1
|
Alexander H. Molecular forecasting of toxic bloom events. Proc Natl Acad Sci U S A 2024; 121:e2417139121. [PMID: 39374401 PMCID: PMC11494339 DOI: 10.1073/pnas.2417139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
2
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
3
|
Li J, Li W, Huang Y, Bu H, Zhang K, Lin S. Phosphorus limitation intensifies heat-stress effects on the potential mutualistic capacity in the coral-derived Symbiodinium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173912. [PMID: 38871329 DOI: 10.1016/j.scitotenv.2024.173912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.
Collapse
Affiliation(s)
- Jiashun Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wenzhe Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Yulin Huang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hailu Bu
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea and School of Marine Biology and Fisheries, Hainan University, Haikou, China.
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| |
Collapse
|
4
|
Cohen NR, Krinos AI, Kell RM, Chmiel RJ, Moran DM, McIlvin MR, Lopez PZ, Barth AJ, Stone JP, Alanis BA, Chan EW, Breier JA, Jakuba MV, Johnson R, Alexander H, Saito MA. Microeukaryote metabolism across the western North Atlantic Ocean revealed through autonomous underwater profiling. Nat Commun 2024; 15:7325. [PMID: 39183190 PMCID: PMC11345423 DOI: 10.1038/s41467-024-51583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.
Collapse
Affiliation(s)
- Natalie R Cohen
- University of Georgia Skidaway Institute of Oceanography, Savannah, GA, 31411, USA.
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| | - Arianna I Krinos
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, 02543, USA
| | - Riss M Kell
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Gloucester Marine Genomics Institute, Gloucester, MA, 01930, USA
| | - Rebecca J Chmiel
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Dawn M Moran
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Matthew R McIlvin
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
| | | | | | | | - Eric W Chan
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - John A Breier
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Michael V Jakuba
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
- Arizona State University, Tempe, AZ, USA
| | - Harriet Alexander
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| |
Collapse
|
5
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
6
|
Niu Y, Wei H, Zhang Y, Su J. Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin. MARINE POLLUTION BULLETIN 2024; 205:116546. [PMID: 38870575 DOI: 10.1016/j.marpolbul.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.
Collapse
Affiliation(s)
- Yaolu Niu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China.
| |
Collapse
|
7
|
Cooney EC, Holt CC, Hehenberger E, Adams JA, Leander BS, Keeling PJ. Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Mol Phylogenet Evol 2024; 196:108086. [PMID: 38677354 DOI: 10.1016/j.ympev.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Corey C Holt
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Jayd A Adams
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Brian S Leander
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200 - 6270, University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
8
|
Moreno CM, Bernish M, Meyer MG, Li Z, Waite N, Cohen NR, Schofield O, Marchetti A. Molecular physiology of Antarctic diatom natural assemblages and bloom event reveal insights into strategies contributing to their ecological success. mSystems 2024; 9:e0130623. [PMID: 38411098 PMCID: PMC10949512 DOI: 10.1128/msystems.01306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom, Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCE In the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatom Actinocyclus in coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.
Collapse
Affiliation(s)
- Carly M. Moreno
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret Bernish
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith G. Meyer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zuchuan Li
- Division of Natural and Applied Science, Duke Kunshan University, Suzhou, Jiangsu, China
| | - Nicole Waite
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Natalie R. Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA
| | - Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Li H, Chen J, Yu L, Fan G, Li T, Li L, Yuan H, Wang J, Wang C, Li D, Lin S. In situ community transcriptomics illuminates CO 2-fixation potentials and supporting roles of phagotrophy and proton pump in plankton in a subtropical marginal sea. Microbiol Spectr 2024; 12:e0217723. [PMID: 38319114 PMCID: PMC10913738 DOI: 10.1128/spectrum.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Lineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here, we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites in the South China Sea to investigate carbon fixation potential in different lineages. RuBisCO expression, the proxy of Calvin carbon fixation (CCF) potential, was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, and Haptophyta, which was differentially affected by environmental factors among lineages. CCF potential exhibited positive or negative correlations with phagotrophy gene expression, suggesting phagotrophy possibly enhances or complements CCF. Our data also reveal significant non-Calvin carbon fixation (NCF) potential, as indicated by the active expression of genes in all five currently recognized NCF pathways, mainly contributed by Flavobacteriales, Alteromonadales, and Oceanospirillales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales, and Rhodobacterales, NCF potential was positively correlated with proton-pump rhodopsin (PPR) expression, suggesting that NCF might be energetically supported by PPR. The novel insights into the lineage-differential potential of carbon fixation, widespread mixotrophy, and PPR as an energy source for NCF lay a methodological and informational foundation for further research to understand carbon fixation and the trophic landscape in the ocean.IMPORTANCEMarine plankton plays an important role in global carbon cycling and climate regulation. Phytoplankton and cyanobacteria fix CO2 to produce organic compounds using solar energy and mainly by the Calvin cycle, whereas autotrophic bacteria and archaea may fix CO2 by non-Calvin cycle carbon fixation pathways. How active individual lineages are in carbon fixation and mixotrophy, and what energy source bacteria may employ in non-Calvin carbon fixation, in a natural plankton assemblage are poorly understood and underexplored. Using metatranscriptomics, we studied carbon fixation in marine plankton with lineage resolution in tropical marginal shelf and slope areas. Based on the sequencing results, we characterized the carbon fixation potential of different lineages and assessed Calvin- and non-Calvin- carbon fixation activities and energy sources. Data revealed a high number of unigenes (4.4 million), lineage-dependent differential potentials of Calvin carbon fixation and responses to environmental conditions, major contributors of non-Calvin carbon fixation, and their potential energy source.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Jianwei Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Denghui Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- Qingdao Innovation Center of Seaweed Biotechnology, Qingdao, Shandong, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
10
|
Bhattacharjya R, Tyagi R, Rastogi S, Ulmann L, Tiwari A. Response of varying combined nutrients on biomass and biochemical composition of marine diatoms Chaetoceros gracilis and Thalassiosira weissflogii. BIORESOURCE TECHNOLOGY 2024; 394:130274. [PMID: 38160848 DOI: 10.1016/j.biortech.2023.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Marine diatoms have high adaptability and are known to accumulate lipids under nutrient stress conditions. The present study involves determining the effect of varying macro and micronutrients on growth kinetics and metabolite production of oleaginous marine diatoms, Thalassiosira weissflogii and Chaetoceros gracilis. The results highlighted that C. gracilis and T. weissflogii showed maximum biomass yield of 0.86 ± 0.06 g/L and 0.76 ± 0.01 g/L in the 2f and f supplemented medium respectively. A 2.5-fold increase in cellular lipid content was recorded in the 2f culture setup of both strains ranging from 20 % to 26.7 % (w/w). The study also reveals that high eutrophic nutrient media (f, 2f and 4f) triggered biomass productivity as well as total protein and carbohydrate content in both strains. Thus, providing a reproducible insight of trophic flexibility of diatoms, concomitant with the increment in multiple commercially valuable products.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Subha Rastogi
- CSIR-National Botanical Research Institute, 436, Pratap Marg, Lucknow 226001, Uttar, India; CSIR-National Institute of Science Communication and Policy Research, New Delhi, India Pradesh, India
| | - Lionel Ulmann
- Laboratoire BiOSSE: Biologie des Organismes, Stress, Santé, Environnement, IUT Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
11
|
Zepernick BN, Chase EE, Denison ER, Gilbert NE, Truchon AR, Frenken T, Cody WR, Martin RM, Chaffin JD, Bullerjahn GS, McKay RML, Wilhelm SW. Declines in ice cover are accompanied by light limitation responses and community change in freshwater diatoms. THE ISME JOURNAL 2024; 18:wrad015. [PMID: 38366077 PMCID: PMC10939406 DOI: 10.1093/ismejo/wrad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.
Collapse
Affiliation(s)
- Brittany N Zepernick
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Emily E Chase
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Elizabeth R Denison
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Naomi E Gilbert
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
- Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Alexander R Truchon
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Thijs Frenken
- HAS University of Applied Sciences, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - William R Cody
- Aquatic Taxonomy Specialists, Malinta, OH 43535, United States
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Justin D Chaffin
- Stone Laboratory and Ohio Sea Grant, The Ohio State University, Put-In-Bay, OH 43456, United States
| | - George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - R Michael L McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
12
|
von Dassow P, Mikhno M, Percopo I, Orellana VR, Aguilera V, Álvarez G, Araya M, Cornejo-Guzmán S, Llona T, Mardones JI, Norambuena L, Salas-Rojas V, Kooistra WHCF, Montresor M, Sarno D. Diversity and toxicity of the planktonic diatom genus Pseudo-nitzschia from coastal and offshore waters of the Southeast Pacific, including Pseudo-nitzschia dampieri sp. nov. HARMFUL ALGAE 2023; 130:102520. [PMID: 38061816 DOI: 10.1016/j.hal.2023.102520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.
Collapse
Affiliation(s)
- Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Marta Mikhno
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Valentina Rubio Orellana
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Víctor Aguilera
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Laboratorio de Oceanografía Desértico Costera (LODEC), Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Sebastián Cornejo-Guzmán
- Departamento de Geofísica, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112 Chile
| | - Tomás Llona
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Jorge I Mardones
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago 8370993, Chile
| | - Luis Norambuena
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile
| | - Victoria Salas-Rojas
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | | | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
13
|
Huang XL, Zhuang YQ, Xiong YY, Li DW, Ou LJ. Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate Karenia mikimotoi. Appl Environ Microbiol 2023; 89:e0086723. [PMID: 37850723 PMCID: PMC10686090 DOI: 10.1128/aem.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi. Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.
Collapse
Affiliation(s)
- Xue-Ling Huang
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Yan-Qing Zhuang
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Yue-Yue Xiong
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Da-Wei Li
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
14
|
Béjà O, Inoue K. Iron-limitation light switch. Nat Microbiol 2023; 8:1942-1943. [PMID: 37857820 DOI: 10.1038/s41564-023-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
15
|
Strauss J, Deng L, Gao S, Toseland A, Bachy C, Zhang C, Kirkham A, Hopes A, Utting R, Joest EF, Tagliabue A, Löw C, Worden AZ, Nagel G, Mock T. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. Nat Microbiol 2023; 8:2050-2066. [PMID: 37845316 PMCID: PMC10627834 DOI: 10.1038/s41564-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
Collapse
Affiliation(s)
- Jan Strauss
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
- German Maritime Centre, Hamburg, Germany.
| | - Longji Deng
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, France
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Amy Kirkham
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert Utting
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Eike F Joest
- Department of Biology, Biocenter, University of Würzburg, Wuerzburg, Germany
| | | | - Christian Löw
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Wuerzburg, Germany
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
16
|
Hechler RM, Yates MC, Chain FJJ, Cristescu ME. Environmental transcriptomics under heat stress: Can environmental RNA reveal changes in gene expression of aquatic organisms? Mol Ecol 2023. [PMID: 37792902 DOI: 10.1111/mec.17152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
To safeguard biodiversity in a changing climate, taxonomic information about species turnover and insights into the health of organisms are required. Environmental DNA approaches are increasingly used for species identification, but cannot provide functional insights. Transcriptomic methods reveal the physiological states of macroorganisms, but are currently species-specific and require tissue sampling or animal sacrifice, making community-wide assessments challenging. Here, we test whether broad functional information (expression level of the transcribed genes) can be harnessed from environmental RNA (eRNA), which includes extra-organismal RNA from macroorganisms along with whole microorganisms. We exposed Daphnia pulex as well as phytoplankton prey and microorganism colonizers to control (20°C) and heat stress (28°C) conditions for 7 days. We sequenced eRNA from tank water (after complete removal of Daphnia) as well as RNA from Daphnia tissue, enabling comparisons of extra-organismal and organismal RNA-based gene expression profiles. Both RNA types detected similar heat stress responses of Daphnia. Using eRNA, we identified 32 Daphnia genes to be differentially expressed following heat stress. Of these, 17 were also differentially expressed and exhibited similar levels of relative expression in organismal RNA. In addition to the extra-organismal Daphnia response, eRNA detected community-wide heat stress responses consisting of distinct functional profiles and 121 differentially expressed genes across eight taxa. Our study demonstrates that environmental transcriptomics based on extra-organismal eRNA can noninvasively reveal gene expression responses of macroorganisms following environmental changes, with broad potential implications for the biomonitoring of health across the trophic chain.
Collapse
Affiliation(s)
- Robert M Hechler
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Matthew C Yates
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | | |
Collapse
|
17
|
Andrew SM, Moreno CM, Plumb K, Hassanzadeh B, Gomez-Consarnau L, Smith SN, Schofield O, Yoshizawa S, Fujiwara T, Sunda WG, Hopkinson BM, Septer AN, Marchetti A. Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton. Proc Natl Acad Sci U S A 2023; 120:e2307638120. [PMID: 37722052 PMCID: PMC10523587 DOI: 10.1073/pnas.2307638120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/13/2023] [Indexed: 09/20/2023] Open
Abstract
Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.
Collapse
Affiliation(s)
- Sarah M. Andrew
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Carly M. Moreno
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kaylie Plumb
- Department of Marine Sciences, University of Georgia, Athens, GA30602
| | - Babak Hassanzadeh
- Department of Biological Sciences, University of Southern California, Log Angeles, CA90089
| | - Laura Gomez-Consarnau
- Department of Biological Sciences, University of Southern California, Log Angeles, CA90089
- Departamento de Oceanografía Biológica, Centro de Investigación Científca y de Educación Superior de Ensenada, Ensenada, Baja California22860, Mexico
| | - Stephanie N. Smith
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ08901
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
| | - Takayoshi Fujiwara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
| | - William G. Sunda
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | | | - Alecia N. Septer
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Adrian Marchetti
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
18
|
Fourquez M, Janssen DJ, Conway TM, Cabanes D, Ellwood MJ, Sieber M, Trimborn S, Hassler C. Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation. SCIENCE ADVANCES 2023; 9:eadf9696. [PMID: 37379397 PMCID: PMC10306294 DOI: 10.1126/sciadv.adf9696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Dissolved iron (dFe) availability limits the uptake of atmospheric CO2 by the Southern Ocean (SO) biological pump. Hence, any change in bioavailable dFe in this region can directly influence climate. On the basis of Fe uptake experiments with Phaeocystis antarctica, we show that the range of dFe bioavailability in natural samples is wider (<1 to ~200% compared to free inorganic Fe') than previously thought, with higher bioavailability found near glacial sources. The degree of bioavailability varied regardless of in situ dFe concentration and depth, challenging the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. Further, our data suggest a disproportionately major role of biologically mediated ligands and encourage revisiting the role of humic substances in influencing marine Fe biogeochemical cycling in the SO. Last, we describe a linkage between in situ dFe bioavailability and isotopic signatures that, we anticipate, will stimulate future research.
Collapse
Affiliation(s)
- Marion Fourquez
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UMR 110, Marseille 13288, France
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - David J. Janssen
- Department Surface Waters, Eawag–Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Tim M. Conway
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Damien Cabanes
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
- Australian Centre for Excellence in Antarctic Science, Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Matthias Sieber
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Scarlett Trimborn
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Christel Hassler
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
- Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland
- School of Architecture, Civil, and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Sion 1951, Switzerland
| |
Collapse
|
19
|
Yu L, Li T, Li H, Ma M, Li L, Lin S. In Situ Molecular Ecological Analyses Illuminate Distinct Factors Regulating Formation and Demise of a Harmful Dinoflagellate Bloom. Microbiol Spectr 2023; 11:e0515722. [PMID: 37074171 PMCID: PMC10269597 DOI: 10.1128/spectrum.05157-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
The development and demise of a harmful algal bloom (HAB) are generally regulated by multiple processes; identifying specific critical drivers for a specific bloom is important yet challenging. Here, we conducted a whole-assemblage molecular ecological study on a dinoflagellate bloom to address the hypothesis that energy and nutrient acquisition, defense against grazing and microbial attacks, and sexual reproduction are critical to the rise and demise of the bloom. Microscopic and molecular analyses identified the bloom-causing species as Karenia longicanalis and showed that the ciliate Strombidinopsis sp. was dominant in a nonbloom plankton community, whereas the diatom Chaetoceros sp. dominated the after-bloom community, along with remarkable shifts in the community structure for both eukaryotes and prokaryotes. Metatranscriptomic analysis indicated that heightened energy and nutrient acquisition in K. longicanalis significantly contributed to bloom development. In contrast, active grazing by the ciliate Strombidinopsis sp. and attacks by algicidal bacteria (Rhodobacteracea, Cryomorphaceae, and Rhodobacteracea) and viruses prevented (at nonbloom stage) or collapsed the bloom (in after-bloom stage). Additionally, nutrition competition by the Chaetoceros diatoms plausibly contributed to bloom demise. The findings suggest the importance of energy and nutrients in promoting this K. longicanalis bloom and the failure of antimicrobial defense and competition of diatoms as the major bloom suppressor and terminator. This study provides novel insights into bloom-regulating mechanisms and the first transcriptomic data set of K. longicanalis, which will be a valuable resource and essential foundation for further elucidation of bloom regulators of this and related species of Kareniaceae in the future. IMPORTANCE HABs have increasingly occurred and impacted human health, aquatic ecosystems, and coastal economies. Despite great efforts, the factors that drive the development and termination of a bloom are poorly understood, largely due to inadequate in situ data about the physiology and metabolism of the causal species and the community. Using an integrative molecular ecological approach, we determined that heightened energy and nutrient acquisition promoted the bloom, while resource allocation in defense and failure to defend against grazing and microbial attacks likely prevented or terminated the bloom. Our findings reveal the differential roles of multiple abiotic and biotic environmental factors in driving the formation or demise of a toxic dinoflagellate bloom, suggesting the importance of a balanced biodiverse ecosystem in preventing a dinoflagellate bloom. The study also demonstrates the power of whole-assemblage metatranscriptomics coupled to DNA barcoding in illuminating plankton ecological processes and the underlying species and functional diversities.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
20
|
Behnke J, Cai Y, Gu H, LaRoche J. Short-term response to iron resupply in an iron-limited open ocean diatom reveals rapid decay of iron-responsive transcripts. PLoS One 2023; 18:e0280827. [PMID: 36693065 PMCID: PMC9873189 DOI: 10.1371/journal.pone.0280827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
In large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions. Here, we focus on the short-term temporal response following iron addition to an iron-starved open ocean diatom, Thalassiosira oceanica. We employed the NanoString platform and analyzed a high-resolution time series on 54 transcripts encoding proteins involved in photosynthesis, N-linked glycosylation, iron transport, as well as transcription factors. Nine transcripts were iron-responsive, with an immediate response to the addition of iron. The fastest response observed was the decrease in transcript levels of proteins involved in iron uptake, followed by an increase in transcript levels of iron-containing enzymes and a simultaneous decrease in the transcript levels of their iron-free replacement enzymes. The transcription inhibitor actinomycin D was used to understand the underlying mechanisms of the decrease of the iron-responsive transcripts and to determine their half-lives. Here, Mn-superoxide dismutase (Mn-SOD), plastocyanin (PETE), ferredoxin (PETF) and cellular repressor of EA1-stimulated genes (CREGx2) revealed longer than average half-lives. Four iron-responsive transcripts showed statistically significant differences in their decay rates between the iron-recovery samples and the actD treatment. These differences suggest regulatory mechanisms influencing gene transcription and mRNA stability. Overall, our study contributes towards a detailed understanding of diatom cell biology in the context of iron fertilization response and provides important observations to assess oceanic diatom responses following sudden changes in iron concentrations.
Collapse
Affiliation(s)
- Joerg Behnke
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| | - Yun Cai
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hong Gu
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| |
Collapse
|
21
|
Kazamia E, Mach J, McQuaid JB, Gao X, Coale TH, Malych R, Camadro J, Lesuisse E, Allen AE, Bowler C, Sutak R. In vivo localization of iron starvation induced proteins under variable iron supplementation regimes in Phaeodactylum tricornutum. PLANT DIRECT 2022; 6:e472. [PMID: 36582220 PMCID: PMC9792268 DOI: 10.1002/pld3.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. Highlight The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.
Collapse
Affiliation(s)
- Elena Kazamia
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Jan Mach
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Jeffrey B. McQuaid
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCaliforniaUSA
- The Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Xia Gao
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Tyler H. Coale
- Scripps Institution of Oceanography, Integrative Oceanography DivisionUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ronald Malych
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
| | | | | | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCaliforniaUSA
- Scripps Institution of Oceanography, Integrative Oceanography DivisionUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Robert Sutak
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
| |
Collapse
|
22
|
Le Gac M, Mary L, Metegnier G, Quéré J, Siano R, Rodríguez F, Destombe C, Sourisseau M. Strong population genomic structure of the toxic dinoflagellate Alexandrium minutum inferred from meta-transcriptome samples. Environ Microbiol 2022; 24:5966-5983. [PMID: 36302091 DOI: 10.1111/1462-2920.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here, we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single nucleotide polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations.
Collapse
Affiliation(s)
| | - Lou Mary
- Ifremer, Dyneco, Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Li L, Delgado‐Viscogliosi P, Gerphagnon M, Viscogliosi E, Christaki U, Sime‐Ngando T, Monchy S. Taxonomic and functional dynamics during chytrid epidemics in an aquatic ecosystem. Mol Ecol 2022; 31:5618-5634. [PMID: 36028992 PMCID: PMC9826485 DOI: 10.1111/mec.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Fungal parasitism is common in plankton communities and plays a crucial role in the ecosystem by balancing nutrient cycling in the food web. Previous studies of aquatic ecosystems revealed that zoosporic chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this study, host-parasite dynamics in Lake Pavin (France) were investigated during the spring diatom bloom while following chytrid epidemics using next generation sequencing (NGS). Metabarcoding analyses were applied to study changes in the eukaryotic microbial community throughout diatom bloom-chytrid epidemics. Relative read abundances of metabarcoding data revealed potential "beneficiaries" and "victims" during the studied period. Subsequently, metatranscriptomic analyses on samples before and during the chytrid epidemic unveiled the active part of the community and functional/metabolic dynamics in association with the progress of chytrid infection. Diatom functions involving lipases, transporters, histones, vacuolar systems, the proteasome, proteases and DNA/RNA polymerases were more abundant during the diatom bloom. Chytrid functions related to a parasitic lifestyle including invasion, colonization and stress tolerance were up-regulated during the chytrid epidemic. In addition, functions related to the degradation/metabolism of proteins, lipids and chitin were in higher proportion in the community during the epidemic event. Results of NGS and bioinformatics analyses offered a panorama of dynamic biodiversity and biological functioning of the community.
Collapse
Affiliation(s)
- Luen‐Luen Li
- Université du Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOGLaboratoire d'Océanologie et de GéosciencesWimereuxFrance
| | - Pilar Delgado‐Viscogliosi
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de LilleU1019 – UMR 9017 – CIIL – Centre d'’Infection et d'’Immunité de LilleLilleFrance
| | - Mélanie Gerphagnon
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023Clermont Université, Blaise PascalAubièreFrance
| | - Eric Viscogliosi
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de LilleU1019 – UMR 9017 – CIIL – Centre d'’Infection et d'’Immunité de LilleLilleFrance
| | - Urania Christaki
- Université du Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOGLaboratoire d'Océanologie et de GéosciencesWimereuxFrance
| | - Télesphore Sime‐Ngando
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023Clermont Université, Blaise PascalAubièreFrance
| | - Sébastien Monchy
- Université du Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOGLaboratoire d'Océanologie et de GéosciencesWimereuxFrance
| |
Collapse
|
24
|
Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling. mSystems 2022; 7:e0072922. [PMID: 36036504 PMCID: PMC9599627 DOI: 10.1128/msystems.00729-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the whole-community transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.) were the major blooming taxa, but dinoflagellates, prasinophytes, and prymnesiophytes also increased. Viral mRNA significantly increased in late bloom and likely played a role in the bloom's demise. We observed conserved shifts in the genetic similarity of phytoplankton populations to cultivated strains, indicating adaptive population-level changes in community composition. Additionally, the density of single nucleotide variants (SNVs) declined in late-bloom samples for most taxa, indicating a loss of intraspecific diversity as a result of competition and a selective sweep of adaptive alleles. We noted differences between mid- and late-bloom metabolism and differential regulation of light-harvesting complexes (LHCs) under nutrient stress. While most LHCs are diminished under nutrient stress, we showed that diverse taxa upregulated specialized, energy-dissipating LHCs in low iron. We also suggest the relative expression of NRT2 compared to the expression of GSII as a marker of cellular nitrogen status and the relative expression of iron starvation-induced protein genes (ISIP1, ISIP2, and ISIP3) compared to the expression of the thiamine biosynthesis gene (thiC) as a marker of iron status in natural diatom communities. IMPORTANCE Iron and nitrogen are the nutrients that most commonly limit phytoplankton growth in the world's oceans. The utilization of these resources by phytoplankton sets the biomass available to marine systems and is of particular interest in high-nutrient, low-chlorophyll (HNLC) coastal fisheries. Previous research has described the biogeography of phytoplankton in HNLC regions and the transcriptional responses of representative taxa to nutrient limitation. However, the differential transcriptional responses of whole phytoplankton communities to iron and nitrogen limitation has not been previously described, nor has the selective pressure that these competitive bloom environments exert on major players. In addition to describing changes in the physiology of diverse phytoplankton, we suggest practical indicators of cellular nitrogen and iron status for future monitoring.
Collapse
|
25
|
Castell C, Díaz-Santos E, Heredia-Martínez LG, López-Maury L, Ortega JM, Navarro JA, Roncel M, Hervás M. Iron Deficiency Promotes the Lack of Photosynthetic Cytochrome c550 and Affects the Binding of the Luminal Extrinsic Subunits to Photosystem II in the Diatom Phaeodactylum tricornutum. Int J Mol Sci 2022; 23:ijms232012138. [PMID: 36292994 PMCID: PMC9603157 DOI: 10.3390/ijms232012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 12/04/2022] Open
Abstract
In the diatom Phaeodactylum tricornutum, iron limitation promotes a decrease in the content of photosystem II, as determined by measurements of oxygen-evolving activity, thermoluminescence, chlorophyll fluorescence analyses and protein quantification methods. Thermoluminescence experiments also indicate that iron limitation induces subtle changes in the energetics of the recombination reaction between reduced QB and the S2/S3 states of the water-splitting machinery. However, electron transfer from QA to QB, involving non-heme iron, seems not to be significantly inhibited. Moreover, iron deficiency promotes a severe decrease in the content of the extrinsic PsbV/cytochrome c550 subunit of photosystem II, which appears in eukaryotic algae from the red photosynthetic lineage (including diatoms) but is absent in green algae and plants. The decline in the content of cytochrome c550 under iron-limiting conditions is accompanied by a decrease in the binding of this protein to photosystem II, and also of the extrinsic PsbO subunit. We propose that the lack of cytochrome c550, induced by iron deficiency, specifically affects the binding of other extrinsic subunits of photosystem II, as previously described in cyanobacterial PsbV mutants.
Collapse
|
26
|
Shi L, Cai Y, Gao S, Zhang M, Chen F, Shi X, Yu Y, Lu Y, Wu QL. Gene expression pattern of microbes associated with large cyanobacterial colonies for a whole year in Lake Taihu. WATER RESEARCH 2022; 223:118958. [PMID: 35994786 DOI: 10.1016/j.watres.2022.118958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Large cyanobacterial colonies, which are unique niches for heterotrophic bacteria, are vital for blooming in eutrophic waters. However, the seasonal dynamics of molecular insights into microbes in these colonies remain unclear. Here, the community composition and metabolism pattern of microbes inhabiting large cyanobacterial colonies (> 120 µm, collected from Lake Taihu in China) were investigated monthly. The community structure of total microbes was mostly influenced by chlorophyll a (Chl a), total phosphorus (TP) concentration, dissolved oxygen, and temperature, whereas the colony-associated bacteria (excluding Cyanobacteria) were mostly influenced by total organic carbon, NO3-, and PO43- concentrations, indicating different response patterns of Cyanobacteria and the associated bacteria to water nutrient conditions. Metatranscriptomic data suggested that similar to that of Cyanobacteria, the gene expression patterns of the most active bacteria, such as Proteobacteria and Bacteroidetes, were not strictly dependent on season but separated by Chl a concentrations. Samples in July and September (high-bloom period) and February and March (non-bloom period) formed two distinct clusters, whereas those of other months (low-bloom period) clustered together. The accumulation of transcripts for pathways, such as phycobilisome from Cyanobacteria and bacterial chemotaxis and flagellum, phosphate metabolism, and sulfur oxidation from Proteobacteria, was enriched in high- and low-bloom periods than in non-bloom period. Network analyses revealed that Cyanobacteria and Proteobacteria exhibited coordinated transcriptional patterns in almost all divided modules. Modules had Cyanobacteria-dominated hub gene were positively correlated with temperature, Chl a, total dissolved phosphorus, and NH4+ and NO2- concentrations, whereas modules had Proteobacteria-dominated hub gene were positively correlated with TP and PO43-. These results indicated labor division might exist in the colonies. This study provided metabolic insights into microbes in large cyanobacterial colonies and would support the understanding and management of the year-round cyanobacterial blooms.
Collapse
Affiliation(s)
- Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008, China
| | - Shengling Gao
- Biological Experiment Teaching Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yang Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yaping Lu
- Biological Experiment Teaching Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China; The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Chengjiang, Yunnan Province, China.
| |
Collapse
|
27
|
Maniscalco MA, Brzezinski MA, Lampe RH, Cohen NR, McNair HM, Ellis KA, Brown M, Till CP, Twining BS, Bruland KW, Marchetti A, Thamatrakoln K. Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME COMMUNICATIONS 2022; 2:57. [PMID: 37938259 PMCID: PMC9723790 DOI: 10.1038/s43705-022-00136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 06/17/2023]
Abstract
In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.
Collapse
Affiliation(s)
- Michael A Maniscalco
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Mark A Brzezinski
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Heather M McNair
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| | - Kelsey A Ellis
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Claire P Till
- Chemistry Department, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | | | - Kenneth W Bruland
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
28
|
The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. Proc Natl Acad Sci U S A 2022; 119:2100916119. [PMID: 35145022 PMCID: PMC8851463 DOI: 10.1073/pnas.2100916119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Mixotrophy is a ubiquitous nutritional strategy in marine ecosystems. Although our understanding of the distribution and abundance of mixotrophic plankton has improved significantly, the functional roles of mixotrophs are difficult to pinpoint, as mixotroph nutritional strategies are flexible and form a continuum between heterotrophy and phototrophy. We developed a machine learning–based method to assess the nutritional strategies of in situ planktonic populations based on metatranscriptomic profiles. We demonstrate that mixotrophic populations play varying functional roles along physicochemical gradients in the North Pacific Ocean, revealing a degree of physiological plasticity unique to aquatic mixotrophs. Our results highlight mechanisms that may dictate the flow of biogeochemical elements and ecology of the North Pacific Ocean, one of Earth's largest biogeographical provinces. Intricate networks of single-celled eukaryotes (protists) dominate carbon flow in the ocean. Their growth, demise, and interactions with other microorganisms drive the fluxes of biogeochemical elements through marine ecosystems. Mixotrophic protists are capable of both photosynthesis and ingestion of prey and are dominant components of open-ocean planktonic communities. Yet the role of mixotrophs in elemental cycling is obscured by their capacity to act as primary producers or heterotrophic consumers depending on factors that remain largely uncharacterized. Here, we develop and apply a machine learning model that predicts the in situ trophic mode of aquatic protists based on their patterns of gene expression. This approach leverages a public collection of protist transcriptomes as a training set to identify a subset of gene families whose transcriptional profiles predict trophic mode. We applied our model to nearly 100 metatranscriptomes obtained during two oceanographic cruises in the North Pacific and found community-level and population-specific evidence that abundant open-ocean mixotrophic populations shift their predominant mode of nutrient and carbon acquisition in response to natural gradients in nutrient supply and sea surface temperature. Metatranscriptomic data from ship-board incubation experiments revealed that abundant mixotrophic prymnesiophytes from the oligotrophic North Pacific subtropical gyre rapidly remodeled their transcriptome to enhance photosynthesis when supplied with limiting nutrients. Coupling this approach with experiments designed to reveal the mechanisms driving mixotroph physiology provides an avenue toward understanding the ecology of mixotrophy in the natural environment.
Collapse
|
29
|
Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. Comput Struct Biotechnol J 2021; 20:287-295. [PMID: 35024100 PMCID: PMC8718654 DOI: 10.1016/j.csbj.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.
Collapse
Key Words
- (s)PLS-DA, (sparse) partial least squares discriminant analysis
- AUC, area under curve
- Amphidinium carterae
- AtpE, ATP synthase
- BCS, bathocuproinedisulfonic acid disodium salt
- CREG1, cellular repressor of E1A stimulated genes 1
- DFOB, desferrioxamine B
- EDTA, ethylenediaminetetraacetic acid
- ENT, enterobactin
- FACS, fluorescence-activated cell sorting
- FBAI, fructose-bisphosphate aldolase I
- FBAII, fructose-bisphosphate aldolase II
- FBP1, putative ferrichrome-binding protein
- FOB, ferrioxamine B
- Flow cytometry
- ISIP, iron starvation induced protein
- Iron
- LHCX, light-harvesting complex subunits
- LL, long-term iron limitation
- LR, iron enrichment
- Marine microalgae
- NBD, nitrobenz-2-oxa-1,3-diazole
- NPQ, nonphotochemical quenching
- PAGE, polyacrylamide gel electrophoresis
- PSI, photosystem I
- PSII, photosystem II
- PetA, cytochrome b6/f
- Proteomics
- PsaC, photosystem I iron-sulfur center
- PsaD, photosystem I reaction center subunit II
- PsaE, photosystem I reaction center subunit IV
- PsaL, photosystem I reaction center subunit XI
- PsbC, photosystem II CP43 reaction center protein
- PsbV, cytochrome c-550
- RR, long-term iron sufficiency
- SOD1, superoxide dismutase [Cu-Zn]
- Siderophores
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Eva Kotabová
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| |
Collapse
|
30
|
Castell C, Rodríguez-Lumbreras LA, Hervás M, Fernández-Recio J, Navarro JA. New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes. PLANT & CELL PHYSIOLOGY 2021; 62:1082-1093. [PMID: 33772595 PMCID: PMC8557733 DOI: 10.1093/pcp/pcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 05/11/2023]
Abstract
In cyanobacteria and most green algae of the eukaryotic green lineage, the copper-protein plastocyanin (Pc) alternatively replaces the heme-protein cytochrome c6 (Cc6) as the soluble electron carrier from cytochrome f (Cf) to photosystem I (PSI). The functional and structural equivalence of 'green' Pc and Cc6 has been well established, representing an example of convergent evolution of two unrelated proteins. However, plants only produce Pc, despite having evolved from green algae. On the other hand, Cc6 is the only soluble donor available in most species of the red lineage of photosynthetic organisms, which includes, among others, red algae and diatoms. Interestingly, Pc genes have been identified in oceanic diatoms, probably acquired by horizontal gene transfer from green algae. However, the mechanisms that regulate the expression of a functional Pc in diatoms are still unclear. In the green eukaryotic lineage, the transfer of electrons from Cf to PSI has been characterized in depth. The conclusion is that in the green lineage, this process involves strong electrostatic interactions between partners, which ensure a high affinity and an efficient electron transfer (ET) at the cost of limiting the turnover of the process. In the red lineage, recent kinetic and structural modeling data suggest a different strategy, based on weaker electrostatic interactions between partners, with lower affinity and less efficient ET, but favoring instead the protein exchange and the turnover of the process. Finally, in diatoms the interaction of the acquired green-type Pc with both Cf and PSI may not yet be optimized.
Collapse
Affiliation(s)
- Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, cicCartuja, Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC—Universidad de La Rioja—Gobierno de La Rioja, Logroño, Spain
| | | |
Collapse
|
31
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
32
|
Shaked Y, Twining BS, Tagliabue A, Maldonado MT. Probing the Bioavailability of Dissolved Iron to Marine Eukaryotic Phytoplankton Using In Situ Single Cell Iron Quotas. GLOBAL BIOGEOCHEMICAL CYCLES 2021; 35:e2021GB006979. [PMID: 35865367 PMCID: PMC9286392 DOI: 10.1029/2021gb006979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 05/08/2023]
Abstract
We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin-app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high-affinity Fe uptake system, so data were screened, yielding 560 single cell k in-app values from 31 low-Fe stations. We normalized k in-app to cell surface area (S.A.) to account for cell-size differences. The resulting bioavailability proxy (k in-app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe-siderophore complexes and often approaches that of highly available inorganic Fe'. Station averaged k in-app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency of k in-app/S.A. among stations (ca. five-fold variation), we computed a grand-averaged dFe availability, which upon normalization to cell carbon (C) yields k in-app/C of 42,200 ± 11,000 L mol C-1 d-1. We utilize k in-app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability of k in-app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe-limited Equatorial Pacific.
Collapse
Affiliation(s)
- Yeala Shaked
- Freddy and Nadine Herrmann Institute of Earth SciencesHebrew UniversityJerusalemIsrael
- Interuniversity Institute for Marine SciencesEilatIsrael
| | | | | | - Maria T. Maldonado
- Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
33
|
Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci U S A 2021; 118:2107238118. [PMID: 34301906 PMCID: PMC8325266 DOI: 10.1073/pnas.2107238118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton contribute to the Southern Ocean’s (SO) ability to absorb atmospheric CO2 and shape the stoichiometry of northward macronutrient delivery. Climate change is altering the SO environment, yet we know little about how resident phytoplankton will react to these changes. Here, we studied a natural SO community and compared responses of two prevalent, bloom-forming diatom groups to changes in temperature and iron that are projected to occur by 2100 to 2300. We found that one group, Pseudo-nitzschia, grows better under warmer low-iron conditions by managing cellular iron demand and efficiently increasing photosynthetic capacity. This ability to grow and draw down nutrients in the face of warming, regardless of iron availability, has major implications for ocean ecosystems and global nutrient cycles. The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia. We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.
Collapse
|
34
|
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with a glutamate pattern identical to that in cryptophyte ACRs are cation selective. Desensitization is also broadly context dependent, as in one branch of stramenopile ACRs and their metagenomic homologs, its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, we identified two prasinophyte CCRs with red-shifted spectra to 585 nm. They exhibit a third residue pattern in their retinal-binding pockets distinctly different from those of the only two types of red-shifted channelrhodopsins known (i.e., the CCR Chrimson and RubyACRs). In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity.
Collapse
|
35
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Wang D, Zhang S, Zhang H, Lin S. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. HARMFUL ALGAE 2021; 107:102079. [PMID: 34456014 DOI: 10.1016/j.hal.2021.102079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the past two decades, the frequency, scale, and scope of harmful algal blooms (HABs) have increased significantly in the coastal waters of China. HABs have become a major ecological and environmental problem in China that seriously threatens the structure and function of marine ecosystems, the sustainable development of mariculture, and the health of human beings. Much effort has been devoted to studying HABs in China, and great achievements have been made in understanding the oceanographic and ecological mechanisms of HABs as well as the biology and physiological ecology of HAB-causing species. Furthermore, state-of-the-art omics technologies, such as transcriptomics and proteomics, have been used to elucidate the physiological responses of HAB-causing species to environmental changes, the biosynthesis of paralytic shellfish toxin, and the mechanisms underlying the formation of HABs. This review summarizes omics studies of HABs in China over the past few years and discusses challenges and future perspectives of HAB research.
Collapse
Affiliation(s)
- Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
37
|
Bucchini F, Del Cortona A, Kreft Ł, Botzki A, Van Bel M, Vandepoele K. TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Res 2021; 49:e101. [PMID: 34197621 PMCID: PMC8464036 DOI: 10.1093/nar/gkab565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in high-throughput sequencing have resulted in a massive increase of RNA-Seq transcriptome data. However, the promise of rapid gene expression profiling in a specific tissue, condition, unicellular organism or microbial community comes with new computational challenges. Owing to the limited availability of well-resolved reference genomes, de novo assembled (meta)transcriptomes have emerged as popular tools for investigating the gene repertoire of previously uncharacterized organisms. Yet, despite their potential, these datasets often contain fragmented or contaminant sequences, and their analysis remains difficult. To alleviate some of these challenges, we developed TRAPID 2.0, a web application for the fast and efficient processing of assembled transcriptome data. The initial processing phase performs a global characterization of the input data, providing each transcript with several layers of annotation, comprising structural, functional, and taxonomic information. The exploratory phase enables downstream analyses from the web application. Available analyses include the assessment of gene space completeness, the functional analysis and comparison of transcript subsets, and the study of transcripts in an evolutionary context. A comparison with similar tools highlights TRAPID’s unique features. Finally, analyses performed within TRAPID 2.0 are complemented by interactive data visualizations, facilitating the extraction of new biological insights, as demonstrated with diatom community metatranscriptomes.
Collapse
Affiliation(s)
- François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Andrea Del Cortona
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, 9052 Ghent, Belgium
| | | | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
38
|
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, Cruaud C, Sieracki ME, Jaillon O, Wincker P, Vandepoele K, Logares R, Massana R. Comparative genomics reveals new functional insights in uncultured MAST species. THE ISME JOURNAL 2021; 15:1767-1781. [PMID: 33452482 PMCID: PMC8163842 DOI: 10.1038/s41396-020-00885-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
Collapse
Affiliation(s)
- Aurelie Labarre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | - David López-Escardó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Francisco Latorre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de biologie François-Jacob, Genoscope, Evry, France
| | | | - Olivier Jaillon
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Patrick Wincker
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Paris, France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
39
|
Nakajima Y, Kojima K, Kashiyama Y, Doi S, Nakai R, Sudo Y, Kogure K, Yoshizawa S. Bacterium Lacking a Known Gene for Retinal Biosynthesis Constructs Functional Rhodopsins. Microbes Environ 2021; 35. [PMID: 33281127 PMCID: PMC7734400 DOI: 10.1264/jsme2.me20085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial rhodopsins, comprising a protein moiety (rhodopsin apoprotein) bound to the light-absorbing chromophore retinal, function as ion pumps, ion channels, or light sensors. However, recent genomic and metagenomic surveys showed that some rhodopsin-possessing prokaryotes lack the known genes for retinal biosynthesis. Since rhodopsin apoproteins cannot absorb light energy, rhodopsins produced by prokaryotic strains lacking genes for retinal biosynthesis are hypothesized to be non-functional in cells. In the present study, we investigated whether Aurantimicrobium minutum KNCT, which is widely distributed in terrestrial environments and lacks any previously identified retinal biosynthesis genes, possesses functional rhodopsin. We initially measured ion transport activity in cultured cells. A light-induced pH change in a cell suspension of rhodopsin-possessing bacteria was detected in the absence of exogenous retinal. Furthermore, spectroscopic analyses of the cell lysate and HPLC-MS/MS analyses revealed that this strain contained an endogenous retinal. These results confirmed that A. minutum KNCT possesses functional rhodopsin and, hence, produces retinal via an unknown biosynthetic pathway. These results suggest that rhodopsin-possessing prokaryotes lacking known retinal biosynthesis genes also have functional rhodopsins.
Collapse
Affiliation(s)
- Yu Nakajima
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | | | - Satoko Doi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo
| |
Collapse
|
40
|
Affiliation(s)
- Maureen Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
A metatranscriptomic analysis of changing dynamics in the plankton communities adjacent to aquaculture leases in southern Tasmania, Australia. Mar Genomics 2021; 59:100858. [PMID: 33642199 DOI: 10.1016/j.margen.2021.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Aquaculture releases nitrogen to the marine environment, potentially changing dynamics of local plankton populations and causing adverse impacts. Metatranscriptomics have been used to study planktonic nutrient cycles and community dynamics. We hypothesised that the metatranscriptome could be used to monitor changing phytoplankton physiology near leases. To test this hypothesis, opportunistic samples were collected from one oceanic location in winter and one estuarine location in spring and analysed via RNASeq. Transcriptomes from different locations were found to have little overlap, due to different community compositions in the oceanic and estuarine locations. Transcript function was similar at each location. Proximity to the salmon pen had little influence over the transcriptome at the estuarine location. In the oceanic environment, diatom-based activity decreased near pens and dinoflagellate-based activity increased as demonstrated through the abundance of carbon fixation and nitrogen-acquisition-related transcripts. Our initial results suggest that the use of the metatranscriptome in monitoring is promising.
Collapse
|
42
|
Turnšek J, Brunson JK, Viedma MDPM, Deerinck TJ, Horák A, Oborník M, Bielinski VA, Allen AE. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 2021; 10:e52770. [PMID: 33591270 PMCID: PMC7972479 DOI: 10.7554/elife.52770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
Collapse
Affiliation(s)
- Jernej Turnšek
- Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard UniversityCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Center for Research in Biological Systems, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| | - John K Brunson
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San DiegoLa JollaUnited States
| | - Aleš Horák
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Miroslav Oborník
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy, J. Craig Venter InstituteLa JollaUnited States
| | - Andrew Ellis Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| |
Collapse
|
43
|
Castell C, Bernal-Bayard P, Ortega JM, Roncel M, Hervás M, Navarro JA. The heterologous expression of a plastocyanin in the diatom Phaeodactylum tricornutum improves cell growth under iron-deficient conditions. PHYSIOLOGIA PLANTARUM 2021; 171:277-290. [PMID: 33247466 DOI: 10.1111/ppl.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We have investigated if the heterologous expression of a functional green alga plastocyanin in the diatom Phaeodactylum tricornutum can improve photosynthetic activity and cell growth. Previous in vitro assays showed that a single-mutant of the plastocyanin from the green algae Chlamydomonas reinhardtii is effective in reducing P. tricornutum photosystem I. In this study, in vivo assays with P. tricornutum strains expressing this plastocyanin indicate that even the relatively low intracellular concentrations of holo-plastocyanin detected (≈4 μM) are enough to promote an increased growth (up to 60%) under iron-deficient conditions as compared with the WT strain, measured as higher cell densities, content in pigments and active photosystem I, global photosynthetic rates per cell, and even cell volume. In addition, the presence of plastocyanin as an additional photosynthetic electron carrier seems to decrease the over-reduction of the plastoquinone pool. Consequently, it promotes an improvement in the maximum quantum yield of both photosystem II and I, together with a decrease in the acceptor side photoinhibition of photosystem II-also associated to a reduced oxidative stress-a decrease in the peroxidation of membrane lipids in the choroplast, and a lower degree of limitation on the donor side of photosystem I. Thus the heterologous plastocyanin appears to act as a functional electron carrier, alternative to the native cytochrome c6 , under iron-limiting conditions.
Collapse
Affiliation(s)
- Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| |
Collapse
|
44
|
Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nat Microbiol 2021; 6:173-186. [PMID: 33398100 DOI: 10.1038/s41564-020-00814-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/13/2020] [Indexed: 01/28/2023]
Abstract
Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dinoflagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate community that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabolism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occupation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the euphotic zone and remineralization in the mesopelagic zone.
Collapse
|
45
|
Hettiarachchi E, Ivanov S, Kieft T, Goldstein HL, Moskowitz BM, Reynolds RL, Rubasinghege G. Atmospheric Processing of Iron-Bearing Mineral Dust Aerosol and Its Effect on Growth of a Marine Diatom, Cyclotella meneghiniana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:871-881. [PMID: 33382945 DOI: 10.1021/acs.est.0c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is a growth-limiting micronutrient for phytoplankton in major areas of oceans and deposited wind-blown desert dust is a primary Fe source to these regions. Simulated atmospheric processing of four mineral dust proxies and two natural dust samples followed by subsequent growth studies of the marine planktic diatom Cyclotella meneghiniana in artificial sea-water (ASW) demonstrated higher growth response to ilmenite (FeTiO3) and hematite (α-Fe2O3) mixed with TiO2 than hematite alone. The processed dust treatment enhanced diatom growth owing to dissolved Fe (DFe) content. The fresh dust-treated cultures demonstrated growth enhancements without adding such dissolved Fe. These significant growth enhancements and dissolved Fe measurements indicated that diatoms acquire Fe from solid particles. When diatoms were physically separated from mineral dust particles, the growth responses become smaller. The post-mineralogy analysis of mineral dust proxies added to ASW showed a diatom-induced increased formation of goethite, where the amount of goethite formed correlated with observed enhanced growth. The current work suggests that ocean primary productivity may not only depend on dissolved Fe but also on suspended solid Fe particles and their mineralogy. Further, the diatom C. meneghiniana benefits more from mineral dust particles in direct contact with cells than from physically impeded particles, suggesting the possibility for alternate Fe-acquisition mechanism/s.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Harland L Goldstein
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard L Reynolds
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
46
|
Sutak R, Camadro JM, Lesuisse E. Iron Uptake Mechanisms in Marine Phytoplankton. Front Microbiol 2020; 11:566691. [PMID: 33250865 PMCID: PMC7676907 DOI: 10.3389/fmicb.2020.566691] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Oceanic phytoplankton species have highly efficient mechanisms of iron acquisition, as they can take up iron from environments in which it is present at subnanomolar concentrations. In eukaryotes, three main models were proposed for iron transport into the cells by first studying the kinetics of iron uptake in different algal species and then, more recently, by using modern biological techniques on the model diatom Phaeodactylum tricornutum. In the first model, the rate of uptake is dependent on the concentration of unchelated Fe species, and is thus limited thermodynamically. Iron is transported by endocytosis after carbonate-dependent binding of Fe(III)' (inorganic soluble ferric species) to phytotransferrin at the cell surface. In this strategy the cells are able to take up iron from very low iron concentration. In an alternative model, kinetically limited for iron acquisition, the extracellular reduction of all iron species (including Fe') is a prerequisite for iron acquisition. This strategy allows the cells to take up iron from a great variety of ferric species. In a third model, hydroxamate siderophores can be transported by endocytosis (dependent on ISIP1) after binding to the FBP1 protein, and iron is released from the siderophores by FRE2-dependent reduction. In prokaryotes, one mechanism of iron uptake is based on the use of siderophores excreted by the cells. Iron-loaded siderophores are transported across the cell outer membrane via a TonB-dependent transporter (TBDT), and are then transported into the cells by an ABC transporter. Open ocean cyanobacteria do not excrete siderophores but can probably use siderophores produced by other organisms. In an alternative model, inorganic ferric species are transported through the outer membrane by TBDT or by porins, and are taken up by the ABC transporter system FutABC. Alternatively, ferric iron of the periplasmic space can be reduced by the alternative respiratory terminal oxidase (ARTO) and the ferrous ions can be transported by divalent metal transporters (FeoB or ZIP). After reoxidation, iron can be taken up by the high-affinity permease Ftr1.
Collapse
Affiliation(s)
- Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | | | | |
Collapse
|
47
|
The Importance of Protein Phosphorylation for Signaling and Metabolism in Response to Diel Light Cycling and Nutrient Availability in a Marine Diatom. BIOLOGY 2020; 9:biology9070155. [PMID: 32640597 PMCID: PMC7408324 DOI: 10.3390/biology9070155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and protein homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.
Collapse
|
48
|
Zhao Y, Tang X, Qu F, Lv M, Liu Q, Li J, Li L, Zhang B, Zhao Y. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114342. [PMID: 32179226 DOI: 10.1016/j.envpol.2020.114342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a series of highly persistent organic pollutants (POPs) ubiquitously distributed in marine environments. As key primary producers, microalgae are the start of PBDEs bioaccumulations and vulnerable to their toxicities. In order to deeply investigate the toxic mechanism of PBDEs on microalgal cells, the occurrence of programmed cell death (PCD) in a model diatom Thalassiosira pseudonana and its possible mediating mechanism were studied. The results indicated: cell death of T. pseudonana happened under the stress of BDE-47, which was proved to be PCD based on the correlations with three biochemical markers (DNA fragmentation, phosphatidylserine externalization and caspase activity) and three molecular markers [Metacaspase 2 gene (TpMC2), Death-associated protein gene (DAP3) and Death-specific protein 1 gene (TpDSP1)]; Furthermore, the changes of cellular ROS levels were correlated with the PCD markers and the dead cell rates, and the cell membrane and the chloroplast were identified as the major ROS production sites. Therefore, we concluded that PCD might be an important toxic mechanism of PBDEs on microalgal cells, and that chloroplast- and cell membrane-produced ROS was an important signaling molecule to mediate the PCD activation process. Our research firstly indicated microalgal PCD could be induced by PBDEs, and increased our knowledge of the toxic mechanisms by which POPs affect microalgal cells.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
49
|
Cieslak MC, Castelfranco AM, Roncalli V, Lenz PH, Hartline DK. t-Distributed Stochastic Neighbor Embedding (t-SNE): A tool for eco-physiological transcriptomic analysis. Mar Genomics 2020; 51:100723. [DOI: 10.1016/j.margen.2019.100723] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023]
|
50
|
Rizkallah MR, Frickenhaus S, Trimborn S, Harms L, Moustafa A, Benes V, Gäbler-Schwarz S, Beszteri S. Deciphering Patterns of Adaptation and Acclimation in the Transcriptome of Phaeocystis antarctica to Changing Iron Conditions 1. JOURNAL OF PHYCOLOGY 2020; 56:747-760. [PMID: 32068264 DOI: 10.1111/jpy.12979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The haptophyte Phaeocystis antarctica is endemic to the Southern Ocean, where iron supply is sporadic and its availability limits primary production. In iron fertilization experiments, P. antarctica showed a prompt and steady increase in cell abundance compared to heavily silicified diatoms along with enhanced colony formation. Here we utilized a transcriptomic approach to investigate molecular responses to alleviation of iron limitation in P. antarctica. We analyzed the transcriptomic response before and after (14 h, 24 h and 72 h) iron addition to a low-iron acclimated culture. After iron addition, we observed indicators of a quick reorganization of cellular energetics, from carbohydrate catabolism and mitochondrial energy production to anabolism. In addition to typical substitution responses from an iron-economic toward an iron-sufficient state for flavodoxin (ferredoxin) and plastocyanin (cytochrome c6 ), we found other genes utilizing the same strategy involved in nitrogen assimilation and fatty acid desaturation. Our results shed light on a number of adaptive mechanisms that P. antarctica uses under low iron, including the utilization of a Cu-dependent ferric reductase system and indication of mixotrophic growth. The gene expression patterns underpin P. antarctica as a quick responder to iron addition.
Collapse
Affiliation(s)
| | - Stephan Frickenhaus
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Centre for Industrial Mathematics, University of Bremen, Bibliothekstrasse 1, 28359 Postfach 330440, 28334, Bremen, Germany
| | - Scarlett Trimborn
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Marine Botany, University of Bremen, Bibliothekstrasse 1, 28359 Postfach 330440, 28334, Bremen, Germany
| | - Lars Harms
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Herrstrasse 231, 26129, Oldenburg, Germany
| | - Ahmed Moustafa
- Department of Biology, American University in Cairo, P.O. Box 74, 11835, Cairo, Egypt
| | - Vladimir Benes
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Steffi Gäbler-Schwarz
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Sara Beszteri
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|