1
|
Hu H, Xu J, Chen J, Tang C, Zhou T, Wang J, Kang Z. Influence of Flagella on Salmonella Enteritidis Sedimentation, Biofilm Formation, Disinfectant Resistance, and Interspecies Interactions. Foodborne Pathog Dis 2024. [PMID: 39513945 DOI: 10.1089/fpd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Flagella are essential for bacterial motility and biofilm formation by aiding bacterial attachment to surfaces. However, the impact of flagella on bacterial behavior, particularly biofilm formation, remains unclear. This study constructed two flagellar mutation strains of Salmonella Enteritidis (SE), namely, SE-ΔflhD and SE-ΔflgE, and confirmed the loss of flagellar structures and motility in these strains. The mutant strains exhibited growth comparable with the wild-type (WT) strain but had higher sedimentation rates. Biofilm biomass did not differ significantly between the WT and mutant strains, except for SE-ΔflgE at 3 d. SE-ΔflgE showed increased susceptibility to sodium hypochlorite compared to the WT. The co-sedimentation rate of flagella-deficient strains was lower than the WT, and the biomass of dual-species biofilm formed by Bacillus paramycoides B5 with SE-ΔflhD or SE-ΔflgE was significantly lower than with the WT. These findings emphasize the significance of SE flagella in biofilm formation and interspecies interactions, offering insights into targeted biofilm prevention and control measures.
Collapse
Affiliation(s)
- Huixue Hu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
- Jingjiang College, Jiangsu University, Zhenjiang, China
| | - Jingguo Xu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Tianhao Zhou
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jun Wang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Zhuangli Kang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Shen Y, Wang Y, Wang J, Xie P, Xie C, Chen Y, Banaei N, Ren K, Cai Z. High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J Adv Res 2024:S2090-1232(24)00375-8. [PMID: 39214416 DOI: 10.1016/j.jare.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Bacterial living states and the distribution of microbial colony signaling molecules are widely studied using mass spectrometry imaging (MSI). However, current approaches often treat 3D colonies as flat 2D disks, inadvertently omitting valuable details. The challenge of achieving 3D MSI in biofilms persists due to the unique properties of microbial samples. OBJECTIVES The study aimed to develop a new biofilm sample preparation method that can realize high-resolution 3D MSI of bacterial colonies to reveal the spatial organization of bacterial colonies. METHODS This article introduces the moisture-assisted cryo-section (MACS) method, enabling embedding-free sectioning parallel to the growth plane. The MACS method secures intact sections by controlling ambient humidity and slice thickness, preventing molecular delocalization. RESULTS Combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI)-MSI, the MACS method provides high-resolution insights into endogenic and exogenous molecule distributions in Pseudomonas aeruginosa (P. aeruginosa) biofilms, including isomeric pairs. Moreover, analyzed colonies are revived into 3D models, vividly depicting molecular distribution from inner to outer layers. Additionally, we investigated metabolite spatiotemporal dynamics in multiple colonies, observing changes over time and distinct patterns in single versus merged colonies. These findings shed light on the repel-merge process for multi-colony formation. Furthermore, our study monitored chemical responses inside biofilms after antibiotic treatment, showing increased antibiotic levels in the outer biofilm layer over time while maintaining low levels in the inner region. Moreover, the MACS method demonstrated its universality and applicability to other bacterial strains. CONCLUSION These results unveil complex cell activities within biofilm colonies, offering insights into microbe communities. The MACS method is universally applicable to loosely packed microorganism colonies, overcoming the limitations of previously reported MSI methods. It has great potential for studying bacterial-infected cancer tissues and artificial organs, making it a valuable tool in microbiological research.
Collapse
Affiliation(s)
- Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; Clinical Microbiology Laboratory, Stanford Health Care, Stanford, CA 94304, USA
| | - Kangning Ren
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
3
|
Silva AR, Melo LF, Keevil CW, Pereira A. Legionella colonization and 3D spatial location within a Pseudomonas biofilm. Sci Rep 2024; 14:16781. [PMID: 39039267 PMCID: PMC11263398 DOI: 10.1038/s41598-024-67712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Biofilms are known to be critical for Legionella settlement in engineered water systems and are often associated with Legionnaire's Disease events. One of the key features of biofilms is their heterogeneous three-dimensional structure which supports the establishment of microbial interactions and confers protection to microorganisms. This work addresses the impact of Legionella pneumophila colonization of a Pseudomonas fluorescens biofilm, as information about the interactions between Legionella and biofilm structures is scarce. It combines a set of meso- and microscale biofilm analyses (Optical Coherence Tomography, Episcopic Differential Interference Contrast coupled with Epifluorescence Microscopy and Confocal Laser Scanning Microscopy) with PNA-FISH labelled L. pneumophila to tackle the following questions: (a) does the biofilm structure change upon L. pneumophila biofilm colonization?; (b) what happens to L. pneumophila within the biofilm over time and (c) where is L. pneumophila preferentially located within the biofilm? Results showed that P. fluorescens structure did not significantly change upon L. pneumophila colonization, indicating the competitive advantage of the first colonizer. Imaging of PNA-labelled L. pneumophila showed that compared to standard culture recovery it colonized to a greater extent the 3-day-old P. fluorescens biofilms, presumably entering in VBNC state by the end of the experiment. L. pneumophila was mostly located in the bottom regions of the biofilm, which is consistent with the physiological requirements of both bacteria and confers enhanced Legionella protection against external aggressions. The present study provides an expedited methodological approach to address specific systematic laboratory studies concerning the interactions between L. pneumophila and biofilm structure that can provide, in the future, insights for public health Legionella management of water systems.
Collapse
Affiliation(s)
- Ana Rosa Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luis F Melo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - C William Keevil
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ana Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
4
|
Fan L, Liu S, Dai H, Yuan L, Yang Z, Jiao XA. Genotype-phenotype evaluation of the heterogeneity in biofilm formation by diverse Bacillus licheniformis strains isolated from dairy products. Int J Food Microbiol 2024; 416:110660. [PMID: 38460236 DOI: 10.1016/j.ijfoodmicro.2024.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
The spoilage bacterium Bacillus licheniformis has been identified as a quick and strong biofilm former in the dairy industry. In our previous study, intra-species variation in bacterial biofilms has been observed in diverse B. licheniformis strains from different genetic backgrounds; however, the mechanisms driving the observed heterogeneity of biofilms remain to be determined. In this study, the genotype-phenotype evaluation of the heterogeneity in biofilm formation of four B. licheniformis strains were examined. The heterogeneity in biofilm phenotype was accessed in aspects of bacterial growth and motility, cell viability, biofilm matrix production, and biofilm architectures. The underlying mechanisms of the intra-species variability in biofilms were also explored by whole genome resequencing (WGR). Results from bacterial motility tests showed a diverse motility among the strains, but there was no clear correlation between bacterial motility and biofilm formation. The cell viability results showed a different number of live cells in biofilms at the intra-species level. Analysis of chemical components in biofilm matrix demonstrated the great intra-species differences regarding extracellular matrix composition, and a negative correlation between biofilm formation on stainless steel and the protein: carbohydrate ratio in biofilm matrix was observed. Confocal laser scanning microscopy analysis also revealed the intra-species variability by showing great differences in general properties of B. licheniformis biofilms. WGR results identified important pathways involved in biofilm formation, such as two-component systems, quorum sensing, starch and sucrose metabolism, ABC transporters, glyoxylate and dicarboxylate metabolism, purine metabolism, and a phosphotransferase system. Overall, the above results emphasize the necessity of exploring the intra-species variation in biofilms, and would provide in-depth knowledge for designing efficient biofilm control strategies in the dairy industry.
Collapse
Affiliation(s)
- Luyao Fan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Siqi Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
5
|
Hwang J, Barman S, Gao R, Yang X, O'Malley A, Nagarkatti P, Nagarkatti M, Chruszcz M, Tang C. Membrane-Active Metallopolymers: Repurposing and Rehabilitating Antibiotics to Gram-Negative Superbugs. Adv Healthc Mater 2023; 12:e2301764. [PMID: 37565371 PMCID: PMC10842942 DOI: 10.1002/adhm.202301764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Among multiple approaches to combating antimicrobial resistance, a combination therapy of existing antibiotics with bacterial membrane-perturbing agents is promising. A viable platform of metallopolymers as adjuvants in combination with traditional antibiotics is reported in this work to combat both planktonic and stationary cells of Gram-negative superbugs and their biofilms. Antibacterial efficacy, toxicity, antibiofilm activity, bacterial resistance propensity, and mechanisms of action of metallopolymer-antibiotic combinations are investigated. These metallopolymers exhibit 4-16-fold potentiation of antibiotics against Gram-negative bacteria with negligible toxicity toward mammalian cells. More importantly, the lead combinations (polymer-ceftazidime and polymer-rifampicin) eradicate preformed biofilms of MDR E. coli and P. aeruginosa, respectively. Further, β-lactamase inhibition, outer membrane permeabilization, and membrane depolarization demonstrate synergy of these adjuvants with different antibiotics. Moreover, the membrane-active metallopolymers enable the antibiotics to circumvent bacterial resistance development. Altogether, the results indicate that such non-antibiotic adjuvants bear the promise to revitalize the efficacy of existing antibiotics to tackle Gram-negative bacterial infections.
Collapse
Affiliation(s)
- JiHyeon Hwang
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC29208USA
| | - Swagatam Barman
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC29208USA
| | - Ruixuan Gao
- Department of ChemistryUniversity of South FloridaTampaFL33620USA
| | - Xiaoming Yang
- Department of PathologyMicrobiology and ImmunologyUniversity of South CarolinaSchool of MedicineColumbiaSC29209USA
| | - Andrea O'Malley
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC29208USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Prakash Nagarkatti
- Department of PathologyMicrobiology and ImmunologyUniversity of South CarolinaSchool of MedicineColumbiaSC29209USA
| | - Mitzi Nagarkatti
- Department of PathologyMicrobiology and ImmunologyUniversity of South CarolinaSchool of MedicineColumbiaSC29209USA
| | - Maksymilian Chruszcz
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC29208USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Chuanbing Tang
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC29208USA
| |
Collapse
|
6
|
Ev LD, Poloni JDF, Damé-Teixeira N, Arthur RA, Corralo DJ, Henz SL, Do T, Maltz M, Parolo CCF. Hub genes and pathways related to caries-free dental biofilm: clinical metatranscriptomic study. Clin Oral Investig 2023; 27:7725-7735. [PMID: 37924358 DOI: 10.1007/s00784-023-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the microbial functional profile of biofilms related to caries-free (CF, n = 6) and caries-arrested (CI, n = 3) compared to caries-active (CA, n = 5) individuals. MATERIALS AND METHODS A metatranscriptomic was performed in supragingival biofilm from different clinical conditions related to caries or health. Total RNA was extracted and cDNAs were obtained and sequenced (Illumina HiSeq3000). Trimmed data (SortMeRNA) were submitted to the SqueezeMeta pipeline in the co-assembly mode for functional analysis and further differential gene expression analysis (DESeq2) and weighted gene co-expression network analysis (WCGNA) to explore and identify gene modules related to these clinical conditions. RESULTS A total of 5303 genes were found in the metatranscriptomic analysis. A co-expression network identified the most relevant modules strongly related to specific caries status. Correlation coefficients were calculated between the eigengene modules and the clinical conditions (CA, CI, and CF) discriminating multiple modules. CA and CI showed weak correlation coefficient strength across the modules, while the CF condition presented a very strong positive correlation coefficient (r = 0.9, p value = 4 × 10-9). Pearson's test was applied to further analyze the module membership and gene significance in CF conditions, and the most relevant were HSPA1s-K03283, Epr- K13277, and SLC1A-K05613. Gene Ontology (GO) shows important bioprocesses, such as two-component system, fructose and mannose metabolism, pentose and glucuronate interconversions, and flagellar assembly (p-adjust < 0.05). The ability to use different carbohydrates, integrate multiple signals, swarm, and bacteriocin production are significant metabolic advantages in the oral environment related to CF. CONCLUSIONS A distinct functional health profile could be found in CF, where co-occurring genes can act in different pathways at the same time. Genes HSPA1s, Epr, and SLC1A may be appointed as potential biomarkers for caries-free biofilms. CLINICAL RELEVANCE Potential biomarkers for caries-free biofilms could contribute to the knowledge of caries prevention and control.
Collapse
Affiliation(s)
- Laís Daniela Ev
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Jorge Corralo
- Department of Dentistry, School of Dentistry, Passo Fundo University, Passo Fundo, RS, Brazil
| | - Sandra Liana Henz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds, UK
| | - Marisa Maltz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
7
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
8
|
Dergham Y, Le Coq D, Nicolas P, Bidnenko E, Dérozier S, Deforet M, Huillet E, Sanchez-Vizuete P, Deschamps J, Hamze K, Briandet R. Direct comparison of spatial transcriptional heterogeneity across diverse Bacillus subtilis biofilm communities. Nat Commun 2023; 14:7546. [PMID: 37985771 PMCID: PMC10661151 DOI: 10.1038/s41467-023-43386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Bacillus subtilis can form various types of spatially organised communities on surfaces, such as colonies, pellicles and submerged biofilms. These communities share similarities and differences, and phenotypic heterogeneity has been reported for each type of community. Here, we studied spatial transcriptional heterogeneity across the three types of surface-associated communities. Using RNA-seq analysis of different regions or populations for each community type, we identified genes that are specifically expressed within each selected population. We constructed fluorescent transcriptional fusions for 17 of these genes, and observed their expression in submerged biofilms using time-lapse confocal laser scanning microscopy (CLSM). We found mosaic expression patterns for some genes; in particular, we observed spatially segregated cells displaying opposite regulation of carbon metabolism genes (gapA and gapB), indicative of distinct glycolytic or gluconeogenic regimes coexisting in the same biofilm region. Overall, our study provides a direct comparison of spatial transcriptional heterogeneity, at different scales, for the three main models of B. subtilis surface-associated communities.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Maxime Deforet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Eugénie Huillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, Beirut, Lebanon.
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Kobayashi T, Jung G, Matsuoka Y, Nakayama Y, Molina JJ, Yamamoto R. Direct numerical simulations of a microswimmer in a viscoelastic fluid. SOFT MATTER 2023; 19:7109-7121. [PMID: 37694444 DOI: 10.1039/d3sm00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study presents the application of the smoothed profile (SP) method to perform direct numerical simulations for the motion of both passive and active "squirming" particles in Newtonian and viscoelastic fluids. We found that fluid elasticity has a significant impact on both the transient behavior and the steady-state velocity of the particles. Specifically, we observe that the swirling flow generated by the squirmer's surface velocity significantly enhances their swimming speed as the Weissenberg number increases, regardless of the swimming type. Furthermore, we find that pushers outperform pullers in Oldroyd-B fluids, suggesting that the speed of a squirmer depends on the swimmer type. To understand the physical origin of the phenomenon of swirling flow enhancing the swimming speed, we investigate the velocity field and polymer conformation around non-swirling and swirling neutral squirmers in viscoelastic fluids. Our investigation reveals that the velocity field around the neutral swirling squirmers exhibits pusher-like extensional flow characteristics, as well as an asymmetric polymer conformation distribution, which gives rise to this increased propulsion. This is confirmed by the investigation of the force on a fixed squirmer, which revealed that the polymer stress, particularly its diagonal components, plays a critical role in enhancing the swimming speed of swirling squirmers in viscoelastic fluids. Additionally, our results demonstrate that the maximum swimming speeds of swirling squirmers occur at an intermediate value of the fluid viscosity ratio for all swimmer types. These findings have important implications for understanding the behavior of particles and micro-organisms in complex fluids.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Gerhard Jung
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Yuki Matsuoka
- Corporate Engineering Center, Sumitomo Bakelite Co., Ltd, Shizuoka 426-0041, Japan
| | - Yasuya Nakayama
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
10
|
Xu J, Molin G, Davidson S, Roth B, Sjöberg K, Håkansson Å. CRP in Outpatients with Inflammatory Bowel Disease Is Linked to the Blood Microbiota. Int J Mol Sci 2023; 24:10899. [PMID: 37446076 DOI: 10.3390/ijms241310899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The circulation is a closed system that has been assumed to be free from bacteria, but evidence for the existence of a low-density blood microbiota is accumulating. The present study aimed to map the blood microbiota of outpatients with Crohn's disease (CD) or with ulcerative colitis (UC) by 16S metagenomics. A diverse microbiota was observed in the blood samples. Regardless of the type of disease, the alpha diversity of the microbiota was positively associated with C-reactive protein (CRP). The blood microbiota had a surprisingly high proportion of Proteobacteria in comparison with human oral and colonic microbiotas. There was no clear difference in the overall pattern of the microbiota between CD and UC. A non-template control (NTC) was included in the whole process to control for the potential contamination from the environment and reagents. Certain bacterial taxa were concomitantly detected in both blood samples and NTC. However, Acinetobacter, Lactobacillus, Thermicanus and Paracoccus were found in blood from both CD and UC patients but not in NTC, indicating the existence of a specific blood-borne microbiota in the patients. Achromobacter dominated in all blood samples, but a minor amount was also found in NTC. Micrococcaceae was significantly enriched in CD, but it was also detected in high abundance in NTC. Whether the composition of the blood microbiota could be a marker of a particular phenotype in inflammatory bowel disease (IBD) or whether the blood microbiota could be used for diagnostic or therapeutic purposes deserves further attention.
Collapse
Affiliation(s)
- Jie Xu
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden
| | - Göran Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden
| | - Sanna Davidson
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Bodil Roth
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, 20502 Malmö, Sweden
| | - Åsa Håkansson
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| |
Collapse
|
11
|
Recupido F, Petala M, Caserta S, Marra D, Kostoglou M, Karapantsios TD. Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37079897 DOI: 10.1021/acs.langmuir.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge's equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
Collapse
Affiliation(s)
- Federica Recupido
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, University Box 10, 54 124 Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnology, Gaetano Salvatore 486, 80145 Naples, Italy
| | - Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| |
Collapse
|
12
|
Yang S, Wang Y, Ren F, Li Z, Dong Q. Applying enzyme treatments in Bacillus cereus biofilm removal. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Si Z, Li J, Ruan L, Reghu S, Ooi YJ, Li P, Zhu Y, Hammond PT, Verma CS, Bazan GC, Pethe K, Chan-Park MB. Designer co-beta-peptide copolymer selectively targets resistant and biofilm Gram-negative bacteria. Biomaterials 2023; 294:122004. [PMID: 36669302 DOI: 10.1016/j.biomaterials.2023.122004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
New antimicrobials are urgently needed to combat Gram-negative bacteria, particularly multi-drug resistant (MDR) and phenotypically resistant biofilm species. At present, only sequence-defined alpha-peptides (e.g. polymyxin B) can selectively target Gram-negative bacterial lipopolysaccharides. We show that a copolymer, without a defined sequence, shows good potency against MDR Gram-negative bacteria including its biofilm form. The tapered blocky co-beta-peptide with controlled N-terminal hydrophobicity (#4) has strong interaction with the Gram-negative bacterial lipopolysaccharides via its backbone through electrostatic and hydrogen bonding interactions but not the Gram-positive bacterial and mammalian cell membranes so that this copolymer is non-toxic to these two latter cell types. The new #4 co-beta-peptide selectively kills Gram-negative bacteria with low cytotoxicity both in vitro and in a mouse biofilm wound infection model. This strategy provides a new concept for the design of Gram-negative selective antimicrobial peptidomimetics against MDR and biofilm species.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Jianguo Li
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, 138671, Singapore; Singapore Eye Research Institute, 169856, Singapore
| | - Lin Ruan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Sheethal Reghu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Ying Jie Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 710072, China
| | - Yabin Zhu
- Medical School of Ningbo University, 315211, China
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) , 138602, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA; Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 117543, Singapore.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Mary B Chan-Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| |
Collapse
|
14
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Lin Y, Briandet R, Kovács ÁT. Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm 2022; 4:100070. [PMID: 35243332 PMCID: PMC8861577 DOI: 10.1016/j.bioflm.2022.100070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Biofilm formation is a ubiquitous process of bacterial communities that enables them to survive and persist in various environmental niches. The Bacillus cereus group includes phenotypically diversified species that are widely distributed in the environment. Often, B. cereus is considered a soil inhabitant, but it is also commonly isolated from plant roots, nematodes, and food products. Biofilms differ in their architecture and developmental processes, reflecting adaptations to specific niches. Importantly, some B. cereus strains are foodborne pathogens responsible for two types of gastrointestinal diseases, diarrhea and emesis, caused by distinct toxins. Thus, the persistency of biofilms is of particular concern for the food industry, and understanding the underlying mechanisms of biofilm formation contributes to cleaning procedures. This review focuses on the genetic background underpinning the regulation of biofilm development, as well as the matrix components associated with biofilms. We also reflect on the correlation between biofilm formation and the development of highly resistant spores. Finally, advances in our understanding of the ecological importance and evolution of biofilm formation in the B. cereus group are discussed.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
16
|
Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection. Microbiol Res 2022; 263:127140. [DOI: 10.1016/j.micres.2022.127140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
|
17
|
Ji H, Hu H, Tang Q, Kang X, Liu X, Zhao L, Jing R, Wu M, Li G, Zhou X, Liu J, Wang Q, Cong H, Wu L, Qin Y. Precisely controlled and deeply penetrated micro-nano hybrid multifunctional motors with enhanced antibacterial activity against refractory biofilm infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129210. [PMID: 35739732 DOI: 10.1016/j.jhazmat.2022.129210] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The biofilm resistance of microorganisms has severe economic and environmental implications, especially the contamination of facilities associated with human life, including medical implants, air-conditioning systems, water supply systems, and food-processing equipment, resulting in the prevalence of infectious diseases. Once bacteria form biofilms, their antibiotic resistance can increase by 10-1,000-fold, posing a great challenge to the treatment of related diseases. In order to overcome the contamination of bacterial biofilm, destroying the biofilm's matrix so as to solve the penetration depth dilemma of antibacterial agents is the most effective way. Here, a magnetically controlled multifunctional micromotor was developed by using H2O2 as the fuel and MnO2 as the catalyst to treat bacterial biofilm infection. In the presence of H2O2, the as-prepared motors could be self-propelled by the generated oxygen microbubbles. Thereby, the remotely controlled motors could drill into the EPS of biofilm and disrupt them completely with the help of bubbles. Finally, the generated highly toxic •OH could efficiently kill the unprotected bacteria. This strategy combined the mechanical damage, highly toxic •OH, and precise magnetic guidance in one system, which could effectively eliminate biologically infectious fouling in microchannels within 10 min, possessing a wide range of practical application prospects especially in large scale and complex infection sites.
Collapse
Affiliation(s)
- Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Haolu Hu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Qu Tang
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Xiaoxia Kang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Xiaodi Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Lingfeng Zhao
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China.
| |
Collapse
|
18
|
Shava B, Ayodeji FD, Rahdar A, Iqbal HM, Bilal M. Magnetic nanoparticles-based systems for multifaceted biomedical applications. J Drug Deliv Sci Technol 2022; 74:103616. [DOI: 10.1016/j.jddst.2022.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
The Mechanistic Pathways of Periodontal Pathogens Entering the Brain: The Potential Role of Treponema denticola in Tracing Alzheimer’s Disease Pathology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159386. [PMID: 35954742 PMCID: PMC9368682 DOI: 10.3390/ijerph19159386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Alzheimer’s Disease (AD) is a complex neurodegenerative disease and remains the most common form of dementia. The pathological features include amyloid (Aβ) accumulation, neurofibrillary tangles (NFTs), neural and synaptic loss, microglial cell activation, and an increased blood–brain barrier permeability. One longstanding hypothesis suggests that a microbial etiology is key to AD initiation. Among the various periodontal microorganisms, Porphyromonas gingivalis has been considered the keystone agent to potentially correlate with AD, due to its influence on systemic inflammation. P. gingivalis together with Treponema denticola and Tannerella forsythia belong to the red complex consortium of bacteria advocated to sustain periodontitis within a local dysbiosis and a host response alteration. Since the implication of P. gingivalis in the pathogenesis of AD, evidence has emerged of T. denticola clusters in some AD brain tissue sections. This narrative review explored the potential mode of spirochetes entry into the AD brain for tracing pathology. Spirochetes are slow-growing bacteria, which can hide within ganglia for many years. It is this feature in combination with the ability of these bacteria to evade the hosts’ immune responses that may account for a long lag phase between infection and plausible AD disease symptoms. As the locus coeruleus has direct connection between the trigeminal nuclei to periodontal free nerve endings and proprioceptors with the central nervous system, it is plausible that they could initiate AD pathology from this anatomical region.
Collapse
|
20
|
Benyoussef W, Deforet M, Monmeyran A, Henry N. Flagellar Motility During E. coli Biofilm Formation Provides a Competitive Disadvantage Which Recedes in the Presence of Co-Colonizers. Front Cell Infect Microbiol 2022; 12:896898. [PMID: 35880077 PMCID: PMC9307998 DOI: 10.3389/fcimb.2022.896898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In nature, bacteria form biofilms in very diverse environments, involving a range of specific properties and exhibiting competitive advantages for surface colonization. However, the underlying mechanisms are difficult to decipher. In particular, the contribution of cell flagellar motility to biofilm formation remains unclear. Here, we examined the ability of motile and nonmotile E. coli cells to form a biofilm in a well-controlled geometry, both in a simple situation involving a single-species biofilm and in the presence of co-colonizers. Using a millifluidic channel, we determined that motile cells have a clear disadvantage in forming a biofilm, exhibiting a long delay as compared to nonmotile cells. By monitoring biofilm development in real time, we observed that the decisive impact of flagellar motility on biofilm formation consists in the alteration of surface access time potentially highly dependent on the geometry of the environment to be colonized. We also report that the difference between motile and nonmotile cells in the ability to form a biofilm diminishes in the presence of co-colonizers, which could be due to motility inhibition through the consumption of key resources by the co-colonizers. We conclude that the impact of flagellar motility on surface colonization closely depends on the environment properties and the population features, suggesting a unifying vision of the role of cell motility in surface colonization and biofilm formation.
Collapse
|
21
|
Ravel G, Bergmann M, Trubuil A, Deschamps J, Briandet R, Labarthe S. Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy. eLife 2022; 11:76513. [PMID: 35699414 PMCID: PMC9273218 DOI: 10.7554/elife.76513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are spatially organized communities of microorganisms embedded in a self-produced organic matrix, conferring to the population emerging properties such as an increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol strategy in particular, but also more generally to decipher ecological drivers of population spatial structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze time-lapse confocal laser scanning images to describe and compare the swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on the inference of a kinetic model of swimmer populations including mechanistic interactions with the host biofilm. After validation on synthetic data, the methodology is implemented on images of three different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer populations by their swimming behavior and provides insights into the mechanisms deployed by the micro-swimmers to adapt their swimming traits to the biofilm matrix. Anyone who has ever cleaned a bathroom probably faced biofilms, the dark, slimy deposits that lurk around taps and pipes. These structures are created by bacteria which abandon their solitary lifestyle to work together as a community, secreting various substances that allow the cells to organise themselves in 3D and to better resist external aggression. Unwanted biofilms can impair industrial operations or endanger health, for example when they form inside medical equipment or water supplies. Removing these structures usually involves massive application of substances which can cause long-term damage to the environment. Recently, researchers have observed that a range of small rod-shaped bacteria – or ‘bacilli’ – can penetrate a harmful biofilm and dig transient tunnels in its 3D structure. These ‘swimmers’ can enhance the penetration of anti-microbial agents, or could even be modified to deliver these molecules right inside the biofilm. However, little is known about how the various types of bacilli, which have very different shapes and propelling systems, can navigate the complex environment that is a biofilm. This knowledge would be essential for scientists to select which swimmers could be the best to harness for industrial and medical applications. To investigate this question, Ravel et al. established a way to track how three species of bacilli swim inside a biofilm compared to in a simple fluid. A mathematical model was created which integrated several swimming behaviors such as speed adaptation and direction changes in response to the structure and density of the biofilm. This modelling was then fitted on microscopy images of the different species navigating the two types of environments. Different motion patterns for the three bacilli emerged, each showing different degrees of adapting to moving inside a biofilm. One species, in particular, was able to run straight in and out of this environment because it could adapt its speed to the biofilm density as well as randomly change direction. The new method developed by Ravel et al. can be redeployed to systematically study swimmer candidates in different types of biofilms. This would allow scientists to examine how various swimming characteristics impact how bacteria-killing chemicals can penetrate the altered biofilms. In addition, as the mathematical model can predict trajectories, it could be used in computational studies to examine which species of bacilli would be best suited in industrial settings.
Collapse
|
22
|
Khare D, Chandwadkar P, Acharya C. Gliding motility of a uranium-tolerant Bacteroidetes bacterium Chryseobacterium sp. strain PMSZPI: insights into the architecture of spreading colonies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:453-463. [PMID: 34907658 DOI: 10.1111/1758-2229.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Uranium-tolerant soil bacterium Chryseobacterium sp. strain PMSZPI moved over solid agar surfaces by gliding motility thereby forming spreading colonies which is a hallmark of members of Bacteroidetes phylum. PMSZPI genome harboured orthologs of all the gld and spr genes considered as core bacteroidetes gliding motility genes of which gldK, gldL, gldM and gldN were co-transcribed. Here, we present the intriguing interplay between gliding motility and cellular organization in PMSZPI spreading colonies. While nutrient deficiency enhanced colony spreading, high agar concentrations and presence of motility inhibitor like 5-hydroxyindole reduced the spreading. A detailed in situ structural analysis of spreading colonies revealed closely packed cells forming multiple layers at centre of colony while the edges showed clusters of cells periodically arranged in hexagonal lattices interconnected with each other. The cell migration within colony was visualized as branched structures wherein the cells were buried within extracellular matrix. PMSZPI colonies exhibited strong iridescence possibly as a result of periodicity within the cell population achieved through gliding motility. Presence of uranium reduced motility and iridescence and induced biofilm formation. The coordinated study of gliding motility and iridescence apparently influenced by uranium provides unique insights into the lifestyle of PMSZPI residing in uranium enriched environment.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
23
|
Ren H, Hu Y, Liu J, Zhang Z, Mou L, Pan Y, Zheng Q, Li G, Jiao N. Response of a Coastal Microbial Community to Olivine Addition in the Muping Marine Ranch, Yantai. Front Microbiol 2022; 12:805361. [PMID: 35222305 PMCID: PMC8867022 DOI: 10.3389/fmicb.2021.805361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading olivine powder in seawater to enhance alkalinity through weathering reactions has been proposed as a potential solution to control atmospheric CO2 concentration. Attention has usually been paid to the chemical properties of seawater after the addition of olivine within lab and modeling studies. However, both microbial acclimation and evolution in such manipulated natural environments are often overlooked, yet they are of great importance for understanding the biological consequences of whether olivine addition is a feasible approach to mitigating climate change. In this study, an olivine addition experiment was conducted to investigate variation in bacterial diversity and community composition in the surface and bottom seawater of a representative marine ranch area in the Muping, Yantai. The results show that the composition of the particle-attached microbial community was particularly affected by the application of olivine. The relative abundance of biofilm-forming microbes in particle-attached fraction increased after the addition of olivine, while no significant variation in the free-living bacterial community was observed. Our study suggests that olivine addition would reshape the bacterial community structure, especially in particle-attached microenvironments. Therefore, the risk evaluation of alkalinity enhancement should be further studied before its large-scale application as a potential ocean geoengineering plan.
Collapse
Affiliation(s)
- Hongwei Ren
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Xiamen University, Xiamen, China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Xiamen University, Xiamen, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Zhe Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Liang Mou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanning Pan
- School of Earth Science and Resources, Chang'an University, Xi'an, China.,College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Qiang Zheng
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Xiamen University, Xiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China.,Joint Laboratory for Ocean Research and Education at Dalhousie University, Xiamen University, Xiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. Biofilm combating in the food industry: Overview, non‐thermal approaches, and mechanisms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- R. Dhivya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - V. C. Rajakrishnapriya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - K. Sruthi
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - D. V. Chidanand
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - C. K. Sunil
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| |
Collapse
|
25
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
26
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
27
|
Quan K, Zhang Z, Ren Y, Busscher HJ, van der Mei HC, Peterson BW. On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112526. [PMID: 34857305 DOI: 10.1016/j.msec.2021.112526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Biomaterial-associated infections can occur any time after surgical implantation of biomaterial implants and limit their success rates. On-demand, antimicrobial release coatings have been designed, but in vivo release triggers uniquely relating with infection do not exist, while inadvertent leakage of antimicrobials can cause exhaustion of a coating prior to need. Here, we attach magnetic-nanoparticles to a biomaterial surface, that can be pulled-off in a magnetic field through an adhering, infectious biofilm. Magnetic-nanoparticles remained stably attached to a surface upon exposure to PBS for at least 50 days, did not promote bacterial adhesion or negatively affect interaction with adhering tissue cells. Nanoparticles could be magnetically pulled-off from a surface through an adhering biofilm, creating artificial water channels in the biofilm. At a magnetic-nanoparticle coating concentration of 0.64 mg cm-2, these by-pass channels increased the penetrability of Staphylococcus aureus and Pseudomonas aeruginosa biofilms towards different antibiotics, yielding 10-fold more antibiotic killing of biofilm inhabitants than in absence of artificial channels. This innovative use of magnetic-nanoparticles for the eradication of biomaterial-associated infections requires no precise targeting of magnetic-nanoparticles and allows more effective use of existing antibiotics by breaking the penetration barrier of an infectious biofilm adhering to a biomaterial implant surface on-demand.
Collapse
Affiliation(s)
- Kecheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
28
|
Photodynamic control of bacterial motility by means of azobenzene molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion. Front Microbiol 2021; 12:754140. [PMID: 34777309 PMCID: PMC8586430 DOI: 10.3389/fmicb.2021.754140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z Gnimpieba
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Biomedical Engineering Program, University of South Dakota, Sioux Falls, SD, United States
| | - Bharat K Jasthi
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD, United States
| |
Collapse
|
30
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
31
|
Baliarda A, Winkler M, Tournier L, Tinsley CR, Aymerich S. Dynamic interspecies interactions and robustness in a four-species model biofilm. Microbiologyopen 2021; 10:e1254. [PMID: 34964290 PMCID: PMC8650569 DOI: 10.1002/mbo3.1254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Interspecific interactions within biofilms determine relative species abundance, growth dynamics, community resilience, and success or failure of invasion by an extraneous organism. However, deciphering interspecific interactions and assessing their contribution to biofilm properties and function remain a challenge. Here, we describe the constitution of a model biofilm composed of four bacterial species belonging to four different genera (Rhodocyclus sp., Pseudomonas fluorescens, Kocuria varians, and Bacillus cereus), derived from a biofilm isolated from an industrial milk pasteurization unit. We demonstrate that the growth dynamics and equilibrium composition of this biofilm are highly reproducible. Based on its equilibrium composition, we show that the establishment of this four-species biofilm is highly robust against initial, transient perturbations but less so towards continuous perturbations. By comparing biofilms formed from different numbers and combinations of the constituent species and by fitting a growth model to the experimental data, we reveal a network of dynamic, positive, and negative interactions that determine the final composition of the biofilm. Furthermore, we reveal that the molecular determinant of one negative interaction is the thiocillin I synthesized by the B. cereus strain, and demonstrate its importance for species distribution and its impact on robustness by mutational analysis of the biofilm ecosystem.
Collapse
Affiliation(s)
- Aurélie Baliarda
- INRAE, AgroParisTech, Micalis InstituteUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Michèle Winkler
- INRAE, AgroParisTech, Micalis InstituteUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | | | - Colin R. Tinsley
- INRAE, AgroParisTech, Micalis InstituteUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Stéphane Aymerich
- INRAE, AgroParisTech, Micalis InstituteUniversité Paris‐SaclayJouy‐en‐JosasFrance
| |
Collapse
|
32
|
Rivas DP, Hedgecock ND, Stebe KJ, Leheny RL. Dynamic and mechanical evolution of an oil-water interface during bacterial biofilm formation. SOFT MATTER 2021; 17:8195-8210. [PMID: 34525167 DOI: 10.1039/d1sm00795e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.
Collapse
Affiliation(s)
- David P Rivas
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Nathan D Hedgecock
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
33
|
Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, Flemming HC, Mayer C, Busscher HJ, van der Mei HC. Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol 2021; 48:283-302. [PMID: 34411498 DOI: 10.1080/1040841x.2021.1962802] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.
Collapse
Affiliation(s)
- Kecheng Quan
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Jiapeng Hou
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Brandon W Peterson
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences/Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Faculty of Chemistry, Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry, Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021; 9:629054. [PMID: 34327190 PMCID: PMC8314212 DOI: 10.3389/fchem.2021.629054] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.
Collapse
Affiliation(s)
- Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Rehmat Ullah
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - YuKui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021; 10:823. [PMID: 34356744 PMCID: PMC8300790 DOI: 10.3390/antibiotics10070823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Ana Rita Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| |
Collapse
|
36
|
Li M, Shu C, Ke W, Li X, Yu Y, Guan X, Huang T. Plant Polysaccharide s Modulate Biofilm Formation and Insecticidal Activities of Bacillus thuringiensis Strains. Front Microbiol 2021; 12:676146. [PMID: 34262542 PMCID: PMC8273441 DOI: 10.3389/fmicb.2021.676146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
After the biological pesticide Bacillus thuringiensis (Bt) is applied to the field, it has to remain on the surface of plants to have the insecticidal activities against insect pests. Bt can form biofilms on the surface of vegetable leaves, which were rich in polysaccharides. However, the relationship between polysaccharides of the leaves and the biofilm formation as well as the insecticidal activities of Bt is still unknown. Herein, this study focused on the effects of plant polysaccharides pectin and xylan on biofilm formation and the insecticidal activities of Bt strains. By adding pectin, there were 88 Bt strains with strong biofilm formation, 69 strains with weak biofilm formation, and 13 strains without biofilm formation. When xylan was added, 13 Bt strains formed strong biofilms, 98 strains formed weak biofilms, and 59 strains did not form biofilms. This indicated that two plant polysaccharides, especially pectin, modulate the biofilm formation of Bt strains. The ability of pectin to induce biofilm formation was not related to Bt serotypes. Pectin promoted the biofilms formed by Bt cells in the logarithmic growth phase and lysis phase at the air–liquid interface, while it inhibited the biofilms formed by Bt cells in the sporangial phase at the air–liquid interface. The dosage of pectin was positively correlated with the yield of biofilms formed by Bt cells in the logarithmic growth phase or lysis phase at the solid–liquid interfaces. Pectin did not change the free-living growth and the cell motility of Bt strains. Pectin can improve the biocontrol activities of the spore–insecticidal crystal protein mixture of Bt and BtK commercial insecticides, as well as the biofilms formed by the logarithmic growth phase or lysis phase of Bt cells. Our findings confirmed that plant polysaccharides modulate biofilm formation and insecticidal activities of Bt strains and built a foundation for the construction of biofilm-type Bt biopesticides.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Plant Diseases and Insect Pests Biology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory of Plant Diseases and Insect Pests Biology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Ke
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxiao Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyan Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
38
|
Belousova ME, Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins (Basel) 2021; 13:toxins13050355. [PMID: 34065665 PMCID: PMC8155924 DOI: 10.3390/toxins13050355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.
Collapse
Affiliation(s)
- Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
39
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
40
|
Dergham Y, Sanchez-Vizuete P, Le Coq D, Deschamps J, Bridier A, Hamze K, Briandet R. Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches. Microorganisms 2021; 9:microorganisms9030633. [PMID: 33803642 PMCID: PMC8003051 DOI: 10.3390/microorganisms9030633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model.
Collapse
Affiliation(s)
- Yasmine Dergham
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Pilar Sanchez-Vizuete
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Dominique Le Coq
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Centre National de la Recherche Scientifique (CNRS), Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Julien Deschamps
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300 Fougères, France;
| | - Kassem Hamze
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Romain Briandet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Correspondence:
| |
Collapse
|
41
|
The FlgN chaperone activates the Na +-driven engine of the Salmonella flagellar protein export apparatus. Commun Biol 2021; 4:335. [PMID: 33712678 PMCID: PMC7955116 DOI: 10.1038/s42003-021-01865-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/17/2021] [Indexed: 01/13/2023] Open
Abstract
The bacterial flagellar protein export machinery consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. The gate complex has two intrinsic and distinct H+-driven and Na+-driven engines to drive the export of flagellar structural proteins. Salmonella wild-type cells preferentially use the H+-driven engine under a variety of environmental conditions. To address how the Na+-driven engine is activated, we analyzed the fliJ(Δ13–24) fliH(Δ96–97) mutant and found that the interaction of the FlgN chaperone with FlhA activates the Na+-driven engine when the ATPase complex becomes non-functional. A similar activation can be observed with either of two single-residue substitutions in FlhA. Thus, it is likely that the FlgN-FlhA interaction generates a conformational change in FlhA that allows it to function as a Na+ channel. We propose that this type of activation would be useful for flagellar construction under conditions in which the proton motive force is severely restricted. Minamino et al. report that the bacterial FlgN chaperone acts as a switch to activate a backup mechanism for H+-coupled flagellar protein export by interacting with FlhAC to activate the Na+-driven export engine. The proposed mechanism helps to explain how bacteria can maintain flagellar protein export when the ATPase complex export machinery becomes non-functional.
Collapse
|
42
|
Narinder N, Zhu WJ, Bechinger C. Active colloids under geometrical constraints in viscoelastic media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:28. [PMID: 33704591 PMCID: PMC7952293 DOI: 10.1140/epje/s10189-021-00033-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 05/26/2023]
Abstract
We study the behavior of active particles (APs) moving in a viscoelastic fluid in the presence of geometrical confinements. Upon approaching a flat wall, we find that APs slow down due to compression of the enclosed viscoelastic fluid. In addition, they receive a viscoelastic torque leading to sudden orientational changes and departure from walls. Based on these observations, we develop a numerical model which can also be applied to other geometries and yields good agreement with experimental data. Our results demonstrate, that APs are able to move through complex geometrical structures more effectively when suspended in a viscoelastic compared to a Newtonian fluid.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany
| | - Wei-Jing Zhu
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China
- School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | | |
Collapse
|
43
|
Quan K, Jiang G, Liu J, Zhang Z, Ren Y, Busscher HJ, van der Mei HC, Peterson BW. Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics in vitro and in vivo. NANOSCALE 2021; 13:4644-4653. [PMID: 33616592 DOI: 10.1039/d0nr08537e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic targeting of antimicrobial-loaded magnetic nanoparticles to micrometer-sized infectious biofilms is challenging. Bacterial biofilms possess water channels that facilitate transport of nutrient and metabolic waste products, but are insufficient to allow deep penetration of antimicrobials and bacterial killing. Artificial channel digging in infectious biofilms involves magnetically propelling nanoparticles through a biofilm to dig additional channels to enhance antimicrobial penetration. This does not require precise targeting. However, it is not known whether interaction of magnetic nanoparticles with biofilm components impacts the efficacy of antibiotics after artificial channel digging. Here, we functionalized magnetic-iron-oxide-nanoparticles (MIONPs) with polydopamine (PDA) to modify their interaction with staphylococcal pathogens and extracellular-polymeric-substances (EPS) and relate the interaction with in vitro biofilm eradication by gentamicin after magnetic channel digging. PDA-modified MIONPs had less negative zeta potentials than unmodified MIONPs due to the presence of amino groups and accordingly more interaction with negatively charged staphylococcal cell surfaces than unmodified MIONPs. Neither unmodified nor PDA-modified MIONPs interacted with EPS. Concurrently, use of non-interacting unmodified MIONPs for artificial channel digging in in vitro grown staphylococcal biofilms enhanced the efficacy of gentamicin more than the use of interacting, PDA-modified MIONPs. In vivo experiments in mice using a sub-cutaneous infection model confirmed that non-interacting, unmodified MIONPs enhanced eradication by gentamicin of Staphylococcus aureus Xen36 biofilms about 10 fold. Combined with the high biocompatibility of magnetic nanoparticles, these results form an important step in understanding the mechanism of artificial channel digging in infectious biofilms for enhancing antibiotic efficacy in hard-to-treat infectious biofilms in patients.
Collapse
Affiliation(s)
- Kecheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China. and University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Guimei Jiang
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands. and Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
44
|
Massive Integration of Planktonic Cells within a Developing Biofilm. Microorganisms 2021; 9:microorganisms9020298. [PMID: 33540517 PMCID: PMC7912878 DOI: 10.3390/microorganisms9020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
During biofilm growth, the coexistence of planktonic and sessile cells can lead to dynamic exchanges between the two populations. We have monitored the fate of these populations in glass tube assays, where the Bacillus thuringiensis 407 strain produces a floating pellicle. Time-lapse spectrophotometric measurement methods revealed that the planktonic population grew until the pellicle started to be produced. Thereafter, the planktonic population decreased rapidly down to a value close to zero while the biofilm was in continuous growth, showing no dispersal until 120 h of culture. We found that this decrease was induced by the presence of the pellicle, but did not occur when oxygen availability was limited, suggesting that it was independent of cell death or cell sedimentation and that the entire planktonic population has integrated the biofilm. To follow the distribution of recruited planktonic cells within the pellicle, we tagged planktonic cells with GFP and sessile cells with mCherry. Fluorescence binocular microscopy observations revealed that planktonic cells, injected through a 24-h-aged pellicle, were found only in specific areas of the biofilm, where the density of sessile cells was low, showing that spatial heterogeneity can occur between recruited cells and sessile cells in a monospecies biofilm.
Collapse
|
45
|
Cronenberg T, Hennes M, Wielert I, Maier B. Antibiotics modulate attractive interactions in bacterial colonies affecting survivability under combined treatment. PLoS Pathog 2021; 17:e1009251. [PMID: 33524048 PMCID: PMC7877761 DOI: 10.1371/journal.ppat.1009251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/11/2021] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.
Collapse
Affiliation(s)
- Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Marc Hennes
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany
| |
Collapse
|
46
|
Jara J, Alarcón F, Monnappa AK, Santos JI, Bianco V, Nie P, Ciamarra MP, Canales Á, Dinis L, López-Montero I, Valeriani C, Orgaz B. Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Front Microbiol 2021; 11:588884. [PMID: 33510716 PMCID: PMC7835673 DOI: 10.3389/fmicb.2020.588884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022] Open
Abstract
In some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation. In this work, we monitor structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress. Our measurements show that the hydrodynamic stress concomitantly increases the cell density population and the matrix production. At short growth timescales, the matrix mediates a weak cell-cell attractive interaction due to the depletion forces originated by the polymer constituents. Using a population dynamics model, we conclude that hydrodynamic stress causes a faster diffusion of nutrients and a higher incorporation of planktonic bacteria to the already formed microcolonies. This results in the formation of more mechanically stable biofilms due to an increase of the number of crosslinks, as shown by computer simulations. The mechanical stability also relies on a change in the chemical compositions of the matrix, which becomes enriched in carbohydrates, known to display adhering properties. Overall, we demonstrate that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Alarcón
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Ingeniería Física, Universidad de Guanajuato, León, Mexico
| | - Ajay K Monnappa
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Valentino Bianco
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Pin Nie
- Nanyang Technological University, Singapore, Singapore
| | | | - Ángeles Canales
- Departamento de Química Orgánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Dinis
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Ohn HM, Mizuno T, Miyoshi SI. Inhibitory Effects of Escherichia coli on the Formation and Development of Staphylococcus epidermidis Biofilm. Biocontrol Sci 2021; 26:113-118. [PMID: 34092714 DOI: 10.4265/bio.26.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, we examined whether a commensal gut bacterium Escherichia coli might prevent the formation and development of the biofilm of Staphylococcus epidermidis, a nosocomial extraintestinal pathogen but not a gut microorganism. When co-cultured with S. epidermidis, E. coli strain ATCC 35218, a non-pathogenic strain, was found to be dominant in the biofilm formed on the surface of wells of a microtiter plate. In addition, E. coli significantly incorporated and grew in a niche preoccupied by S. epidermidis biofilm. Two other E. coli strains (strain K-12 and B) also showed to interfere the biofilm formation by S. epidermidis. In contrast, S. epidermidis could not grow in a niche preoccupied by E. coli biofilm. These results suggest that, through inhibition of the formation and development of the biofilm, E. coli may eliminate S. epidermidis from the gastrointestinal tract.
Collapse
Affiliation(s)
- Han-Min Ohn
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.,Department of Food and Drug Administration, Ministry of Health and Sports (Myanmar)
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
48
|
Attieh Z, Mouawad C, Rejasse A, Jehanno I, Perchat S, Hegna IK, Økstad OA, Kallassy Awad M, Sanchis-Borja V, El Chamy L. The fliK Gene Is Required for the Resistance of Bacillus thuringiensis to Antimicrobial Peptides and Virulence in Drosophila melanogaster. Front Microbiol 2020; 11:611220. [PMID: 33391240 PMCID: PMC7775485 DOI: 10.3389/fmicb.2020.611220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential effectors of the host innate immune system and they represent promising molecules for the treatment of multidrug resistant microbes. A better understanding of microbial resistance to these defense peptides is thus prerequisite for the control of infectious diseases. Here, using a random mutagenesis approach, we identify the fliK gene, encoding an internal molecular ruler that controls flagella hook length, as an essential element for Bacillus thuringiensis resistance to AMPs in Drosophila. Unlike its parental strain, that is highly virulent to both wild-type and AMPs deficient mutant flies, the fliK deletion mutant is only lethal to the latter's. In agreement with its conserved function, the fliK mutant is non-flagellated and exhibits highly compromised motility. However, comparative analysis of the fliK mutant phenotype to that of a fla mutant, in which the genes encoding flagella proteins are interrupted, indicate that B. thuringiensis FliK-dependent resistance to AMPs is independent of flagella assembly. As a whole, our results identify FliK as an essential determinant for B. thuringiensis virulence in Drosophila and provide new insights on the mechanisms underlying bacteria resistance to AMPs.
Collapse
Affiliation(s)
- Zaynoun Attieh
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Carine Mouawad
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Isabelle Jehanno
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphane Perchat
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Ida K. Hegna
- Department of Pharmacy, Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ole A. Økstad
- Department of Pharmacy, Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laure El Chamy
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| |
Collapse
|
49
|
Nakamura K, O'Neill AM, Williams MR, Cau L, Nakatsuji T, Horswill AR, Gallo RL. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep 2020; 10:21237. [PMID: 33277548 PMCID: PMC7718897 DOI: 10.1038/s41598-020-77790-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.
Collapse
Affiliation(s)
- Kouki Nakamura
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Laura Cau
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
- SILAB, R&D Department, Brive, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
50
|
Cui T, Wu S, Sun Y, Ren J, Qu X. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. NANO LETTERS 2020; 20:7350-7358. [PMID: 32856923 DOI: 10.1021/acs.nanolett.0c02767] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing penetration of antibacterial agents into biofilm is a promising strategy for improvement of therapeutic effect and slowdown of the progression of antibiotic resistance. Herein, we design a near-infrared (NIR) light-driven nanoswimmer (HSMV). Under NIR light irradiation, HSMV performs efficient self-propulsion and penetrates into the biofilm within 5 min due to photothermal conversion of asymmetrically distributed AuNPs. The localized thermal (∼45 °C) and thermal-triggered release of vancomycin (Van) leads to an efficient combination of photothermal therapy and chemotherapy in one system. The active motion of HSMV increases the effective distance of photothermal therapy (PTT) and also improves the therapeutic index of the antibiotic, resulting in superior biofilm removal rate (>90%) in vitro. Notably, HSMV can eliminate S. aureus biofilms grown in vivo under 10 min of laser irradiation without damage to healthy tissues. This work may shed light on therapeutic strategies for in vivo treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si Wu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|