smooth muscle cells. On the basis of recent findings, we discuss the potential role of the circadian clock for future therapeutic strategies on ED, although further relevant research needs to be performed.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiangyi Liang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| |
Collapse
|
10
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
11
|
The Vascular Circadian Clock in Chronic Kidney Disease. Cells 2021; 10:cells10071769. [PMID: 34359937 PMCID: PMC8306728 DOI: 10.3390/cells10071769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease is associated with extremely high cardiovascular mortality. The circadian rhythms (CR) have an impact on vascular function. The disruption of CR causes serious health problems and contributes to the development of cardiovascular diseases. Uremia may affect the master pacemaker of CR in the hypothalamus. A molecular circadian clock is also expressed in peripheral tissues, including the vasculature, where it regulates the different aspects of both vascular physiology and pathophysiology. Here, we address the impact of CKD on the intrinsic circadian clock in the vasculature. The expression of the core circadian clock genes in the aorta is disrupted in CKD. We propose a novel concept of the disruption of the circadian clock system in the vasculature of importance for the pathology of the uremic vasculopathy.
Collapse
|
12
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Circadian rhythms of mineral metabolism in chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2021; 29:367-377. [PMID: 32452917 DOI: 10.1097/mnh.0000000000000611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The circadian rhythms have a systemic impact on all aspects of physiology. Kidney diseases are associated with extremely high-cardiovascular mortality, related to chronic kidney disease-mineral bone disorder (CKD-MBD), involving bone, parathyroids and vascular calcification. Disruption of circadian rhythms may cause serious health problems, contributing to development of cardiovascular diseases, metabolic syndrome, cancer, organ fibrosis, osteopenia and aging. Evidence of disturbed circadian rhythms in CKD-MBD parameters and organs involved is emerging and will be discussed in this review. RECENT FINDINGS Kidney injury induces unstable behavioral circadian rhythm. Potentially, uremic toxins may affect the master-pacemaker of circadian rhythm in hypothalamus. In CKD disturbances in the circadian rhythms of CKD-MBD plasma-parameters, activin A, fibroblast growth factor 23, parathyroid hormone, phosphate have been demonstrated. A molecular circadian clock is also expressed in peripheral tissues, involved in CKD-MBD; vasculature, parathyroids and bone. Expression of the core circadian clock genes in the different tissues is disrupted in CKD-MBD. SUMMARY Disturbed circadian rhythms is a novel feature of CKD-MBD. There is a need to establish which specific input determines the phase of the local molecular clock and to characterize its regulation and deregulation in tissues involved in CKD-MBD. Finally, it is important to establish what are the implications for treatment including the potential applications for chronotherapy.
Collapse
|
14
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
15
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
16
|
Slomnicki LP, Myers SA, Saraswat Ohri S, Parsh MV, Andres KR, Chariker JH, Rouchka EC, Whittemore SR, Hetman M. Improved locomotor recovery after contusive spinal cord injury in Bmal1 -/- mice is associated with protection of the blood spinal cord barrier. Sci Rep 2020; 10:14212. [PMID: 32848194 PMCID: PMC7450087 DOI: 10.1038/s41598-020-71131-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The transcription factor BMAL1/ARNTL is a non-redundant component of the clock pathway that regulates circadian oscillations of gene expression. Loss of BMAL1 perturbs organismal homeostasis and usually exacerbates pathological responses to many types of insults by enhancing oxidative stress and inflammation. Surprisingly, we observed improved locomotor recovery and spinal cord white matter sparing in Bmal1-/- mice after T9 contusive spinal cord injury (SCI). While acute loss of neurons and oligodendrocytes was unaffected, Bmal1 deficiency reduced the chronic loss of oligodendrocytes at the injury epicenter 6 weeks post SCI. At 3 days post-injury (dpi), decreased expression of genes associated with cell proliferation, neuroinflammation and disruption of the blood spinal cord barrier (BSCB) was also observed. Moreover, intraspinal extravasation of fibrinogen and immunoglobulins was decreased acutely at dpi 1 and subacutely at dpi 7. Subacute decrease of hemoglobin deposition was also observed. Finally, subacutely reduced levels of the leukocyte marker CD45 and even greater reduction of the pro-inflammatory macrophage receptor CD36 suggest not only lower numbers of those cells but also their reduced inflammatory potential. These data indicate that Bmal1 deficiency improves SCI outcome, in part by reducing BSCB disruption and hemorrhage decreasing cytotoxic neuroinflammation and attenuating the chronic loss of oligodendrocytes.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| | - Molly V Parsh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 S. Floyd St., MDR616, Louisville, KY, 40292, USA.
| |
Collapse
|
17
|
Shivshankar P, Fekry B, Eckel-Mahan K, Wetsel RA. Circadian Clock and Complement Immune System-Complementary Control of Physiology and Pathology? Front Cell Infect Microbiol 2020; 10:418. [PMID: 32923410 PMCID: PMC7456827 DOI: 10.3389/fcimb.2020.00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian species contain an internal circadian (i.e., 24-h) clock that is synchronized to the day and night cycles. Large epidemiological studies, which are supported by carefully controlled studies in numerous species, support the idea that chronic disruption of our circadian cycles results in a number of health issues, including obesity and diabetes, defective immune response, and cancer. Here we focus specifically on the role of the complement immune system and its relationship to the internal circadian clock system. While still an incompletely understood area, there is evidence that dysregulated proinflammatory cytokines, complement factors, and oxidative stress can be induced by circadian disruption and that these may feed back into the oscillator at the level of circadian gene regulation. Such a feedback cycle may contribute to impaired host immune response against pathogenic insults. The complement immune system including its activated anaphylatoxins, C3a and C5a, not only facilitate innate and adaptive immune response in chemotaxis and phagocytosis, but they can also amplify chronic inflammation in the host organism. Consequent development of autoimmune disorders, and metabolic diseases associated with additional environmental insults that activate complement can in severe cases, lead to accelerated tissue dysfunction, fibrosis, and ultimately organ failure. Because several promising complement-targeted therapeutics to block uncontrolled complement activation and treat autoimmune diseases are in various phases of clinical trials, understanding fully the circadian properties of the complement system, and the reciprocal regulation by these two systems could greatly improve patient treatment in the long term.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
18
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep 2020; 22:50. [PMID: 32661611 PMCID: PMC7359176 DOI: 10.1007/s11906-020-01063-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Blood pressure (BP) follows a circadian rhythm (CR) in normotensive subjects. BP increases in the morning and decreases at night. This review aims at providing an up-to-date overview regarding the molecular mechanisms underlying the circadian regulation of BP. RECENT FINDINGS The suprachiasmatic nucleus (SCN) is the regulatory center for CRs. In SCN astrocytes, the phosphorylated glycogen synthase kinase-3β (pGSK-3β) also follows a CR and its expression reaches a maximum in the morning and decreases at night. pGSK-3β induces the β-catenin migration to the nucleus. During the daytime, the nuclear β-catenin increases the expression of the glutamate excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). In SCN, EAAT2 removes glutamate from the synaptic cleft of glutamatergic neurons and transfers it to the astrocyte cytoplasm where GS converts glutamate into glutamine. Thus, glutamate decreases in the synaptic cleft. This decreases the stimulation of the glutamate receptors AMPA-R and NMDA-R located on glutamatergic post-synaptic neurons. Consequently, activation of NTS is decreased and BP increases. The opposite occurs at night. Despite several studies resulting from animal studies, the circadian regulation of BP appears largely controlled in normotensive subjects by the canonical WNT/β-catenin pathway involving the SCN, astrocytes, and glutamatergic neurons.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, 77104, Meaux, France.
| | - Olivier Schussler
- Department of Thoracic surgery, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Louis Hébert
- Cardiology Institute, Pitié-Salpétrière Hospital, AP-HP, Paris, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| |
Collapse
|
19
|
Yan R, Ho C, Zhang X. Interaction between Tea Polyphenols and Intestinal Microbiota in Host Metabolic Diseases from the Perspective of the Gut–Brain Axis. Mol Nutr Food Res 2020; 64:e2000187. [DOI: 10.1002/mnfr.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruonan Yan
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Xin Zhang
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
20
|
Abstract
The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism - circadian rhythmicity - to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.
Collapse
|
21
|
Kim TJ, Sung JH, Shin JC, Kim DY. CRISPR/Cas-mediated Fubp1 silencing disrupts circadian oscillation of Per1 protein via downregulating Syncrip expression. Cell Biol Int 2019; 44:424-432. [PMID: 31535751 DOI: 10.1002/cbin.11242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022]
Abstract
Most living organisms have physiological and behavioral circadian rhythms controlled by molecular clocks. In mammals, several core clock genes show self-perpetuating oscillation profiles of their messenger RNAs (mRNAs) and proteins through an auto-regulatory transcription-translation feedback loop (TTFL). As a critical component in the molecular clock system, Period 1 (Per1) contributes to the maintenance of circadian rhythm duration predominantly in peripheral clocks. Alterations in Per1 expression and oscillating patterns lead to the development of cancers as well as circadian rhythm abnormalities. In this study, we demonstrate that the phasic profile of Per1 protein was clearly disrupted in CRISPR/Cas-mediated Fubp1-deficient cells. Although Fubp1 does not show rhythmic expression, Fubp1 upregulates the mRNA and protein level of Syncrip, the main post-transcriptional regulator of Per1 protein oscillation. In addition to the diverse physiological functions of Fubp1, including cell-cycle regulation and cellular metabolic control, our results suggest new roles for Fubp1 in the molecular clock system.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jae Hun Sung
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| |
Collapse
|
22
|
Winter C, Soehnlein O, Maegdefessel L. TIMPing the Aorta: Smooth Muscle Cell-Specific Deletion of BMAL1 Limits Murine Abdominal Aortic Aneurysm Development. Arterioscler Thromb Vasc Biol 2019; 38:982-983. [PMID: 29695531 DOI: 10.1161/atvbaha.118.310857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carla Winter
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Germany (C.W., O.S.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Germany (C.W., O.S.).,Department of Physiology and Pharmacology (O.S.).,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (O.S., L.M.)
| | - Lars Maegdefessel
- Department of Medicine Solna, Center for Molecular Medicine (L.M.), Karolinska Institute, Stockholm, Sweden .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (O.S., L.M.).,Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| |
Collapse
|
23
|
Xu Y, Pi W, Rudic RD. Old and New Roles and Evolving Complexities of Cardiovascular Clocks. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:283-290. [PMID: 31249489 PMCID: PMC6585526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cardiovascular (CV) system has been established to be significantly influenced by the molecular components of circadian rhythm. Oscillations of circadian rhythm occur within the circulation to affect thrombosis and blood pressure and within CV tissues including arteries, heart, and kidney to control function. Physiologic and molecular oscillations of circadian rhythm have been well connected via global, tissue-specific, and transgenic reporter mouse models of key core clock signals such as Bmal1, Period, and Clock, which can produce both pathology and protection with their mutation. With different nuances of CV clock action continuing to emerge in studies of the cardiovascular system, new questions are raised in both new and old mouse model system observations that underscore the importance, complexity, and continued study of the circadian clock mechanism in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - R. D. Rudic
- To whom all correspondence should be addressed: Dan Rudic, Augusta University, 1120 15th Street, Augusta, GA, 30912, CB3620; Tel:706 721-7649, Fax 706 721-2347, E-mail:
| |
Collapse
|
24
|
Anea CB, Merloiu AM, Fulton DJR, Patel V, Rudic RD. Immunohistochemistry of the circadian clock in mouse and human vascular tissues. ACTA ACUST UNITED AC 2018; 2. [PMID: 30101218 PMCID: PMC6085090 DOI: 10.20517/2574-1209.2018.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim The circadian clock is a molecular network that controls the body
physiological rhythms. In blood vessels, the circadian clock components
modulate vascular remodeling, blood pressure, and signaling. The goal in
this study was to determine the pattern of expression of circadian clock
proteins in the endothelium, smooth muscle, and adventitia of the
vasculature of human and mouse tissues. Methods Immunohistochemistry was performed in frozen sections of mouse aorta,
common carotid artery, femoral artery, lung, and heart at 12 AM and 12 PM
for Bmal1, Clock, Npas2, Per and other clock components. Studies of
expression were also assessed in human saphenous vein both by immunoblotting
and immunohistochemistry. Results In this study, we identified the expression of Bmal1, Clock, Npas,
Per1, Cry1, and accessory clock components by immunohistochemical staining
in the endothelium, smooth muscle and adventitia of the mouse vasculature
with differing temporal and cellular profiles depending on vasculature and
tissue analyzed. The human saphenous vein also exhibited expression of clock
genes that exhibited an oscillatory pattern in Bmal1 and Cry by
immunoblotting. Conclusion These studies show that circadian clock components display
differences in expression and localization throughout the cardiovascular
system, which may confer nuances of circadian clock signaling in a
cell-specific manner.
Collapse
Affiliation(s)
- Ciprian B Anea
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ana M Merloiu
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - R Dan Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Crnko S, Cour M, Van Laake LW, Lecour S. Vasculature on the clock: Circadian rhythm and vascular dysfunction. Vascul Pharmacol 2018; 108:1-7. [PMID: 29778521 DOI: 10.1016/j.vph.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease.
Collapse
Affiliation(s)
- Sandra Crnko
- Division Heart and Lungs and Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Martin Cour
- Hatter Institute for Cardiovascular research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
26
|
Lutshumba J, Liu S, Zhong Y, Hou T, Daugherty A, Lu H, Guo Z, Gong MC. Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2018; 38:1063-1075. [PMID: 29437576 PMCID: PMC5920729 DOI: 10.1161/atvbaha.117.310153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/25/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. APPROACH AND RESULTS SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. CONCLUSIONS These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- Aldosterone
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Binding Sites
- Desoxycorticosterone Acetate
- Dilatation, Pathologic
- Disease Models, Animal
- Elastin/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- Sodium Chloride, Dietary
- Tissue Inhibitor of Metalloproteinases/genetics
- Tissue Inhibitor of Metalloproteinases/metabolism
- Transcription, Genetic
- Tissue Inhibitor of Metalloproteinase-4
Collapse
Affiliation(s)
- Jenny Lutshumba
- From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)
| | - Shu Liu
- Department of Pharmacology and Nutritional Sciences (S.L., T.H., Z.G.), University of Kentucky, Lexington
| | - Yu Zhong
- From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)
| | | | - Alan Daugherty
- From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)
| | - Hong Lu
- From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)
- Department of Pharmacology and Nutritional Sciences (S.L., T.H., Z.G.), University of Kentucky, Lexington
| | - Zhenheng Guo
- Department of Pharmacology and Nutritional Sciences (S.L., T.H., Z.G.), University of Kentucky, Lexington
- Department of Research and Development, Lexington VA Medical Center, KY (Z.G.)
| | - Ming C Gong
- From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)
| |
Collapse
|
27
|
Fletcher EK, Morgan J, Kennaway DR, Bienvenu LA, Rickard AJ, Delbridge LMD, Fuller PJ, Clyne CD, Young MJ. Deoxycorticosterone/Salt-Mediated Cardiac Inflammation and Fibrosis Are Dependent on Functional CLOCK Signaling in Male Mice. Endocrinology 2017; 158:2906-2917. [PMID: 28911177 DOI: 10.1210/en.2016-1911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Activation of the mineralocorticoid receptor (MR) promotes inflammation, fibrosis, and hypertension. Clinical and experimental studies show that MR antagonists have significant therapeutic benefit for all-cause heart failure; however, blockade of renal MRs limits their widespread use. Identification of key downstream signaling mechanisms for the MR in the cardiovascular system may enable development of targeted MR antagonists with selectivity for pathological MR signaling and lower impact on physiological renal electrolyte handling. One candidate pathway is the circadian clock, the dysregulation of which is associated with cardiovascular diseases. We have previously shown that the circadian gene Per2 is dysregulated in hearts with selective deletion of cardiomyocyte MR. We therefore investigated MR-mediated cardiac inflammation and fibrosis in mice that lack normal regulation and oscillation of the circadian clock in peripheral tissues, that is, CLOCKΔ19 mutant mice. The characteristic cardiac inflammatory/fibrotic response to a deoxycorticosterone (DOC)/salt for 8 weeks was significantly blunted in CLOCKΔ19 mice when compared with wild-type mice, despite a modest increase at "baseline" for fibrosis and macrophage number in CLOCKΔ19 mice. In contrast, cardiac hypertrophy in response to DOC/salt was significantly greater in CLOCKΔ19 vs wild-type mice. Markers for renal inflammation and fibrosis were similarly attenuated in the CLOCKΔ19 mice given DOC/salt. Moreover, increased CLOCK expression in H9c2 cardiac cells enhanced MR-mediated transactivation of Per1, suggesting cooperative signaling between these transcription factors. This study demonstrates that the full development of MR-mediated cardiac inflammation and fibrosis is dependent on intact signaling by the circadian protein CLOCK.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - David R Kennaway
- School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Laura A Bienvenu
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda J Rickard
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
28
|
Abstract
Biological clocks are autonomous anticipatory oscillators that play a critical role in the organization and information processing from genome to whole organisms. Transformative advances into the clock system have opened insight into fundamental mechanisms through which clocks program energy transfer from sunlight into organic matter and potential energy, in addition to cell development and genotoxic stress response. The identification of clocks in nearly every single cell of the body raises questions as to how this gives rise to rhythmic physiology in multicellular organisms and how environmental signals entrain clocks to geophysical time. Here, we consider advances in understanding how regulatory networks emergent in clocks give rise to cell type-specific functions within tissues to affect homeostasis.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Steffens S, Winter C, Schloss MJ, Hidalgo A, Weber C, Soehnlein O. Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arterioscler Thromb Vasc Biol 2017; 37:1022-1028. [DOI: 10.1161/atvbaha.117.309374] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 01/24/2023]
Abstract
Physiological cardiovascular functions show daily diurnal variations, which are synchronized by intrinsic molecular clocks and environment-driven cues. The clinical manifestation of cardiovascular disease also exhibits diurnal variation, with an increased incidence in the early morning. This coincides with circadian oscillations of circulating parameters, such as hormones and leukocyte counts. We are just at the beginning of understanding how circadian rhythms of immune functions are related to cardiovascular disease progression and outcome after an acute ischemic event. Here, we briefly summarize clinical data on oscillations of circulating inflammatory parameters, as well as experimental evidences for the role of circadian clocks in atherosclerosis, postmyocardial infarction inflammatory responses, and cardiac healing.
Collapse
Affiliation(s)
- Sabine Steffens
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| | - Carla Winter
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| | - Maximilian J. Schloss
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| | - Andres Hidalgo
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany (S.S., C. Winter, M.J.S., A.H., C. Weber, O.S.); German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany (S.S., C. Weber, O.S.); Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (A.H.); Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C. Weber); and Department
| |
Collapse
|
30
|
McAlpine CS, Swirski FK. Circadian Influence on Metabolism and Inflammation in Atherosclerosis. Circ Res 2017; 119:131-41. [PMID: 27340272 DOI: 10.1161/circresaha.116.308034] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
Many aspects of human health and disease display daily rhythmicity. The brain's suprachiasmic nucleus, which interprets recurring external stimuli, and autonomous molecular networks in peripheral cells together, set our biological circadian clock. Disrupted or misaligned circadian rhythms promote multiple pathologies including chronic inflammatory and metabolic diseases such as atherosclerosis. Here, we discuss studies suggesting that circadian fluctuations in the vessel wall and in the circulation contribute to atherogenesis. Data from humans and mice indicate that an impaired molecular clock, disturbed sleep, and shifting light-dark patterns influence leukocyte and lipid supply in the circulation and alter cellular behavior in atherosclerotic lesions. We propose that a better understanding of both local and systemic circadian rhythms in atherosclerosis will enhance clinical management, treatment, and public health policy.
Collapse
Affiliation(s)
- Cameron S McAlpine
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
31
|
Buijs FN, León-Mercado L, Guzmán-Ruiz M, Guerrero-Vargas NN, Romo-Nava F, Buijs RM. The Circadian System: A Regulatory Feedback Network of Periphery and Brain. Physiology (Bethesda) 2017; 31:170-81. [PMID: 27053731 DOI: 10.1152/physiol.00037.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems.
Collapse
Affiliation(s)
- Frederik N Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Luis León-Mercado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico
| | - Mara Guzmán-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de México, Ciudad Universitaria, Mexico
| | - Natali N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Autónoma de México, Ciudad Universitaria, Mexico
| | - Francisco Romo-Nava
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico; Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorder Research, University of Cincinnati, Cincinnati, Ohio; and
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico;
| |
Collapse
|
32
|
Huo M, Huang Y, Qu D, Zhang H, Wong WT, Chawla A, Huang Y, Tian XY. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis. FASEB J 2017; 31:1097-1106. [PMID: 27927724 PMCID: PMC6191064 DOI: 10.1096/fj.201601030r] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 02/01/2023]
Abstract
BMAL1, the nonredundant transcription factor in the core molecular clock, has been implicated in cardiometabolic diseases in mice and humans. BMAL1 controls the cyclic trafficking of Ly6chi monocytes to sites of acute inflammation. Myeloid deficiency of Bmal1 also worsens chronic inflammation in diet-induced obesity. We studied whether myeloid Bmal1 deletion promotes atherosclerosis by enhancing monocyte recruitment to atherosclerotic lesions. By generating Bmal1FloxP/FloxP;LysMCre mice on the Apoe-/- background, we showed that Bmal1 deletion in myeloid cells increased the size of atherosclerotic lesions. Bmal1 deficiency in monocytes and macrophages resulted in an increased total number of lesional macrophages in general and Ly6chi infiltrating monocyte-macrophages in particular, accompanied by skewed M2 to M1 macrophage phenotype. Ly6chi and/or Ly6clo monocyte subsets in blood, spleen, and bone marrow were not altered. Cell tracking and adoptive transfer of Ly6chi monocytes showed Bmal1 deficiency induced more trafficking of Ly6chi monocytes to atherosclerotic lesions, preferential differentiation of Ly6chi monocytes into M1 macrophages, and increased macrophage content and lesion size in the carotid arteries. We demonstrated that Bmal1 deficiency in macrophages promotes atherosclerosis by enhancing recruitment of Ly6chi monocytes to atherosclerotic lesions.-Huo, M., Huang, Y., Qu, D., Zhang, H., Wong, W. T., Chawla, A., Huang, Y., Tian, X. Y. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis.
Collapse
Affiliation(s)
- Mingyu Huo
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yuhong Huang
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Dan Qu
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Hongsong Zhang
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yu Huang
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Xiao Yu Tian
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Tani N, Ikeda T, Oritani S, Michiue T, Ishikawa T. Role of Circadian Clock Genes in Sudden Cardiac Death: A Pilot Study. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Shigeki Oritani
- Department of Legal Medicine, Osaka City University Medical School
| | - Tomomi Michiue
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| |
Collapse
|
34
|
RhoA S-nitrosylation as a regulatory mechanism influencing endothelial barrier function in response to G +-bacterial toxins. Biochem Pharmacol 2016; 127:34-45. [PMID: 28017778 DOI: 10.1016/j.bcp.2016.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023]
Abstract
Disruption of the endothelial barrier in response to Gram positive (G+) bacterial toxins is a major complication of acute lung injury (ALI) and can be further aggravated by antibiotics which stimulate toxin release. The integrity of the pulmonary endothelial barrier is mediated by the balance of disruptive forces such as the small GTPase RhoA, and protective forces including endothelium-derived nitric oxide (NO). How NO protects against the barrier dysfunction is incompletely understood and our goal was to determine whether NO and S-nitrosylation can modulate RhoA activity and whether this mechanism is important for G+ toxin-induced microvascular permeability. We found that the G+ toxin listeriolysin-O (LLO) increased RhoA activity and that NO and S-NO donors inhibit RhoA activity. RhoA was robustly S-nitrosylated as determined by biotin-switch and mercury column analysis. MS revealed that three primary cysteine residues are S-nitrosylated including cys16, cys20 and cys159. Mutation of these residues to serine diminished S-nitrosylation to endogenous NO and mutant RhoA was less sensitive to inhibition by S-NO. G+-toxins stimulated the denitrosylation of RhoA which was not mediated by S-nitrosoglutathione reductase (GSNOR), thioredoxin (TRX) or thiol-dependent enzyme activity but was instead stimulated directly by elevated calcium levels. Calcium-promoted the direct denitrosylation of WT but not mutant RhoA and mutant RhoA adenovirus was more effective than WT in disrupting the barrier integrity of human lung microvascular endothelial cells. In conclusion, we reveal a novel mechanism by which NO and S-nitrosylation reduces RhoA activity which may be of significance in the management of pulmonary endothelial permeability induced by G+-toxins.
Collapse
|
35
|
Saito T. The vascular clock system generates the intrinsic circadian rhythm of vascular contractility. J Smooth Muscle Res 2016; 51:95-106. [PMID: 26935878 PMCID: PMC5137311 DOI: 10.1540/jsmr.51.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many of the cardiovascular parameters or incidences of coronary artery diseases display circadian variations. These day/night time variances may be attributable to the diurnal change in vascular contractility. However, the molecular mechanism of the vascular clock system which generates the circadian variation of vascular contractility has remained largely unknown. Recently we found the existence of the intrinsic circadian rhythm in vascular contractility. A clock gene Rorα in vascular smooth muscle cells (VSMC) provokes the diurnal oscillatory change in the expression of Rho-associated kinase 2 (ROCK2), which induces the time-of-day-dependent variation in the agonist-induced phosphorylation of myosin light chain (MLC) and myofilament Ca(2+) sensitization. In this review, we introduce our recent findings with reference to the molecular basis of the biological clock system and the current literature concerning cardiovascular chronobiology.
Collapse
Affiliation(s)
- Toshiro Saito
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
36
|
Shang X, Pati P, Anea CB, Fulton DJ, Rudic RD. Differential Regulation of BMAL1, CLOCK, and Endothelial Signaling in the Aortic Arch and Ligated Common Carotid Artery. J Vasc Res 2016; 53:269-278. [PMID: 27923220 PMCID: PMC5765856 DOI: 10.1159/000452410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
Abstract
The circadian clock is rhythmically expressed in blood vessels, but the interaction between the circadian clock and disturbed blood flow remains unclear. We examined the relationships between BMAL1 and CLOCK and 2 regulators of endothelial function, AKT1 and endothelial nitric oxide synthase (eNOS), in vascular regions of altered blood flow. We found that the aortic arch from WT mice exhibited reduced sensitivity to acetylcholine (Ach)-mediated relaxation relative to the thoracic aorta. In Clock-mutant (mut) mice the aorta exhibited a reduced sensitivity to Ach. In WT mice, the phosphorylated forms of eNOS and AKT were decreased in the aortic arch, while BMAL1 and CLOCK expression followed a similar pattern of reduction in the arch. In conditions of surgically induced flow reduction, phosphorylated-eNOS (serine 1177) increased, as did p-AKT in the ipsilateral left common carotid artery (LC) of WT mice. Similarly, BMAL1 and CLOCK exhibited increased expression after 5 days in the remodeled LC. eNOS expression was increased at 8 p.m. versus 8 a.m. in WT mice, and this pattern was abolished in mut and Bmal1-KO mice. These data suggest that the circadian clock may be a biomechanical and temporal sensor that acts to coordinate timing, flow dynamics, and endothelial function.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/physiopathology
- Carotid Artery, External/metabolism
- Carotid Artery, External/physiopathology
- Carotid Artery, External/surgery
- Circadian Rhythm
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genotype
- Ligation
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Time Factors
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xia Shang
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Paramita Pati
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ciprian B. Anea
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David J.R. Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
37
|
Pan X, Bradfield CA, Hussain MM. Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis. Nat Commun 2016; 7:13011. [PMID: 27721414 PMCID: PMC5062545 DOI: 10.1038/ncomms13011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe-/- and Ldlr-/- mice and its liver-specific ablation in Apoe-/- (L-Bmal1-/-Apoe-/-) mice increases, whereas overexpression of BMAL1 in L-Bmal1-/-Apoe-/- and Apoe-/-mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1-/-Apoe-/- and Apoe-/- mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
- Winthrop University Hospital, Mineola, New York, USA
| | | | - M. Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
- Winthrop University Hospital, Mineola, New York, USA
- VA New York Harbor Healthcare System, Brooklyn, New York 11209, USA
| |
Collapse
|
38
|
Brown SA. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol Metab 2016; 27:415-426. [PMID: 27113082 DOI: 10.1016/j.tem.2016.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
The circadian clock directs nearly all aspects of diurnal physiology, including metabolism. Current research identifies several major axes by which it exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks. This redundant network can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes. Recent advances in cellular profiling and metabolomics technologies have yielded unprecedented insights into the mechanisms behind this control. They have also helped to illuminate individual variation in these mechanisms that could prove important in personalized therapy for metabolic disease. Finally, these technologies have provided platforms with which to screen for the first potential drugs affecting clock-modulated metabolic function.
Collapse
Affiliation(s)
- Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| |
Collapse
|
39
|
Wang Y, Pati P, Xu Y, Chen F, Stepp DW, Huo Y, Rudic RD, Fulton DJR. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species. PLoS One 2016; 11:e0155075. [PMID: 27168152 PMCID: PMC4863972 DOI: 10.1371/journal.pone.0155075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/24/2016] [Indexed: 12/04/2022] Open
Abstract
The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1) was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS) whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration. These results suggest that pro-inflammatory stimuli can disrupt circadian rhythms in macrophages and that impaired circadian rhythms may contribute to cardiovascular diseases by altering macrophage behavior.
Collapse
Affiliation(s)
- Yusi Wang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Paramita Pati
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - R. Daniel Rudic
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- * E-mail: (DF); (RDR)
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- * E-mail: (DF); (RDR)
| |
Collapse
|
40
|
Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res 2016; 39:383-90. [PMID: 26888119 DOI: 10.1038/hr.2016.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The onset of cardiovascular diseases often shows time-of-day variation. Acute myocardial infarction or ventricular arrhythmia such as ventricular tachycardia occurs mainly in the early morning. Multiple biochemical and physiological parameters show circadian rhythm, which may account for the diurnal variation of cardiovascular events. These include the variations in blood pressure, activity of the autonomic nervous system and renin-angiotensin axis, coagulation cascade, vascular tone and the intracellular metabolism of cardiomyocytes. Importantly, the molecular clock system seems to underlie the circadian variation of these parameters. The center of the biological clock, also known as the central clock, exists in the suprachiasmatic nucleus. In contrast, the molecular clock system is also activated in each cell of the peripheral organs and constitute the peripheral clock. The biological clock system is currently considered to have a beneficial role in maintaining the homeostasis of each organ. Discoordination, however, between the peripheral clock and external environment could potentially underlie the development of cardiovascular events. Therefore, understanding the molecular and cellular pathways by which cardiovascular events occur in a diurnal oscillatory pattern will help the establishment of a novel therapeutic approach to the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
41
|
Pati P, Fulton DJR, Bagi Z, Chen F, Wang Y, Kitchens J, Cassis LA, Stepp DW, Rudic RD. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice. Hypertension 2016; 67:661-8. [PMID: 26781276 DOI: 10.1161/hypertensionaha.115.06194] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023]
Abstract
Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension.
Collapse
Affiliation(s)
- Paramita Pati
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - David J R Fulton
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Zsolt Bagi
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Feng Chen
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Yusi Wang
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Julia Kitchens
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - Lisa A Cassis
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - David W Stepp
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.)
| | - R Daniel Rudic
- From the Departments of Pharmacology and Toxicology (P.P., D.J.R.F., J.K., R.D.R.), Medicine (Z.B.), and Physiology (D.W.S.), Vascular Biology Center (D.J.R.F., Z.B., F.C., Y.W., D.W.S.), Medical College of Georgia at Augusta University; and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington (L.A.C.).
| |
Collapse
|
42
|
White MJ, Kodaman NM, Harder RH, Asselbergs FW, Vaughan DE, Brown NJ, Moore JH, Williams SM. Genetics of Plasminogen Activator Inhibitor-1 (PAI-1) in a Ghanaian Population. PLoS One 2015; 10:e0136379. [PMID: 26322636 PMCID: PMC4556460 DOI: 10.1371/journal.pone.0136379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a major modulator of the fibrinolytic system, is an important factor in cardiovascular disease (CVD) susceptibility and severity. PAI-1 is highly heritable, but the few genes associated with it explain only a small portion of its variation. Studies of PAI-1 typically employ linear regression to estimate the effects of genetic variants on PAI-1 levels, but PAI-1 is not normally distributed, even after transformation. Therefore, alternative statistical methods may provide greater power to identify important genetic variants. Additionally, most genetic studies of PAI-1 have been performed on populations of European descent, limiting the generalizability of their results. We analyzed >30,000 variants for association with PAI-1 in a Ghanaian population, using median regression, a non-parametric alternative to linear regression. Three variants associated with median PAI-1, the most significant of which was in the gene arylsulfatase B (ARSB) (p = 1.09 x 10−7). We also analyzed the upper quartile of PAI-1, the most clinically relevant part of the distribution, and found 19 SNPs significantly associated in this quartile. Of note an association was found in period circadian clock 3 (PER3). Our results reveal novel associations with median and elevated PAI-1 in an understudied population. The lack of overlap between the two analyses indicates that the genetic effects on PAI-1 are not uniform across its distribution. They also provide evidence of the generalizability of the circadian pathway’s effect on PAI-1, as a recent meta-analysis performed in Caucasian populations identified another circadian clock gene (ARNTL).
Collapse
Affiliation(s)
- Marquitta J. White
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Nuri M. Kodaman
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Reed H. Harder
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Folkert W. Asselbergs
- Department Heart & Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Institute of Cardiovascular Science, University College London, 222 Euston Road, London, United Kingdom
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Douglas E. Vaughan
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nancy J. Brown
- Department of Medicine Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason H. Moore
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Scott M. Williams
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
43
|
Takeda N, Maemura K. The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell Mol Life Sci 2015; 72:3225-34. [PMID: 25972277 PMCID: PMC11113935 DOI: 10.1007/s00018-015-1923-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
The time of onset of cardiovascular disorders such as myocardial infarctions or ventricular arrhythmias exhibits a circadian rhythm. Diurnal variations in autonomic nervous activity, plasma cortisol level or renin-angiotensin activity underlie the pathogenesis of cardiovascular diseases. Transcriptional-translational feedback loop of the clock genes constitute a molecular clock system. In addition to the central clock in the suprachiasmatic nucleus, clock genes are also expressed in a circadian fashion in each organ to make up the peripheral clock. The peripheral clock seems to be beneficial for anticipating external stimuli and thus contributes to the maintenance of organ homeostasis. Loss of synchronization between the central and peripheral clocks also augments disease progression. Moreover, accumulating evidence shows that clock genes affect inflammatory and intracellular metabolic signaling. Elucidating the roles of the molecular clock in cardiovascular pathology through the identification of clock controlled genes will help to establish a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| |
Collapse
|
44
|
DeBruyne JP, Weaver DR, Dallmann R. The hepatic circadian clock modulates xenobiotic metabolism in mice. J Biol Rhythms 2015; 29:277-87. [PMID: 25238856 DOI: 10.1177/0748730414544740] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The circadian clock generates daily cycles of gene expression that regulate physiological processes. The liver plays an important role in xenobiotic metabolism and also has been shown to possess its own cell-based clock. The liver clock is synchronized by the master clock in the brain, and a portion of rhythmic gene expression can be driven by behavior of the organism as a whole even when the hepatic clock is suppressed. So far, however, there is relatively little evidence indicating whether the liver clock is functionally important in modulating xenobiotic metabolism. Thus, mice lacking circadian clock function in the whole body or specifically in liver were challenged with pentobarbital and acetaminophen, and pentobarbital sleep time (PBST) and acetaminophen toxicity, respectively, was assessed at different times of day in mutant and control mice. The results suggest that the liver clock is essential for rhythmic changes in xenobiotic detoxification. Surprisingly, it seems that the way in which the clock is disrupted determines the rate of xenobiotic metabolism in the liver. CLOCK-deficient mice are remarkably resistant to acetaminophen and exhibit a longer PBST, while PERIOD-deficient mice have a short PBST. These results indicate an essential role of the tissue-intrinsic peripheral circadian oscillator in the liver in regulating xenobiotic metabolism.
Collapse
Affiliation(s)
- Jason P DeBruyne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Robert Dallmann
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Abstract
The circadian clock plays an integral role in the regulation of physiological processes, including the regulation of blood pressure. However, deregulation of the clock can lead to pathophysiological states including hypertension. Recent work has implicated the circadian clock genes in the regulation of processes in the heart, kidney, vasculature, and the metabolic organs, which are all critical in the regulation of the blood pressure. The goal of this review is to provide an introduction and general overview into the role of circadian clock genes in the regulation of blood pressure with a focus on their deregulation in the etiology of hypertension. This review will focus on the core circadian clock genes CLOCK, BMAL1, Per, and Cry.
Collapse
|
46
|
Chen L, Yang G. Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 2015; 6:71. [PMID: 25883568 PMCID: PMC4381645 DOI: 10.3389/fphar.2015.00071] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Growing evidence shows that intrinsic circadian clocks are tightly related to cardiovascular functions. The diurnal changes in blood pressure and heart rate are well known circadian rhythms. Endothelial function, platelet aggregation and thrombus formation exhibit circadian changes as well. The onset of many cardiovascular diseases (CVDs) or events, such as myocardial infarction, stroke, arrhythmia, and sudden cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence from animal models and epidemiological studies showing that disruption of circadian rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may have a time dependent effect. In this mini review, we summarized recent advances in our understanding of the relationship between circadian rhythm and cardiovascular physiology and diseases including blood pressure regulation and myocardial infarction.
Collapse
Affiliation(s)
- Lihong Chen
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA ; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Guangrui Yang
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA ; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
47
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
48
|
Stöhr R, Marx N, Federici M. Tick-tock: is your cardiometabolic risk on the clock? Diab Vasc Dis Res 2014; 11:66-74. [PMID: 24396116 DOI: 10.1177/1479164113516348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Governing a large amount of cellular processes in mammalian cells is a 24-h regulatory mechanism known as the circadian clock. Through the release of neurohormonal factors, the master central clock is able to regulate the otherwise independent peripheral clocks situated in all vital organs. It has recently been shown that forced misalignment of the circadian cycles, often as a consequence of lifestyle factors, is an independent cardiometabolic risk factor and may thus potentially predispose certain groups, such as nightshift workers, to cardiovascular disease. In this review, we will analyse some of the recent advances regarding circadian clock dysfunction and the development of cardiovascular diseases. Finally, we will touch on the developing link between circadian dysfunction and myocardial infarctions.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
49
|
Buijs FN, Cazarez F, Basualdo MC, Scheer FAJL, Perusquía M, Centurion D, Buijs RM. The suprachiasmatic nucleus is part of a neural feedback circuit adapting blood pressure response. Neuroscience 2014; 266:197-207. [PMID: 24583038 DOI: 10.1016/j.neuroscience.2014.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is typically considered our autonomous clock synchronizing behavior with physiological parameters such as blood pressure (BP), just transmitting time independent of physiology. Yet several studies show that the SCN is involved in the etiology of hypertension. Here, we demonstrate that the SCN is incorporated in a neuronal feedback circuit arising from the nucleus tractus solitarius (NTS), modulating cardiovascular reactivity. Tracer injections into the SCN of male Wistar rats revealed retrogradely filled neurons in the caudal NTS, where BP information is integrated. These NTS projections to the SCN were shown to be glutamatergic and to terminate in the ventrolateral part of the SCN where light information also enters. BP elevations not only induced increased neuronal activity as measured by c-Fos in the NTS but also in the SCN. Lesioning the caudal NTS prevented this activation. The increase of SCN neuronal activity by hypertensive stimuli suggested involvement of the SCN in counteracting BP elevations. Examining this possibility we observed that elevation of BP, induced by α1-agonist infusion, was more than twice the magnitude in SCN-lesioned animals as compared to in controls, indicating indeed an active involvement of the SCN in short-term BP regulation. We propose that the SCN receives BP information directly from the NTS enabling it to react to hemodynamic perturbations, suggesting the SCN to be part of a homeostatic circuit adapting BP response. We discuss how these findings could explain why lifestyle conditions violating signals of the biological clock may, in the long-term, result in cardiovascular disease.
Collapse
Affiliation(s)
- F N Buijs
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - F Cazarez
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - M C Basualdo
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - F A J L Scheer
- Division of Sleep Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - M Perusquía
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - D Centurion
- Department Farmacobiologia, CINVESTAV, México, DF, Mexico
| | - R M Buijs
- Instituto de Investigaciones Biomedicas, UNAM, Mexico.
| |
Collapse
|
50
|
Anea CB, Zhang M, Chen F, Ali MI, Hart CMM, Stepp DW, Kovalenkov YO, Merloiu AM, Pati P, Fulton D, Rudic RD. Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLoS One 2013; 8:e78626. [PMID: 24205282 PMCID: PMC3808297 DOI: 10.1371/journal.pone.0078626] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/14/2013] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown that circadian clock disruption is associated with pathological remodeling in the arterial structure and vascular stiffness. Moreover, chronic circadian disruption is associated with dysfunction in endothelial responses and signaling. Reactive oxygen species have emerged as key regulators in vascular pathology. Previously, we have demonstrated that circadian clock dysfunction exacerbates superoxide production through eNOS uncoupling. To date, the impact of circadian clock mutation on vascular NADPH oxidase expression and function is not known. The goal in the current study was to determine if the circadian clock controls vascular Nox4 expression and hydrogen peroxide formation in arteries, particularly in endothelial and vascular smooth muscle cells. In aorta, there was an increase in hydrogen peroxide and Nox4 expression in mice with a dysfunctional circadian rhythm (Bmal1-KO mice). In addition, the Nox4 gene promoter is activated by the core circadian transcription factors. Lastly, in synchronized cultured human endothelial cells, Nox4 gene expression exhibited rhythmic oscillations. These data reveal that the circadian clock plays an important role in the control of Nox4 and disruption of the clock leads to subsequent production of reaction oxygen species.
Collapse
Affiliation(s)
- Ciprian B. Anea
- Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Maoxiang Zhang
- Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Feng Chen
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - M. Irfan Ali
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - C. Michael M. Hart
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Center, Atlanta, Georgia, United States of America
| | - David W. Stepp
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Physiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yevgeniy O. Kovalenkov
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ana-Maria Merloiu
- Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Paramita Pati
- Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
| | - David Fulton
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - R. Daniel Rudic
- Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|