1
|
Li P, Liu S, Wallerstein J, Villones RLE, Huang P, Lindkvist-Petersson K, Meloni G, Lu K, Steen Jensen K, Liin SI, Gourdon P. Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism. Nat Struct Mol Biol 2024:10.1038/s41594-024-01432-1. [PMID: 39609652 DOI: 10.1038/s41594-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The CorA/Mrs2 family of pentameric proteins are cardinal for the influx of Mg2+ across cellular membranes, importing the cation to mitochondria in eukaryotes. Yet, the conducting and regulation mechanisms of permeation remain elusive, particularly for the eukaryotic Mrs2 members. Here, we report closed and open Mrs2 cryo-electron microscopy structures, accompanied by functional characterization. Mg2+ flux is permitted by a narrow pore, gated by methionine and arginine residues in the closed state. Transition between the conformations is orchestrated by two pairs of conserved sensor-serving Mg2+-binding sites in the mitochondrial matrix lumen, located in between monomers. At lower levels of Mg2+, these ions are stripped, permitting an alternative, symmetrical shape, maintained by the RDLR motif that replaces one of the sensor site pairs in the open conformation. Thus, our findings collectively establish the molecular basis for selective Mg2+ influx of Mrs2 and an auto-ligand-gating regulation mechanism.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Johan Wallerstein
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Steen Jensen
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Uthayabalan S, Lake T, Stathopulos PB. MRS2 missense variation at Asp216 abrogates inhibitory Mg 2+ binding, potentiating cell migration and apoptosis resistance. Protein Sci 2024; 33:e5108. [PMID: 38989547 PMCID: PMC11237551 DOI: 10.1002/pro.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial magnesium (Mg2+) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg2+ channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg2+, yet the regulation of human MRS2 and orthologues by Mg2+ binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg2+ sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg2+-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~μM affinity, which is weakened by up to two orders of magnitude in the presence of Mg2+ for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg2+ sensing by MRS2 to prevent matrix Mg2+ overload as HeLa cells overexpressing MRS2 show enhanced Mg2+ uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg2+ sensor that undergoes conformational and assembly changes upon Mg2+ interactions dependent on D216 to temper matrix Mg2+ overload.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
3
|
Ponnusamy T, Velusamy P, Shanmughapriya S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca 2+ uptake and viability. Mitochondrion 2024; 76:101877. [PMID: 38599304 DOI: 10.1016/j.mito.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Bui HB, Inaba K. Structures, Mechanisms, and Physiological Functions of Zinc Transporters in Different Biological Kingdoms. Int J Mol Sci 2024; 25:3045. [PMID: 38474291 PMCID: PMC10932157 DOI: 10.3390/ijms25053045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Zinc transporters take up/release zinc ions (Zn2+) across biological membranes and maintain intracellular and intra-organellar Zn2+ homeostasis. Since this process requires a series of conformational changes in the transporters, detailed information about the structures of different reaction intermediates is required for a comprehensive understanding of their Zn2+ transport mechanisms. Recently, various Zn2+ transport systems have been identified in bacteria, yeasts, plants, and humans. Based on structural analyses of human ZnT7, human ZnT8, and bacterial YiiP, we propose updated models explaining their mechanisms of action to ensure efficient Zn2+ transport. We place particular focus on the mechanistic roles of the histidine-rich loop shared by several zinc transporters, which facilitates Zn2+ recruitment to the transmembrane Zn2+-binding site. This review provides an extensive overview of the structures, mechanisms, and physiological functions of zinc transporters in different biological kingdoms.
Collapse
Affiliation(s)
- Han Ba Bui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Lai LTF, Balaraman J, Zhou F, Matthies D. Cryo-EM structures of human magnesium channel MRS2 reveal gating and regulatory mechanisms. Nat Commun 2023; 14:7207. [PMID: 37938562 PMCID: PMC10632456 DOI: 10.1038/s41467-023-42599-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Magnesium ions (Mg2+) play an essential role in cellular physiology. In mitochondria, protein and ATP synthesis and various metabolic pathways are directly regulated by Mg2+. MRS2, a magnesium channel located in the inner mitochondrial membrane, mediates the influx of Mg2+ into the mitochondrial matrix and regulates Mg2+ homeostasis. Knockdown of MRS2 in human cells leads to reduced uptake of Mg2+ into mitochondria and disruption of the mitochondrial metabolism. Despite the importance of MRS2, the Mg2+ translocation and regulation mechanisms of MRS2 are still unclear. Here, using cryo-EM we report the structures of human MRS2 in the presence and absence of Mg2+ at 2.8 Å and 3.3 Å, respectively. From the homo-pentameric structures, we identify R332 and M336 as major gating residues, which are then tested using mutagenesis and two cellular divalent ion uptake assays. A network of hydrogen bonds is found connecting the gating residue R332 to the soluble domain, potentially regulating the gate. Two Mg2+-binding sites are identified in the MRS2 soluble domain, distinct from the two sites previously reported in CorA, a homolog of MRS2 in prokaryotes. Altogether, this study provides the molecular basis for understanding the Mg2+ translocation and regulatory mechanisms of MRS2.
Collapse
Affiliation(s)
- Louis Tung Faat Lai
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jayashree Balaraman
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific Synthetic Antibodies Discriminate Multiple Functional States of the Ion Channel CorA. J Mol Biol 2023; 435:168192. [PMID: 37394032 PMCID: PMC10529903 DOI: 10.1016/j.jmb.2023.168192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Blazej M Skrobek
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Lai LTF, Balaraman J, Zhou F, Matthies D. Cryo-EM structures of human magnesium channel MRS2 reveal gating and regulatory mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553867. [PMID: 37662257 PMCID: PMC10473633 DOI: 10.1101/2023.08.22.553867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Magnesium ions (Mg2+) play an essential role in cellular physiology. In mitochondria, protein and ATP synthesis and various metabolic pathways are directly regulated by Mg2+. MRS2, a magnesium channel located in the inner mitochondrial membrane, mediates the influx of Mg2+ into the mitochondrial matrix and regulates Mg2+ homeostasis. Knockdown of MRS2 in human cells leads to reduced uptake of Mg2+ into mitochondria and disruption of the mitochondrial metabolism. Despite the importance of MRS2, the Mg2+ translocation and regulation mechanisms of MRS2 are still unclear. Here, using cryo-EM we determined the structure of human MRS2 in the presence and absence of Mg2+ at 2.8 Å and 3.3 Å, respectively. From the homo-pentameric structures, we identified R332 and M336 as major gating residues, which were then tested using mutagenesis and two cellular divalent ion uptake assays. A network of hydrogen bonds was found connecting the gating residue R332 to the soluble domain, potentially regulating the gate. Two Mg2+-binding sites were identified in the MRS2 soluble domain, distinct from the two sites previously reported in CorA, a homolog of MRS2 in prokaryotes. Altogether, this study provides the molecular basis for understanding the Mg2+ translocation and regulatory mechanisms of MRS2.
Collapse
Affiliation(s)
- Louis Tung Faat Lai
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Jayashree Balaraman
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
8
|
Li M, Li Y, Lu Y, Li J, Lu X, Ren Y, Wen T, Wang Y, Chang S, Zhang X, Yang X, Shen Y. Molecular basis of Mg 2+ permeation through the human mitochondrial Mrs2 channel. Nat Commun 2023; 14:4713. [PMID: 37543649 PMCID: PMC10404273 DOI: 10.1038/s41467-023-40516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Mitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg2+ to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg2+ remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions. All of these hMrs2 structures form symmetrical pentamers with very similar pentamer and protomer conformations. A special structural feature of Cl--bound R-ring, which consists of five Arg332 residues, was found in the hMrs2 structure. Molecular dynamics simulations and mitochondrial Mg2+ uptake assays show that the R-ring may function as a charge repulsion barrier, and Cl- may function as a ferry to jointly gate Mg2+ permeation in hMrs2. In addition, the membrane potential is likely to be the driving force for Mg2+ permeation. Our results provide insights into the channel assembly and Mg2+ permeation of hMrs2.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yue Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Jianhui Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yaojie Wang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Ponnusamy T, Velusamy P, Kumar A, Morris D, Zhang X, Ning G, Klinger M, Copper JE, Rajan S, Cheung JY, Natarajaseenivasan K, Mnatsakanyan N, Shanmughapriya S. Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca 2+ uptake. RESEARCH SQUARE 2023:rs.3.rs-3088175. [PMID: 37502932 PMCID: PMC10371168 DOI: 10.21203/rs.3.rs-3088175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Calcium (Ca2+) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg2+ channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg2+] is associated with increased MCU activity and matrix Ca2+ overload. The disruption of Mg2+dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg2+ in regulating MCU activity and attenuating mCa2+ overload.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Amrendra Kumar
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Daniel Morris
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Xueqian Zhang
- Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Gang Ning
- Microscopy Core Facility, Penn State Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Marianne Klinger
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Jean E. Copper
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph Y Cheung
- Department of Renal Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. Hyphal Growth in Trichosporon asahii Is Accelerated by the Addition of Magnesium. Microbiol Spectr 2023; 11:e0424222. [PMID: 37102973 PMCID: PMC10269644 DOI: 10.1128/spectrum.04242-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
11
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific synthetic antibodies discriminate multiple functional states of the ion channel CorA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539746. [PMID: 37205530 PMCID: PMC10187328 DOI: 10.1101/2023.05.07.539746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg 2+ , and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg 2+ . Two sABs from these selections, C12 and C18, showed different degrees of Mg 2+ -sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg 2+ -depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg 2+ -depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg 2+ ] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
|
12
|
Uthayabalan S, Vishnu N, Madesh M, Stathopulos PB. The human MRS2 magnesium-binding domain is a regulatory feedback switch for channel activity. Life Sci Alliance 2023; 6:e202201742. [PMID: 36754568 PMCID: PMC9909464 DOI: 10.26508/lsa.202201742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial RNA splicing 2 (MRS2) forms a magnesium (Mg2+) entry protein channel in mitochondria. Whereas MRS2 contains two transmembrane domains constituting a pore on the inner mitochondrial membrane, most of the protein resides within the matrix. Yet, the precise structural and functional role of this obtrusive amino terminal domain (NTD) in human MRS2 is unknown. Here, we show that the MRS2 NTD self-associates into a homodimer, contrasting the pentameric assembly of CorA, an orthologous bacterial channel. Mg2+ and calcium suppress lower and higher order oligomerization of MRS2 NTD, whereas cobalt has no effect on the NTD but disassembles full-length MRS2. Mutating-pinpointed residues-mediating Mg2+ binding to the NTD not only selectively decreases Mg2+-binding affinity ∼sevenfold but also abrogates Mg2+ binding-induced secondary, tertiary, and quaternary structure changes. Disruption of NTD Mg2+ binding strikingly potentiates mitochondrial Mg2+ uptake in WT and Mrs2 knockout cells. Our work exposes a mechanism for human MRS2 autoregulation by negative feedback from the NTD and identifies a novel gain of function mutant with broad applicability to future Mg2+ signaling research.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Neelanjan Vishnu
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Tang RJ, Yang Y, Yan YW, Mao DD, Yuan HM, Wang C, Zhao FG, Luan S. Two transporters mobilize magnesium from vacuolar stores to enable plant acclimation to magnesium deficiency. PLANT PHYSIOLOGY 2022; 190:1307-1320. [PMID: 35809075 PMCID: PMC9516776 DOI: 10.1093/plphys/kiac330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/22/2022] [Indexed: 05/19/2023]
Abstract
Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Yang Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yu-Wei Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dan-Dan Mao
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong-Mei Yuan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Fu-Geng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
14
|
Zhu Y, Wang Y, Zhang Y, Pu M, Miao W, Bai M, Bao R, Geng J. Ion selectivity and gating behavior of the CorA-type channel Bpss1228. Front Chem 2022; 10:998075. [PMID: 36171999 PMCID: PMC9511408 DOI: 10.3389/fchem.2022.998075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Magnesium is an essential element to sustain all forms of life. Total intracellular magnesium content is determined by the balance of magnesium influx and efflux. CorA is a divalent selective channel in the metal ion transport superfamily and is the major Mg2+ uptake pathway in prokaryotes and eukaryotic mitochondria. Previous studies have demonstrated that CorA showed distinct magnesium bound closed conformation and Mg2+-free states. In addition, CorA is regulated by cytoplasmic magnesium ions and its gating mechanism has been investigated by electron paramagnetic resonance technique and molecular dynamic simulations. Here, we report a study of the putative CorA-type channel Bpss1228 from Burkholderia pseudomallei, which has been shown to be significantly associated with pseudomallei infection. We expressed and purified the Bpss1228 in full-length. Subsequently, electrophysiological experiments further investigated the electrical characteristics of Bpss1228 and revealed that it was a strictly cation-selective channel. We also proved that Bpss1228 not only possessed magnesium-mediated regulatory property a remarkable ability to be modulated by magnesium ions. Finally, we observed the three-step gating behavior of Bpss1228 on planar lipid bilayer, and further proposed a synergistic gating mechanism by which CorA family channels control intracellular magnesium homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Bao
- *Correspondence: Rui Bao, ; Jia Geng,
| | - Jia Geng
- *Correspondence: Rui Bao, ; Jia Geng,
| |
Collapse
|
15
|
Jin F, Huang Y, Hattori M. Recent Advances in the Structural Biology of Mg 2+ Channels and Transporters. J Mol Biol 2022; 434:167729. [PMID: 35841930 DOI: 10.1016/j.jmb.2022.167729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
16
|
Johansen NT, Bonaccorsi M, Bengtsen T, Larsen AH, Tidemand FG, Pedersen MC, Huda P, Berndtsson J, Darwish T, Yepuri NR, Martel A, Pomorski TG, Bertarello A, Sansom MS, Rapp M, Crehuet R, Schubeis T, Lindorff-Larsen K, Pintacuda G, Arleth L. Mg 2+-dependent conformational equilibria in CorA and an integrated view on transport regulation. eLife 2022; 11:71887. [PMID: 35129435 PMCID: PMC8865849 DOI: 10.7554/elife.71887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
Collapse
Affiliation(s)
| | - Marta Bonaccorsi
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Tone Bengtsen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Haahr Larsen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | | | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | - Nageshewar Rao Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | | | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrea Bertarello
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ramon Crehuet
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Tobias Schubeis
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Nemchinova M, Melcr J, Wassenaar TA, Marrink SJ, Guskov A. Asymmetric CorA Gating Mechanism as Observed by Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:2407-2417. [PMID: 33886304 PMCID: PMC8154316 DOI: 10.1021/acs.jcim.1c00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The CorA family of
proteins plays a housekeeping role in the homeostasis
of divalent metal ions in many bacteria and archaea as well as in
mitochondria of eukaryotes, rendering it an important target to study
the mechanisms of divalent transport and regulation across different
life domains. Despite numerous studies, the mechanistic details of
the channel gating and the transport of the metal ions are still not
entirely understood. Here, we use all-atom and coarse-grained molecular
dynamics simulations combined with in vitro experiments
to investigate the influence of divalent cations on the function of
CorA. Simulations reveal pronounced asymmetric movements of monomers
that enable the rotation of the α7 helix and the cytoplasmic
subdomain with the subsequent formation of new interactions and the
opening of the channel. These computational results are functionally
validated using site-directed mutagenesis of the intracellular cytoplasmic
domain residues and biochemical assays. The obtained results infer
a complex network of interactions altering the structure of CorA to
allow gating. Furthermore, we attempt to reconcile the existing gating
hypotheses for CorA to conclude the mechanism of transport of divalent
cations via these proteins.
Collapse
Affiliation(s)
- Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Josef Melcr
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
18
|
Functional analysis of whether the glycine residue of the GMN motif of the Arabidopsis MRS2/MGT/CorA-type Mg 2+ channel protein AtMRS2-11 is critical for Mg 2+ transport activity. Arch Biochem Biophys 2020; 697:108673. [PMID: 33217378 DOI: 10.1016/j.abb.2020.108673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/09/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022]
Abstract
Magnesium (Mg2+) plays a critical role in many physiological processes. The AtMRS2/MGT family, which contains nine Arabidopsis genes (and two pseudogenes), belongs to a eukaryotic subset of the CorA superfamily of divalent cation transporters. AtMRS2-11/MGT10 possesses the signature GlyMetAsn sequence (the GMN motif) conserved in the CorA superfamily; however, little is known about the role of the GMN motif in AtMRS2. Direct measurement using the fluorescent dye mag-fura-2 revealed that reconstituted AtMRS2-11 mediated rapid Mg2+ uptake into proteoliposomes at extraliposomal Mg2+ concentrations of 10 and 20 mM. Mutations in the GMN motif, G417 to A, S or V, did not show a significant change in Mg2+ uptake relative to the wild-type protein. The G417W mutant exhibited a significant increase in Mg2+ uptake. The functional complementation assay in Escherichia coli strain TM2 showed that E. coli cells expressing AtMRS2-11 with mutations in G of the GMN motif did not grow in LB medium without Mg2+ supplementation, while growth was observed in LB medium supplemented with 0.5 mM Mg2+; no difference was observed between the growth of TM2 cells expressing the AtMRS2-11 G417W mutant and that of cells expressing wild-type AtMRS2-11. These results suggested that the Mg2+ transport activity of the AtMRS2-11 GMN-motif mutants was low at low physiological Mg2+ concentrations; thus, the Gly residue is critical for Mg2+ transport, and the Mg2+ transport activity of the GMN-motif mutants was increased at high Mg2+ concentrations.
Collapse
|
19
|
Daw CC, Ramachandran K, Enslow BT, Maity S, Bursic B, Novello MJ, Rubannelsonkumar CS, Mashal AH, Ravichandran J, Bakewell TM, Wang W, Li K, Madaris TR, Shannon CE, Norton L, Kandala S, Caplan J, Srikantan S, Stathopulos PB, Reeves WB, Madesh M. Lactate Elicits ER-Mitochondrial Mg 2+ Dynamics to Integrate Cellular Metabolism. Cell 2020; 183:474-489.e17. [PMID: 33035451 PMCID: PMC7572828 DOI: 10.1016/j.cell.2020.08.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Cassidy C Daw
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Benjamin T Enslow
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Soumya Maity
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brian Bursic
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Matthew J Novello
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Cherubina S Rubannelsonkumar
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayah H Mashal
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Joel Ravichandran
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Terry M Bakewell
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Weiwei Wang
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kang Li
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Christopher E Shannon
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Luke Norton
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Soundarya Kandala
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Subramanya Srikantan
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - W Brian Reeves
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Pohland AC, Schneider D. Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biol Chem 2020; 400:1289-1301. [PMID: 30913030 DOI: 10.1515/hsz-2018-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a 'classical' bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the 'typical' bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| |
Collapse
|
21
|
Rangl M, Schmandt N, Perozo E, Scheuring S. Real time dynamics of Gating-Related conformational changes in CorA. eLife 2019; 8:47322. [PMID: 31774394 PMCID: PMC6927688 DOI: 10.7554/elife.47322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
CorA, a divalent-selective channel in the metal ion transport superfamily, is the major Mg2+-influx pathway in prokaryotes. CorA structures in closed (Mg2+-bound), and open (Mg2+-free) states, together with functional data showed that Mg2+-influx inhibits further Mg2+-uptake completing a regulatory feedback loop. While the closed state structure is a symmetric pentamer, the open state displayed unexpected asymmetric architectures. Using high-speed atomic force microscopy (HS-AFM), we explored the Mg2+-dependent gating transition of single CorA channels: HS-AFM movies during Mg2+-depletion experiments revealed the channel’s transition from a stable Mg2+-bound state over a highly mobile and dynamic state with fluctuating subunits to asymmetric structures with varying degree of protrusion heights from the membrane. Our data shows that at Mg2+-concentration below Kd, CorA adopts a dynamic (putatively open) state of multiple conformations that imply structural rearrangements through hinge-bending in TM1. We discuss how these structural dynamics define the functional behavior of this ligand-dependent channel.
Collapse
Affiliation(s)
- Martina Rangl
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| | - Nicolaus Schmandt
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| |
Collapse
|
22
|
Bactericidal Disruption of Magnesium Metallostasis in Mycobacterium tuberculosis Is Counteracted by Mutations in the Metal Ion Transporter CorA. mBio 2019; 10:mBio.01405-19. [PMID: 31289182 PMCID: PMC6747715 DOI: 10.1128/mbio.01405-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antimycobacterial agents might shorten the course of treatment by reducing the number of phenotypically tolerant bacteria if they could kill M. tuberculosis in diverse metabolic states. Here we report two chemically disparate classes of agents that kill M. tuberculosis both when it is replicating and when it is not. Under replicating conditions, the tricyclic 4-hydroxyquinolines and a barbituric acid analogue deplete intrabacterial magnesium as a mechanism of action, and for both compounds, mutations in CorA, a putative Mg2+/Co2+ transporter, conferred resistance to the compounds when M. tuberculosis was under replicating conditions but not under nonreplicating conditions, illustrating that a given compound can kill M. tuberculosis in different metabolic states by disparate mechanisms. Targeting magnesium metallostasis represents a previously undescribed antimycobacterial mode of action that might cripple M. tuberculosis in a Mg2+-deficient intraphagosomal environment of macrophages. A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating Mycobacterium tuberculosis bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant M. tuberculosis. A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating M. tuberculosis. Both families of compounds depleted M. tuberculosis of intrabacterial magnesium. Complete or partial resistance to both chemotypes arose from mutations in the putative mycobacterial Mg2+/Co2+ ion channel, CorA. Excess extracellular Mg2+, but not other divalent cations, diminished the compounds’ cidality against replicating M. tuberculosis. These findings establish depletion of intrabacterial magnesium as an antimicrobial mechanism of action and show that M. tuberculosis magnesium homeostasis is vulnerable to disruption by structurally diverse, nonchelating, drug-like compounds.
Collapse
|
23
|
Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Affiliation(s)
- Julian T. Brennecke
- Department of Theoretical and Computational Biophysics, Computational Biomolecular, Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L. de Groot
- Department of Theoretical and Computational Biophysics, Computational Biomolecular, Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
25
|
Kowatz T, Maguire ME. Loss of cytosolic Mg 2+ binding sites in the Thermotoga maritima CorA Mg 2+ channel is not sufficient for channel opening. Biochim Biophys Acta Gen Subj 2018; 1863:25-30. [PMID: 30293964 DOI: 10.1016/j.bbagen.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
The CorA Mg2+ channel is a homopentamer with five-fold symmetry. Each monomer consists of a large cytoplasmic domain and two transmembrane helices connected via a short periplasmic loop. In the Thermotoga maritima CorA crystal structure, a Mg2+ is bound between D89 of one monomer and D253 of the adjacent monomer (M1 binding site). Release of Mg2+ from these sites has been hypothesized to cause opening of the channel. We generated mutants to disrupt Mg2+ interaction with the M1 site. Crystal structures of the D89K/D253K and D89R/D253R mutants, determined to 3.05 and 3.3 Å, respectively, showed no significant structural differences with the wild type structure despite absence of Mg2+ at the M1 sites. Both mutants still appear to be in the closed state. All three mutant CorA proteins exhibited transport of 63Ni2+, indicating functionality. Thus, absence of Mg2+ from the M1 sites neither causes channel opening nor prevents function. We also provide evidence that the T. maritima CorA is a Mg2+ channel and not a Co2+ channel.
Collapse
Affiliation(s)
- Thomas Kowatz
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Michael E Maguire
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
26
|
Jonnalagadda SVR, Kokotidou C, Orr AA, Fotopoulou E, Henderson KJ, Choi CH, Lim WT, Choi SJ, Jeong HK, Mitraki A, Tamamis P. Computational Design of Functional Amyloid Materials with Cesium Binding, Deposition, and Capture Properties. J Phys Chem B 2018; 122:7555-7568. [DOI: 10.1021/acs.jpcb.8b04103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
- Institute of Electronic Structure and Laser (IESL) FORTH, Heraklion 711 10, Crete, Greece
| | | | - Emmanouela Fotopoulou
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | | | | | - Woo Taik Lim
- Department of Applied Chemistry, Andong National University, Andong 36729, Republic of Korea
| | - Sang June Choi
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
- Institute of Electronic Structure and Laser (IESL) FORTH, Heraklion 711 10, Crete, Greece
| | | |
Collapse
|
27
|
Maeshima K, Matsuda T, Shindo Y, Imamura H, Tamura S, Imai R, Kawakami S, Nagashima R, Soga T, Noji H, Oka K, Nagai T. A Transient Rise in Free Mg 2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation. Curr Biol 2018; 28:444-451.e6. [PMID: 29358072 DOI: 10.1016/j.cub.2017.12.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Abstract
For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [1-5], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [6-17], free divalent cations such as Mg2+ and Ca2+, which condense chromatin or chromosomes in vitro [18-28], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like "beads on a string" by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [29]. However, technical limitations to measure intracellular free divalent cations, but not total cations [30], especially Mg2+, have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg2+ indicator that monitors free Mg2+ dynamics throughout the cell cycle. By combining this indicator with Ca2+ [31] and adenosine triphosphate (ATP) [32] indicators, we demonstrate that the levels of free Mg2+, but not Ca2+, increase during mitosis. The Mg2+ increase is coupled with a decrease in ATP, which is normally bound to Mg2+ in the cell [33]. ATP inhibited Mg2+-dependent chromatin condensation in vitro. Chelating Mg2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg2+-ATP balance.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Tomoki Matsuda
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yutaka Shindo
- Department of Biosciences & Informatics, Keio University, Hiyoshi, Yokohama 223-8522, Japan
| | - Hiromi Imamura
- Department of Life Science, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Tamura
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Ryosuke Imai
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Syoji Kawakami
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Ryosuke Nagashima
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kotaro Oka
- Department of Biosciences & Informatics, Keio University, Hiyoshi, Yokohama 223-8522, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
28
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
29
|
The structural basis of proton driven zinc transport by ZntB. Nat Commun 2017; 8:1313. [PMID: 29101379 PMCID: PMC5670123 DOI: 10.1038/s41467-017-01483-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023] Open
Abstract
Zinc is an essential microelement to sustain all forms of life. However, excess of zinc is toxic, therefore dedicated import, export and storage proteins for tight regulation of the zinc concentration have evolved. In Enterobacteriaceae, several membrane transporters are involved in zinc homeostasis and linked to virulence. ZntB has been proposed to play a role in the export of zinc, but the transport mechanism of ZntB is poorly understood and based only on experimental characterization of its distant homologue CorA magnesium channel. Here, we report the cryo-electron microscopy structure of full-length ZntB from Escherichia coli together with the results of isothermal titration calorimetry, and radio-ligand uptake and fluorescent transport assays on ZntB reconstituted into liposomes. Our results show that ZntB mediates Zn2+ uptake, stimulated by a pH gradient across the membrane, using a transport mechanism that does not resemble the one proposed for homologous CorA channels. The bacterial zinc transporter ZntB is important for maintaining zinc homeostasis and is mechanistically not well understood. Here, the authors present the cryo-EM structure of ZntB at 4.2 Å resolution, perform transport assays and propose a model for its Zn2+ transport mechanism.
Collapse
|
30
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Lerche M, Sandhu H, Flöckner L, Högbom M, Rapp M. Structure and Cooperativity of the Cytosolic Domain of the CorA Mg 2+ Channel from Escherichia coli. Structure 2017; 25:1175-1186.e4. [PMID: 28669631 DOI: 10.1016/j.str.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 05/25/2017] [Indexed: 01/04/2023]
Abstract
Structures of the Mg2+ bound (closed) and apo (open) states of CorA suggests that channel gating is accomplished by rigid-body motions between symmetric and asymmetric assemblies of the cytosolic portions of the five subunits in response to ligand (Mg2+) binding/unbinding at interfacial sites. Here, we structurally and biochemically characterize the isolated cytosolic domain from Escherichia coli CorA. The data reveal an Mg2+-ligand binding site located in a novel position between each of the five subunits and two Mg2+ ions trapped inside the pore. Soaking experiments show that cobalt hexammine outcompetes Mg2+ at the pore site closest to the membrane. This represents the first structural information of how an analog of hexa-hydrated Mg2+ (and competitive inhibitor of CorA) associates to the CorA pore. Biochemical data on the isolated cytoplasmic domain and full-length protein suggests that gating of the CorA channel is governed cooperatively.
Collapse
Affiliation(s)
- Michael Lerche
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Hena Sandhu
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Lukas Flöckner
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
32
|
Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F. Mutations in the Arabidopsis AtMRS2-11/ AtMGT10/ VAR5 Gene Cause Leaf Reticulation. FRONTIERS IN PLANT SCIENCE 2017; 8:2007. [PMID: 29234332 PMCID: PMC5712471 DOI: 10.3389/fpls.2017.02007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/10/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, the development of functional chloroplasts is essential for photosynthesis and many other physiological processes. With a long-term goal of elucidating the genetic regulation of chloroplast development, we identified two allelic leaf variegation mutants, variegated5-1 (var5-1) and var5-2. Both mutants showed a distinct leaf reticulation phenotype of yellow paraveinal regions and green interveinal regions, and the leaf reticulation phenotype correlated with photosynthetic defects. Through the identification of mutation sites in the two mutant alleles and the molecular complementation, we confirmed that VAR5 encodes a CorA family of Mg2+ transporters also known as AtMRS2-11/AtMGT10. Using protoplast transient expression and biochemical fractionation assays, we demonstrated that AtMRS2-11/AtMGT10/VAR5 likely localizes to the chloroplast envelope. Moreover, we established that AtMRS2-11/AtMGT10/VAR5 forms large molecular weight complexes in the chloroplast and the sizes of these complexes clearly exceed those of their bacterial counterparts, suggesting the compositions of CorA Mg2+ transporter complex is different between the chloroplast and bacteria. Our findings indicate that AtMRS2-11/AtMGT10/VAR5 plays an important role in the tissue specific regulation of chloroplast development.
Collapse
|
33
|
Ruan Y, Zhu Y, Zhang Y, Gao Q, Lu X, Lu L. Molecular Dynamics Study of Mg 2+/Li + Separation via Biomimetic Graphene-Based Nanopores: The Role of Dehydration in Second Shell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13778-13786. [PMID: 27756127 DOI: 10.1021/acs.langmuir.6b03001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Residual Mg2+ reduces the performance of lithium-ion batteries. However, separating Mg2+ and Li+ is difficult because of their similar ionic properties. Inspired by the high selectivity of biological Mg2+ channels, this work utilizes atomistic simulations to investigate the ability of graphene-based nanopores with diameters of 0.789, 1.024, and 1.501 nm to separate Mg2+ and Li+ under a series of transmembrane voltages. We analyzed the spatial distribution of molecules in the nanopores' vicinity, structure properties of ionic hydration, and potential of mean force of ions traveling through the nanopores. Separation was mainly caused by the difference in dehydration between the second hydration shells of Mg2+ and Li+. When ions traveled through nanopores, Li+ had to overcome a greater energy barrier than Mg2+ because it had to shed more water molecules and break more hydrogen bonds in the second hydration shell compared with Mg2+. Moreover, the ionic Coulomb blockade of Mg2+ occurred near the pore mouth, impeding Li+ transport and increasing selectivity when the pore diameter decreased to subnanometer.
Collapse
Affiliation(s)
- Yang Ruan
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Yudan Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Yumeng Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Qingwei Gao
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Linghong Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| |
Collapse
|
34
|
Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1778-90. [PMID: 26940625 PMCID: PMC4877207 DOI: 10.1016/j.bbamem.2016.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/04/2023]
Abstract
Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Sergei Yu Noskov
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada.
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Oscar Teijido
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Epigenetics, Institute of Medical Sciences and Genomic Medicine, EuroEspes Sta. Marta de Babío S/N, 15165 Bergondo, A Coruña, Spain
| | - Wei Jiang
- Leadership Computing Facility, Argonne National Laboratory, 9700S Cass Avenue, Lemont, IL 60439, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Abstract
Ligand binding usually moves the target protein from an ensemble of inactive states to a well-defined active conformation. Matthies et al. flip this scheme around, finding that, for the magnesium channel CorA, loss of ligand binding induces an ensemble of conformations that turn the channel on.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, and California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California 94158 USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.
| |
Collapse
|
36
|
Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, Subramaniam S. Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating. Cell 2016; 164:747-56. [PMID: 26871634 DOI: 10.1016/j.cell.2015.12.055] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.
Collapse
Affiliation(s)
- Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Mario J Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ. Architecture of the mitochondrial calcium uniporter. Nature 2016; 533:269-73. [PMID: 27135929 PMCID: PMC4874835 DOI: 10.1038/nature17656] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria from multiple, eukaryotic clades uptake and buffer large amounts of calcium (Ca2+) via an inner membrane transporter called the uniporter. Early studies demonstrated that this transport requires a mitochondrial membrane potential and that the uniporter is itself Ca2+ activated, and blocked by ruthenium red or Ru3601. Later, electrophysiological studies demonstrated that the uniporter is an ion channel with remarkably high conductance and selectivity2. Ca2+ entry into mitochondria is also known to activate the TCA cycle and appears to be critical for matching ATP production in mitochondria with its cytosolic demand3. MCU (mitochondrial calcium uniporter) is the pore forming and Ca2+ conducting subunit of the uniporter, but its primary sequence does not resemble any calcium channel known to date. Here, we report the structure of the core region of MCU, determined using nuclear magnetic resonance (NMR) and electron microscopy (EM). MCU is a homo-oligomer with the second transmembrane helix forming a hydrophilic pore across the membrane. The channel assembly represents a new solution of ion channel architecture and is stabilized by a coiled coil motif protruding in the mitochondrial matrix. The critical DxxE motif forms the pore entrance featuring two carboxylate rings, which appear to be the selectivity filter based on the ring dimensions and functional mutagenesis. To our knowledge, this is one of the largest structures characterized by NMR, which provides a structural blueprint for understanding the function of this channel.
Collapse
Affiliation(s)
- Kirill Oxenoid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ying Dong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chan Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tanxing Cui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yasemin Sancak
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Andrew L Markhard
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Zenon Grabarek
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Liangliang Kong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhijun Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
38
|
Kitjaruwankul S, Wapeesittipan P, Boonamnaj P, Sompornpisut P. Inner and Outer Coordination Shells of Mg(2+) in CorA Selectivity Filter from Molecular Dynamics Simulations. J Phys Chem B 2016; 120:406-17. [PMID: 26727882 DOI: 10.1021/acs.jpcb.5b10925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.
Collapse
Affiliation(s)
- Sunan Kitjaruwankul
- Graduate School of Nanoscience and Technology, Chulalongkorn University , Bangkok 10330, Thailand.,Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pattama Wapeesittipan
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Panisak Boonamnaj
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| |
Collapse
|
39
|
Herzberg M, Bauer L, Kirsten A, Nies DH. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics 2016; 8:313-26. [DOI: 10.1039/c5mt00295h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, Kossiakoff AA. Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. Structure 2015; 24:300-9. [PMID: 26749445 DOI: 10.1016/j.str.2015.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023]
Abstract
A major challenge in membrane biophysics is to define the mechanistic linkages between a protein's conformational transitions and its function. We describe a novel approach to stabilize transient functional states of membrane proteins in native-like lipid environments allowing for their structural and biochemical characterization. This is accomplished by combining the power of antibody Fab-based phage display selection with the benefits of embedding membrane protein targets in lipid-filled nanodiscs. In addition to providing a stabilizing lipid environment, nanodiscs afford significant technical advantages over detergent-based formats. This enables the production of a rich pool of high-performance Fab binders that can be used as crystallization chaperones, as fiducial markers for single-particle cryoelectron microscopy, and as probes of different conformational states. Moreover, nanodisc-generated Fabs can be used to identify detergents that best mimic native membrane environments for use in biophysical studies.
Collapse
Affiliation(s)
- Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
41
|
Cleverley RM, Kean J, Shintre CA, Baldock C, Derrick JP, Ford RC, Prince SM. The Cryo-EM structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2206-15. [PMID: 26051127 PMCID: PMC4579555 DOI: 10.1016/j.bbamem.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 01/04/2023]
Abstract
CorA channels are responsible for the uptake of essential magnesium ions by bacteria. X-ray crystal structures have been resolved for two full-length CorA channels, each in a non-conducting state with magnesium ions bound to the protein: These structures reveal a homo-pentameric quaternary structure with approximate 5-fold rotational symmetry about a central pore axis. We report the structure of the detergent solubilized Methanocaldococcus jannaschii CorA channel determined by Cryo-Electron Microscopy and Single Particle Averaging, supported by Small Angle X-ray Scattering and X-ray crystallography. This structure also shows a pentameric channel but with a highly asymmetric domain structure. The asymmetry of the domains includes differential separations between the trans-membrane segments, which reflects mechanical coupling of the cytoplasmic domain to the trans-membrane domain. This structure therefore reveals an important aspect of the gating mechanism of CorA channels by providing an indication of how the absence of magnesium ions leads to major structural changes.
Collapse
Affiliation(s)
- Robert M Cleverley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Kean
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chitra A Shintre
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clair Baldock
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jeremy P Derrick
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Robert C Ford
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen M Prince
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
42
|
Kobayashi NI, Tanoi K. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants. Int J Mol Sci 2015; 16:23076-93. [PMID: 26404266 PMCID: PMC4613352 DOI: 10.3390/ijms160923076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022] Open
Abstract
Magnesium (Mg) is the second most abundant cation in living cells. Over 300 enzymes are known to be Mg-dependent, and changes in the Mg concentration significantly affects the membrane potential. As Mg becomes deficient, starch accumulation and chlorosis, bridged by the generation of reactive oxygen species, are commonly found in Mg-deficient young mature leaves. These defects further cause the inhibition of photosynthesis and finally decrease the biomass. Recently, transcriptome analysis has indicated the transcriptinal downregulation of chlorophyll apparatus at the earlier stages of Mg deficiency, and also the potential involvement of complicated networks relating to hormonal signaling and circadian oscillation. However, the processes of the common symptoms as well as the networks between Mg deficiency and signaling are not yet fully understood. Here, for the purpose of defining the missing pieces, several problems are considered and explained by providing an introduction to recent reports on physiological and transcriptional responses to Mg deficiency. In addition, it has long been unclear whether the Mg deficiency response involves the modulation of Mg2+ transport system. In this review, the current status of research on Mg2+ transport and the relating transporters are also summarized. Especially, the rapid progress in physiological characterization of the plant MRS2 gene family as well as the fundamental investigation about the molecular mechanism of the action of bacterial CorA proteins are described.
Collapse
Affiliation(s)
- Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
43
|
Neale C, Chakrabarti N, Pomorski P, Pai EF, Pomès R. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA. PLoS Comput Biol 2015; 11:e1004303. [PMID: 26181442 PMCID: PMC4504495 DOI: 10.1371/journal.pcbi.1004303] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or “wetting” events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction. This study shows how rapid wetting/dewetting transitions in the pores of ion channels participate in the control of biological ion permeation. Ion channels catalyze ionic permeation across non-polar membranes via water-filled pores. However, non-polar stretches or hydrophobic bottlenecks are present in the pores of many ion channels. To clarify the relationship between channel regulation, pore hydration, and ion permeation, we examine how the slow relaxation of magnesium channel CorA from its closed state towards its open state modulates wetting of its hydrophobic bottleneck. Results provide a quantitative description of wetting and dewetting probabilities and kinetics and a quantitative relationship between the extent of pore hydration and the energetics of ion permeation, consistent with a mechanism of hydrophobic gating.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nilmadhab Chakrabarti
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pawel Pomorski
- Shared Hierarchical Academic Research Computing Network, Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Emil F. Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah STA, Caffrey M, Maturana AD, Ishitani R, Nureki O. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat Commun 2014; 5:5374. [PMID: 25367295 PMCID: PMC4241985 DOI: 10.1038/ncomms6374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Magnesium is the most abundant divalent cation in living cells and is crucial to several biological processes. MgtE is a Mg(2+) channel distributed in all domains of life that contributes to the maintenance of cellular Mg(2+) homeostasis. Here we report the high-resolution crystal structures of the transmembrane domain of MgtE, bound to Mg(2+), Mn(2+) and Ca(2+). The high-resolution Mg(2+)-bound crystal structure clearly visualized the hydrated Mg(2+) ion within its selectivity filter. Based on those structures and biochemical analyses, we propose a cation selectivity mechanism for MgtE in which the geometry of the hydration shell of the fully hydrated Mg(2+) ion is recognized by the side-chain carboxylate groups in the selectivity filter. This is in contrast to the K(+)-selective filter of KcsA, which recognizes a dehydrated K(+) ion. Our results further revealed a cation-binding site on the periplasmic side, which regulate channel opening and prevents conduction of near-cognate cations.
Collapse
Affiliation(s)
- Hironori Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Motoyuki Hattori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Syed T. A. Shah
- Membrane Structural and Functional Biology Group, School of Medicine, and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine, and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andrés D. Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
45
|
Teijido O, Rappaport SM, Chamberlin A, Noskov SY, Aguilella VM, Rostovtseva TK, Bezrukov SM. Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges. J Biol Chem 2014; 289:23670-82. [PMID: 24962576 DOI: 10.1074/jbc.m114.576314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for ATP, ADP, and other respiratory substrates through the mitochondrial outer membrane, constituting a crucial point of mitochondrial metabolism regulation. VDAC is characterized by its ability to "gate" between an open and several "closed" states under applied voltage. In the early stages of tumorigenesis or during ischemia, partial or total absence of oxygen supply to cells results in cytosolic acidification. Motivated by these facts, we investigated the effects of pH variations on VDAC gating properties. We reconstituted VDAC into planar lipid membranes and found that acidification reversibly increases its voltage-dependent gating. Furthermore, both VDAC anion selectivity and single channel conductance increased with acidification, in agreement with the titration of the negatively charged VDAC residues at low pH values. Analysis of the pH dependences of the gating and open channel parameters yielded similar pKa values close to 4.0. We also found that the response of VDAC gating to acidification was highly asymmetric. The presumably cytosolic (cis) side of the channel was the most sensitive to acidification, whereas the mitochondrial intermembrane space (trans) side barely responded to pH changes. Molecular dynamic simulations suggested that stable salt bridges at the cis side, which are susceptible to disruption upon acidification, contribute to this asymmetry. The pronounced sensitivity of the cis side to pH variations found here in vitro might provide helpful insights into the regulatory role of VDAC in the protective effect of cytosolic acidification during ischemia in vivo.
Collapse
Affiliation(s)
- Oscar Teijido
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Shay M Rappaport
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Adam Chamberlin
- the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 2N4, Canada, and
| | - Sergei Y Noskov
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, the Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 2N4, Canada, and
| | - Vicente M Aguilella
- the Department of Physics, Universitat Jaume I, 12080 Castelló de la Plana, Spain
| | - Tatiana K Rostovtseva
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892,
| | - Sergey M Bezrukov
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
47
|
Dalmas O, Sompornpisut P, Bezanilla F, Perozo E. Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 2014; 5:3590. [PMID: 24694723 PMCID: PMC4066822 DOI: 10.1038/ncomms4590] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 11/09/2022] Open
Abstract
CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use EPR spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.
Collapse
Affiliation(s)
- Olivier Dalmas
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
48
|
Harris AL, Contreras JE. Motifs in the permeation pathway of connexin channels mediate voltage and Ca (2+) sensing. Front Physiol 2014; 5:113. [PMID: 24744733 PMCID: PMC3978323 DOI: 10.3389/fphys.2014.00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/06/2014] [Indexed: 11/13/2022] Open
Abstract
Connexin channels mediate electrical coupling, intercellular molecular signaling, and extracellular release of signaling molecules. Connexin proteins assemble intracellularly as hexamers to form plasma membrane hemichannels. The docking of two hemichannels in apposed cells forms a gap junction channel that allows direct electrical and selective cytoplasmic communication between adjacent cells. Hemichannels and junctional channels are gated by voltage, but extracellular Ca (2+) also gates unpaired plasma membrane hemichannels. Unlike other ion channels, connexin channels do not contain discrete voltage- or Ca (2+)-sensing modules linked to a separate pore-forming module. All studies to date indicate that voltage and Ca (2+) sensing are predominantly mediated by motifs that lie within or are exposed to the pore lumen. The sensors appear to be integral components of the gates, imposing an obligatory structural linkage between sensing and gating not commonly present in other ion channels, in which the sensors are semi-independent domains distinct from the pore. Because of this, the structural and electrostatic features that define connexin channel gating also define pore permeability properties, and vice versa; analysis/mutagenesis of gating and of permeability properties are linked. This offers unique challenges and opportunities for elucidating mechanisms of ligand and voltage-driven gating.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| | - Jorge E Contreras
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University Newark, NJ, USA
| |
Collapse
|
49
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
50
|
A repulsion mechanism explains magnesium permeation and selectivity in CorA. Proc Natl Acad Sci U S A 2014; 111:3002-7. [PMID: 24516146 DOI: 10.1073/pnas.1319054111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnesium (Mg(2+)) plays a central role in biology, regulating the activity of many enzymes and stabilizing the structure of key macromolecules. In bacteria, CorA is the primary source of Mg(2+) uptake and is self-regulated by intracellular Mg(2+). Using a gating mutant at the divalent ion binding site, we were able to characterize CorA selectivity and permeation properties to both monovalent and divalent cations under perfused two-electrode voltage clamp. The present data demonstrate that under physiological conditions, CorA is a multioccupancy Mg(2+)-selective channel, fully excluding monovalent cations, and Ca(2+), whereas in absence of Mg(2+), CorA is essentially nonselective, displaying only mild preference against other divalents (Ca(2+) > Mn(2+) > Co(2+) > Mg(2+) > Ni(2)(+)). Selectivity against monovalent cations takes place via Mg(2+) binding at a high-affinity site, formed by the Gly-Met-Asn signature sequence (Gly312 and Asn314) at the extracellular side of the pore. This mechanism is reminiscent of repulsion models proposed for Ca(2+) channel selectivity despite differences in sequence and overall structure.
Collapse
|