1
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Lalun VO, Breiden M, Galindo-Trigo S, Smakowska-Luzan E, Simon RGW, Butenko MA. A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level. eLife 2024; 12:RP87912. [PMID: 38896460 PMCID: PMC11186634 DOI: 10.7554/elife.87912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.
Collapse
Affiliation(s)
- Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Elwira Smakowska-Luzan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | - Rüdiger GW Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
3
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Zhang J, Ru X, You W, Xu F, Wu Z, Jin P, Zheng Y, Cao S. Phosphatidylinositol-specific phospholipase C-associated phospholipid metabolism mediates DcGLRs channel to promote calcium influx under CaCl 2 treatment in shredded carrots during storage. Int J Biol Macromol 2024; 270:132517. [PMID: 38777008 DOI: 10.1016/j.ijbiomac.2024.132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.
Collapse
Affiliation(s)
- Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
5
|
Ali S, Tyagi A, Mir ZA. Plant Immunity: At the Crossroads of Pathogen Perception and Defense Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:1434. [PMID: 38891243 PMCID: PMC11174815 DOI: 10.3390/plants13111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling cascades. Pattern-recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors are the hallmarks of plant innate immunity because they can detect pathogen or related immunogenic signals and trigger series of immune signaling cascades at different cellular compartments. In plants, most commonly, PRRs are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that function as a first layer of inducible defense. In this review, we provide an update on how plants sense pathogens, microbe-associated molecular patterns (PAMPs or MAMPs), and effectors as a danger signals and activate different immune responses like PTI and ETI. Further, we discuss the role RNA silencing, autophagy, and systemic acquired resistance as a versatile host defense response against pathogens. We also discuss early biochemical signaling events such as calcium (Ca2+), reactive oxygen species (ROS), and hormones that trigger the activation of different plant immune responses. This review also highlights the impact of climate-driven environmental factors on host-pathogen interactions.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M 0TB, Canada;
| |
Collapse
|
6
|
Inoue K, Tsuchida N, Saijo Y. Modulation of plant immunity and biotic interactions under phosphate deficiency. JOURNAL OF PLANT RESEARCH 2024; 137:343-357. [PMID: 38693461 DOI: 10.1007/s10265-024-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.
Collapse
Affiliation(s)
- Kanako Inoue
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Natsuki Tsuchida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
7
|
Mittal D, Gautam JK, Varma M, Laie A, Mishra S, Behera S, Vadassery J. External jasmonic acid isoleucine mediates amplification of plant elicitor peptide receptor (PEPR) and jasmonate-based immune signalling. PLANT, CELL & ENVIRONMENT 2024; 47:1397-1415. [PMID: 38229005 DOI: 10.1111/pce.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.
Collapse
Affiliation(s)
- Deepika Mittal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | - Mahendra Varma
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Amrutha Laie
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Smrutisanjita Behera
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | |
Collapse
|
8
|
Van Gerrewey T, Chung HS. MAPK Cascades in Plant Microbiota Structure and Functioning. J Microbiol 2024; 62:231-248. [PMID: 38587594 DOI: 10.1007/s12275-024-00114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Collapse
Affiliation(s)
- Thijs Van Gerrewey
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
9
|
Wang W, Cheng HY, Zhou JM. New insight into Ca 2+ -permeable channel in plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:623-631. [PMID: 38289015 DOI: 10.1111/jipb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Calcium ions (Ca2+ ) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+ -permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+ -permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+ -permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
10
|
Wang C, Luan S. Calcium homeostasis and signaling in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102485. [PMID: 38043138 DOI: 10.1016/j.pbi.2023.102485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Calcium (Ca2+) signaling consists of three steps: (1) initiation of a change in cellular Ca2+ concentration in response to a stimulus, (2) recognition of the change through direct binding of Ca2+ by its sensors, (3) transduction of the signal to elicit downstream responses. Recent studies have uncovered a central role for Ca2+ signaling in both layers of immune responses initiated by plasma membrane (PM) and intracellular receptors, respectively. These advances in our understanding are attributed to several lines of research, including invention of genetically-encoded Ca2+ reporters for the recording of intracellular Ca2+ signals, identification of Ca2+ channels and their gating mechanisms, and functional analysis of Ca2+ binding proteins (Ca2+ sensors). This review analyzes the recent literature that illustrates the importance of Ca2+ homeostasis and signaling in plant innate immunity, featuring intricate Ca2+dependent positive and negative regulations.
Collapse
Affiliation(s)
- Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
12
|
Bender KW, Zipfel C. Paradigms of receptor kinase signaling in plants. Biochem J 2023; 480:835-854. [PMID: 37326386 PMCID: PMC10317173 DOI: 10.1042/bcj20220372] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Plant receptor kinases (RKs) function as key plasma-membrane localized receptors in the perception of molecular ligands regulating development and environmental response. Through the perception of diverse ligands, RKs regulate various aspects throughout the plant life cycle from fertilization to seed set. Thirty years of research on plant RKs has generated a wealth of knowledge on how RKs perceive ligands and activate downstream signaling. In the present review, we synthesize this body of knowledge into five central paradigms of plant RK signaling: (1) RKs are encoded by expanded gene families, largely conserved throughout land plant evolution; (2) RKs perceive many different kinds of ligands through a range of ectodomain architectures; (3) RK complexes are typically activated by co-receptor recruitment; (4) post-translational modifications fulfill central roles in both the activation and attenuation of RK-mediated signaling; and, (5) RKs activate a common set of downstream signaling processes through receptor-like cytoplasmic kinases (RLCKs). For each of these paradigms, we discuss key illustrative examples and also highlight known exceptions. We conclude by presenting five critical gaps in our understanding of RK function.
Collapse
Affiliation(s)
- Kyle W. Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
13
|
Ma Y, Garrido K, Ali R, Berkowitz GA. Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1223-1236. [PMID: 36633062 DOI: 10.1111/tpj.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca2+ influx as an early step in numerous signaling cascades. CNGC-mediated Ca2+ elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways. It is shown CNGC2, CNGC4, and CNGC6 physically interact in vivo, whereas CNGC12 does not. CNGC involvement in immune signaling was evaluated by monitoring mutant response to elicitor peptide Pep3. Pep3 response cascades involving CNGCs included mitogen-activated kinase activation mediated by Ca2+ -dependent protein kinase phosphorylation. Pep3-induced reactive oxygen species generation was impaired in cngc2, cngc4, and cngc6, but not in cngc12, suggesting that CNGC2, CNGC4, and CNGC6 (which physically interact) may be components of a multimeric CNGC channel complex for immune signaling. However, unlike cngc2 and cngc4, cngc6 is not sensitive to high Ca2+ and displays no pleiotropic dwarfism. All four cngc mutants showed thermotolerance compared to wild-type, although CNGC12 does not interact with the other three CNGCs. These results imply that physically interacting CNGCs may, in some cases, function in a signaling cascade as components of a heteromeric channel complex, although this may not be the case in other signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
14
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
15
|
Morgan JM, Jelenska J, Hensley D, Retterer ST, Morrell-Falvey JL, Standaert RF, Greenberg JT. An efficient and broadly applicable method for transient transformation of plants using vertically aligned carbon nanofiber arrays. FRONTIERS IN PLANT SCIENCE 2022; 13:1051340. [PMID: 36507425 PMCID: PMC9728956 DOI: 10.3389/fpls.2022.1051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species. The VACNFs permeabilize plant tissue transiently to allow molecules into cells without causing a detectable stress response. We successfully delivered DNA into leaves, roots and fruit of five plant species (Arabidopsis, poplar, lettuce, Nicotiana benthamiana, and tomato) and confirmed accumulation of the encoded fluorescent proteins by confocal microscopy. Using this system, it is possible to transiently transform plant cells with both small and large plasmids. The method is successful for species recalcitrant to Agrobacterium-mediated transformation. VACNFs provide simple, reliable means of DNA delivery into a variety of plant organs and species.
Collapse
Affiliation(s)
- Jessica M Morgan
- Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Dale Hensley
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Robert F Standaert
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 2022; 185:3341-3355.e13. [PMID: 35998629 DOI: 10.1016/j.cell.2022.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; SUSTech Academy for Advanced and Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yichuan Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhifu Han
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Wong A, Gehring C. New Horizons in Plant Cell Signaling. Int J Mol Sci 2022; 23:5826. [PMID: 35628641 PMCID: PMC9147848 DOI: 10.3390/ijms23105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| |
Collapse
|
18
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
19
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
20
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
21
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
22
|
Kobylińska A, Posmyk MM. Melatonin Protects Tobacco Suspension Cells against Pb-Induced Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:13368. [PMID: 34948164 PMCID: PMC8703733 DOI: 10.3390/ijms222413368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.
Collapse
Affiliation(s)
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland;
| |
Collapse
|
23
|
Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int J Mol Sci 2021; 22:ijms221910715. [PMID: 34639056 PMCID: PMC8509212 DOI: 10.3390/ijms221910715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli. The systemic response induced by a long-distance electrical signal, representing a change in the activity of a complex of molecular-physiological processes, includes a nonspecific component and a stimulus-specific component. This review discusses possible mechanisms for transmitting information about the nature of the stimulus and the formation of a specific systemic response with the participation of electrical signals induced by various abiotic factors.
Collapse
|
24
|
Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 2021; 10:cells10092219. [PMID: 34571868 PMCID: PMC8470099 DOI: 10.3390/cells10092219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.
Collapse
|
25
|
Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102030. [PMID: 33684883 DOI: 10.1016/j.pbi.2021.102030] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 05/02/2023]
Abstract
Plants resist attacks by pathogens via innate immune responses, which are initiated by cell surface-localized pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. Although the two classes of immune receptors involve different activation mechanisms and appear to require different early signalling components, PTI and ETI eventually converge into many similar downstream responses, albeit with distinct amplitudes and dynamics. Increasing evidence suggests the existence of intricate interactions between PRR-mediated and NLR-mediated signalling cascades as well as common signalling components shared by both. Future investigation of the mechanisms underlying signal collaboration between PRR-initiated and NLR-initiated immunity will enable a more complete understanding of the plant immune system. This review discusses recent advances in our understanding of the relationship between the two layers of plant innate immunity.
Collapse
Affiliation(s)
- Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
26
|
Screening for Arabidopsis mutants with altered Ca 2+ signal response using aequorin-based Ca 2+ reporter system. STAR Protoc 2021; 2:100558. [PMID: 34041505 PMCID: PMC8144734 DOI: 10.1016/j.xpro.2021.100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental stimuli evoke transient increases of the cytosolic Ca2+ level. To identify upstream components of Ca2+ signaling, we have optimized two forward genetic screening systems based on Ca2+ reporter aequorin. AEQsig6 and AEQub plants were used for generating ethyl methanesulfonate (EMS)-mutagenized libraries. The AEQsig6 EMS-mutagenized library was preferably used to screen the mutants with reduced Ca2+ signal response due to its high effectiveness, while the AEQub EMS-mutagenized library was used for screening of the mutants with altered Ca2+ signal response. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020) and Zhu et al. (2013). Highly efficient systems for screening of Ca2+ signal mutants in Arabidopsis Step-by-step instructions to analyze Ca2+ signal response using Ca2+ reporter aequorin AEQsig6 system for identifying mutants impaired in shoot-based Ca2+ signaling FAS system for isolating tissue- or stimuli-specific Ca2+ responsive mutants
Collapse
|
27
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
28
|
Zhao C, Tang Y, Wang J, Zeng Y, Sun H, Zheng Z, Su R, Schneeberger K, Parker JE, Cui H. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:1078-1094. [PMID: 33469907 DOI: 10.1111/nph.17218] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Calcium (Ca2+ ) is a second messenger for plant cell surface and intracellular receptors mediating pattern-triggered and effector-triggered immunity (respectively, PTI and ETI). Several CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) were shown to control transient cytosolic Ca2+ influx upon PTI activation. The contributions of specific CNGC members to PTI and ETI remain unclear. ENHANCED DISEASE SUSCEPTIBLITY1 (EDS1) regulates ETI signaling. In an Arabidopsis genetic screen for suppressors of eds1, we identify a recessive gain-of-function mutation in CNGC20, denoted cngc20-4, which partially restores disease resistance in eds1. cngc20-4 enhances PTI responses and ETI hypersensitive cell death. A cngc20-4 single mutant exhibits autoimmunity, which is dependent on genetically parallel EDS1 and salicylic acid (SA) pathways. CNGC20 self-associates, forms heteromeric complexes with CNGC19, and is phosphorylated and stabilized by BOTRYTIS INDUCED KINASE1 (BIK1). The cngc20-4 L371F exchange on a predicted transmembrane channel inward surface does not disrupt these interactions but leads to increased cytosolic Ca2+ accumulation, consistent with mis-regulation of CNGC20 Ca2+ -permeable channel activity. Our data show that ectopic Ca2+ influx caused by a mutant form of CNGC20 in cngc20-4 affects both PTI and ETI responses. We conclude that tight control of the CNGC20 Ca2+ ion channel is important for regulated immunity.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinhua Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Yanhong Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hequan Sun
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Su
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, 40225, Germany
| | - Haitao Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
30
|
Okada K, Kubota Y, Hirase T, Otani K, Goh T, Hiruma K, Saijo Y. Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:2844-2858. [PMID: 33131060 DOI: 10.1111/nph.17064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thaliana, PROPEPs and their derived elicitor-active Pep epitopes provide damage-associated molecular patterns (DAMPs), which trigger defence responses through cell-surface receptors PEPR1 and PEPR2. In addition, Pep peptides induce root growth inhibition and root hair formation, however their relationships and coordinating mechanisms are poorly understood. Here, we reveal that Pep1-mediated root hair formation requires PEPR-associated kinases BAK1/BKK1 and BIK1/PBL1, ethylene, auxin and root hair differentiation regulators, in addition to PEPR2. Our analysis on 69 accessions unravels intraspecies variations in Pep1-induced root hair formation and growth inhibition. The absence of a positive correlation between the two traits suggests their separate regulation and diversification in natural populations of A. thaliana. Restricted PEPR2 expression to certain root tissues is sufficient to induce root hair formation and growth inhibition in response to Pep1, indicating the capacity of non-cell-autonomous receptor signalling in different root tissues. Of particular note, root hair cell-specific PEPR2 expression uncouples defence activation from root growth inhibition and root hair formation, suggesting a unique property of root hairs in root defence activation following Pep1 recognition.
Collapse
Affiliation(s)
- Kentaro Okada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuki Kubota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Koichi Otani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tatsuaki Goh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, 332-0012, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, 332-0012, Japan
| |
Collapse
|
31
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
32
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
33
|
Jaber R, Planchon A, Mathieu-Rivet E, Kiefer-Meyer MC, Zahid A, Plasson C, Pamlard O, Beaupierre S, Trouvé JP, Guillou C, Driouich A, Follet-Gueye ML, Mollet JC. Identification of two compounds able to improve flax resistance towards Fusarium oxysporum infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110690. [PMID: 33218648 DOI: 10.1016/j.plantsci.2020.110690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Plants are surrounded by a diverse range of microorganisms that causes serious crop losses and requires the use of pesticides. Flax is a major crop in Normandy used for its fibres and is regularly challenged by the pathogenic fungus Fusarium oxysporum (Fo) f. sp. lini. To protect themselves, plants use "innate immunity" as a first line of defense level against pathogens. Activation of plant defense with elicitors could be an alternative for crop plant protection. A previous work was conducted by screening a chemical library and led to the identification of compounds able to activate defense responses in Arabidopsis thaliana. Four compounds were tested for their abilities to improve resistance of two flax varieties against Fo. Two of them, one natural (holaphyllamine or HPA) and one synthetic (M4), neither affected flax nor Fo growth. HPA and M4 induced oxidative burst and callose deposition. Furthermore, HPA and M4 caused changes in the expression patterns of defense-related genes coding a glucanase and a chitinase-like. Finally, plants pre-treated with HPA or M4 exhibited a significant decrease in the disease symptoms. Together, these findings demonstrate that HPA and M4 are able to activate defense responses in flax and improve its resistance against Fo infection.
Collapse
Affiliation(s)
- Rim Jaber
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Aline Planchon
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Elodie Mathieu-Rivet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | | | - Abderrakib Zahid
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Olivier Pamlard
- Unité de catalyse et chimie du solide, UMR CNRS 8181, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | - Sandra Beaupierre
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | | | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France; Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76000, Rouen, France.
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| |
Collapse
|
34
|
Thor K, Jiang S, Michard E, George J, Scherzer S, Huang S, Dindas J, Derbyshire P, Leitão N, DeFalco TA, Köster P, Hunter K, Kimura S, Gronnier J, Stransfeld L, Kadota Y, Bücherl CA, Charpentier M, Wrzaczek M, MacLean D, Oldroyd GED, Menke FLH, Roelfsema MRG, Hedrich R, Feijó J, Zipfel C. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 2020; 585:569-573. [PMID: 32846426 DOI: 10.1038/s41586-020-2702-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.
Collapse
Affiliation(s)
- Kathrin Thor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shushu Jiang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwan Michard
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Jeoffrey George
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Shouguang Huang
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Julian Dindas
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.,Synthace Ltd, London, UK
| | - Thomas A DeFalco
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Philipp Köster
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Julien Gronnier
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Lena Stransfeld
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Yokohama, Japan
| | - Christoph A Bücherl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Dr. Friedrich Eberth Arzneimittel GmbH, Ursensollen, Germany
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniel MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.,Sainsbury Laboratory Cambridge University, Cambridge, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - M Rob G Roelfsema
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - José Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK. .,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Malukani KK, Ranjan A, Hota SJ, Patel HK, Sonti RV. Dual Activities of Receptor-Like Kinase OsWAKL21.2 Induce Immune Responses. PLANT PHYSIOLOGY 2020; 183:1345-1363. [PMID: 32354878 PMCID: PMC7333719 DOI: 10.1104/pp.19.01579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/14/2020] [Indexed: 05/04/2023]
Abstract
Plant pathogens secrete cell wall-degrading enzymes that degrade various components of the plant cell wall. Plants sense this cell wall damage as a mark of infection and induce immune responses. However, the plant functions that are involved in the elaboration of cell wall damage-induced immune responses remain poorly understood. Transcriptome analysis revealed that a rice (Oryza sativa) receptor-like kinase, WALL-ASSOCIATED KINASE-LIKE21 (OsWAKL21.2), is up-regulated following treatment with either Xanthomonas oryzae pv oryzae (a bacterial pathogen) or lipaseA/esterase (LipA; a cell wall-degrading enzyme of X. oryzae pv oryzae). Overexpression of OsWAKL21.2 in rice induces immune responses similar to those activated by LipA treatment. Down-regulation of OsWAKL21.2 attenuates LipA-mediated immune responses. Heterologous expression of OsWAKL21.2 in Arabidopsis (Arabidopsis thaliana) also activates plant immune responses. OsWAKL21.2 is a dual-activity kinase that has in vitro kinase and guanylate cyclase activities. Interestingly, kinase activity of OsWAKL21.2 is necessary to activate rice immune responses, whereas in Arabidopsis, OsWAKL21.2 guanylate cyclase activity activates these responses. Our study reveals a rice receptor kinase that activates immune responses in two different species via two different mechanisms.
Collapse
Affiliation(s)
- Kamal Kumar Malukani
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ashish Ranjan
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- University of Hyderabad, Hyderabad 500046, India
| | - Shiva Jyothi Hota
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Hitendra Kumar Patel
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramesh V Sonti
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Department of Biotechnology, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
36
|
Tian W, Wang C, Gao Q, Li L, Luan S. Calcium spikes, waves and oscillations in plant development and biotic interactions. NATURE PLANTS 2020; 6:750-759. [PMID: 32601423 DOI: 10.1038/s41477-020-0667-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
The calcium ion (Ca2+) is a universal signal in all eukaryotic cells. A fundamental question is how Ca2+, a simple cation, encodes complex information with high specificity. Extensive research has established a two-step process (encoding and decoding) that governs the specificity of Ca2+ signals. While the encoding mechanism entails a complex array of channels and transporters, the decoding process features a number of Ca2+ sensors and effectors that convert Ca2+ signals into cellular effects. Along this general paradigm, some signalling components may be highly conserved, but others are divergent among different organisms. In plant cells, Ca2+ participates in numerous signalling processes, and here we focus on the latest discoveries on Ca2+-encoding mechanisms in development and biotic interactions. In particular, we use examples such as polarized cell growth of pollen tube and root hair in which tip-focused Ca2+ oscillations specify the signalling events for rapid cell elongation. In plant-microbe interactions, Ca2+ spiking and oscillations hold the key to signalling specificity: while pathogens elicit cytoplasmic spiking, symbiotic microorganisms trigger nuclear Ca2+ oscillations. Herbivore attacks or mechanical wounding can trigger Ca2+ waves traveling a long distance to transmit and convert the local signal to a systemic defence program in the whole plant. What channels and transporters work together to carve out the spatial and temporal patterns of the Ca2+ fluctuations? This question has remained enigmatic for decades until recent studies uncovered Ca2+ channels that orchestrate specific Ca2+ signatures in each of these processes. Future work will further expand the toolkit for Ca2+-encoding mechanisms and place Ca2+ signalling steps into larger signalling networks.
Collapse
Affiliation(s)
- Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
37
|
Miao S, Liu J, Guo J, Li JF. Engineering plants to secrete affinity-tagged pathogen elicitors for deciphering immune receptor complex or inducing enhanced immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:761-776. [PMID: 31359599 DOI: 10.1111/jipb.12859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Plant cells mount plenty of pattern-recognition receptors (PRRs) to detect the microbe-associated molecular patterns (MAMPs) from potential microbial pathogens. MAMPs are overrepresented by proteinaneous patterns, such as the flg22 peptide from bacterial flagellin. Identification of PRR receptor complex components by forward or reverse genetics can be time/labor-consuming, and be confounded by functional redundancies. Here, we present a strategy for identifying PRR complex components by engineering plants to inducibly secrete affinity-tagged proteinaneous MAMPs to the apoplast. The PRR protein complexes bound to self-secreted MAMPs are enriched through affinity purification and dissected by mass spectrometry. As a proof of principle, we could capture the flg22 receptor FLS2 and co-receptor BAK1 using Arabidopsis plants secreting FLAG-tagged flg22 under estradiol induction. Moreover, we identified receptor-like kinases LIK1 and PEPR1/PEPR2 as potential components in the FLS2 receptor complex, which were further validated by protein-protein interaction assays and the reverse genetics approach. Our study showcases a simple way to biochemically identify endogenous PRR complex components without overexpressing the PRR or using chemical cross-linkers, and suggests a possible crosstalk between different immune receptors in plants. A modest dose of estradiol can also be applied to inducing enhanced immunity in engineered plants to both bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Shuang Miao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiuer Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianhang Guo
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
38
|
Jogawat A, Meena MK, Kundu A, Varma M, Vadassery J. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2752-2768. [PMID: 31957790 PMCID: PMC7210775 DOI: 10.1093/jxb/eraa028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The activation of calcium signaling is a crucial event for perceiving environmental stress. Colonization by Piriformospora indica, a growth-promoting root endosymbiont, activates cytosolic Ca2+ in Arabidopsis roots. In this study, we examined the role and functional relevance of calcium channels responsible for Ca2+ fluxes. Expression profiling revealed that CYCLIC NUCLEOTIDE GATED CHANNEL 19 (CNGC19) is an early-activated gene, induced by unidentified components in P. indica cell-wall extract. Functional analysis showed that loss-of-function of CNGC19 resulted in growth inhibition by P.indica, due to increased colonization and loss of controlled fungal growth. The cngc19 mutant showed reduced elevation of cytosolic Ca2+ in response to P. indica cell-wall extract in comparison to the wild-type. Microbe-associated molecular pattern-triggered immunity was compromised in the cngc19 lines, as evidenced by unaltered callose deposition, reduced cis-(+)-12-oxo-phytodienoic acid, jasmonate, and jasmonoyl isoleucine levels, and down-regulation of jasmonate and other defense-related genes, which contributed to a shift towards a pathogenic response. Loss-of-function of CNGC19 resulted in an inability to modulate indole glucosinolate content during P. indica colonization. CNGC19-mediated basal immunity was dependent on the AtPep receptor, PEPR. CNGC19 was also crucial for P. indica-mediated suppression of AtPep-induced immunity. Our results thus demonstrate that Arabidopsis CNGC19 is an important Ca2+ channel that maintains a robust innate immunity and is crucial for growth-promotion signaling upon colonization by P. indica.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anish Kundu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mahendra Varma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
39
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
41
|
Rahman H, Wang XY, Xu YP, He YH, Cai XZ. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci Rep 2020; 10:4078. [PMID: 32139792 PMCID: PMC7057975 DOI: 10.1038/s41598-020-61000-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Guanylate cyclases (GCs) are enzymes that catalyze the reaction to produce cyclic GMP (cGMP), a key signaling molecule in eukaryotes. Nevertheless, systemic identification and functional analysis of GCs in crop plant species have not yet been conducted. In this study, we systematically identified GC genes in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of two putative tomato GC genes in disease resistance. Ninety-nine candidate GCs containing GC catalytic center (GC-CC) motif were identified in tomato genome. Intriguingly, all of them were putative protein kinases embedding a GC-CC motif within the protein kinase domain, which was thus tentatively named as GC-kinases here. Two homologs of Arabidopsis PEPRs, SlGC17 and SlGC18 exhibited in vitro GC activity. Co-silencing of SlGC17 and SlGC18 genes significantly reduced resistance to tobacco rattle virus, fungus Sclerotinia sclerotiorum, and bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Moreover, co-silencing of these two genes attenuated PAMP and DAMP-triggered immunity as shown by obvious decrease of flg22, chitin and AtPep1-elicited Ca2+ and H2O2 burst in SlGC-silenced plants. Additionally, silencing of these genes altered the expression of a set of Ca2+ signaling genes. Furthermore, co-silencing of these GC-kinase genes exhibited stronger effects on all above regulations in comparison with individual silencing. Collectively, our results suggest that GC-kinases might widely exist in tomato and the two SlPEPR-GC genes redundantly play a positive role in resistance to diverse pathogens and PAMP/DAMP-triggered immunity in tomato. Our results provide insights into composition and functions of GC-kinases in tomato.
Collapse
Affiliation(s)
- Hafizur Rahman
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yao Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Han He
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. THE NEW PHYTOLOGIST 2020; 225:2267-2282. [PMID: 31595506 DOI: 10.1111/nph.16241] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to diverse abiotic and biotic stresses, and thus have developed complex signaling mechanisms that orchestrate multiple stress responses. Plant peptides have recently emerged as key signaling molecules of stress responses, not only to mechanical wounding and pathogen infection but also to nutrient imbalance, drought and high salinity. The currently identified stress-related signaling peptides in plants are derived from proteolytic processing of protein precursors. Here, we review these protein-derived peptides and the evidence for their functions in stress signaling. We recommend potential research directions that could clarify their roles in stress biology, and propose possible crosstalk with regard to the physiological outcome. The stress-centric perspective allows us to highlight the crucial roles of peptides in regulating the dynamics of stress physiology. Inspired by historic and recent findings, we review how peptides initiate complex molecular interactions to coordinate biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
43
|
Goto Y, Maki N, Ichihashi Y, Kitazawa D, Igarashi D, Kadota Y, Shirasu K. Exogenous Treatment with Glutamate Induces Immune Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:474-487. [PMID: 31721650 DOI: 10.1094/mpmi-09-19-0262-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant resistance inducers (PRIs) are compounds that protect plants from diseases by activating immunity responses. Exogenous treatment with glutamate (Glu), an important amino acid for all living organisms, induces resistance against fungal pathogens in rice and tomato. To understand the molecular mechanisms of Glu-induced immunity, we used the Arabidopsis model system. We found that exogenous treatment with Glu induces resistance against pathogens in Arabidopsis. Consistent with this, transcriptome analyses of Arabidopsis seedlings showed that Glu significantly induces the expression of wound-, defense-, and stress-related genes. Interestingly, Glu activates the expression of genes induced by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns at much later time points than the flg22 peptide, which is a bacterial-derived PAMP. The Glu receptor-like (GLR) proteins GLR3.3 and GLR3.6 are involved in the early expression of Glu-inducible genes; however, the sustained expression of these genes does not require the GLR proteins. Glu-inducible gene expression is also not affected by mutations in genes that encode PAMP receptors (EFR, FLS2, and CERK1), regulators of pattern-triggered immunity (BAK1, BKK1, BIK1, and PBL1), or a salicylic acid biosynthesis enzyme (SID2). The treatment of roots with Glu activates the expression of PAMP-, salicylic acid-, and jasmonic acid-inducible genes in leaves. Moreover, the treatment of roots with Glu primes chitin-induced responses in leaves, possibly through transcriptional activation of LYSIN-MOTIF RECEPTOR-LIKE KINASE 5 (LYK5), which encodes a chitin receptor. Because Glu treatment does not cause discernible growth retardation, Glu can be used as an effective PRI.
Collapse
Affiliation(s)
- Yukihisa Goto
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Noriko Maki
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Kitazawa
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan
| | - Daisuke Igarashi
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
44
|
Chen X, Marszałkowska M, Reinhold-Hurek B. Jasmonic Acid, Not Salicyclic Acid Restricts Endophytic Root Colonization of Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1758. [PMID: 32063914 PMCID: PMC7000620 DOI: 10.3389/fpls.2019.01758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
Research on the interaction between the non-nodule-forming bacterial endophytes and their host plants is still in its infancy. Especially the understanding of plant control mechanisms which govern endophytic colonization is very limited. The current study sets out to determine which hormonal signaling pathway controls endophytic colonization in rice, and whether the mechanisms deviate for a pathogen. The endophyte Azoarcus olearius BH72-rice model was used to investigate root responses to endophytes in comparison to the recently established pathosystem of rice blight Xanthomonas oryzae pv. oryzae PXO99 (Xoo) in flooded roots. In the rice root transcriptome, 523 or 664 genes were found to be differentially expressed in response to Azoarcus or Xoo colonization, respectively; however, the response was drastically different, with only 6% of the differentially expressed genes (DEGs) overlapping. Overall, Xoo infection induced a much stronger defense reaction than Azoarcus colonization, with the latter leading to down-regulation of many defense related DEGs. Endophyte-induced DEGs encoded several enzymes involved in phytoalexin biosynthesis, ROS (reactive oxygen species) production, or pathogenesis-related (PR) proteins. Among putative plant markers related to signal transduction pathways modulated exclusively during Azoarcus colonization, none overlapped with previously published DEGs identified for another rice endophyte, Azospirillum sp. B510. This suggests a large variation in responses of individual genotypic combinations. Interestingly, the DEGs related to jasmonate (JA) signaling pathway were found to be consistently activated by both beneficial endophytes. In contrast, the salicylate (SA) pathway was activated only in roots infected by the pathogen. To determine the impact of SA and JA production on root colonization by the endophyte and the pathogen, rice mutants with altered hormonal responses were employed: mutant cpm2 deficient in jasmonate synthesis, and RNA interference (RNAi) knockdown lines of NPR1 decreased in salicylic acid-mediated defense responses (NPR1-kd). Only in cpm2, endophytic colonization of Azoarcus was significantly increased, while Xoo colonization was not affected. Surprisingly, NPR1-kd lines showed slightly decreased colonization by Xoo, contrary to published results for leaves. These outcomes suggest that JA but not SA signaling is involved in controlling the Azoarcus endophyte density in roots and can restrict internal root colonization, thereby shaping the beneficial root microbiome.
Collapse
Affiliation(s)
| | | | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, Bremen, Germany
| |
Collapse
|
45
|
He Y, Zhou J, Meng X. Phosphoregulation of Ca 2+ Influx in Plant Immunity. TRENDS IN PLANT SCIENCE 2019; 24:1067-1069. [PMID: 31668684 DOI: 10.1016/j.tplants.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
A rapid influx of calcium into the cytosol represents a hallmark of plant immune responses. Recent studies in arabidopsis (Tian et al.) and rice (Wang et al.) reveal that pathogen-responsive receptor-like cytoplasmic kinases phosphorylate and activate calcium-permeable cyclic nucleotide-gated channels to trigger calcium influx, filling a missing link between pathogen perception and calcium signaling.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
46
|
Cross-Microbial Protection via Priming a Conserved Immune Co-Receptor through Juxtamembrane Phosphorylation in Plants. Cell Host Microbe 2019; 26:810-822.e7. [DOI: 10.1016/j.chom.2019.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
47
|
Shen W, Liu J, Li JF. Type-II Metacaspases Mediate the Processing of Plant Elicitor Peptides in Arabidopsis. MOLECULAR PLANT 2019; 12:1524-1533. [PMID: 31454707 DOI: 10.1016/j.molp.2019.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 05/24/2023]
Abstract
Plants can produce animal cytokine-like immune peptides, among which plant elicitor peptides (Peps) derive from the C termini of their precursors (PROPEPs). Recently, the functions of Peps have been expanded beyond plant immunity. However, a long-standing enigma is how PROPEPs are processed into Peps. Here, we report that the Ca2+-dependent type-II metacaspases (MCs) constitute the proteolytic enzymes to mediate PROPEP processing in Arabidopsis. In protoplasts, co-expression of PROPEP1 with type-II MCs, including MC4 to MC9, can promote the generation of processed Pep1. Destruction of the catalytic cysteine residue in MC4 or the conserved arginine residue preceding the Pep1 sequence blocks PROPEP1 cleavage, whereas the bacterial elicitor flg22 enhances the MC4-mediated PROPEP1 processing. MC4 cleaves PROPEP1 in vitro and also cleaves PROPEP2 to PROPEP8, but, surprisingly, not PROPEP6 in protoplasts. Domain swapping between PROPEP1 and PROPEP6 suggests a hidden role of the sequence context upstream of the Pep sequence for PROPEP processing. flg22-induced PROPEP1 processing and Botrytis cinerea resistance are severely impaired in the mc4/5/6/7 quadruple-mutant plants. Taken together, our study identifies the type-II MCs as new players in Pep signaling, and lays the foundation for understanding the regulation of multifaceted functions of Peps in plant immunity and beyond.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiuer Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
48
|
Yu X, Xu G, Li B, de Souza Vespoli L, Liu H, Moeder W, Chen S, de Oliveira MVV, Ariádina de Souza S, Shao W, Rodrigues B, Ma Y, Chhajed S, Xue S, Berkowitz GA, Yoshioka K, He P, Shan L. The Receptor Kinases BAK1/SERK4 Regulate Ca 2+ Channel-Mediated Cellular Homeostasis for Cell Death Containment. Curr Biol 2019; 29:3778-3790.e8. [PMID: 31679931 DOI: 10.1016/j.cub.2019.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Cell death is a vital and ubiquitous process that is tightly controlled in all organisms. However, the mechanisms underlying precise cell death control remain fragmented. As an important shared module in plant growth, development, and immunity, Arabidopsis thaliana BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and somatic embryogenesis receptor kinase 4 (SERK4) redundantly and negatively regulate plant cell death. By deploying an RNAi-based genetic screen for bak1/serk4 cell death suppressors, we revealed that cyclic nucleotide-gated channel 20 (CNGC20) functions as a hyperpolarization-activated Ca2+-permeable channel specifically regulating bak1/serk4 cell death. BAK1 directly interacts with and phosphorylates CNGC20 at specific sites in the C-terminal cytosolic domain, which in turn regulates CNGC20 stability. CNGC19, the closest homolog of CNGC20 with a low abundance compared with CNGC20, makes a quantitative genetic contribution to bak1/serk4 cell death only in the absence of CNGC20, supporting the biochemical data showing homo- and heteromeric assembly of the CNGC20 and CNGC19 channel complexes. Transcripts of CNGC20 and CNGC19 are elevated in bak1/serk4 compared with wild-type plants, further substantiating a critical role of homeostasis of CNGC20 and CNGC19 in cell death control. Our studies not only uncover a unique regulation of ion channel stability by cell-surface-resident receptor kinase-mediated phosphorylation but also provide evidence for fine-tuning Ca2+ channel functions in maintaining cellular homeostasis by the formation of homo- and heterotetrameric complexes.
Collapse
Affiliation(s)
- Xiao Yu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Guangyuan Xu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Bo Li
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Luciano de Souza Vespoli
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Marcos V V de Oliveira
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Suzane Ariádina de Souza
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Wenyong Shao
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Bárbara Rodrigues
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yi Ma
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Ping He
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China.
| | - Libo Shan
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
49
|
Meena MK, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew M, Boland W, Mithöfer A, Vadassery J. The Ca 2+ Channel CNGC19 Regulates Arabidopsis Defense Against Spodoptera Herbivory. THE PLANT CELL 2019; 31:1539-1562. [PMID: 31076540 PMCID: PMC6635850 DOI: 10.1105/tpc.19.00057] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 05/18/2023]
Abstract
Cellular calcium elevation is an important signal used by plants for recognition and signaling of environmental stress. Perception of the generalist insect, Spodoptera litura, by Arabidopsis (Arabidopsis thaliana) activates cytosolic Ca2+ elevation, which triggers downstream defense. However, not all the Ca2+ channels generating the signal have been identified, nor are their modes of action known. We report on a rapidly activated, leaf vasculature- and plasma membrane-localized, CYCLIC NUCLEOTIDE GATED CHANNEL19 (CNGC19), which activates herbivory-induced Ca2+ flux and plant defense. Loss of CNGC19 function results in decreased herbivory defense. The cngc19 mutant shows aberrant and attenuated intravascular Ca2+ fluxes. CNGC19 is a Ca2+-permeable channel, as hyperpolarization of CNGC19-expressing Xenopus oocytes in the presence of both cyclic adenosine monophosphate and Ca2+ results in Ca2+ influx. Breakdown of Ca2+-based defense in cngc19 mutants leads to a decrease in herbivory-induced jasmonoyl-l-isoleucine biosynthesis and expression of JA responsive genes. The cngc19 mutants are deficient in aliphatic glucosinolate accumulation and hyperaccumulate its precursor, methionine. CNGC19 modulates aliphatic glucosinolate biosynthesis in tandem with BRANCHED-CHAIN AMINO ACID TRANSAMINASE4, which is involved in the chain elongation pathway of Met-derived glucosinolates. Furthermore, CNGC19 interacts with herbivory-induced CALMODULIN2 in planta. Together, our work reveals a key mechanistic role for the Ca2+ channel CNGC19 in the recognition of herbivory and the activation of defense signaling.
Collapse
Affiliation(s)
- Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ramgopal Prajapati
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepthi Krishna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Keerthi Divakaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Yogesh Pandey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - M.K. Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | | |
Collapse
|
50
|
Moeder W, Phan V, Yoshioka K. Ca 2+ to the rescue - Ca 2+channels and signaling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:19-26. [PMID: 30709488 DOI: 10.1016/j.plantsci.2018.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 05/03/2023]
Abstract
Ca2+ is a universal second messenger in many signaling pathways in all eukaryotes including plants. Transient changes in [Ca2+]cyt are rapidly generated upon a diverse range of stimuli such as drought, heat, wounding, and biotic stresses (infection by pathogenic and symbiotic microorganisms), as well as developmental cues. It has been known for a while that [Ca2+]cyt transient signals play crucial roles to activate plant immunity and recently significant progresses have been made in this research field. However the identity and regulation of ion channels that are involved in defense related Ca2+ signals are still enigmatic. Members of two ligand gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated channels (CNGCs) have been implicated in immune responses; nevertheless more precise data to understand their direct involvement in the creation of Ca2+ signals during immune responses is necessary. Furthermore, the study of other ion channel groups is also required to understand the whole picture of the intra- and inter-cellular Ca2+ signalling network. In this review we summarize Ca2+ signals in plant immunity from an ion channel point of view and discuss future challenges in this exciting research field.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Van Phan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada; Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|