1
|
Campbell A, Lai T, Wahba AE, Boison D, Gebril HM. Enhancing neurogenesis after traumatic brain injury: The role of adenosine kinase inhibition in promoting neuronal survival and differentiation. Exp Neurol 2024; 381:114930. [PMID: 39173898 DOI: 10.1016/j.expneurol.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Traumatic brain injury (TBI) presents a significant public health challenge, necessitating innovative interventions for effective treatment. Recent studies have challenged conventional perspectives on neurogenesis, unveiling endogenous repair mechanisms within the adult brain following injury. However, the intricate mechanisms governing post-TBI neurogenesis remain unclear. The microenvironment of an injured brain, characterized by astrogliosis, neuroinflammation, and excessive cell death, significantly influences the fate of newly generated neurons. Adenosine kinase (ADK), the key metabolic regulator of adenosine, emerges as a crucial factor in brain development and cell proliferation after TBI. This study investigates the hypothesis that targeting ADK could enhance brain repair, promote neuronal survival, and facilitate differentiation. In a TBI model induced by controlled cortical impact, C57BL/6 male mice received intraperitoneal injections of the small molecule ADK inhibitor 5-iodotubercidin (ITU) for three days following TBI. To trace the fate of TBI-associated proliferative cells, animals received intraperitoneal injections of BrdU for seven days, beginning immediately after TBI. Our results show that ADK inhibition by ITU improved brain repair 14 days after injury as evidenced by a diminished injury size. Additionally, the number of mature neurons generated after TBI was increased in ITU-treated mice. Remarkably, the TBI-associated pathological events including astrogliosis, neuroinflammation, and cell death were arrested in ITU-treated mice. Finally, ADK inhibition modulated cell death by regulating the PERK signaling pathway. Together, these findings demonstrate a novel therapeutic approach to target multiple pathological mechanisms involved in TBI. This research contributes valuable insights into the intricate molecular mechanisms underlying neurogenesis and gliosis after TBT.
Collapse
Affiliation(s)
- Andrea Campbell
- Departement of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14620, USA; Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Amir E Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Chemistry Department, Faculty of Science, Damietta University, New Damietta City 34518, Egypt
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
4
|
Sozzi S, Manni I, Ercolani C, Diodoro MG, Bartolazzi A, Spallotta F, Piaggio G, Monteonofrio L, Soddu S, Rinaldo C, Valente D. Inactivation of HIPK2 attenuates KRAS G12D activity and prevents pancreatic tumorigenesis. J Exp Clin Cancer Res 2024; 43:265. [PMID: 39342278 PMCID: PMC11437985 DOI: 10.1186/s13046-024-03189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer. METHODS We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed. RESULTS In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice. CONCLUSION This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Silvia Sozzi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratories, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Chen T, Yu J, Guo X, Wang S, Wang Z, Chen Y, Hu X, Li H, Chen L, Zheng J. Adenosine kinase inhibits β-cell proliferation by upregulating DNA methyltransferase 3A expression. Diabetes Obes Metab 2024; 26:2956-2968. [PMID: 38699782 DOI: 10.1111/dom.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024]
Abstract
AIM To investigate the effects of adenosine kinase (ADK), a key enzyme in determining intracellular adenosine levels, on β cells, and their underlying mechanism. METHODS Genetic animal models and transgenic immortalized cells were applied to study the effect of ADK on islet beta-cell proliferation and function. The beta-cell mass and response to glucose were measured in vivo using mice with beta-cell-specific ADK overexpression, and in vitro using ADK-overexpressed immortalized beta-cell. RESULTS The expression of ADK in human islets at high abundance, especially in β cells, was decreased during the process of β-cell proliferation. Additionally, a transgenic mouse model (ADKtg/tg /Mip-Cre) was generated wherein the mouse Insulin1 gene promoter specifically overexpressed ADK in pancreatic β cells. The ADKtg/tg /Mip-Cre model exhibited impaired glucose tolerance, decreased fasting plasma insulin, loss of β-cell mass, and inhibited β-cell proliferation. Proteomic analysis revealed that ADK overexpression inhibited the expression of several proteins that promote cell proliferation and insulin secretion. Upregulating ADK in the β-cell line inhibited the expression of β-cell related regulatory molecules, including FoxO1, Appl1, Pxn, Pdx-1, Creb and Slc16a3. Subsequent in vitro experiments indicated that the inhibition of β-cell proliferation and the decreased expression of Pdx-1, Creb and Slc16a3 were rescued by DNA methyltransferase 3A (DNMT3A) knockdown in β cells. CONCLUSION In this study, we found that the overexpression of ADK decreased the expression of several genes that regulate β cells, resulting in the inhibition of β-cell proliferation and dysfunction by upregulating the expression of DNMT3A.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Zhihua Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
6
|
Lee RA, Chopra DG, Nguyen V, Huang XP, Zhang Y, Shariati K, Yiv N, Schugar R, Annes J, Roth B, Ku GM. An shRNA screen in primary human beta cells identifies the serotonin 1F receptor as a negative regulator of survival during transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591950. [PMID: 38746433 PMCID: PMC11092577 DOI: 10.1101/2024.05.01.591950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Islet transplantation can cure type 1 diabetes, but peri-transplant beta cell death limits this procedure to those with low insulin requirements. Improving human beta cell survival or proliferation may make islet transplantation a possibility for more type 1 patients. To identify novel regulators of beta cell survival and proliferation, we conducted a pooled small hairpin RNA (shRNA) screen in primary human beta cells transplanted into immunocompromised mice. shRNAs targeting several cyclin dependent kinase inhibitors were enriched after transplant. Here, we focused on the Gi/o-coupled GPCR, serotonin 1F receptor ( HTR1F, 5-HT 1F ) which our screen identified as a negative regulator of beta cell numbers after transplant. In vitro , 5-HT 1F knockdown induced human beta cell proliferation but only when combined with harmine and exendin-4. In vivo , knockdown of 5-HT 1F reduced beta cell death during transplant. To demonstrate the feasibility of targeting 5-HT 1F in islet transplant, we identified and validated a small molecule 5-HT 1F antagonist. This antagonist increased glucose stimulated insulin secretion from primary human islets and cAMP accumulation in primary human beta cells. Finally, the 5-HT 1F antagonist improved glycemia in marginal mass, human islet transplants into immunocompromised mice. We identify 5-HT 1F as a novel druggable target to improve human beta cell survival in the setting of islet transplantation. One Sentence Summary Serotonin 1F receptor (5-HT 1F ) negatively regulates insulin secretion and beta cell survival during transplant.
Collapse
|
7
|
Ullah Khan S, Daniela Hernández-González K, Ali A, Shakeel Raza Rizvi S. Diabetes and the fabkin complex: A dual-edged sword. Biochem Pharmacol 2024; 223:116196. [PMID: 38588831 DOI: 10.1016/j.bcp.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Fabkin complex, composed of FABP4, ADK, and NDPKs, emerges as a novel regulator of insulin-producing beta cells, offering promising prospects for diabetes treatment. Our approach, which combines literature review and database analysis, sets the stage for future research. These findings hold significant implications for both diabetes treatment and research, as they present potential therapeutic targets for personalized treatment, leading to enhanced patient outcomes and a deeper comprehension of the disease. The multifaceted role of the Fabkin complex in glucose metabolism, insulin resistance, anti-inflammation, beta cell proliferation, and vascular function underscores its therapeutic potential, reshaping diabetes management and propelling advancements in the field.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan
| | - Karla Daniela Hernández-González
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000 Xalapa, Veracruz, México
| | - Amir Ali
- Nanoscience and Nanotechnology Program, Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan.
| |
Collapse
|
8
|
Gebril HM, Lai T, Fedele DE, Wahba A. Developmental and foliation changes due to dysregulation of adenosine kinase in the cerebellum. Sci Rep 2023; 13:19831. [PMID: 37963945 PMCID: PMC10645999 DOI: 10.1038/s41598-023-47098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Adenosine kinase (ADK), the major adenosine-metabolizing enzyme, plays a key role in brain development and disease. In humans, mutations in the Adk gene have been linked to developmental delay, stunted growth, and intellectual disability. To better understand the role of ADK in brain development, it is important to dissect the specific roles of the two isoforms of the enzyme expressed in the cytoplasm (ADK-S) and cell nucleus (ADK-L). We, therefore, studied brain development in Adk-tg transgenic mice, which only express ADK-S in the absence of ADK-L throughout development. In the mutant animals, we found a reduction in the overall brain, body size, and weight during fetal and postnatal development. As a major developmental abnormality, we found a profound change in the foliation pattern of the cerebellum. Strikingly, our results indicated aberrant Purkinje cells arborization at P9 and accelerated cell death at P6 and P9. We found defects in cerebellar cell proliferation and migration using a bromodeoxyuridine (BrdU)-based cell proliferation assay at postnatal day 7. Our data demonstrate that dysregulation of ADK expression during brain development profoundly affects brain growth and differentiation.
Collapse
Affiliation(s)
- Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amir Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Chemistry Department, Faculty of Science, Damietta University, New Damietta City, 34518, Egypt
| |
Collapse
|
9
|
Wang P, Gao R, Wu T, Zhang J, Sun X, Fan F, Wang C, Qian S, Li B, Zou Y, Huo Y, Fassett J, Chen Y, Ge J, Sun A. Accumulation of endogenous adenosine improves cardiomyocyte metabolism via epigenetic reprogramming in an ischemia-reperfusion model. Redox Biol 2023; 67:102884. [PMID: 37725888 PMCID: PMC10507380 DOI: 10.1016/j.redox.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R. Evans blue/TTC staining and echocardiography were used to assess the extent of I/R injury in mice. Glucose metabolism was evaluated by positron emission tomography and computed tomography (PET/CT). Methylated DNA immunoprecipitation (MeDIP) and bisulfite sequencing PCR (BSP) were used to evaluate DNA methylation. Lentiviral/adenovirus transduction was used to overexpress DNMT1, and the OSI-906 was administered to inhibit IGF-1. Cardiomyocyte-specific ADK/IGF-1-knockout mice were used for mechanistic experiments.Cardiomyocyte-specific ADK knockout enhanced glucose metabolism and ameliorated myocardial I/R injury in vivo. Mechanistically, ADK deletion caused cellular adenosine accumulation, decreased DNA methyltransferase 1 (DNMT1) expression and caused hypomethylation of multiple metabolic genes, including insulin growth factor 1 (IGF-1). DNMT1 overexpression abrogated these beneficial effects by enhancing apoptosis and decreasing IGF-1 expression. Inhibition of IGF-1 signaling with OSI-906 or genetic knocking down of IGF-1 also abrogated the cardioprotective effects of ADK knockout, revealing the therapeutic potential of increasing IGF-1 expression in attenuating myocardial I/R injury. In conclusion, the present study demonstrated that cardiomyocyte ADK deletion ameliorates myocardial I/R injury via epigenetic upregulation of IGF-1 expression via the cardiomyocyte adenosine/DNMT1/IGF-1 axis.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rifeng Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Cardiac Surgery Department, The Second Affiliated Hospital Zhejiang University School of Medicine, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyan Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Yingjie Chen
- Department of Physiology & Biophysics, University Mississippi Medical Center, MS, 39216, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
11
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Han L, Wang G, Zhou S, Situ C, He Z, Li Y, Qiu Y, Huang Y, Xu A, Ong MTY, Wang H, Zhang J, Wu Z. Muscle satellite cells are impaired in type 2 diabetic mice by elevated extracellular adenosine. Cell Rep 2022; 39:110884. [PMID: 35649375 DOI: 10.1016/j.celrep.2022.110884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022] Open
Abstract
Muscle regeneration is known to be defective under diabetic conditions. However, the underlying mechanisms remain less clear. Adult quiescent muscle satellite cells (MuSCs) from leptin-receptor-deficient (i.e., db/db) diabetic mice are defective in early activation in vivo, but not in culture, suggesting the involvement of pathogenic niche factors. Elevated extracellular adenosine (eAdo) and AMP (eAMP) are detected under diabetic conditions. eAdo and eAMP potently inhibit cell cycle re-entry of quiescent MuSCs and injury-induced muscle regeneration. Mechanistically, eAdo and eAMP engage the equilibrative Ado transporters (ENTs)-Ado kinase (ADK)-AMPK signaling axis in MuSCs to inhibit the mTORC1-dependent cell growth checkpoint. eAdo and eAMP also inhibit early activation of quiescent fibroadipogenic progenitors and human MuSCs by the same mechanism. Treatment of db/db diabetic mice with an ADK inhibitor partially rescues the activation defects of MuSCs in vivo. Thus, both ADK and ENTs represent potential therapeutic targets for restoring the regenerative functions of tissue stem cells in patients with diabetes.
Collapse
Affiliation(s)
- Lifang Han
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China
| | - Gang Wang
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China
| | - Shaopu Zhou
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China
| | - Chenghao Situ
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China
| | - Zhiming He
- Department of Chemical Pathology, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, the Chinese University of Hong Kong, Hong Kong, China
| | - Yudan Qiu
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, the City University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Michael Tim Yun Ong
- Department of Orthopaedics and Traumatology, the Chinese University of Hong Kong, the Prince of Wales Hospital, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, the Chinese University of Hong Kong, Hong Kong, China
| | - Jianfa Zhang
- Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhenguo Wu
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, the Hong Kong University of Science & Technology, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Wagner BK. Small-molecule discovery in the pancreatic beta cell. Curr Opin Chem Biol 2022; 68:102150. [PMID: 35487100 DOI: 10.1016/j.cbpa.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
The pancreatic beta cell is the only cell type in the body responsible for insulin secretion, and thus plays a unique role in the control of glucose homeostasis. The loss of beta-cell mass and function plays an important role in both type 1 and type 2 diabetes. Thus, using chemical biology to identify small molecules targeting the beta cell could be an important component to developing future therapeutics for diabetes. This strategy provides an attractive path toward increasing beta-cell numbers in vivo. A regenerative strategy involves enhancing proliferation, differentiation, or neogenesis. On the other hand, protecting beta cells from cell death, or improving maturity and function, could preserve beta-cell mass. Here, we discuss the current state of chemical matter available to study beta-cell regeneration, and how they were discovered.
Collapse
Affiliation(s)
- Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase, in Cancer. Biomolecules 2022; 12:biom12030418. [PMID: 35327609 PMCID: PMC8946555 DOI: 10.3390/biom12030418] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive effect of adenosine in the microenvironment of a tumor is well established. Presently, researchers are developing approaches in immune therapy that target inhibition of adenosine or its signaling such as CD39 or CD73 inhibiting antibodies or adenosine A2A receptor antagonists. However, numerous enzymatic pathways that control ATP-adenosine balance, as well as understudied intracellular adenosine regulation, can prevent successful immunotherapy. This review contains the latest data on two adenosine-lowering enzymes: adenosine kinase (ADK) and adenosine deaminase (ADA). ADK deletes adenosine by its phosphorylation into 5′-adenosine monophosphate. Recent studies have revealed an association between a long nuclear ADK isoform and an increase in global DNA methylation, which explains epigenetic receptor-independent role of adenosine. ADA regulates the level of adenosine by converting it to inosine. The changes in the activity of ADA are detected in patients with various cancer types. The article focuses on the biological significance of these enzymes and their roles in the development of cancer. Perspectives of future studies on these enzymes in therapy for cancer are discussed.
Collapse
|
15
|
Prentice KJ, Saksi J, Robertson LT, Lee GY, Inouye KE, Eguchi K, Lee A, Cakici O, Otterbeck E, Cedillo P, Achenbach P, Ziegler AG, Calay ES, Engin F, Hotamisligil GS. A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature 2021; 600:720-726. [PMID: 34880500 DOI: 10.1038/s41586-021-04137-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.
Collapse
Affiliation(s)
- Kacey J Prentice
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Jani Saksi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Lauren T Robertson
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Karen E Inouye
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Kosei Eguchi
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Alexandra Lee
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Ozgur Cakici
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Emily Otterbeck
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Paulina Cedillo
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Feyza Engin
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.,Departments of Biomolecular Chemistry and Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Harvard T. H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
16
|
Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne) 2021; 12:671946. [PMID: 34335466 PMCID: PMC8322843 DOI: 10.3389/fendo.2021.671946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Esra Karakose
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauryn Choleva
- The Division of Pediatric Endocrinology, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kunal Kumar
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J. DeVita
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Ocaña
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew F. Stewart
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Cao J, Wang H, Su JB, Wang XQ, Zhang DM, Wang XH, Liu WS, Ge XQ. Inverse relationship between serum adenosine deaminase levels and islet beta cell function in patients with type 2 diabetes. Diabetol Metab Syndr 2021; 13:54. [PMID: 34001220 PMCID: PMC8127294 DOI: 10.1186/s13098-021-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. METHODS This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. RESULTS It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = - 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β = - 0.125, t = - 5.397, p < 0.001, adjusted R2 = 0.459). CONCLUSIONS Serum ADA levels are independently associated with islet beta cell function in patients with T2D.
Collapse
Affiliation(s)
- Jie Cao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Hong Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|
18
|
Murugan M, Fedele D, Millner D, Alharfoush E, Vegunta G, Boison D. Adenosine kinase: An epigenetic modulator in development and disease. Neurochem Int 2021; 147:105054. [PMID: 33961946 DOI: 10.1016/j.neuint.2021.105054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Adenosine kinase (ADK) is the key regulator of adenosine and catalyzes the metabolism of adenosine to 5'-adenosine monophosphate. The enzyme exists in two isoforms: a long isoform (ADK-long, ADK-L) and a short isoform (ADK-short, ADK-S). The two isoforms are developmentally regulated and are differentially expressed in distinct subcellular compartments with ADK-L localized in the nucleus and ADK-S localized in the cytoplasm. The nuclear localization of ADK-L and its biochemical link to the transmethylation pathway suggest a specific role for gene regulation via epigenetic mechanisms. Recent evidence reveals an adenosine receptor-independent role of ADK in determining the global methylation status of DNA and thereby contributing to epigenomic regulation. Here we summarize recent progress in understanding the biochemical interactions between adenosine metabolism by ADK-L and epigenetic modifications linked to transmethylation reactions. This review will provide a comprehensive overview of ADK-associated changes in DNA methylation in developmental, as well as in pathological conditions including brain injury, epilepsy, vascular diseases, cancer, and diabetes. Challenges in investigating the epigenetic role of ADK for therapeutic gains are briefly discussed.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - David Millner
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
| | - Enmar Alharfoush
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ 08901, USA
| | - Geetasravya Vegunta
- Department of Biology, Albert Dorman Honors College, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA; Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Kumar K, Suebsuwong C, Wang P, Garcia-Ocana A, Stewart AF, DeVita RJ. DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. J Med Chem 2021; 64:2901-2922. [PMID: 33682417 DOI: 10.1021/acs.jmedchem.0c02050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
According to the World Health Organization (WHO), 422 million people are suffering from diabetes worldwide. Current diabetes therapies are focused on optimizing blood glucose control to prevent long-term diabetes complications. Unfortunately, current therapies have failed to achieve glycemic targets in the majority of people with diabetes. In this context, regeneration of functional insulin-producing human β-cells in people with diabetes through the use of DYRK1A inhibitor drugs has recently received special attention. Several small molecule DYRK1A inhibitors have been identified that induce human β-cell proliferation in vitro and in vivo. Furthermore, DYRK1A inhibitors have also been shown to synergize β-cell proliferation with other classes of drugs, such as TGFβ inhibitors and GLP-1 receptor agonists. In this perspective, we review the status of DYRK1A as a therapeutic target for β-cell proliferation and provide perspectives on technical and scientific challenges for future translational development.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J DeVita
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
20
|
Horton TM, Kraemer BR, Annes JP. Protocol for determining zinc-dependent β cell-selective small-molecule delivery in mouse pancreas. STAR Protoc 2021; 2:100263. [PMID: 33490979 PMCID: PMC7806521 DOI: 10.1016/j.xpro.2020.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted drug delivery to pancreatic islet β cells is an unmet clinical need. β cells possess a uniquely high Zn2+ concentration, and integrating Zn2+-binding activity into a small molecule can bias drug accumulation and activity toward β cells. This protocol can be used to evaluate a molecule's capacity to chelate islet Zn2+, accumulate in islets, and stimulate β cell-selective replication in mouse pancreas. One obstacle is establishing an LC-MS/MS-based method for compound measurement. Limitations include target compound ionizability and the time-sensitive nature of some experimental assay steps. For complete details on the use and execution of this protocol, please refer to Horton et al. (2019).
Collapse
Affiliation(s)
- Timothy M. Horton
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin R. Kraemer
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Justin P. Annes
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 2020; 187:114393. [PMID: 33359363 DOI: 10.1016/j.bcp.2020.114393] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Jia YF, Jeeva S, Xu J, Heppelmann CJ, Jang JS, Slama MQ, Tapadar S, Oyelere AK, Kang SM, Matveyenko AV, Peterson QP, Shin CH. TBK1 regulates regeneration of pancreatic β-cells. Sci Rep 2020; 10:19374. [PMID: 33168920 PMCID: PMC7653919 DOI: 10.1038/s41598-020-76600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate β-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in β-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat β-cells. Conversely, TBK1 overexpression decreased sensitivity of β-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of β-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of β-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived β-cells and human islets. TBK1 expression was increased in β-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and β-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional β-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a β-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional β-cells.
Collapse
Affiliation(s)
- Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subbiah Jeeva
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Xu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Jin Sung Jang
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Q Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chong Hyun Shin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. .,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
24
|
Boison D, Jarvis MF. Adenosine kinase: A key regulator of purinergic physiology. Biochem Pharmacol 2020; 187:114321. [PMID: 33161022 DOI: 10.1016/j.bcp.2020.114321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Adenosine (ADO) is an essential biomolecule for life that provides critical regulation of energy utilization and homeostasis. Adenosine kinase (ADK) is an evolutionary ancient ribokinase derived from bacterial sugar kinases that is widely expressed in all forms of life, tissues and organ systems that tightly regulates intracellular and extracellular ADO concentrations. The facile ability of ADK to alter ADO availability provides a "site and event" specificity to the endogenous protective effects of ADO in situations of cellular stress. In addition to modulating the ability of ADO to activate its cognate receptors (P1 receptors), nuclear ADK isoform activity has been linked to epigenetic mechanisms based on transmethylation pathways. Previous drug discovery research has targeted ADK inhibition as a therapeutic approach to manage epilepsy, pain, and inflammation. These efforts generated multiple classes of highly potent and selective inhibitors. However, clinical development of early ADK inhibitors was stopped due to apparent mechanistic toxicity and the lack of suitable translational markers. New insights regarding the potential role of the nuclear ADK isoform (ADK-Long) in the epigenetic modulation of maladaptive DNA methylation offers the possibility of identifying novel ADK-isoform selective inhibitors and new interventional strategies that are independent of ADO receptor activation.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, United States.
| | | |
Collapse
|
25
|
Gan Q, Lin C, Lu C, Chang Y, Che Q, Zhang G, Zhu T, Gu Q, Wu Z, Li M, Li D. Staprexanthones, Xanthone-Type Stimulators of Pancreatic β-Cell Proliferation from a Mangrove Endophytic Fungus. JOURNAL OF NATURAL PRODUCTS 2020; 83:2996-3003. [PMID: 32966070 DOI: 10.1021/acs.jnatprod.0c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This project was focused on the discovery of novel compounds that promote endogenous β-cell regeneration. Screening of extracts identified the fungus Stachybotrys chartarum as a promising candidate. After fermentation and extraction of S. chartarum, we isolated five new prenylated xanthones, namely, staprexanthones A-E (1-5), with staprexanthone A (1) being the first natural xanthone bearing a rare 4,5-dimethyl-1,3-dioxolane moiety. Compounds 1, 2, and 5 significantly increased β-cell numbers in vivo in a zebrafish model. Further analysis revealed that 2 and 5 promoted β-cell mass expansion by increasing proliferation of existing β-cells though promotion of cell-cycle progression at the G1/S transition. These findings indicate that prenylated xanthones are potential new drug leads for antidiabetes therapy by stimulating β-cell regeneration.
Collapse
Affiliation(s)
- Qi Gan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunyu Lin
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian 361102, People's Republic of China
- School of Marine Life Science, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Changjun Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhiqiang Wu
- School of Marine Life Science, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingyu Li
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian 361102, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
26
|
Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules 2020; 25:molecules25081983. [PMID: 32340326 PMCID: PMC7221803 DOI: 10.3390/molecules25081983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure-activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure-activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human β-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced β-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on β-cell proliferation and cell-specific targeting approach for diabetes therapeutics.
Collapse
|
27
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
28
|
Lee M, Maji B, Manna D, Kahraman S, Elgamal RM, Small J, Kokkonda P, Vetere A, Goldberg JM, Lippard SJ, Kulkarni RN, Wagner BK, Choudhary A. Native Zinc Catalyzes Selective and Traceless Release of Small Molecules in β-Cells. J Am Chem Soc 2020; 142:6477-6482. [PMID: 32175731 PMCID: PMC7146867 DOI: 10.1021/jacs.0c00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The loss of insulin-producing β-cells
is the central pathological
event in type 1 and 2 diabetes, which has led to efforts to identify
molecules to promote β-cell proliferation, protection, and imaging.
However, the lack of β-cell specificity of these molecules jeopardizes
their therapeutic potential. A general platform for selective release
of small-molecule cargoes in β-cells over other islet cells ex vivo or other cell-types in an organismal context will
be immensely valuable in advancing diabetes research and therapeutic
development. Here, we leverage the unusually high Zn(II) concentration
in β-cells to develop a Zn(II)-based prodrug system to selectively
and tracelessly deliver bioactive small molecules and fluorophores
to β-cells. The Zn(II)-targeting mechanism enriches the inactive
cargo in β-cells as compared to other pancreatic cells; importantly,
Zn(II)-mediated hydrolysis triggers cargo activation. This prodrug
system, with modular components that allow for fine-tuning selectivity,
should enable the safer and more effective targeting of β-cells.
Collapse
Affiliation(s)
- Miseon Lee
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, United States.,Harvard Stem Cell InstituteHarvard Medical School, Cambridge, Massachusetts 02138, United States
| | - Ruth M Elgamal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Jonnell Small
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Chemical Biology Program, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amedeo Vetere
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jacob M Goldberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, United States.,Harvard Stem Cell InstituteHarvard Medical School, Cambridge, Massachusetts 02138, United States
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Chemical Biology Program, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Ackeifi C, Swartz E, Kumar K, Liu H, Chalada S, Karakose E, Scott DK, Garcia-Ocaña A, Sanchez R, DeVita RJ, Stewart AF, Wang P. Pharmacologic and genetic approaches define human pancreatic β cell mitogenic targets of DYRK1A inhibitors. JCI Insight 2020; 5:132594. [PMID: 31821176 PMCID: PMC7030849 DOI: 10.1172/jci.insight.132594] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Small molecule inhibitors of dual specificity, tyrosine phosphorylation-regulated kinase 1A (DYRK1A), including harmine and others, are able to drive human β cell regeneration. While DYRK1A is certainly a target of this class, whether it is the only or the most important target is uncertain. Here, we employ a combined pharmacologic and genetic approach to refine the potential mitogenic targets of the DYRK1A inhibitor family in human islets. A combination of human β cell RNA sequencing, DYRK1A inhibitor kinome screens, pharmacologic inhibitors, and targeted silencing of candidate genes confirms that DYRK1A is a central target. Surprisingly, however, DYRK1B also proves to be an important target: silencing DYRK1A results in an increase in DYRK1B. Simultaneous silencing of both DYRK1A and DYRK1B yields greater β cell proliferation than silencing either individually. Importantly, other potential kinases, such as the CLK and the GSK3 families, are excluded as important harmine targets. Finally, we describe adenoviruses that are able to silence up to 7 targets simultaneously. Collectively, we report that inhibition of both DYRK1A and DYRK1B is required for induction of maximal rates of human β cell proliferation, and we provide clarity for future efforts in structure-based drug design for human β cell regenerative drugs.
Collapse
Affiliation(s)
| | | | - Kunal Kumar
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Suebsuwong Chalada
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Roberto Sanchez
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J. DeVita
- Drug Discovery Institute, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Peng Wang
- Diabetes Obesity Metabolism Institute
| |
Collapse
|
30
|
Allegretti PA, Horton TM, Abdolazimi Y, Moeller HP, Yeh B, Caffet M, Michel G, Smith M, Annes JP. Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization. Bioorg Med Chem 2020; 28:115193. [PMID: 31757680 PMCID: PMC6941846 DOI: 10.1016/j.bmc.2019.115193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Small molecule stimulation of β-cell regeneration has emerged as a promising therapeutic strategy for diabetes. Although chemical inhibition of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is sufficient to enhance β-cell replication, current lead compounds have inadequate cellular potency for in vivo application. Herein, we report the clinical stage anti-cancer kinase inhibitor OTS167 as a structurally novel, remarkably potent DYRK1A inhibitor and inducer of human β-cell replication. Unfortunately, OTS167's target promiscuity and cytotoxicity curtails utility. To tailor kinase selectivity towards DYRK1A and reduce cytotoxicity we designed a library of fifty-one OTS167 derivatives based upon a modeled structure of the DYRK1A-OTS167 complex. Indeed, derivative characterization yielded several leads with exceptional DYRK1A inhibition and human β-cell replication promoting potencies but substantially reduced cytotoxicity. These compounds are the most potent human β-cell replication-promoting compounds yet described and exemplify the potential to purposefully leverage off-target activities of advanced stage compounds for a desired application.
Collapse
Affiliation(s)
- Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yassan Abdolazimi
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Yeh
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Matthew Caffet
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Guillermina Michel
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Xu J, Yang Q, Zhang X, Liu Z, Cao Y, Wang L, Zhou Y, Zeng X, Ma Q, Xu Y, Wang Y, Huang L, Han Z, Wang T, Stepp D, Bagi Z, Wu C, Hong M, Huo Y. Endothelial adenosine kinase deficiency ameliorates diet-induced insulin resistance. J Endocrinol 2019; 242:159-172. [PMID: 31189131 PMCID: PMC6885115 DOI: 10.1530/joe-19-0126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.
Collapse
Affiliation(s)
- Jiean Xu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyu Zhang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhiping Liu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lina Wang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xianqiu Zeng
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qian Ma
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - David Stepp
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77840, USA
| | - Mei Hong
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
32
|
Hara A, Nakagawa Y, Nakao K, Tamaki M, Ikemoto T, Shimada M, Matsuhisa M, Mizukami H, Maruyama N, Watada H, Fujitani Y. Development of monoclonal mouse antibodies that specifically recognize pancreatic polypeptide. Endocr J 2019; 66:459-468. [PMID: 30842364 DOI: 10.1507/endocrj.ej18-0441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic polypeptide (PP) is a 36-amino acid peptide encoded by the Ppy gene, which is produced by a small population of cells located in the periphery of the islets of Langerhans. Owing to the high amino acid sequence similarity among neuropeptide Y family members, antibodies against PP that are currently available are not convincingly specific to PP. Here we report the development of mouse monoclonal antibodies that specifically bind to PP. We generated Ppy knockout (Ppy-KO) mice in which the Ppy-coding region was replaced by Cre recombinase. The Ppy-KO mice were immunized with mouse PP peptide, and stable hybridoma cell lines producing anti-PP antibodies were isolated. Firstly, positive clones were selected in an enzyme-linked immunosorbent assay for reactivity with PP coupled to bovine serum albumin. During the screening, hybridoma clones producing antibodies that cross-react to the peptide YY (PYY) were excluded. In the second screening, hybridoma clones in which their culture media produce no signal in Ppy-KO islets but detect specific cells in the peripheral region of wild-type islets, were selected. Further studies demonstrated that the selected monoclonal antibody (23-2D3) specifically recognizes PP-producing cells, not only in mouse, but also in human and rat islets. The monoclonal antibodies with high binding specificity for PP developed in this study will be fundamental for future studies towards elucidating the expression profiles and the physiological roles of PP.
Collapse
Affiliation(s)
- Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Keiko Nakao
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Motoyuki Tamaki
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|
33
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
34
|
Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Mayer B, Bache RJ, Chen Y. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol 2019; 130:49-58. [PMID: 30910669 PMCID: PMC6555768 DOI: 10.1016/j.yjmcc.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Adenosine exerts numerous protective actions in the heart, including attenuation of cardiac hypertrophy. Adenosine kinase (ADK) converts adenosine to adenosine monophosphate (AMP) and is the major route of myocardial adenosine metabolism, however, the impact of ADK activity on cardiac structure and function is unknown. To examine the role of ADK in cardiac homeostasis and adaptation to stress, conditional cardiomyocyte specific ADK knockout mice (cADK-/-) were produced using the MerCreMer-lox-P system. Within 4 weeks of ADK disruption, cADK-/- mice developed spontaneous hypertrophy and increased β-Myosin Heavy Chain expression without observable LV dysfunction. In response to 6 weeks moderate left ventricular pressure overload (transverse aortic constriction;TAC), wild type mice (WT) exhibited ~60% increase in ventricular ADK expression and developed LV hypertrophy with preserved LV function. In contrast, cADK-/- mice exhibited significantly greater LV hypertrophy and cardiac stress marker expression (atrial natrurietic peptide and β-Myosin Heavy Chain), LV dilation, reduced LV ejection fraction and increased pulmonary congestion. ADK disruption did not decrease protein methylation, inhibit AMPK, or worsen fibrosis, but was associated with persistently elevated mTORC1 and p44/42 ERK MAP kinase signaling and a striking increase in microtubule (MT) stabilization/detyrosination. In neonatal cardiomyocytes exposed to hypertrophic stress, 2-chloroadenosine (CADO) or adenosine treatment suppressed MT detyrosination, which was reversed by ADK inhibition with iodotubercidin or ABT-702. Conversely, adenoviral over-expression of ADK augmented CADO destabilization of MTs and potentiated CADO attenuation of cardiomyocyte hypertrophy. Together, these findings indicate a novel adenosine receptor-independent role for ADK-mediated adenosine metabolism in cardiomyocyte microtubule dynamics and protection against maladaptive hypertrophy.
Collapse
Affiliation(s)
- John Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Ping Zhang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Wang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Robert J Bache
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Yingjie Chen
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| |
Collapse
|
35
|
Ahmed Abdalhamid Osman M, Sun YJ, Li RJ, Lin H, Zeng DM, Chen XY, He D, Feng HW, Yang Z, Wang J, Wu C, Cui M, Sun JP, Huo Y, Yu X. Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. J Cell Mol Med 2019; 23:4653-4665. [PMID: 31044530 PMCID: PMC6584724 DOI: 10.1111/jcmm.14216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.
Collapse
Affiliation(s)
- Makawi Ahmed Abdalhamid Osman
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Dongola, Dongola, Sudan
| | - Yu-Jing Sun
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Rui-Jia Li
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Hui Lin
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Dong-Mei Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Xin-Yu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Dongfang He
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Hui-Wei Feng
- The Second Hospital of Shangdong University, Jinan, Shandong, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Jin Wang
- Department of Pharmacology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Min Cui
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Department of Biochemistry, School of Medicine, Duke University, Durham, North Carolina
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xiao Yu
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
36
|
Shahrestanaki MK, Arasi FP, Aghaei M. Adenosine protects pancreatic beta cells against apoptosis induced by endoplasmic reticulum stress. J Cell Biochem 2019; 120:7759-7770. [PMID: 30417434 DOI: 10.1002/jcb.28050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Chronic exposure to high glucose induces endoplasmic reticulum (ER) stress in pancreatic beta cells (PBCs). The previous evidence showed that adenosine modulate PBCs viability and insulin secretion. The aim of this study was to evaluate possible involvement of adenosine in protection of MIN6 β-cells from Tunicamycin (Tu)-induced ER stress. MIN6 cells were cotreated with Tu and different concentrations of adenosine. Cell viability, proliferation, and apoptosis were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), 5-bromo-2'-deoxyuridine (Brdu), and colony formation assays. Caspase-12 activity was assayed using the fluorometric method. Thioflavin T (ThT) staining was used for the evaluation of protein aggregation. Insulin secretion was evaluated using specific an ELISA kit. Ca2+ mobilization assayed using Fura2/AM probe. BIP, CHOP, XBP-1, and XBP-1s expression in both messenger RNA (mRNA) and protein levels were evaluated using the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. Bcl-2, p-eIF2α/eIF2α, and GADD34 levels also determined with Western blot analysis. Adenosine protected MIN6 cells against Tu-induced ER stress in a dose-dependent manner and increased their proliferation. Decreased caspase-12 activity and upregulated Bcl-2 protein may explain antiapoptotic effects of adenosine. ThT staining indicated an attenuated aggregation of misfolded proteins. Adenosine effectively increased insulin secretion in Tu-treated cells. BIP, CHOP, XBP1, and sXBP1 expression were decreased significantly in cotreated cells, indicating alleviation of ER stress. However, adenosine potentiated the expression of GADD34 and decreased p-eIF2α/eIF2α ratio. Adenosine increased cytosolic Ca 2+ levels, which may promote adenosine triphosphate (ATP) synthesis in mitochondria, helping ER to preserve protein hemostasis. Taken together, adenosine upregulated Bcl-2 and GADD34 to protect PBCs against Tu-induced apoptosis and increase Insulin secretion.
Collapse
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Panahi Arasi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Keyvanloo Shahrestanaki M, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca 2+ entry. Res Pharm Sci 2019; 14:107-114. [PMID: 31620186 PMCID: PMC6791172 DOI: 10.4103/1735-5362.253357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes incidence showed ascending trends in recent years indicating urgent need for new therapeutic agents. Extracellular adenosine signaling showed promising results. However, role of its A3 receptor in pancreatic β-cells proliferation and insulin secretion is not well established. Thus, we aimed to determine its main signaling mediators in MIN6 insulinoma cell line. A3 adenosine receptor (A3AR) expression was confirmed using RT-PCR. Receptor functionality was evaluated by measurements of cAMP, using ELISA kit, and intracellular Ca2+ levels, using Fura 2/AM probe in response to the specific A3AR agonist (Cl- IBMECA). Insulin ELISA kit was used to measure insulin release. Herein, we mentioned that MIN6 cells express active form of A3AR, which decreased cAMP levels with the half maximal effective concentration (EC50) value of 5.61. [Ca2+]i Levels transiently (approximately 120 sec) increased in response to the agonist. Cl-IBMECA increase insulin secretion at 0.01-1 μM, but showed an inhibitory effects at higher concentrations (1-10 μM). Altogether, we found that in MIN6 cells, A3AR, possibly through Ca2+ mediated signaling pathways, potentiated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
38
|
Horton TM, Allegretti PA, Lee S, Moeller HP, Smith M, Annes JP. Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chem Biol 2019; 26:213-222.e6. [PMID: 30527998 PMCID: PMC6386607 DOI: 10.1016/j.chembiol.2018.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Abstract
Diabetes is a hyperglycemic condition characterized by pancreatic β-cell dysfunction and depletion. Whereas methods for monitoring β-cell function in vivo exist, methods to deliver therapeutics to β cells are lacking. We leveraged the rare ability of β cells to concentrate zinc to preferentially trap zinc-binding molecules within β cells, resulting in β-cell-targeted compound delivery. We determined that zinc-rich β cells and islets preferentially accumulated TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline) in a zinc-dependent manner compared with exocrine pancreas. Next, we asked whether appending a zinc-chelating moiety onto a β-cell replication-inducing compound was sufficient to confer preferential β-cell accumulation and activity. Indeed, the hybrid compound preferentially accumulated within rodent and human islets in a zinc-dependent manner and increased the selectivity of replication-promoting activity toward β cells. These data resolve the fundamental question of whether intracellular accumulation of zinc-chelating compounds is influenced by zinc content. Furthermore, application of this principle yielded a proof-of-concept method for β-cell-targeted drug delivery and bioactivity.
Collapse
Affiliation(s)
- Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Sooyeon Lee
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Medicinal Chemistry Knowledge Center, Stanford CHEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Akbib S, Stichelmans J, Stangé G, Ling Z, Assefa Z, Hellemans KH. Glucocorticoids and checkpoint tyrosine kinase inhibitors stimulate rat pancreatic beta cell proliferation differentially. PLoS One 2019; 14:e0212210. [PMID: 30779812 PMCID: PMC6380609 DOI: 10.1371/journal.pone.0212210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids.
Collapse
Affiliation(s)
- Sarah Akbib
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jordy Stichelmans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Stangé
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Beta Cell Bank, University Hospital Brussels, Brussels, Belgium
| | - Zerihun Assefa
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine H. Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| |
Collapse
|
40
|
IPP-1 controls Akt/CREB phosphorylation extension in A 2a adenosine receptor signaling cascade in MIN6 pancreatic β-cell line. Eur J Pharmacol 2019; 850:88-96. [PMID: 30772395 DOI: 10.1016/j.ejphar.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/23/2022]
Abstract
Signaling through A2a adenosine receptor specifically prevent pancreatic β-cells (PBCs) loses under diabetogenic conditions. However, signaling mediators of this receptor in PBCs remained unidentified. Thus, we aimed to investigate the possible involvement of PKA/Akt/IPP-1/CREB pathway in MIN6 β-cells. In addition, we investigated IPP-1 role in A2a receptor signaling pathway. The expression of A2a receptor in MIN6 cell line was evaluated by RT-PCR and its functionality confirmed by quantification of cAMP in response to the CGS 21680, an A2a receptor agonist. MTT and Brdu assays were used to evaluate cell viability and proliferation, respectively. PKA activity and insulin release were evaluated using ELISA methods. P-Akt/Akt, p-IPP-1/IPP-1, and p-CREB/CREB levels were assessed using western blotting. IPP-1 knock down assessments was performed using specific siRNA. Our result revealed that MIN6 cells express A2a receptor which actively increased cAMP levels (with EC50 = 2.41 µM) and PKA activity. Activation of this receptor increased cell viability, proliferation and insulin release. Moreover, we mentioned A2a receptor stimulation increased p-Akt, p-IPP-1, and p-CREB levels in dose (max at 10 µM of CGS 21680) and time (max at 30 min after CGS 21680 treatment) dependent manner. Interestingly, herein, we found in IPP-1 knocked down cells, A2a receptor failed to activate Akt and CREB. Altogether, we mentioned that in MIN6 cells A2a receptor increase cell viability, proliferation and insulin release through PKA/Akt/IPP-1/CREB signaling pathway. In addition, we conclude A2a receptor signaling through this pathway is dependent to activation of IPP-1.
Collapse
|
41
|
Chen C, Breslin MB, Guidry JJ, Lan MS. 5'-Iodotubercidin represses insulinoma-associated-1 expression, decreases cAMP levels, and suppresses human neuroblastoma cell growth. J Biol Chem 2019; 294:5456-5465. [PMID: 30755485 DOI: 10.1074/jbc.ra118.006761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Insulinoma-associated-1 (INSM1) is a key protein functioning as a transcriptional repressor in neuroendocrine differentiation and is activated by N-Myc in human neuroblastoma (NB). INSM1 modulates the phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-glycogen synthase kinase 3β (GSK3β) signaling pathway through a positive-feedback loop, resulting in N-Myc stabilization. Accordingly, INSM1 has emerged as a critical player closely associated with N-Myc in facilitating NB cell growth. Here, an INSM1 promoter-driven luciferase-based screen revealed that the compound 5'-iodotubercidin suppresses adenosine kinase (ADK), an energy pathway enzyme, and also INSM1 expression and NB tumor growth. Next, we sought to dissect how the ADK pathway contributes to NB tumor cell growth in the context of INSM1 expression. We also found that 5'-iodotubercidin inhibits INSM1 expression and induces an intra- and extracellular adenosine imbalance. The adenosine imbalance, which triggers adenosine receptor-3 signaling that decreases cAMP levels and AKT phosphorylation and enhances GSK3β activity. We further observed that GSK3β then phosphorylates β-catenin and promotes the cytoplasmic proteasomal degradation pathway. 5'-Iodotubercidin treatment and INSM1 inhibition suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) activity and the AKT signaling pathways required for NB cell proliferation. The 5'-iodotubercidin treatment also suppressed β-catenin, lymphoid enhancer-binding factor 1 (LEF-1), cyclin D1, N-Myc, and INSM1 levels, ultimately leading to apoptosis via caspase-3 and p53 activation. The identification of the signaling pathways that control the proliferation of aggressive NB reported here suggests new options for combination treatments of NB patients.
Collapse
Affiliation(s)
| | | | - Jessie J Guidry
- Biochemistry and Molecular Biology and the LSUHSC Proteomics Core Facility, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | | |
Collapse
|
42
|
Silva L, Plösch T, Toledo F, Faas MM, Sobrevia L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165397. [PMID: 30699363 DOI: 10.1016/j.bbadis.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a detrimental condition for human pregnancy associated with endothelial dysfunction and endothelial inflammation in the fetoplacental vasculature and leads to increased cardio-metabolic risk in the offspring. In the fetoplacental vasculature, GDM is associated with altered adenosine metabolism. Adenosine is an important vasoactive molecule and is an intermediary and final product of transmethylation reactions in the cell. Adenosine kinase is the major regulator of adenosine levels. Disruption of this enzyme is associated with alterations in methylation-dependent gene expression regulation mechanisms, which are associated with the fetal programming phenomenon. Here we propose that cellular and molecular alterations associated with GDM can dysregulate adenosine kinase leading to fetal programming in the fetoplacental vasculature. This can contribute to the cardio-metabolic long-term consequences observed in offspring after exposure to GDM.
Collapse
Affiliation(s)
- Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands.
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands; Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia.
| |
Collapse
|
43
|
Arasi FP, Shahrestanaki MK, Aghaei M. A2a adenosine receptor agonist improves endoplasmic reticulum stress in MIN6 cell line through protein kinase A/ protein kinase B/ Cyclic adenosine monophosphate response element-binding protein/ and Growth Arrest And DNA-Damage-Inducible 34/ eukaryotic Initiation Factor 2α pathways. J Cell Physiol 2018; 234:10500-10511. [PMID: 30417358 DOI: 10.1002/jcp.27719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is one of the main molecular events underlying pancreatic beta cell (PBC) failure, apoptosis, and a decrease in insulin secretion. Recent studies have highlighted the fundamental role of A2a adenosine receptor (A2aR) in potentiation of insulin secretion and proliferation of PBCs. However, possible protective effects of A2aR signaling against ER stress have not been elucidated yet. Thus, in the present study, we aimed to investigate the effects of A2aR activation in MIN6 beta cells undergoing tunicamycin (TM)-mediated ER stress. A2aR expression and activity were evaluated using real-time polymerase chain reaction and measurement of the cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), phospho-protein kinase B or Akt (p-Akt)/Akt, and phospho-Cyclic adenosine monophosphate response element-binding protein/CREB levels in response to a specific agonist (CGS 21680). Survival and proliferation in TM and CGS 21680 cotreated cells were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), annexin V-fluorescein isothiocyanate (FITC)/propidium iodide staining, colony formation, and 5-bromo-2'-deoxyuridine (Brdu) assays. In addition, the effects of A2aR stimulation on insulin secretion were evaluated using the enzyme-linked immunosorbent assay. B-cell lymphoma 2 (Bcl-2), phospho-eukaryotic Initiation Factor 2α (p-eIF2α)/eIF2α, growth arrest and DNA-damage-inducible 34 (GADD34), X-box binding protein 1 (XBP-1), spliced X-box binding protein 1 (XBP-1s), immunoglobulin heavy-chain-binding protein (BIP), and CCAAT-enhancer-binding protein homologous protein (CHOP) levels were evaluated using western blotting. Our results showed a decrease in A2aR expression and p-Akt/Akt and p-CREB/CREB levels in TM-pretreated cells. We also mentioned that CGS 21680 effectively increased cell survival, proliferation, and insulin secretion in TM-treated cells. The antiapoptotic effects were possibly mediated through Bcl-2 upregulation. Our western blotting results indicated that A2aR effectively downregulated p-eIF2α/eIF2α, XBP-1, XBP-1s, BIP, and CHOP levels, whereas GADD34 was upregulated. Altogether, the present study revealed that A2aR signaling through PKA/Akt/CREB mediators alleviated TM cytotoxicity effects in MIN6 beta cells. Thus, the stimulation of this receptor was seen as a new approach to control ER stress in the PBC cells.
Collapse
Affiliation(s)
- Fatemeh P Arasi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad K Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
Moyce BL, Dolinsky VW. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int J Mol Sci 2018; 19:ijms19113467. [PMID: 30400566 PMCID: PMC6274918 DOI: 10.3390/ijms19113467] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Rates of gestational diabetes mellitus (GDM) are on the rise worldwide, and the number of pregnancies impacted by GDM and resulting complications are also increasing. Pregnancy is a period of unique metabolic plasticity, during which mild insulin resistance is a physiological adaptation to prioritize fetal growth. To compensate for this, the pancreatic β-cell utilizes a variety of adaptive mechanisms, including increasing mass, number and insulin-secretory capacity to maintain glucose homeostasis. When insufficient insulin production does not overcome insulin resistance, hyperglycemia can occur. Changes in the maternal system that occur in GDM such as lipotoxicity, inflammation and oxidative stress, as well as impairments in adipokine and placental signalling, are associated with impaired β-cell adaptation. Understanding these pathways, as well as mechanisms of β-cell dysfunction in pregnancy, can identify novel therapeutic targets beyond diet and lifestyle interventions, insulin and antihyperglycemic agents currently used for treating GDM.
Collapse
Affiliation(s)
- Brittany L Moyce
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
45
|
Xu J, Jia YF, Tapadar S, Weaver JD, Raji IO, Pithadia DJ, Javeed N, García AJ, Choi DS, Matveyenko AV, Oyelere AK, Shin CH. Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Sci Rep 2018; 8:15587. [PMID: 30349097 PMCID: PMC6197228 DOI: 10.1038/s41598-018-33875-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
β-cell proliferation induction is a promising therapeutic strategy to restore β-cell mass. By screening small molecules in a transgenic zebrafish model of type 1 diabetes, we identified inhibitors of non-canonical IκB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε), as enhancers of β-cell regeneration. The most potent β-cell regeneration enhancer was a cinnamic acid derivative (E)-3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA), which, acting through the cAMP-dependent protein kinase A (PKA), stimulated β-cell-specific proliferation by increasing cyclic AMP (cAMP) levels and mechanistic target of rapamycin (mTOR) activity. A combination of PIAA and cilostamide, an inhibitor of β-cell-enriched cAMP hydrolyzing enzyme phosphodiesterase (PDE) 3, enhanced β-cell proliferation, whereas overexpression of PDE3 blunted the mitogenic effect of PIAA in zebrafish. PIAA augmented proliferation of INS-1β-cells and β-cells in mammalian islets including human islets with elevation in cAMP levels and insulin secretion. PIAA improved glycemic control in streptozotocin (STZ)-induced diabetic mice with increases in β-cell proliferation, β-cell area, and insulin content in the pancreas. Collectively, these data reveal an evolutionarily conserved and critical role of TBK1/IKKε suppression in expanding functional β-cell mass.
Collapse
Affiliation(s)
- Jin Xu
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Idris O Raji
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Deeti J Pithadia
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chong Hyun Shin
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
46
|
Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. J Med Chem 2018; 61:7687-7699. [PMID: 30059217 PMCID: PMC6350255 DOI: 10.1021/acs.jmedchem.8b00658] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo. Since harmine has suboptimal kinase selectivity, we sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity, while retaining human β-cell proliferation capability. We carried out the optimization of the 1-position of harmine and synthesized 15 harmine analogues. Six compounds showed excellent DYRK1A inhibition with IC50 in the range of 49.5-264 nM. Two compounds, 2-2 and 2-8, exhibited excellent human β-cell proliferation at doses of 3-30 μM, and compound 2-2 showed improved kinase selectivity as compared to harmine.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ethan A Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
47
|
Kumar K, Man-Un Ung P, Wang P, Wang H, Li H, Andrews MK, Stewart AF, Schlessinger A, DeVita RJ. Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. Eur J Med Chem 2018; 157:1005-1016. [PMID: 30170319 PMCID: PMC6396881 DOI: 10.1016/j.ejmech.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022]
Abstract
The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic β-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine 1 which was found to inhibit DYRK1A with IC50 of 9.41 μM (Kd = 7.3 μM). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (Kd = 71-185 nM). Compound 3-5 induced human β-cell proliferation at 5 μM while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 μM. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Man-Un Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hui Wang
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hailing Li
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary K Andrews
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert J DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
48
|
Singh A, Gibert Y, Dwyer KM. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology 2018; 18:615-623. [PMID: 29937364 DOI: 10.1016/j.pan.2018.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Insulin, a key hormone produced by pancreatic beta cells precisely regulates glucose metabolism in vertebrates. In type 1 diabetes, the beta cell mass is destroyed, a process triggered by a combination of environmental and genetic factors. This ultimately results in absolute insulin deficiency and dysregulated glucose metabolism resulting in a number of detrimental pathophysiological effects. The traditional focus of treating type 1 diabetes has been to control blood sugar levels through the administration of exogenous insulin. Newer approaches aim to replace the beta cell mass through pancreatic or islet transplantation. Type 2 diabetes results from a relative insulin deficiency for the prevailing insulin resistance. Treatments are generally aimed at reducing insulin resistance and/or augmenting insulin secretion and the use of insulin itself is often required. It is increasingly being recognized that the beta cell mass is dynamic and increases insulin secretion in response to beta cell mitogens and stress signals to maintain glycemia within a very narrow physiological range. This review critically discusses the role of adrenergic, adenosine and opioid pathways and their interrelationship in insulin secretion, beta cell proliferation and regeneration.
Collapse
Affiliation(s)
- Amitoj Singh
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Yann Gibert
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Karen M Dwyer
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
49
|
Abdolazimi Y, Zhao Z, Lee S, Xu H, Allegretti P, Horton TM, Yeh B, Moeller HP, Nichols RJ, McCutcheon D, Shalizi A, Smith M, Armstrong NA, Annes JP. CC-401 Promotes β-Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology 2018; 159:3143-3157. [PMID: 29514186 PMCID: PMC6287593 DOI: 10.1210/en.2018-00083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
Pharmacologic expansion of endogenous β cells is a promising therapeutic strategy for diabetes. To elucidate the molecular pathways that control β-cell growth we screened ∼2400 bioactive compounds for rat β-cell replication-modulating activity. Numerous hit compounds impaired or promoted rat β-cell replication, including CC-401, an advanced clinical candidate previously characterized as a c-Jun N-terminal kinase inhibitor. Surprisingly, CC-401 induced rodent (in vitro and in vivo) and human (in vitro) β-cell replication via dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 1B inhibition. In contrast to rat β cells, which were broadly growth responsive to compound treatment, human β-cell replication was only consistently induced by DYRK1A/B inhibitors. This effect was enhanced by simultaneous glycogen synthase kinase-3β (GSK-3β) or activin A receptor type II-like kinase/transforming growth factor-β (ALK5/TGF-β) inhibition. Prior work emphasized DYRK1A/B inhibition-dependent activation of nuclear factor of activated T cells (NFAT) as the primary mechanism of human β-cell-replication induction. However, inhibition of NFAT activity had limited effect on CC-401-induced β-cell replication. Consequently, we investigated additional effects of CC-401-dependent DYRK1A/B inhibition. Indeed, CC-401 inhibited DYRK1A-dependent phosphorylation/stabilization of the β-cell-replication inhibitor p27Kip1. Additionally, CC-401 increased expression of numerous replication-promoting genes normally suppressed by the dimerization partner, RB-like, E2F and multivulval class B (DREAM) complex, which depends upon DYRK1A/B activity for integrity, including MYBL2 and FOXM1. In summary, we present a compendium of compounds as a valuable resource for manipulating the signaling pathways that control β-cell replication and leverage a DYRK1A/B inhibitor (CC-401) to expand our understanding of the molecular pathways that control β-cell growth.
Collapse
Affiliation(s)
- Yassan Abdolazimi
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Zhengshan Zhao
- Biomedical Institute for Regenerative Research, Texas A&M University,
Commerce, Texas
| | - Sooyeon Lee
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Paul Allegretti
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Timothy M Horton
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Department of Chemistry, Stanford University, Stanford, California
| | - Benjamin Yeh
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Hannah P Moeller
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Robert J Nichols
- Department of Genetics, Stanford University, Stanford, California
| | - David McCutcheon
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Aryaman Shalizi
- Department of Pathology, Stanford University, Stanford, California
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Medicinal Chemistry Knowledge Center, Chemistry, Engineering and Medicine for
Human Health, Stanford University, Stanford, California
| | - Neali A Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| |
Collapse
|
50
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|