1
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Bennett AL, Edwards R, Kosheleva I, Saunders C, Bililign Y, Williams A, Bubphamala P, Manosouri K, Anasti K, Saunders KO, Alam SM, Haynes BF, Acharya P, Henderson R. Microsecond dynamics control the HIV-1 Envelope conformation. SCIENCE ADVANCES 2024; 10:eadj0396. [PMID: 38306419 PMCID: PMC10836732 DOI: 10.1126/sciadv.adj0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although remarkable progress has been made in understanding the structures of various Env conformations, microsecond timescale dynamics have not been studied experimentally. Here, we used time-resolved, temperature-jump small-angle x-ray scattering to monitor structural rearrangements in an HIV-1 Env SOSIP ectodomain construct with microsecond precision. In two distinct Env variants, we detected a transition that correlated with known Env structure rearrangements with a time constant in the hundreds of microseconds range. A previously unknown structural transition was also observed, which occurred with a time constant below 10 μs, and involved an order-to-disorder transition in the trimer apex. Using this information, we engineered an Env SOSIP construct that locks the trimer in the prefusion closed state by connecting adjacent protomers via disulfides. Our findings show that the microsecond timescale structural dynamics play an essential role in controlling the Env conformation with impacts on vaccine design.
Collapse
Affiliation(s)
- Ashley L. Bennett
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Pimthada Bubphamala
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katayoun Manosouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Damm D, Suleiman E, Wagner JT, Klessing S, Pfister F, Elsayed H, Walkenfort B, Stobrawe J, Mayer J, Lehner E, Müller-Schmucker SM, Hasenberg M, Wyatt RT, Vorauer-Uhl K, Temchura V, Überla K. Modulation of immune responses to liposomal vaccines by intrastructural help. Eur J Pharm Biopharm 2023; 192:112-125. [PMID: 37797679 PMCID: PMC10872448 DOI: 10.1016/j.ejpb.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The encapsulation of HIV-unrelated T helper peptides into liposomal vaccines presenting trimers of the HIV-1 envelope glycoprotein (Env) on the surface (T helper liposomes) may recruit heterologous T cells to provide help for Env-specific B cells. This mechanism called intrastructural help can modulate the HIV-specific humoral immune response. In this study, we used cationic T helper liposomes to induce intrastructural help effects in a small animal model. The liposomes were functionalized with Env trimers by a tag-free approach designed to enable a simplified GMP production. The pre-fusion conformation of the conjugated Env trimers was verified by immunogold electron microscopy (EM) imaging and flow cytometry. The liposomes induced strong activation of Env-specific B cells in vitro. In comparison to previously established anionic liposomes, cationic T helper liposomes were superior in CD4+ T cell activation after uptake by dendritic cells. Moreover, the T helper liposomes were able to target Env-specific B cells in secondary lymphoid organs after intramuscular injection. We also observed efficient T helper cell activation and proliferation in co-cultures with Env-specific B cells in the presence of cationic T helper liposomes. Mouse immunization experiments with cationic T helper liposomes further revealed a modulation of the Env-specific IgG subtype distribution and enhancement of the longevity of antibody responses by ovalbumin- and Hepatitis B (HBV)-specific T cell help. Thus, clinical evaluation of the concept of intrastructural help seems warranted.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria.
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Stephan Klessing
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Egypt
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Jule Stobrawe
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | | | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Wan M, Yang X, Sun J, Giorgi EE, Ding X, Zhou Y, Zhang Y, Su W, Jiang C, Shan Y, Gao F. Enhancement of Neutralization Responses through Sequential Immunization of Stable Env Trimers Based on Consensus Sequences from Select Time Points by Mimicking Natural Infection. Int J Mol Sci 2023; 24:12642. [PMID: 37628824 PMCID: PMC10454455 DOI: 10.3390/ijms241612642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HIV-1 vaccines have been challenging to develop, partly due to the high level of genetic variation in its genome. Thus, a vaccine that can induce cross-reactive neutralization activities will be needed. Studies on the co-evolution of antibodies and viruses indicate that mimicking the natural infection is likely to induce broadly neutralizing antibodies (bnAbs). We generated the consensus Env sequence for each time point in subject CH505, who developed broad neutralization activities, and selected five critical time points before broad neutralization was detected. These consensus sequences were designed to express stable Env trimers. Priming with the transmitted/founder Env timer and sequential boosting with these consensus Env trimers from different time points induced broader and more potent neutralizing activities than the BG505 Env trimer in guinea pigs. Analysis of the neutralization profiles showed that sequential immunization of Env trimers favored nAbs with gp120/gp41 interface specificity while the BG505 Env trimer favored nAbs with V2 specificity. The unique features such as consensus sequences, stable Env trimers and the sequential immunization to mimic natural infection likely has allowed the induction of improved neutralization responses.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Elena E. Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (M.W.); (X.Y.); (J.S.); (X.D.); (Y.Z.); (Y.Z.); (W.S.); (C.J.)
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
5
|
Bennett AL, Edwards RJ, Kosheleva I, Saunders C, Bililign Y, Williams A, Manosouri K, Saunders KO, Haynes BF, Acharya P, Henderson R. Microsecond dynamics control the HIV-1 envelope conformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541130. [PMID: 37292605 PMCID: PMC10245784 DOI: 10.1101/2023.05.17.541130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although significant progress has been made in understanding the structures of various Env conformations and transition intermediates that occur within the millisecond timescale, faster transitions in the microsecond timescale have not yet been observed. In this study, we employed time-resolved, temperature-jump small angle X-ray scattering to monitor structural rearrangements in an HIV-1 Env ectodomain construct with microsecond precision. We detected a transition correlated with Env opening that occurs in the hundreds of microseconds range and another more rapid transition that preceded this opening. Model fitting indicated that the early rapid transition involved an order-to-disorder transition in the trimer apex loop contacts, suggesting that conventional conformation-locking design strategies that target the allosteric machinery may be ineffective in preventing this movement. Utilizing this information, we engineered an envelope that locks the apex loop contacts to the adjacent protomer. This modification resulted in significant angle-of-approach shifts in the interaction of a neutralizing antibody. Our findings imply that blocking the intermediate state could be crucial for inducing antibodies with the appropriate bound state orientation through vaccination.
Collapse
Affiliation(s)
- Ashley L Bennett
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - R J Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Carrie Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Yishak Bililign
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashliegh Williams
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katayoun Manosouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Richard J, Prévost J, Bourassa C, Brassard N, Boutin M, Benlarbi M, Goyette G, Medjahed H, Gendron-Lepage G, Gaudette F, Chen HC, Tolbert WD, Smith AB, Pazgier M, Dubé M, Clark A, Mothes W, Kaufmann DE, Finzi A. Temsavir blocks the immunomodulatory activities of HIV-1 soluble gp120. Cell Chem Biol 2023; 30:540-552.e6. [PMID: 36958337 PMCID: PMC10198848 DOI: 10.1016/j.chembiol.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | - Marianne Boutin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | | | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Andrew Clark
- ViiV Healthcare, Global Medical Affairs, Middlesex TW8 9GS, UK
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
7
|
Akamine P, González-Feliciano JA, Almodóvar R, Morell G, Rivera J, Capó-Vélez CM, Delgado-Vélez M, Prieto-Costas L, Madera B, Eichinger D, Pino I, Rivera JH, Ortiz-Ubarri J, Rivera JM, Baerga-Ortiz A, Lasalde-Dominicci JA. Optimizing the Production of gp145, an HIV-1 Envelope Glycoprotein Vaccine Candidate and Its Encapsulation in Guanosine Microparticles. Vaccines (Basel) 2023; 11:975. [PMID: 37243079 PMCID: PMC10221277 DOI: 10.3390/vaccines11050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.
Collapse
Affiliation(s)
- Pearl Akamine
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | - José A. González-Feliciano
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | | | | | | | - Coral M. Capó-Vélez
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | - Manuel Delgado-Vélez
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
| | - Luis Prieto-Costas
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Bismark Madera
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
| | | | | | | | - José Ortiz-Ubarri
- Department of Computer Sciences, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - José M. Rivera
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Abel Baerga-Ortiz
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - José A. Lasalde-Dominicci
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
8
|
Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A 2023; 120:e2215792120. [PMID: 36795752 PMCID: PMC9974412 DOI: 10.1073/pnas.2215792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Collapse
Affiliation(s)
- Benjamin N. Bell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Theodora U. J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
9
|
Pszenny V, Tjhin E, Alves‐Ferreira EV, Spada S, Bouamr F, Nair V, Ganesan S, Grigg ME. Using the Sleeping Beauty (SB) Transposon to Generate Stable Cells Producing Enveloped Virus-Like Particles (eVLPs) Pseudotyped with SARS-CoV-2 Proteins for Vaccination. Curr Protoc 2022; 2:e575. [PMID: 36300895 PMCID: PMC9874545 DOI: 10.1002/cpz1.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Sleeping Beauty (SB) transposon system is an efficient non-viral tool for gene transfer into a variety of cells, including human cells. Through a cut-and-paste mechanism, your favorite gene (YFG) is integrated into AT-rich regions within the genome, providing stable long-term expression of the transfected gene. The SB system is evolving and has become a powerful tool for gene therapy. There are no safety concerns using this system, the handling is easy, and the time required to obtain a stable cell line is significantly reduced compared to other systems currently available. Here, we present a novel application of this system to generate, within 8 days, a stable producer HEK293T cell line capable of constitutively delivering enveloped virus-like particles (eVLPs) for vaccination. We provide step-by-step protocols for generation of the SB transposon constructs, transfection procedures, and validation of the produced eVLPs. We next describe a method to pseudotype the constitutively produced eVLPs using the Spike protein derived from the SARS-CoV-2 virus (by coating the eVLP capsid with the heterologous antigen). We also describe optimization methods to scale up the production of pseudotyped eVLPs in a laboratory setting (from 100 µg to 5 mg). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Generation of the SB plasmids Basic Protocol 2: Generation of a stable HEK293T cell line constitutively secreting MLV-based eVLPs Basic Protocol 3: Evaluation of the SB constructs by immunofluorescence assay Basic Protocol 4: Validation of eVLPs by denaturing PAGE and western blot Alternate Protocol 1: Analysis of SARS-CoV-2 Spike protein oligomerization using blue native gel electrophoresis and western blot Alternate Protocol 2: Evaluation of eVLP quality by electron microscopy (negative staining) Basic Protocol 5: Small-scale production of eVLPs Alternate Protocol 3: Large-scale production of eVLPs (up to about 1 to 3 mg VLPs) Alternate Protocol 4: Large-scale production of eVLPs (up to about 3 to 5 mg VLPs) Support Protocol: Quantification of total protein concentration by Bradford assay.
Collapse
Affiliation(s)
- Viviana Pszenny
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Erick Tjhin
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Eliza V.C. Alves‐Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Stephanie Spada
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Fadila Bouamr
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Vinod Nair
- Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontana
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| |
Collapse
|
10
|
Somanathan A, Mian SY, Chaddha K, Uchoi S, Bharti PK, Tandon R, Gaur D, Chauhan VS. Process development and preclinical evaluation of a major Plasmodium falciparum blood stage vaccine candidate, Cysteine-Rich Protective Antigen (CyRPA). Front Immunol 2022; 13:1005332. [PMID: 36211427 PMCID: PMC9535676 DOI: 10.3389/fimmu.2022.1005332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund’s adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Anjali Somanathan
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seemalata Uchoi
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Virander Singh Chauhan,
| |
Collapse
|
11
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
12
|
Global Variability of V3 Loop Tetrapeptide Motif: a Concern for HIV-1 Neutralizing Antibodies-based Vaccine Design and Antiretroviral Therapy. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.3.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 2021; 372:525-530. [PMID: 33727252 PMCID: PMC8139424 DOI: 10.1126/science.abf2303] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Alec N Woosley
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Piotr Sliz
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021; 13:v13050735. [PMID: 33922579 PMCID: PMC8146413 DOI: 10.3390/v13050735] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.
Collapse
|
15
|
A reversed phase HPLC method for the quantification of HIV gp145 glycoprotein levels from cell culture supernatants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122562. [PMID: 33571843 DOI: 10.1016/j.jchromb.2021.122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.
Collapse
|
16
|
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Sliz P, Chen B. Structural impact on SARS-CoV-2 spike protein by D614G substitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33083806 DOI: 10.1101/2020.10.13.337980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing pandemic, appears to facilitate rapid viral spread. The G614 variant has now replaced the D614-carrying virus as the dominant circulating strain. We report here cryo-EM structures of a full-length S trimer carrying G614, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain (RBD). A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity. The loop transition may also modulate structural rearrangements of S protein required for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.
Collapse
|
17
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020; 369:1586-1592. [PMID: 32694201 PMCID: PMC7464562 DOI: 10.1126/science.abd4251] [Citation(s) in RCA: 862] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Intervention strategies are urgently needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here, we report two cryo-electron microscopy structures derived from a preparation of the full-length S protein, representing its prefusion (2.9-angstrom resolution) and postfusion (3.0-angstrom resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- SBGrid Consortium, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Norman M, Gilboa T, Ogata AF, Maley AM, Cohen L, Busch EL, Lazarovits R, Mao CP, Cai Y, Zhang J, Feldman JE, Hauser BM, Caradonna TM, Chen B, Schmidt AG, Alter G, Charles RC, Ryan ET, Walt DR. Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nat Biomed Eng 2020; 4:1180-1187. [PMID: 32948854 PMCID: PMC7498988 DOI: 10.1038/s41551-020-00611-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 01/19/2023]
Abstract
Sensitive assays are essential for the accurate identification of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we report a multiplexed assay for the fluorescence-based detection of seroconversion in infected individuals from less than 1 µl of blood, and as early as the day of the first positive nucleic acid test after symptom onset. The assay uses dye-encoded antigen-coated beads to quantify the levels of immunoglobulin G (IgG), IgM and IgA antibodies against four SARS-CoV-2 antigens. A logistic regression model trained using samples collected during the pandemic and samples collected from healthy individuals and patients with respiratory infections before the first outbreak of coronavirus disease 2019 (COVID-19) was 99% accurate in the detection of seroconversion in a blinded validation cohort of samples collected before the pandemic and from patients with COVID-19 five or more days after a positive nasopharyngeal test by PCR with reverse transcription. The high-throughput serological profiling of patients with COVID-19 allows for the interrogation of interactions between antibody isotypes and viral proteins, and should help us to understand the heterogeneity of clinical presentations.
Collapse
Affiliation(s)
- Maia Norman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Tal Gilboa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alana F Ogata
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Limor Cohen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Evan L Busch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roey Lazarovits
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Chih-Ping Mao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Bontempo A, Garcia MM, Rivera N, Cayabyab MJ. A Systematic Approach to HIV-1 Vaccine Immunogen Selection. AIDS Res Hum Retroviruses 2020; 36:762-770. [PMID: 32056466 DOI: 10.1089/aid.2019.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A tremendous loss of financial and human resources from seven large-scale HIV vaccine efficacy trials suggest a need for a systematic approach to vaccine selection. We conducted a systematic analysis of three important envelope glycoprotein (Env) vaccine candidates: BG505 SOSIP.664, 1086.C gp140, and 1086.C gp120 to determine the most promising by comparing their structure and antigenicity. We found that the BG505 SOSIP trimer and 1086.C gp140 clearly outperformed the 1086.C gp120 monomer. BG505 SOSIP.664 bound the strongest to the most potent and broadest broadly neutralizing antibodies (bnAbs) PG9, PGT145, VRC01, and PGT121. Of interest, although BG505 SOSIP.664 did not bind to the CH58 mAb, 1086.C gp140 bound strongly to this mAb, which belongs to a class of non-neutralizing antibodies that may be protective based on correlates of protection studies of the RV144 HIV vaccine trial. The 1086.C gp120 monomer was the least antigenic of the three vaccine immunogens, binding the weakest to bnAbs and CH58 mAb. Taken together, the evidence provided here combined with previous preclinical immunogenicity and efficacy data strongly argue that the BG505 SOSIP.664 trimer and 1086.C gp140 are likely to be better vaccine immunogens than the monomeric 1086.C gp120, which was just recently tested and shown to be nonefficacious in a phase IIb/III trial. Thus, to best utilize our financial and valuable human resources, we propose a systematic approach by not only comparing structure and antigenicity, but also immunogenicity and efficacy of Env vaccine candidates in the preclinical phase to the selection of only the most promising vaccine candidates for clinical testing.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Maria M. Garcia
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Naylene Rivera
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Mark J. Cayabyab
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Kawai A, Yamamoto Y, Yoshioka Y. Vaccine effect of recombinant single-chain hemagglutinin protein as an antigen. Heliyon 2020; 6:e04301. [PMID: 32637694 PMCID: PMC7327749 DOI: 10.1016/j.heliyon.2020.e04301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Vaccination is one of the most effective interventions for preventing the spread of influenza viruses at the population level. Currently most influenza vaccines are produced by using embryonated chicken eggs, but alternative methods that achieve more rapid large-scale production are highly desirable for vaccines against both pandemic and seasonal influenza viruses. The use of recombinant hemagglutinin (HA), a key virus surface protein, as an antigen is an attractive candidate alternative approach, because of the potential for high protein yields and the ease of cloning new antigenic variants. Although fusion of HA with trimerization domains is needed to stabilize the trimeric structure and enhance the immunogenicity of the recombinant HA protein, whether the trimerization domains are immunogenic must be considered. Here, we generated recombinant multimeric HA without trimerization domains by using a short peptide linker, termed a single-chain HA (scHA), and evaluated scHAs as potential antigens for generating vaccines against influenza virus. Using mammalian cells, we succeeded in making three types of recombinant scHAs—two dimeric scHAs and a trimeric scHA. After immunization with aluminium salts in mice, one of the dimeric scHAs induced the greatest HA-specific IgG response among the scHAs and protected against virus challenge as strongly as the typically used trimeric HA containing a trimerization domain. We did not observe IgGs specific for the short peptide linker in mice immunized with the dimeric scHA, although IgGs specific for the trimerization domain occurred in mice immunized with the trimeric HA containing that domain. Furthermore, changing to another adjuvant did not diminish the utility of the dimeric scHA. These results suggest the potential usefulness of dimeric scHA as a vaccine antigen. We believe that single-chain antigens may represent new alternatives for production of recombinant antigen–based vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Yamamoto
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author.
| |
Collapse
|
21
|
González-Feliciano JA, Akamine P, Capó-Vélez CM, Delgado-Vélez M, Dussupt V, Krebs SJ, Wojna V, Polonis VR, Baerga-Ortiz A, Lasalde-Dominicci JA. A recombinant gp145 Env glycoprotein from HIV-1 expressed in two different cell lines: Effects on glycosylation and antigenicity. PLoS One 2020; 15:e0231679. [PMID: 32559193 PMCID: PMC7304579 DOI: 10.1371/journal.pone.0231679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5–5.5 and 6.0–7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.
Collapse
Affiliation(s)
| | - Pearl Akamine
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Coral M. Capó-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Manuel Delgado-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Abel Baerga-Ortiz
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| | - José A. Lasalde-Dominicci
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| |
Collapse
|
22
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511405 DOI: 10.1101/2020.05.16.099317] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ongoing SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic has created urgent needs for intervention strategies to control the crisis. The spike (S) protein of the virus forms a trimer and catalyzes fusion between viral and target cell membranes - the first key step of viral infection. Here we report two cryo-EM structures, both derived from a single preparation of the full-length S protein, representing the prefusion (3.1Å resolution) and postfusion (3.3Å resolution) conformations, respectively. The spontaneous structural transition to the postfusion state under mild conditions is independent of target cells. The prefusion trimer forms a tightly packed structure with three receptor-binding domains clamped down by a segment adjacent to the fusion peptide, significantly different from recently published structures of a stabilized S ectodomain trimer. The postfusion conformation is a rigid tower-like trimer, but decorated by N-linked glycans along its long axis with almost even spacing, suggesting possible involvement in a mechanism protecting the virus from host immune responses and harsh external conditions. These findings advance our understanding of how SARS-CoV-2 enters a host cell and may guide development of vaccines and therapeutics.
Collapse
|
23
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Norman M, Gilboa T, Ogata AF, Maley AM, Cohen L, Cai Y, Zhang J, Feldman JE, Hauser BM, Caradonna TM, Chen B, Schmidt AG, Alter G, Charles RC, Ryan ET, Walt DR. Ultra-Sensitive High-Resolution Profiling of Anti-SARS-CoV-2 Antibodies for Detecting Early Seroconversion in COVID-19 Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.28.20083691. [PMID: 32511657 PMCID: PMC7277013 DOI: 10.1101/2020.04.28.20083691] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The COVID-19 pandemic continues to infect millions of people worldwide. In order to curb its spread and reduce morbidity and mortality, it is essential to develop sensitive and quantitative methods that identify infected individuals and enable accurate population-wide screening of both past and present infection. Here we show that Single Molecule Array assays detect seroconversion in COVID-19 patients as soon as one day after symptom onset using less than a microliter of blood. This multiplexed assay format allows us to quantitate IgG, IgM and IgA immunoglobulins against four SARS-CoV-2 targets, thereby interrogating 12 antibody isotype-viral protein interactions to give a high resolution profile of the immune response. Using a cohort of samples collected prior to the outbreak as well as samples collected during the pandemic, we demonstrate a sensitivity of 86% and a specificity of 100% during the first week of infection, and 100% sensitivity and specificity thereafter. This assay should become the gold standard for COVID19 serological profiling and will be a valuable tool for answering important questions about the heterogeneity of clinical presentation seen in the ongoing pandemic.
Collapse
|
25
|
Joshi VR, Newman RM, Pack ML, Power KA, Munro JB, Okawa K, Madani N, Sodroski JG, Schmidt AG, Allen TM. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog 2020; 16:e1008577. [PMID: 32392227 PMCID: PMC7241850 DOI: 10.1371/journal.ppat.1008577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect.
Collapse
Affiliation(s)
- Vinita R. Joshi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruchi M. Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Melissa L. Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ken Okawa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS, Chou JJ, Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 2020; 16:529-537. [PMID: 32152540 PMCID: PMC7723321 DOI: 10.1038/s41589-020-0496-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Pan J, Peng H, Chen B, Harrison SC. Cryo-EM Structure of Full-length HIV-1 Env Bound With the Fab of Antibody PG16. J Mol Biol 2020; 432:1158-1168. [PMID: 31931014 DOI: 10.1016/j.jmb.2019.11.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
The HIV-1 envelope protein (Env) is the target of neutralizing antibodies and the template for vaccine immunogen design. The dynamic conformational equilibrium of trimeric Env influences its antigenicity and potential immunogenicity. Antibodies that bind at the trimer apex stabilize a "closed" conformation characteristic of the most difficult to neutralize isolates. A goal of vaccine development is therefore to mimic the closed conformation in a designed immunogen. A disulfide-stabilized, trimeric Env ectodomain-the "SOSIP" construct-has many of the relevant properties; it is also particularly suitable for structure determination. Some single-molecule studies have, however, suggested that the SOSIP trimer is not a good representation of Env on the surface of a virion or an infected cell. We isolated Env (fully cleaved to gp120 and gp41) from the surface of expressing cells using tagged, apex-binding Fab PG16 and determined the structure of the PG16-Env complex by cryo-EM to an overall resolution of 4.6 Å. Placing the only purification tag on the Fab ensured that the isolated Env was continuously stabilized in its closed, native conformation. The Env structure in this complex corresponds closely to the SOSIP structures determined by both x-ray crystallography and cryo-EM. Although the membrane-interacting elements are not resolved in our reconstruction, we can make inferences about the connection between ectodomain and membrane-proximal external region (MPER) by reference to the published cryo-tomography structure of an Env "spike" and the NMR structure of the MPER-transmembrane segment. We discuss these results in view of the conflicting interpretations in the literature.
Collapse
Affiliation(s)
- Junhua Pan
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Hanqin Peng
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Bing Chen
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics 2019; 11:E534. [PMID: 31615112 PMCID: PMC6835828 DOI: 10.3390/pharmaceutics11100534] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| |
Collapse
|
30
|
Fu M, Hu K, Hu H, Ni F, Du T, Shattock RJ, Hu Q. Antigenicity and immunogenicity of HIV-1 gp140 with different combinations of glycan mutation and V1/V2 region or V3 crown deletion. Vaccine 2019; 37:7501-7508. [PMID: 31564450 DOI: 10.1016/j.vaccine.2019.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
The carbohydrate moieties on HIV-1 envelope glycoprotein (Env) act as shields to mask conserved neutralizing epitopes, while the hyperimmunogenic variable regions are immunodominant in inducing non-neutralizing antibodies, representing the major challenge for using Env as a vaccine candidate to induce broadly neutralizing antibodies (bNAbs). In this study, we designed a series of HIV-1 gp140 constructs with the removal of N276/N463 glycans, deletion of the V1/V2 region and the V3 crown, alone or in combination. We first demonstrated that all the constructs had a comparable level of expression and were mainly expressed as trimers. Following purification of gp140s from mammalian cells, we measured their binding to bNAbs and non-NAbs in vitro and capability in inducing bNAbs in vivo. Antibody binding assay showed that removal of N276/N463 glycans together with the deletion of V1/V2 region enhanced the binding of gp140s to CD4-binding site-targeting bNAbs VRC01 and 3BNC117, and CD4-induced epitopes-targeting non-NAbs A32, 17b and F425 A1g8, whereas further deletion of V3 crown in the gp140 mutants demonstrated slightly compromised binding capability to these Abs. Immunogenicity study showed that the above mutations did not lead to the induction of a higher Env-specific IgG response via either DNA-DNA or DNA-protein prime-boost strategies in mice, while neutralization assay did not show an apparent difference between wild type and mutated gp140s. Taken together, our results indicate that removal of glycans at N276/N463 and deletion of the V1/V2 region can expose the CD4-binding site and CD4-induced epitopes, but such exposure alone appears incapable of enhancing the induction of bNAbs in mice, informing that additional modification or/and immunization strategies are needed. In addition, the strategies which we established for producing gp140 proteins and for analyzing the antigenicity and immunogenicity of gp140 provide useful means for further vaccine design and assessment.
Collapse
Affiliation(s)
- Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Robin J Shattock
- Section of Infectious Diseases, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom.
| |
Collapse
|
31
|
Smith M, Hoffman J, Sojar H, Aalinkeel R, Hsiao CB, Hicar MD. Assessment of Antibody Interference of Enfuvirtide (T20) Function Shows Assay Dependent Variability. Curr HIV Res 2019; 16:404-415. [PMID: 30836922 PMCID: PMC6710457 DOI: 10.2174/1570162x17666190228154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Background: During HIV infection, fusion of the viral and cellular membranes is dependent on folding of the gp41 trimer into a six-helix bundle. Fusion inhibitors, such as the antiretroviral Enfuvirtide (T20), interfere with the formation of the gp41 six-helix bundle. Recent in vitro studies reveal that the gp41 immunodominant region one targeting antibody 3D6 can block T20 interference, but the clinical and pathophysiologic significance of this finding is unclear. Objective/Method: We have previously characterized a number of antibodies that target conformational epitopes on gp41and herein characterized their ability to interfere with T20 in multiple assays and assess their prevalence in HIV infected subjects. Results: The T20 interference by antibody 3D6 was confirmed in a CHO-HXB2 envelope/ HeLaT4+ cell culture assay. Antibodies that target an immunodominant region one epitope, as well as a gp41 discontinuous epitope, also interfered in this assay, however, not all antibodies that targeted these epitopes showed T20 interference. This response was not due to the direct binding of T20 by the antibodies and could not be replicated utilizing TZM-bl and HL2/3 cells. Notably, serum competition studies on a panel of HIV subjects demonstrate that these conformational targeting antibodies are common in the HIV population. Conclusion: The relatively common nature of antibodies targeting these epitopes, the disparate in vitro results, and lack of reported clinical failures ascribed to such antibodies leads us to conclude that antibody interference of T20 is likely not clinically relevant. However, this warrants continued consideration with the advancement of other fusion inhibitors.
Collapse
Affiliation(s)
- Michele Smith
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jonathon Hoffman
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Division of Allergy Immunology and Rheumatology, University at Buffalo, Buffalo, NY, United States
| | - Chiu-Bin Hsiao
- Temple University School of Medicine, Pittsburgh, PA, United States.,Allegheny General Hospital, Pittsburgh, PA, United States
| | - Mark Daniel Hicar
- Department of Pediatrics, School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| |
Collapse
|
32
|
Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity. J Virol 2019; 93:JVI.00772-19. [PMID: 31217246 DOI: 10.1128/jvi.00772-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies in our laboratory characterized a panel of highly mutated HIV-specific conformational epitope-targeting antibodies (Abs) from a panel of HIV-infected long-term nonprogressors (LTNPs). Despite binding HIV envelope protein and having a high number of somatic amino acid mutations, these Abs had poor neutralizing activity. Because of the evidence of antigen-driven selection and the long CDR3 region (21 amino acids [aa]), we further characterized the epitope targeting of monoclonal Ab (MAb) 76-Q3-2C6 (2C6). We confirmed that 2C6 binds preferentially to trimeric envelope and recognizes the clades A, B, and C SOSIP trimers. 2C6 binds gp140 constructs of clades A, B, C, and D, suggesting a conserved binding site that we localized to the ectodomain of gp41. Ab competition with MAb 50-69 suggested this epitope localizes near aa 579 to 613 (referenced to HXB2 gp160). Peptide library scanning showed consistent binding in this region but to only a single peptide. Lack of overlapping peptide binding supported a nonlinear epitope structure. The significance of this site is supported by 2C6 having Ab-dependent cell cytotoxicity (ADCC) against envelope proteins from two clades. Using 2C6 and variants, alanine scanning mutagenesis identified three amino acids (aa 592, 595, and 596) in the overlapping region of the previously identified peptide. Additional amino acids at sites 524 and 579 were also identified, helping explain its conformational requirement. The fact that different amino acids were included in the epitope depending on the targeted protein supports the conclusion that 2C6 targets a native conformational epitope. When we mapped these amino acids on the trimerized structure, they spanned across oligomers, supporting the notion that the epitope targeted by 2C6 lies in a recessed pocket between two gp41 oligomers. A complete understanding of the epitope specificity of ADCC-mediating Abs is essential for developing effective immunization strategies that optimize protection by these Abs.IMPORTANCE This paper further defines the function and area of the HIV trimeric envelope protein targeted by the monoclonal antibody 2C6. 2C6 binding is influenced by amino acid mutations across two separate gp41 sections of the envelope trimer. This epitope is recognized on multiple clades (variant groups of circulating viruses) of gp41, gp140 trimers, and SOSIP trimers. For the clades tested, 2C6 has robust ADCC. As the target of 2C6 is available in the major clades of HIV and has robust ADCC activity, further definition and appreciation of targeting of antibodies similar to 2C6 during vaccine development should be considered.
Collapse
|
33
|
Torrents de la Peña A, Rantalainen K, Cottrell CA, Allen JD, van Gils MJ, Torres JL, Crispin M, Sanders RW, Ward AB. Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathog 2019; 15:e1007920. [PMID: 31306470 PMCID: PMC6658011 DOI: 10.1371/journal.ppat.1007920] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is located on the surface of the virus and is the target of broadly neutralizing antibodies (bNAbs). Recombinant native-like soluble Env trimer mimetics, such as SOSIP trimers, have taken a central role in HIV-1 vaccine research aimed at inducing bNAbs. We therefore performed a direct and thorough comparison of a full-length unmodified Env trimer containing the transmembrane domain and the cytoplasmic tail, with the sequence matched soluble SOSIP trimer, both based on an early Env sequence (AMC011) from an HIV+ individual that developed bNAbs. The structures of the full-length AMC011 trimer bound to either bNAb PGT145 or PGT151 were very similar to the structures of SOSIP trimers. Antigenically, the full-length and SOSIP trimers were comparable, but in contrast to the full-length trimer, the SOSIP trimer did not bind at all to non-neutralizing antibodies, most likely as a consequence of the intrinsic stabilization of the SOSIP trimer. Furthermore, the glycan composition of full-length and SOSIP trimers was similar overall, but the SOSIP trimer possessed slightly less complex and less extensively processed glycans, which may relate to the intrinsic stabilization as well as the absence of the membrane tether. These data provide insights into how to best use and improve membrane-associated full-length and soluble SOSIP HIV-1 Env trimers as immunogens. HIV-1 envelope glycoprotein (Env) trimer is the primary antigenic target for neutralizing antibodies. As such, it is the focus of subunit vaccine design efforts that aim to recapitulate the structure and native antigenic profile in a soluble, stable form capable of eliciting neutralizing antibody responses. Here, we compare the antigenicity, glycosylation and structure of a full-length, wild-type Env trimer with a corresponding soluble, SOSIP trimer that is representative of many ongoing subunit vaccine design efforts. Overall, both exhibit similar properties, and the SOSIP trimer is an accurate mimic of the wild-type Env.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- Centre for Biological Sciences & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- Centre for Biological Sciences & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (RWS); (ABW)
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (RWS); (ABW)
| |
Collapse
|
34
|
Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019; 27:878-891. [PMID: 31262533 DOI: 10.1016/j.tim.2019.06.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022]
Abstract
HIV-1 envelope glycoprotein [Env; trimeric (gp160)3 cleaved to (gp120/gp41)3] attaches the virion to a susceptible cell and induces fusion of viral and cell membranes to initiate infection. It interacts with the primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4) to allow viral entry by triggering large structural rearrangements and unleashing the fusogenic potential of gp41 to induce membrane fusion. Recent advances in structural biology of HIV-1 Env and its complexes with the cellular receptors have revealed molecular details of HIV-1 entry and yielded new mechanistic insights. In this review, I summarize our latest understanding of the HIV-1 membrane fusion process and discuss possible pathways for productive viral entry.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Gonelli CA, Khoury G, Center RJ, Purcell DFJ. HIV-1-based Virus-like Particles that Morphologically Resemble Mature, Infectious HIV-1 Virions. Viruses 2019; 11:v11060507. [PMID: 31159488 PMCID: PMC6630479 DOI: 10.3390/v11060507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
Abstract
A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
36
|
Ancestral sequences from an elite neutralizer proximal to the development of neutralization resistance as a potential source of HIV vaccine immunogens. PLoS One 2019; 14:e0213409. [PMID: 30969970 PMCID: PMC6457492 DOI: 10.1371/journal.pone.0213409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
A major challenge in HIV vaccine development is the identification of immunogens able to elicit broadly neutralizing antibodies (bNAbs). While remarkable progress has been made in the isolation and characterization of bNAbs, the epitopes they recognize appear to be poorly immunogenic. Thus, none of the candidate vaccines developed to date has induced satisfactory levels of neutralizing antibodies to the HIV envelope protein (Env). One approach to the problem of poor immunogenicity is to build vaccines based on envelope (env) genes retrieved from rare individuals termed elite neutralizers (ENs) who at one time possessed specific sequences that stimulated the formation of bNAbs. Env proteins selected from these individuals could possess uncommon, yet to be defined, structural features that enhance the immunogenicity of epitopes recognized by bNAbs. Here we describe the recovery of envs from an EN that developed unusually broad and potent bNAbs. As longitudinal specimens were not available, we combined plasma and provirus sequences acquired from a single time-point to infer a phylogenetic tree. Combining ancestral reconstruction data with virus neutralization data allowed us to sift through the myriad of virus quasi-species that evolved in this individual to identify envelope sequences from the nodes that appeared to define the transition from neutralization sensitive envs to the neutralization resistant envs that occur in EN plasma. Synthetic genes from these nodes were functional in infectivity assays and sensitive to neutralization by bNAbs, and may provide a novel source of immunogens for HIV vaccine development.
Collapse
|
37
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
38
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
39
|
Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2018; 565:318-323. [PMID: 30542158 PMCID: PMC6391877 DOI: 10.1038/s41586-018-0804-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/02/2018] [Indexed: 01/26/2023]
Abstract
HIV-1 envelope glycoprotein (Env), which consists of trimeric (gp160)3 cleaved to (gp120 and gp41)3, interacts with the primary receptor CD4 and a coreceptor (such as chemokine receptor CCR5) to fuse viral and target-cell membranes. The gp120-coreceptor interaction has previously been proposed as the most crucial trigger for unleashing the fusogenic potential of gp41. Here we report a cryo-electron microscopy structure of a full-length gp120 in complex with soluble CD4 and unmodified human CCR5, at 3.9 Å resolution. The V3 loop of gp120 inserts into the chemokine-binding pocket formed by seven transmembrane helices of CCR5, and the N terminus of CCR5 contacts the CD4-induced bridging sheet of gp120. CCR5 induces no obvious allosteric changes in gp120 that can propagate to gp41; it does bring the Env trimer close to the target membrane. The N terminus of gp120, which is gripped by gp41 in the pre-fusion or CD4-bound Env, flips back in the CCR5-bound conformation and may irreversibly destabilize gp41 to initiate fusion. The coreceptor probably functions by stabilizing and anchoring the CD4-induced conformation of Env near the cell membrane. These results advance our understanding of HIV-1 entry into host cells and may guide the development of vaccines and therapeutic agents.
Collapse
|
40
|
Cao Y, Dong Y, Chou JJ. Structural and Functional Properties of Viral Membrane Proteins. ADVANCES IN MEMBRANE PROTEINS 2018. [PMCID: PMC7122571 DOI: 10.1007/978-981-13-0532-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses have developed a large variety of transmembrane proteins to carry out their infectious cycles. Some of these proteins are simply anchored to membrane via transmembrane helices. Others, however, adopt more interesting structures to perform tasks such as mediating membrane fusion and forming ion-permeating channels. Due to the dynamic or plastic nature shown by many of the viral membrane proteins, structural and mechanistic understanding of these proteins has lagged behind their counterparts in prokaryotes and eukaryotes. This chapter provides an overview of the use of NMR spectroscopy to unveil the transmembrane and membrane-proximal regions of viral membrane proteins, as well as their interactions with potential therapeutics.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
41
|
Neutralizing Antibody Responses following Long-Term Vaccination with HIV-1 Env gp140 in Guinea Pigs. J Virol 2018; 92:JVI.00369-18. [PMID: 29643249 PMCID: PMC6002713 DOI: 10.1128/jvi.00369-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
A vaccination regimen capable of eliciting potent and broadly neutralizing antibodies (bNAbs) remains an unachieved goal of the HIV-1 vaccine field. Here, we report the immunogenicity of longitudinal prime/boost vaccination regimens with a panel of HIV-1 envelope (Env) gp140 protein immunogens over a period of 200 weeks in guinea pigs. We assessed vaccine regimens that included a monovalent clade C gp140 (C97ZA012 [C97]), a tetravalent regimen consisting of four clade C gp140s (C97ZA012, 459C, 405C, and 939C [4C]), and a tetravalent regimen consisting of clade A, B, C, and mosaic gp140s (92UG037, PVO.4, C97ZA012, and Mosaic 3.1, respectively [ABCM]). We found that the 4C and ABCM prime/boost regimens were capable of eliciting greater magnitude and breadth of binding antibody responses targeting variable loop 2 (V2) over time than the monovalent C97-only regimen. The longitudinal boosting regimen conducted over more than 2 years increased the magnitude of certain tier 1 NAb responses but did not increase the magnitude or breadth of heterologous tier 2 NAb responses. These data suggest that additional immunogen design strategies are needed to induce broad, high-titer tier 2 NAb responses.IMPORTANCE The elicitation of potent, broadly neutralizing antibodies (bNAbs) remains an elusive goal for the HIV-1 vaccine field. In this study, we explored the use of a long-term vaccination regimen with different immunogens to determine if we could elicit bNAbs in guinea pigs. We found that longitudinal boosting over more than 2 years increased tier 1 NAb responses but did not increase the magnitude and breadth of tier 2 NAb responses. These data suggest that additional immunogen designs and vaccination strategies will be necessary to induce broad tier 2 NAb responses.
Collapse
|
42
|
Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. J Virol 2018; 92:JVI.00277-18. [PMID: 29618643 DOI: 10.1128/jvi.00277-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.
Collapse
|
43
|
Cai H, Zhang R, Orwenyo J, Giddens J, Yang Q, LaBranche CC, Montefiori DC, Wang LX. Multivalent Antigen Presentation Enhances the Immunogenicity of a Synthetic Three-Component HIV-1 V3 Glycopeptide Vaccine. ACS CENTRAL SCIENCE 2018; 4:582-589. [PMID: 29806004 PMCID: PMC5968512 DOI: 10.1021/acscentsci.8b00060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 06/08/2023]
Abstract
HIV-1 envelope glycoproteins gp120 and gp41 are presented on the virus surface as a trimer of heterodimer and are the targets of broadly neutralizing antibodies (bNAbs). We describe here the synthesis and preliminary immunological evaluation of a three-component trivalent HIV-1 V3 glycopeptide immunogen aiming to raise glycopeptide epitope-specific antibodies. Click chemistry confers efficient synthesis of the lipopeptide-glycopeptide conjugate that carries three copies of HIV-1 JR-FL gp120 V3 glycopeptide with a high-mannose glycan at the N332 glycosylation site. We found that the multivalent presentation substantially enhanced the immunogenicity of the V3 glycopeptide. The antisera induced by the three-component multivalent glycopeptide immunogen exhibited stronger binding to heterologous HIV-1 gp120s and the trimeric gp140s than that from the monovalent glycopeptide immunogen. The antisera generated from this preliminary rabbit immunization did not show virus neutralization activity, probably due to the lack of somatic maturation. The ability to elicit substantial glycopeptide epitope-specific antibodies by the three-component trivalent glycopeptide immunogen suggests that it could serve as a valuable vaccine component in combination with other vaccine candidates for further immunization studies.
Collapse
Affiliation(s)
- Hui Cai
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Roushu Zhang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Jared Orwenyo
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - John Giddens
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Qiang Yang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Celia C. LaBranche
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - David C. Montefiori
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
44
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
45
|
PClass: Protein Quaternary Structure Classification by Using Bootstrapping Strategy as Model Selection. Genes (Basel) 2018; 9:genes9020091. [PMID: 29443925 PMCID: PMC5852587 DOI: 10.3390/genes9020091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Protein quaternary structure complex is also known as a multimer, which plays an important role in a cell. The dimer structure of transcription factors is involved in gene regulation, but the trimer structure of virus-infection-associated glycoproteins is related to the human immunodeficiency virus. The classification of the protein quaternary structure complex for the post-genome era of proteomics research will be of great help. Classification systems among protein quaternary structures have not been widely developed. Therefore, we designed the architecture of a two-layer machine learning technique in this study, and developed the classification system PClass. The protein quaternary structure of the complex is divided into five categories, namely, monomer, dimer, trimer, tetramer, and other subunit classes. In the framework of the bootstrap method with a support vector machine, we propose a new model selection method. Each type of complex is classified based on sequences, entropy, and accessible surface area, thereby generating a plurality of feature modules. Subsequently, the optimal model of effectiveness is selected as each kind of complex feature module. In this stage, the optimal performance can reach as high as 70% of Matthews correlation coefficient (MCC). The second layer of construction combines the first-layer module to integrate mechanisms and the use of six machine learning methods to improve the prediction performance. This system can be improved over 10% in MCC. Finally, we analyzed the performance of our classification system using transcription factors in dimer structure and virus-infection-associated glycoprotein in trimer structure. PClass is available via a web interface at http://predictor.nchu.edu.tw/PClass/.
Collapse
|
46
|
Shrivastava T, Samal S, Tyagi AK, Goswami S, Kumar N, Ozorowski G, Ward AB, Chakrabarti BK. Envelope proteins of two HIV-1 clades induced different epitope-specific antibody response. Vaccine 2018; 36:1627-1636. [PMID: 29429810 DOI: 10.1016/j.vaccine.2018.01.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/31/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
Using HIV-1 envelope protein (Env)-based immunogens that closely mimic the conformation of functional HIV-1 Envs and represent the isolates prevalent in relevant geographical region is considered a rational approach towards developing HIV vaccine. We recently reported that like clade B Env, JRFL, membrane bound Indian clade C Env, 4-2.J41 is also efficiently cleaved and displays desirable antigenic properties for plasmid DNA immunization. Here, we evaluated the immune response in rabbit by injecting the animals with plasmid expressing membrane bound efficiently cleaved 4-2.J41 Env followed by its gp140-foldon (gp140-fd) protein boost. The purified 4-2.J41-gp140-fd protein is recognized by a wide panel of broadly neutralizing antibodies (bNAbs) including the quaternary conformation-dependent antibody, PGT145 with high affinity. We have also evaluated and compared the quality of antibody response elicited in rabbits after immunizing with plasmid DNA expressing the membrane bound efficiently cleaved Env followed by gp140-fd proteins boost with either of clade C Env, 4-2.J41 or clade B Env, JRFL or in combination. In comparison to JRFL group, 4-2.J41 group elicited autologous as well as limited low level cross clade neutralizing antibody response. Preliminary epitope-mapping of sera from animals show that in contrast to JRFL group, no reactivity to either linear peptides or V3-loop is detected in 4-2.J41 group. Furthermore, the presence of conformation-specific antibody in sera from animals immunized with 4-2.J41 Env is observed. However, unlike JRFL group, in 4-2.J41 group of animals, CD4-binding site-directed antibodies cannot be detected. Additionally, we have demonstrated that the quality of antibody response in combination group is guided by JRFL Env-based immunogen suggesting that the selection and the quality of Envs in multicade candidate vaccine are important factors to elicit desirable response.
Collapse
Affiliation(s)
- Tripti Shrivastava
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India
| | - Sweety Samal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India
| | - Ashish K Tyagi
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India
| | - Sandeep Goswami
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India
| | - Naresh Kumar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bimal K Chakrabarti
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India; IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
47
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
48
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
49
|
Menon V, Ayala VI, Rangaswamy SP, Kalisz I, Whitney S, Galmin L, Ashraf A, LaBranche C, Montefiori D, Petrovsky N, Kalyanaraman VS, Pal R. DNA prime/protein boost vaccination elicits robust humoral response in rhesus macaques using oligomeric simian immunodeficiency virus envelope and Advax delta inulin adjuvant. J Gen Virol 2017; 98:2143-2155. [PMID: 28758637 DOI: 10.1099/jgv.0.000863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The partial success of the RV144 trial underscores the importance of envelope-specific antibody responses for an effective HIV-1 vaccine. Oligomeric HIV-1 envelope proteins delivered with a potent adjuvant are expected to elicit strong antibody responses with broad neutralization specificity. To test this hypothesis, two SIV envelope proteins were formulated with delta inulin-based adjuvant (Advax) and used to immunize nonhuman primates. Oligomeric gp140-gp145 from SIVmac251 and SIVsmE660 was purified to homogeneity. Oligomers showed high-affinity interaction with CD4 and were highly immunogenic in rabbits, inducing Tier 2 SIV-neutralizing antibodies. The immunogenicity of an oligomeric Env DNA prime and protein boost together with Advax was evaluated in Chinese rhesus macaques. DNA administration elicited antibodies to both envelopes, and titres were markedly enhanced following homologous protein boosts via intranasal and intramuscular routes. Strong antibody responses were detected against the V1 and V2 domains of gp120. During peak immune responses, a low to moderate level of neutralizing activity was detected against Tier 1A/1B SIV isolates, with a moderate level noted against a Tier 2 isolate. Increased serum antibody affinity to SIVmac251 gp140 and generation of Env-specific memory B cells were observed in the immunized macaques. Animals were subjected to low-dose intravaginal challenge with SIVmac251 one week after the last protein boost. One out of three immunized animals was protected from infection. Although performed with a small number of macaques, this study demonstrates the utility of oligomeric envelopes formulated with Advax in eliciting broad antibody responses with the potential to provide protection against SIV transmission.
Collapse
Affiliation(s)
- Veena Menon
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Victor I Ayala
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Asma Ashraf
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd and Flinders University, Bedford Park, SA 5042, Australia
| | | | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW A major focus in HIV vaccine research is the development of suitable antigens that elicit broadly neutralizing antibody responses targeting HIV's envelope protein (Env). Delivery of Env in a repetitive manner on particle-based carriers allows higher avidity interactions and is therefore expected to efficiently engage B cells, thus leading to affinity maturation that results in superior antibody responses characterized by improved breadth, potency, and durability. This review summarizes current work that is evaluating diverse types of such particulate carriers for Env delivery. RECENT FINDINGS Various types of particle scaffolds are being investigated, encompassing group-specific antigen-derived virus-like particles, bacteria-derived proteins that self-assemble into symmetrical nanoparticles, as well as liposomes assembled from membrane components and recombinantly produced Env isoforms. Env-derived antigens from peptides over selected isolates to improved, stabilized next-generation designer Envs have been attached to such carriers. Immunological evaluation in animal models showed that these structures often elicit superior humoral immune responses. SUMMARY The findings reviewed here emphasize the potential of particle-based delivery modalities to elicit better antibody responses. Together with advances in Env antigen design, these approaches may synergistically act together on the way to obtain vaccine candidates that potentially induce protective immune responses against HIV.
Collapse
|