1
|
Nazemidashtarjandi S, Supple MD, Yonker LM, Sheridan RL, Ryan CM, Karabacak MN, Goverman J, Yarmush ML, Irimia D. Resolvin D2 restores monocyte anisocytosis and mediates a shift toward classical monocytes ex vivo in blood samples from patients after major burns. FASEB J 2025; 39:e70336. [PMID: 39853997 DOI: 10.1096/fj.202402018r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/01/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Circulating monocytes contribute to the defense against pathogens and play a crucial role in maintaining immune homeostasis. While there is substantial evidence regarding the triggers of monocyte activation, our understanding of how monocyte function is restored toward homeostasis after activation remains limited. Here, we assessed the changes in monocyte anisocytosis upon activation in blood, measured by monocyte distribution width (MDW), a biomarker for sepsis. We determined that the increase in MDW post-lipopolysaccharide (LPS) stimulation in the blood can be reversed promptly by adding resolvin D2 (RvD2), and we measured a decrease in interleukin-1 beta (IL-1β) in blood, and a decrease in the size of the population of intermediate monocyte subsets. Moreover, the ex vivo addition of RvD2 to blood samples from burn patients with high MDW restored normal MDW values. Further studies are needed to probe the potential therapeutic role of RvD2 in the context of burn injuries.
Collapse
Affiliation(s)
- Saeed Nazemidashtarjandi
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
| | - Matthew D Supple
- Department of Surgery, Sumner Redstone Burn Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lael M Yonker
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert L Sheridan
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
- Department of Surgery, Sumner Redstone Burn Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colleen M Ryan
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
- Department of Surgery, Sumner Redstone Burn Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Murat N Karabacak
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
| | - Jeremy Goverman
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
- Department of Surgery, Sumner Redstone Burn Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin L Yarmush
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
| | - Daniel Irimia
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Children's, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wei N, Lu T, Gu J, Cai H. Lipoxin A4 suppresses neutrophil extracellular traps formation through the FPR2-dependent regulation of METTL3 in ischemic stroke. Brain Res Bull 2025; 220:111178. [PMID: 39706534 DOI: 10.1016/j.brainresbull.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND This study aimed to clarify whether the neuroprotective effect of LXA4 is associated with the targeting of neutrophil extracellular traps (NETs) in ischemic stroke (IS). METHODS The MCAO rat model was established to assess cerebral infarction, brain water content and neurological deficits. ELISA was employed to examine the activities of MPO, NE, MMP-9. RT-qPCR and western blot was performed to analyze molecular expressions. A luciferase reporter assay was performed to measure the effect of EGR1 on the METTL3 promoter. The formation of NETs and cell viability were evaluated using immunofluorescence staining and CCK8 assay, respectively. RESULTS LXA4 decreased cerebral infarction and brain water content, improved neurological deficits, and reduced the release of NETs-associated indicators (MPO, NE) in MCAO rats. LXA4 reduced NETs formation, MPO and NE levels in vitro. In addition, LXA4 reduced Fe2 + levels while increasing GPX4, SLC7A11 protein expressions, as well as enhancing cell viability in vitro, suggesting the inhibitory effect of LXA4 on ferroptosis. Notably, METTL3 overexpression produced the opposite effects. Furthermore, the effects of METTL3 overexpression on NETs formation and ferroptosis were partially reversed by LXA4 treatment. The inhibition of METTL3 by LXA4 was found to be dependent on FPR2. In vivo experiments verified that LXA4 inhibited NETs formation through inhibition of METTL3 to alleviate brain injury. CONCLUSION This study demonstrates that LXA4 suppresses NETs formation through the FPR2-dependent regulation of METTL3, thereby alleviating brain injury in IS.
Collapse
Affiliation(s)
- Na Wei
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| | - Tan Lu
- Department of Orthopaedics, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan 453100, China.
| | - JianBang Gu
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| | - Huan Cai
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, 2866 Chongming Road, Shanghai 202157, China
| |
Collapse
|
3
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
4
|
Shao S, Delk NA, Jones CN. A microphysiological system reveals neutrophil contact-dependent attenuation of pancreatic tumor progression by CXCR2 inhibition-based immunotherapy. Sci Rep 2024; 14:14142. [PMID: 38898176 PMCID: PMC11187156 DOI: 10.1038/s41598-024-64780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells recruit neutrophils from the bloodstream into the tumor tissue, where these immune cells promote the progression of numerous solid tumors. Studies in mice suggest that blocking neutrophil recruitment to tumors by inhibition of neutrophil chemokine receptor CXCR2 could be a potential immunotherapy for pancreatic cancer. Yet, the mechanisms by which neutrophils promote tumor progression in humans, as well as how CXCR2 inhibition could potentially serve as a cancer therapy, remain elusive. In this study, we developed a human cell-based microphysiological system to quantify neutrophil-tumor spheroid interactions in both "separated" and "contact" scenarios. We found that neutrophils promote the invasion of tumor spheroids through the secretion of soluble factors and direct contact with cancer cells. However, they promote the proliferation of tumor spheroids solely through direct contact. Interestingly, treatment with AZD-5069, a CXCR2 inhibitor, attenuates invasion and proliferation of tumor spheroids by blocking direct contact with neutrophils. Our findings also show that CXCR2 inhibition reduces neutrophil migration toward tumor spheroids. These results shed new light on the tumor-promoting mechanisms of human neutrophils and the tumor-suppressive mechanisms of CXCR2 inhibition in pancreatic cancer and may aid in the design and optimization of novel immunotherapeutic strategies based on neutrophils.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Nikki A Delk
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Caroline N Jones
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
5
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
6
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
7
|
Maisha JA, El-Gabalawy HS, O’Neil LJ. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front Immunol 2023; 14:1221125. [PMID: 37767100 PMCID: PMC10520718 DOI: 10.3389/fimmu.2023.1221125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the synovial joints leading to arthritis. Although the etiology of RA remains largely unknown, it is clear that numerous modifiable risk factors confer increased risk to developing RA. Of these risk factors, cigarette smoking, nutrition, obesity, occupational exposures and periodontal disease all incrementally increase RA risk. However, the precise immunological mechanisms by which these risk factors lead to RA are not well understood. Basic and translational studies have provided key insights into the relationship between inflammation, antibody production and the influence in other key cellular events such as T cell polarization in RA risk. Improving our general understanding of the mechanisms which lead to RA will help identify targets for prevention trials, which are underway in at-risk populations. Herein, we review the modifiable risk factors that are linked to RA development and describe immune mechanisms that may be involved. We highlight the few studies that have sought to understand if modification of these risk factors reduces RA risk. Finally, we speculate that modification of risk factors may be an appealing avenue for prevention for some at-risk individuals, specifically those who prefer lifestyle interventions due to safety and economic reasons.
Collapse
Affiliation(s)
| | | | - Liam J. O’Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Ellett F, Irimia D. Passive redirection filters minimize red blood cell contamination during neutrophil chemotaxis assays using whole blood. LAB ON A CHIP 2023; 23:1879-1885. [PMID: 36857665 PMCID: PMC11343506 DOI: 10.1039/d2lc00903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neutrophils are the most numerous white blood cells and are the first to arrive at sites of inflammation and infection. Thus, neutrophil behavior provides a comprehensive biomarker for antimicrobial defenses. Several microfluidic tools have been developed to test neutrophil chemotaxis, phagocytosis, extrusion of extracellular traps, etc. Traditional tools rely on purified neutrophil samples, which require lengthy and expensive isolation procedures from large volumes of blood. In the absence of such isolation, visualizing neutrophils in blood is complicated by the overwhelming number of red blood cells (RBCs), which outnumber neutrophils by 1000 : 1. Recently, several microfluidic technologies have been designed to analyze neutrophils directly in blood, by separating neutrophils on selectin coated surfaces before the migration assay or blocking the advance of RBCs with the moving neutrophils. However, RBC contamination remains an issue, albeit with a reduced ratio, down to 1 : 1. Here, we present an RBC-debulking strategy for neutrophil assays based on microscale passive redirection filters (PRFs) that reduce RBC contamination down to as few as a 1 : 17 RBC to neutrophil ratio. We compare the performance of different PRF designs and measure changes in neutrophil chemotaxis velocity and directionality following immune stimulation of whole blood.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Resolution of inflammation: Intervention strategies and future applications. Toxicol Appl Pharmacol 2022; 449:116089. [DOI: 10.1016/j.taap.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
|
10
|
Zhang L, Tai Q, Xu G, Gao W. Lipoxin A4 attenuates the lung ischaemia reperfusion injury in rats after lung transplantation. Ann Med 2021; 53:1142-1151. [PMID: 34259112 PMCID: PMC8281088 DOI: 10.1080/07853890.2021.1949488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lung ischaemia reperfusion injury (LIRI) is the major cause of primary lung dysfunction after lung transplantation. Lipoxin A4 inhibits the oxidative stress and inflammation. This study aimed to evaluate the potential protective effect of lipoxin A4 on LIRI in rats. METHODS SD (Sprague-Dawley) rats were randomised into the sham, LIRI and LA4 groups. Rats in the sham group received anaesthesia, thoracotomy and intravenous injection of saline, while those in the LIRI or LA4 group received left lung transplantation and intravenous injection of saline or lipoxin A4, respectively. After 24 h of reperfusion, the PaO2/FiO2 (Partial pressure of O2 to fraction inspiratory O2), wet/dry weight ratios and protein levels in lungs were measured to assess the alveolar capillary permeability. The oxidative stress response and inflammation were examined. The histological and apoptosis analyses of lung tissues were performed via HE staining (Haematoxylin-eosin staining) and TUNEL assay, respectively. The effects of lipoxin A4 on the endothelial viability and tube formation of hypoxaemia and reoxygenation-challenged rat pulmonary microvascular endothelium cells were determined. RESULTS Lipoxin A4 significantly ameliorated the alveolar capillary permeability, reduced the oxidative stress and inflammation in transplanted lungs. The histological injury and apoptosis of lung tissues were also alleviated by lipoxin A4. In vitro lipoxin A4 treatment promoted the endothelial tube formation and improved the endothelial viability. CONCLUSION Lipoxin A4 protects LIRI after lung transplantation in rats, and its therapeutic effect is associated with the properties of anti-inflammation, anti-oxidation, and endothelium protection.Key messages:Lung transplantation is a treatment approach for the patients with lung disease.LIRI is the major cause of postoperative primary lung dysfunction.Lipoxins A4 exhibits strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021; 9:721338. [PMID: 34568333 PMCID: PMC8459628 DOI: 10.3389/fcell.2021.721338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yang Yang
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
- Department of Chemical Engineering, University of Maryland, College Park, College Park, MD, United States
| | - Parinaz Fathi
- Department of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mandy B. Esch
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
12
|
McDaniel J. Regulation of Neutrophil Function by Marine n-3 Fatty Acids-A Mini Review. Cell Biochem Biophys 2021; 79:641-648. [PMID: 34047941 DOI: 10.1007/s12013-021-01001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/24/2023]
Abstract
While normal functioning neutrophils contribute in various, critical ways to the maintenance of a stable immune system, their hypo- or hyper-activation has been implicated in the onset or exacerbation of multiple inflammatory conditions often affecting the vulnerable, aging population. As such, many would benefit from interventions capable of targeting neutrophils in disease-specific ways without disrupting their primary role in maintaining immune function. After consumption, marine omega-3 fatty acids are rapidly incorporated into the phospholipid bilayer of neutrophils, changing the fatty acid composition and consequently modifying neutrophil function. In addition to eicosanoid synthesis, the mechanisms by which marine n-3 fatty acids and their metabolites alter neutrophil function involve blockage of transcription factors that subsequently reduce pro-inflammatory gene expression by neutrophils and through the disruption of lipid rafts. In the current mini-review, a brief explanation of marine n-3 fatty acid metabolism is provided and the subsequent impact on neutrophil function is discussed. In addition, current evidence of the effects of marine n-3 fatty acid supplementation on neutrophil function from clinical trials conducted in the past 15 years is summarized.
Collapse
Affiliation(s)
- J McDaniel
- The Ohio State University, College of Nursing, 1585 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Shanti A, Hallfors N, Petroianu GA, Planelles L, Stefanini C. Lymph Nodes-On-Chip: Promising Immune Platforms for Pharmacological and Toxicological Applications. Front Pharmacol 2021; 12:711307. [PMID: 34483920 PMCID: PMC8415712 DOI: 10.3389/fphar.2021.711307] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Organs-on-chip are gaining increasing attention as promising platforms for drug screening and testing applications. However, lymph nodes-on-chip options remain limited although the lymph node is one of the main determinants of the immunotoxicity of newly developed pharmacological drugs. In this review, we describe existing biomimetic lymph nodes-on-chip, their design, and their physiological relevance to pharmacology and shed the light on future directions associated with lymph node-on-chip design and implementation in drug discovery and development.
Collapse
Affiliation(s)
- Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Moarefian M, Davalos RV, Burton MD, Jones CN. Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients. Front Immunol 2021; 12:674727. [PMID: 34421891 PMCID: PMC8379007 DOI: 10.3389/fimmu.2021.674727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including wound healing and immune response to injuries to epithelial barriers (e.g. lung pneumocytes). Immune cells are known to migrate towards both chemical (chemotaxis), physical (mechanotaxis) and electric stimuli (electrotaxis). Electrotaxis is the guided migration of cells along electric fields, and has previously been reported in T-cells and cancer cells. However, there remains a need for engineering tools with high spatial and temporal resolution to quantify EF guided migration. Here we report the development of an electrotaxis-on-chip (ETOC) platform that enables the quantification of dHL-60 cell, a model neutrophil-like cell line, migration toward both electrical and chemoattractant gradients. Neutrophils are the most abundant white blood cells and set the stage for the magnitude of the immune response. Therefore, developing engineering tools to direct neutrophil migration patterns has applications in both infectious disease and inflammatory disorders. The ETOC developed in this study has embedded electrodes and four migration zones connected to a central cell-loading chamber with migration channels [10 µm X 10 µm]. This device enables both parallel and competing chemoattractant and electric fields. We use our novel ETOC platform to investigate dHL-60 cell migration in three biologically relevant conditions: 1) in a DC electric field; 2) parallel chemical gradient and electric fields; and 3) perpendicular chemical gradient and electric field. In this study we used differentiated leukemia cancer cells (dHL60 cells), an accepted model for human peripheral blood neutrophils. We first quantified effects of electric field intensities (0.4V/cm-1V/cm) on dHL-60 cell electrotaxis. Our results show optimal migration at 0.6 V/cm. In the second scenario, we tested whether it was possible to increase dHL-60 cell migration to a bacterial signal [N-formylated peptides (fMLP)] by adding a parallel electric field. Our results show that there was significant increase (6-fold increase) in dHL60 migration toward fMLP and cathode of DC electric field (0.6V/cm, n=4, p-value<0.005) vs. fMLP alone. Finally, we evaluated whether we could decrease or re-direct dHL-60 cell migration away from an inflammatory signal [leukotriene B4 (LTB4)]. The perpendicular electric field significantly decreased migration (2.9-fold decrease) of dHL60s toward LTB4vs. LTB4 alone. Our microfluidic device enabled us to quantify single-cell electrotaxis velocity (7.9 µm/min ± 3.6). The magnitude and direction of the electric field can be more precisely and quickly changed than most other guidance cues such as chemical cues in clinical investigation. A better understanding of EF guided cell migration will enable the development of new EF-based treatments to precisely direct immune cell migration for wound care, infection, and other inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Moarefian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Michael D. Burton
- Department of Neuroscience, Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Caroline N. Jones
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
15
|
Balta MG, Papathanasiou E, Christopoulos PF. Specialized Pro-Resolving Mediators as Potential Regulators of Inflammatory Macrophage Responses in COVID-19. Front Immunol 2021; 12:632238. [PMID: 33717168 PMCID: PMC7943727 DOI: 10.3389/fimmu.2021.632238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The recent outbreak of SARS-CoV2 has emerged as one of the biggest pandemics of our century, with outrageous health, social and economic consequences globally. Macrophages may lay in the center of COVID-19 pathogenesis and lethality and treatment of the macrophage-induced cytokine storm has emerged as essential. Specialized pro-resolving mediators (SPMs) hold strong therapeutic potentials in the management of COVID-19 as they can regulate macrophage infiltration and cytokine production but also promote a pro-resolving macrophage phenotype. In this review, we discuss the homeostatic functions of SPMs acting directly on macrophages on various levels, towards the resolution of inflammation. Moreover, we address the molecular events that link the lipid mediators with COVID-19 severity and discuss the clinical potentials of SPMs in COVID-19 immunotherapeutics.
Collapse
Affiliation(s)
- Maria G. Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
16
|
Ren L, Zhou X, Nasiri R, Fang J, Jiang X, Wang C, Qu M, Ling H, Chen Y, Xue Y, Hartel MC, Tebon P, Zhang S, Kim HJ, Yuan X, Shamloo A, Dokmeci MR, Li S, Khademhosseini A, Ahadian S, Sun W. Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissue-on-a-Chip for Drug Screening. SMALL METHODS 2020; 4:2000438. [PMID: 34423115 PMCID: PMC8372829 DOI: 10.1002/smtd.202000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 06/13/2023]
Abstract
Animal models and traditional cell cultures are essential tools for drug development. However, these platforms can show striking discrepancies in efficacy and side effects when compared to human trials. These differences can lengthen the drug development process and even lead to drug withdrawal from the market. The establishment of preclinical drug screening platforms that have higher relevancy to physiological conditions is desirable to facilitate drug development. Here, a heart-on-a-chip platform, incorporating microgrooves and electrical pulse stimulations to recapitulate the well-aligned structure and synchronous beating of cardiomyocytes (CMs) for drug screening, is reported. Each chip is made with facile lithographic and laser-cutting processes that can be easily scaled up to high-throughput format. The maturation and phenotypic changes of CMs cultured on the heart-on-a-chip is validated and it can be treated with various drugs to evaluate cardiotoxicity and cardioprotective efficacy. The heart-on-a-chip can provide a high-throughput drug screening platform in preclinical drug development.
Collapse
Affiliation(s)
- Li Ren
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Canran Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Moyuan Qu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haonan Ling
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yihang Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Yuan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365, Iran
| | - Mehmet Remzi Dokmeci
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR. Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications. MICROMACHINES 2020; 11:mi11090849. [PMID: 32932680 PMCID: PMC7570325 DOI: 10.3390/mi11090849] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Understanding the immune system is of great importance for the development of drugs and the design of medical implants. Traditionally, two-dimensional static cultures have been used to investigate the immune system in vitro, while animal models have been used to study the immune system’s function and behavior in vivo. However, these conventional models do not fully emulate the complexity of the human immune system or the human in vivo microenvironment. Consequently, many promising preclinical findings have not been reproduced in human clinical trials. Organ-on-a-chip platforms can provide a solution to bridge this gap by offering human micro-(patho)physiological systems in which the immune system can be studied. This review provides an overview of the existing immune-organs-on-a-chip platforms, with a special emphasis on interorgan communication. In addition, future challenges to develop a comprehensive immune system-on-chip model are discussed.
Collapse
Affiliation(s)
- Margaretha A. J. Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA; (M.A.J.M.); (N.G.A.W.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
| | - Niels G. A. Willemen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA; (M.A.J.M.); (N.G.A.W.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA; (M.A.J.M.); (N.G.A.W.)
- Correspondence: ; Tel.: +1-617-768-8320
| |
Collapse
|
18
|
Maharjan S, Cecen B, Zhang YS. 3D Immunocompetent Organ-on-a-Chip Models. SMALL METHODS 2020; 4:2000235. [PMID: 33072861 PMCID: PMC7567338 DOI: 10.1002/smtd.202000235] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 05/15/2023]
Abstract
In recent years, engineering of various human tissues in microphysiologically relevant platforms, known as organs-on-chips (OOCs), has been explored to establish in vitro tissue models that recapitulate the microenvironments found in native organs and tissues. However, most of these models have overlooked the important roles of immune cells in maintaining tissue homeostasis under physiological conditions and in modulating the tissue microenvironments during pathophysiology. Significantly, gradual progress is being made in the development of more sophisticated microphysiologically relevant human-based OOC models that allow the studies of the key biophysiological aspects of specific tissues or organs, interactions between cells (parenchymal, vascular, and immune cells) and their extracellular matrix molecules, effects of native tissue architectures (geometry, dynamic flow or mechanical forces) on tissue functions, as well as unravelling the mechanism underlying tissue-specific diseases and drug testing. In this Progress Report, we discuss the different components of the immune system, as well as immune OOC platforms and immunocompetent OOC approaches that have simulated one or more components of the immune system. We also outline the challenges to recreate a fully functional tissue system in vitro with a focus on the incorporation of the immune system.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev 2020; 161-162:42-62. [PMID: 32750376 PMCID: PMC7736208 DOI: 10.1016/j.addr.2020.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
In cancer, lymph nodes (LNs) coordinate tumor antigen presentation necessary for effective antitumor immunity, both at the levels of local cellular interactions and tissue-level organization. In this review, we examine how LNs may be engineered to improve the therapeutic outcomes of cancer immunotherapy. At the cellular scale, targeting the LNs impacts the potency of cancer vaccines, immune checkpoint blockade, and adoptive cell transfer. On a tissue level, macro-scale biomaterials mimicking LN features can function as immune niches for cell reprogramming or delivery in vivo, or be utilized in vitro to enable preclinical testing of drugs and vaccines. We additionally review strategies to induce ectopic lymphoid sites reminiscent of LNs that may improve antitumor T cell priming.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
| |
Collapse
|
20
|
Sasserath T, Rumsey JW, McAleer CW, Bridges LR, Long CJ, Elbrecht D, Schuler F, Roth A, Bertinetti‐LaPatki C, Shuler ML, Hickman JJ. Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000323. [PMID: 32670763 PMCID: PMC7341107 DOI: 10.1002/advs.202000323] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Indexed: 05/24/2023]
Abstract
A functional, human, multiorgan, pumpless, immune system-on-a-chip featuring recirculating THP-1 immune cells with cardiomyocytes, skeletal muscle, and liver in separate compartments in a serum-free medium is developed. This in vitro platform can emulate both a targeted immune response to tissue-specific damage, and holistic proinflammatory immune response to proinflammatory compound exposure. The targeted response features fluorescently labeled THP-1 monocytes selectively infiltrating into an amiodarone-damaged cardiac module and changes in contractile force measurements without immune-activated damage to the other organ modules. In contrast to the targeted immune response, general proinflammatory treatment of immune human-on-a-chip systems with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) causes nonselective damage to cells in all three-organ compartments. Biomarker analysis indicates upregulation of the proinflammation cytokines TNF-α, IL-6, IL-10, MIP-1, MCP-1, and RANTES in response to LPS + IFN-γ treatment indicative of the M1 macrophage phenotype, whereas amiodarone treatment only leads to an increase in the restorative cytokine IL-6 which is a marker for the M2 phenotype. This system can be used as an alternative to humanized animal models to determine direct immunological effects of biological therapeutics including monoclonal antibodies, vaccines, and gene therapies, and the indirect effects caused by cytokine release from target tissues in response to a drug's pharmacokinetics (PK)/pharmacodynamics (PD) profile.
Collapse
Affiliation(s)
- Trevor Sasserath
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | - John W. Rumsey
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | | | | | | | - Daniel Elbrecht
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | - Franz Schuler
- Hoffmann‐La RochePharmaceuticals DivisionBldg 73, Rm 117bBasel4070Switzerland
| | - Adrian Roth
- Hoffmann‐La RochePharmaceuticals DivisionBldg 73, Rm 117bBasel4070Switzerland
| | | | | | - James J. Hickman
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
- NanoScience Technology Center, University of Central Florida12424 Research Parkway, Suite 400OrlandoFL32826USA
| |
Collapse
|
21
|
Chemotaxing neutrophils enter alternate branches at capillary bifurcations. Nat Commun 2020; 11:2385. [PMID: 32404937 PMCID: PMC7220926 DOI: 10.1038/s41467-020-15476-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Upon tissue injury or microbial invasion, a large number of neutrophils converge from blood to the sites of injury or infection in a short time. The migration through a limited number of paths through tissues and capillary networks seems efficient and 'traffic jams' are generally avoided. However, the mechanisms that guide efficient trafficking of large numbers of neutrophils through capillary networks are not well understood. Here we show that pairs of neutrophils arriving closely one after another at capillary bifurcations migrate to alternating branches in vivo and in vitro. Perturbation of chemoattractant gradients and the increased hydraulic resistance induced by the first neutrophil in one branch biases the migration of the following neutrophil towards the other branch. These mechanisms guide neutrophils to efficiently navigate through capillary networks and outline the effect of inter-neutrophil interactions during migration on overall lymphocyte trafficking patterns in confined environments.
Collapse
|
22
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
23
|
Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood 2020; 134:1458-1468. [PMID: 31300403 DOI: 10.1182/blood.2018886317] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.
Collapse
|
24
|
Kooij G, Troletti CD, Leuti A, Norris PC, Riley I, Albanese M, Ruggieri S, Libreros S, van der Pol SMA, van Het Hof B, Schell Y, Guerrera G, Buttari F, Mercuri NB, Centonze D, Gasperini C, Battistini L, de Vries HE, Serhan CN, Chiurchiù V. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica 2019; 105:2056-2070. [PMID: 31780628 PMCID: PMC7395264 DOI: 10.3324/haematol.2019.219519] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression. Furthermore, we found impaired expression of several pro-resolving LM biosynthetic enzymes and receptors in blood-derived leukocytes of MS patients. Mechanistically, differentially expressed mediators like LXA4, LXB4, RvD1 and PD1 reduced MS-derived monocyte activation and cytokine production, and inhibited inflammation-induced blood-brain barrier dysfunction and monocyte transendothelial migration. Altogether, these findings reveal peripheral defects in the resolution pathway in MS, suggesting pro-resolving LM as novel diagnostic biomarkers and potentially safe therapeutics.
Collapse
Affiliation(s)
- Gijs Kooij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Derada Troletti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Albanese
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | | | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne M A van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yoëlle Schell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Gisella Guerrera
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | - Nicola Biagio Mercuri
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | | | - Luca Battistini
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Helga E de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy .,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
25
|
Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019; 20:ijms20205028. [PMID: 31614433 PMCID: PMC6834330 DOI: 10.3390/ijms20205028] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sara L Svahn
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
26
|
Park J, Baik SH, Mook-Jung I, Irimia D, Cho H. Mimicry of Central-Peripheral Immunity in Alzheimer's Disease and Discovery of Neurodegenerative Roles in Neutrophil. Front Immunol 2019; 10:2231. [PMID: 31611872 PMCID: PMC6776120 DOI: 10.3389/fimmu.2019.02231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammatory roles of central innate immunity in brain parenchyma are well-regarded in the progression of neurodegenerative disorders including Alzheimer's disease (AD), however, the roles of peripheral immunity in central nervous system (CNS) diseases are less clear. Here, we created a microfluidic environment of human AD brains: microglial neuroinflammation induced by soluble amyloid-beta (Abeta), a signature molecule in AD and employed the environment to investigate the roles of neutrophils through the central-peripheral innate immunity crosstalk. We observed that soluble Abeta-activated human microglial cells produced chemoattractants for neutrophils including IL6, IL8, CCL2, CCL3/4, CCL5 and consequently induced reliable recruitment of human neutrophils. Particularly, we validated the discernable chemo-attractive roles of IL6, IL8, and CCL2 for neutrophils by interrupting the recruitment with neutralizing antibodies. Upon recruitment, microglia-neutrophils interaction results in the production of inflammatory mediators such as MIF and IL2, which are known to up-regulate neuroinflammation in AD. We envision that targeting the crosstalk between central-peripheral immune community is a potential strategy to reduce immunological burdens in other neuroinflammatory CNS diseases.
Collapse
Affiliation(s)
- Joseph Park
- The Nanoscale Science Program, Department of Mechanical Engineering and Engineering Science, Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, South Korea
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Hansang Cho
- The Nanoscale Science Program, Department of Mechanical Engineering and Engineering Science, Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, United States.,Department of Surgery, BioMEMS Resource Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Biophysics, Institute of Quantum Biology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
27
|
Um E, Oh JM, Park J, Song T, Kim TE, Choi Y, Shin C, Kolygina D, Jeon JH, Grzybowski BA, Cho YK. Immature dendritic cells navigate microscopic mazes to find tumor cells. LAB ON A CHIP 2019; 19:1665-1675. [PMID: 30931468 DOI: 10.1039/c9lc00150f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells with high sentinel ability to scan their neighborhood and to initiate an adaptive immune response. Whereas chemotactic migration of mature DCs (mDCs) towards lymph nodes is relatively well documented, the migratory behavior of immature DCs (imDCs) in tumor microenvironments is still poorly understood. Here, microfluidic systems of various geometries, including mazes, are used to investigate how the physical and chemical microenvironment influences the migration pattern of imDCs. Under proper degree of confinement, the imDCs are preferentially recruited towards cancer vs. normal cells, accompanied by increased cell speed and persistence. Furthermore, a systematic screen of cytokines, reveals that Gas6 is a major chemokine responsible for the chemotactic preference. These results and the accompanying theoretical model suggest that imDC migration in complex tissue environments is tuned by a proper balance between the strength of the chemical gradients and the degree of spatial confinement.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boribong BP, Lenzi MJ, Li L, Jones CN. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Front Immunol 2019; 10:359. [PMID: 30915068 PMCID: PMC6422936 DOI: 10.3389/fimmu.2019.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the first responders to infection and play a pivotal role in many inflammatory diseases, including sepsis. Recent studies have shown that lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. In this study, we show that pre-treatment with super-low levels of LPS [1 ng/mL] significantly dysregulate neutrophil migratory phenotypes, including spontaneous migration and altering neutrophil decision-making. To quantify neutrophil migratory decision-making with single-cell resolution, we developed a novel microfluidic competitive chemotaxis-chip (μC3) that exposes cells in a central channel to competing chemoattractant gradients. In this reductionist approach, we use two chemoattractants: a pro-resolution (N-Formyl-Met-Leu-Phe, fMLP) and pro-inflammatory (Leukotriene B4, LTB4) chemoattractant to model how a neutrophil makes a decision to move toward an end target chemoattractant (e.g., bacterial infection) vs. an intermediary chemoattractant (e.g., inflammatory signal). We demonstrate that naïve neutrophils migrate toward the primary end target signal in higher percentages than toward the secondary intermediary signal. As expected, we found that training with high dose LPS [100 ng/mL] influences a higher percentage of neutrophils to migrate toward the end target signal, while reducing the percentage of neutrophils that migrate toward the intermediary signal. Surprisingly, super-low dose LPS [1 ng/mL] significantly changes the ratios of migrating cells and an increased percentage of cells migrate toward the intermediary signal. Significantly, there was also an increase in the numbers of spontaneously migrating neutrophils after treatment with super-low dose LPS. These results shed light onto the directional migratory decision-making of neutrophils exposed to inflammatory training signals. Understanding these mechanisms may lead to the development of pro-resolution therapies that correct the neutrophil compass and reduce off-target organ damage.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark J Lenzi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
29
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
30
|
Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A. Organ-on-a-Chip for Cancer and Immune Organs Modeling. Adv Healthc Mater 2019; 8:e1801363. [PMID: 30605261 PMCID: PMC6424124 DOI: 10.1002/adhm.201801363] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Bridging the gap between findings in preclinical 2D cell culture models and in vivo tissue cultures has been challenging; the simple microenvironment of 2D monolayer culture systems may not capture the cellular response to drugs accurately. Three-dimensional organotypic models have gained increasing interest due to their ability to recreate precise cellular organizations. These models facilitate investigation of the interactions between different sub-tissue level components through providing physiologically relevant microenvironments for cells in vitro. The incorporation of human-sourced tissues into these models further enables personalized prediction of drug responses. Integration of microfluidic units into the 3D models can be used to control their local environment, dynamic simulation of cell behaviors, and real-time readout of drug testing data. Cancer and immune system related diseases are severe burdens to our health care system and have created an urgent need for high-throughput, and effective drug development plans. This review focuses on recent progress in the development of "cancer-on-a-chip" and "immune organs-on-a-chip" systems designed to study disease progression and predict drug-induced responses. Future challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Wujin Sun
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - KangJu Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Yudi Feng
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mehmet R. Dokmeci
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Shiladitya Sengupta
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, ; Harvard – MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90024, USA.; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA; Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Boribong BP, Rahimi A, Jones CN. Microfluidic Platform to Quantify Neutrophil Migratory Decision-Making. Methods Mol Biol 2019; 1960:113-122. [PMID: 30798526 DOI: 10.1007/978-1-4939-9167-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Neutrophils are the most abundant leukocytes in blood, serving as the first line of host defense in tissue damage and infections. Upon activation by chemokines released from pathogens or injured tissues, neutrophils migrate through complex tissue microenvironments toward sites of infections along the chemokine gradients, in a process named chemotaxis. However, current methods for measuring neutrophil chemotaxis require large volumes of blood and are often bulk, endpoint measurements. To address the need for rapid and robust assays, we engineered a novel dual gradient microfluidic platform that precisely quantifies neutrophil migratory decision-making with high temporal resolution. Here, we present a protocol to measure neutrophil migratory phenotypes (velocity, directionality) with single-cell resolution.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amina Rahimi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
32
|
Shanti A, Teo J, Stefanini C. In Vitro Immune Organs-on-Chip for Drug Development: A Review. Pharmaceutics 2018; 10:E278. [PMID: 30558264 PMCID: PMC6320867 DOI: 10.3390/pharmaceutics10040278] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
The current drug development practice lacks reliable and sensitive techniques to evaluate the immunotoxicity of drug candidates, i.e., their effect on the human immune system. This, in part, has resulted in a high attrition rate for novel drugs candidates. Organ-on-chip devices have emerged as key tools that permit the study of human physiology in controlled in vivo simulating environments. Furthermore, there has been a growing interest in developing the so called "body-on-chip" devices to better predict the systemic effects of drug candidates. This review describes existing biomimetic immune organs-on-chip, highlights their physiological relevance to drug development and discovery and emphasizes the need for developing comprehensive immune system-on-chip models. Such immune models can enhance the performance of novel drug candidates during clinical trials and contribute to reducing the high attrition rate as well as the high cost associated with drug development.
Collapse
Affiliation(s)
- Aya Shanti
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE.
| | - Jeremy Teo
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE.
- Department of Mechanical and Aerospace Engineering, New York University, New York City, P.O. Box 903, NY 10276-0903, USA.
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE.
| |
Collapse
|
33
|
Irimia D, Wang X. Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends Biotechnol 2018; 36:923-937. [PMID: 29728272 PMCID: PMC6098972 DOI: 10.1016/j.tibtech.2018.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Inflammation is the typical result of activating the host immune system against pathogens, and it helps to clear microbes from tissues. However, inflammation can occur in the absence of pathogens, contributing to tissue damage and leading to disease. Understanding how immune cells coordinate their activities to initiate, modulate, and terminate inflammation is key to developing effective interventions to preserve health and combat diseases. Towards this goal, inflammation-on-a-chip tools provide unique features that greatly benefit the study of inflammation. They reconstitute tissue environments in microfabricated devices and enable real-time, high-resolution observations and quantification of cellular activities relevant to inflammation. We review here recent advances in inflammation-on-a-chip technologies and highlight the biological insights and clinical applications enabled by these emerging tools.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| | - Xiao Wang
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| |
Collapse
|
34
|
Gosselin EA, Eppler HB, Bromberg JS, Jewell CM. Designing natural and synthetic immune tissues. NATURE MATERIALS 2018; 17:484-498. [PMID: 29784994 PMCID: PMC6283404 DOI: 10.1038/s41563-018-0077-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/11/2018] [Indexed: 05/10/2023]
Abstract
Vaccines and immunotherapies have provided enormous improvements for public health, but there are fundamental disconnects between where most studies are performed-in cell culture and animal models-and the ultimate application in humans. Engineering immune tissues and organs, such as bone marrow, thymus, lymph nodes and spleen, could be instrumental in overcoming these hurdles. Fundamentally, designed immune tissues could serve as in vitro tools to more accurately study human immune function and disease, while immune tissues engineered for implantation as next-generation vaccines or immunotherapies could enable direct, on-demand control over generation and regulation of immune function. In this Review, we discuss recent interdisciplinary strategies that are merging materials science and immunology to create engineered immune tissues in vitro and in vivo. We also highlight the hurdles facing these approaches and the need for comparison to existing clinical options, relevant animal models, and other emerging technologies.
Collapse
Affiliation(s)
- Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA.
- United States Department of Veterans Affairs, Maryland VA Health Care System, Baltimore, MD, USA.
| |
Collapse
|
35
|
Tay HM, Dalan R, Li KHH, Boehm BO, Hou HW. A Novel Microdevice for Rapid Neutrophil Purification and Phenotyping in Type 2 Diabetes Mellitus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702832. [PMID: 29168915 DOI: 10.1002/smll.201702832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Neutrophil dysfunction is strongly linked to type 2 diabetes mellitus (T2DM) pathophysiology, but the prognostic potential of neutrophil biomarkers remains largely unexplored due to arduous leukocyte isolation methods. Herein, a novel integrated microdevice is reported for single-step neutrophil sorting and phenotyping (chemotaxis and formation of neutrophil extracellular traps (NETosis)) using small blood volumes (fingerprick). Untouched neutrophils are purified on-chip from whole blood directly using biomimetic cell margination and affinity-based capture, and are exposed to preloaded chemoattractant or NETosis stimulant to initiate chemotaxis or NETosis, respectively. Device performance is first characterized using healthy and in vitro inflamed blood samples (tumor necrosis factor alpha, high glucose), followed by clinical risk stratification in a cohort of subjects with T2DM. Interestingly, "high-risk" T2DM patients characterized by severe chemotaxis impairment reveal significantly higher C-reactive protein levels and poor lipid metabolism characteristics as compared to "low-risk" subjects, and their neutrophil chemotaxis responses can be mitigated after in vitro metformin treatment. Overall, this unique and user-friendly microfluidics immune health profiling strategy can significantly aid the quantification of chemotaxis and NETosis in clinical settings, and be further translated into a tool for risk stratification and precision medicine methods in subjects with metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Hui Min Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore, 639798, Singapore
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Han Wei Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
36
|
Pádua TA, Torres ND, Candéa ALP, Costa MFS, Silva JD, Silva‐Filho JL, Costa FTM, Rocco PRM, Souza MC, Henriques MG. Therapeutic effect of Lipoxin A
4
in malaria‐induced acute lung injury. J Leukoc Biol 2018; 103:657-670. [DOI: 10.1002/jlb.3a1016-435rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tatiana A. Pádua
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Natalia D. Torres
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - André L. P. Candéa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - João Luiz Silva‐Filho
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Mariana C. Souza
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria G. Henriques
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| |
Collapse
|
37
|
Serhan CN. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Aspects Med 2017; 58:1-11. [PMID: 28263773 PMCID: PMC5582020 DOI: 10.1016/j.mam.2017.03.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
It is with great pleasure that I write this foreword and introduction to this Special Issue dedicated to the protective actions of the pro-resolving mediators and edited by my colleague Dr. Jesmond Dalli. Many of my collaborators and colleagues that helped to uncover the actions and clinical potential of the resolvins and other specialized proresolving mediators (SPM), namely, the superfamily of pro-resolving mediators that includes the resolvin (E-series, D-series and DPA-derived), protectin and maresin families, as well as the arachidonic acid-derived lipoxins, join me in this special issue. They have given contributions that present exciting new results on the remarkable actions and potency of these unique molecules, the SPM moving forward the importance of their mediators and pathways in human biology. Each contribution to this issue is presented by world authorities in their respective fields covering discoveries that demonstrate the importance and impact of resolution mediators in biology, medicine and surgery. While some of the authors were students and/or fellows with me and others, they are today the founding "resolutionists" of a new era of appreciation of autacoid biosynthesis and metabolomics in human health and disease with their rigorous attention to experimental detail and discovery. The chapters of this issue are filled with exciting new discoveries demonstrating the dynamics and potential of resolution mediators.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
39
|
Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 2017; 31:1273-1288. [PMID: 28087575 PMCID: PMC5349794 DOI: 10.1096/fj.201601222r] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Practitioners of ancient societies from the time of Hippocrates and earlier recognized and treated the signs of inflammation, heat, redness, swelling, and pain with agents that block or inhibit proinflammatory chemical mediators. More selective drugs are available today, but this therapeutic concept has not changed. Because the acute inflammatory response is host protective to contain foreign invaders, much of today's pharmacopeia can cause serious unwanted side effects, such as immune suppression. Uncontrolled inflammation is now considered pathophysiologic and is associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity, and asthma, as well as classic inflammatory diseases (e.g., arthritis and periodontal diseases). The inflammatory response, when self-limited, produces a superfamily of chemical mediators that stimulate resolution of the response. Specialized proresolving mediators (SPMs), identified in recent years, are endogenous mediators that include the n-3-derived families resolvins, protectins, and maresins, as well as arachidonic acid-derived (n-6) lipoxins, which promote resolution of inflammation, clearance of microbes, reduction of pain, and promotion of tissue regeneration via novel mechanisms. Aspirin and statins have a positive impact on these resolution pathways, producing epimeric forms of specific SPMs, whereas other drugs can disrupt timely resolution. In this article, evidence from recent human and preclinical animal studies is reviewed, indicating that SPMs are physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. The findings suggest that it is time to challenge current treatment practices-namely, using inhibitors and antagonists alone-and to develop immunoresolvents as agonists to test resolution pharmacology and their role in catabasis for their therapeutic potential.-Serhan, C. N. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Chandrasekaran A, Ellett F, Jorgensen J, Irimia D. Temporal gradients limit the accumulation of neutrophils towards sources of chemoattractant. MICROSYSTEMS & NANOENGINEERING 2017; 3:16067. [PMID: 28713624 PMCID: PMC5507070 DOI: 10.1038/micronano.2016.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 05/19/2023]
Abstract
Neutrophil trafficking during inflammation is a highly orchestrated process, coordinating neutrophil recruitment, sterilization of the wound, and inflammation resolution. Although the chemotactic signals guiding neutrophil recruitment to sites of inflammation are relatively well understood, mechanisms controlling cessation of neutrophil recruitment and return to normal tissue physiology remain undefined. To gain insights into these processes, we designed a microfluidic device with an array of chemoattractant reservoirs, which mimics the microenvironment in infected tissues, when multiple clusters of microbes are present. We monitored the temporal dynamics of neutrophil recruitment towards the chemoattractant reservoirs at single cell resolution, for 3 hours. We observed robust neutrophil recruitment that reached a plateau after 1.5 hours, despite the continuous presence of robust chemoattractant gradients around the reservoirs. The timing of the plateau was dependent on the geometry of the devices and was independent from the number of neutrophils. Based on these observations, we ruled out sub-population sensitivity, chemoattractant scavenging, and production of a self-limiting stop signal as potential mechanisms underpinning the plateau in neutrophil recruitment. We found a strong correlation between the temporal stabilization of concentration changes and the plateau in neutrophils recruitment. These results suggest that dynamic aspects of chemoattractant gradients are key for maximizing recruitment during the acute phase of infections and limiting the accumulation of neutrophils as soon as the infection is contained.
Collapse
Affiliation(s)
- Arvind Chandrasekaran
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Julianne Jorgensen
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA
- ()
| |
Collapse
|
41
|
Oliveira AF, Pessoa ACSN, Bastos RG, de la Torre LG. Microfluidic tools toward industrial biotechnology. Biotechnol Prog 2016; 32:1372-1389. [DOI: 10.1002/btpr.2350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Aline F. Oliveira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| | - Amanda C. S. N. Pessoa
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| | - Reinaldo G. Bastos
- Department of Agroindustrial Technology and Rural Socioeconomy, Center of Agricultural Sciences, Federal University of São Carlos; Km 174 Anhanguera Highway Araras P.O. Box 153
| | - Lucimara G. de la Torre
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| |
Collapse
|
42
|
Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 2016; 785:50-58. [DOI: 10.1016/j.ejphar.2015.03.098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/26/2022]
|
43
|
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016; 100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|
44
|
A Novel Resolvin-Based Strategy for Limiting Acetaminophen Hepatotoxicity. Clin Transl Gastroenterol 2016; 7:e153. [PMID: 26986653 PMCID: PMC4822092 DOI: 10.1038/ctg.2016.13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives: Acetaminophen (APAP)-induced hepatotoxicity is a major cause of morbidity and mortality. The current pharmacologic treatment for APAP hepatotoxicity, N-acetyl cysteine (NAC), targets the initial metabolite-driven injury but does not directly affect the host inflammatory response. Because of this, NAC is less effective if given at later stages in the disease course. Resolvins, a novel group of lipid mediators shown to attenuate host inflammation, may be a therapeutic intervention for APAP hepatotoxicity. Methods: The temporal patterns of liver injury and neutrophil activation were investigated in a murine model of APAP hepatotoxicity. In addition, the effect of neutrophil depletion and resolvin administration on the severity of liver injury induced by APAP was studied. In vitro studies to investigate the mechanism of resolvin effect on hepatocyte injury and neutrophil adhesion were performed. Results: We demonstrate that hepatic neutrophil activation occurs secondary to the initial liver injury induced directly by APAP. We also show that neutrophil depletion attenuates APAP-induced liver injury, and administration of resolvins hours after APAP challenge not only attenuates liver injury, but also extends the therapeutic window eightfold compared to NAC. Mechanistic in vitro analysis highlights resolvins' ability to inhibit neutrophil attachment to endothelial cells in the presence of the reactive metabolite of APAP. Conclusions: This study highlights the ability of resolvins to protect against APAP-induced liver injury and extend the therapeutic window compared to NAC. Although the mechanism for resolvin-mediated hepatoprotection is likely multifactorial, inhibition of neutrophil infiltration and activation appears to play an important role.
Collapse
|
45
|
Schmid M, Gemperle C, Rimann N, Hersberger M. Resolvin D1 Polarizes Primary Human Macrophages toward a Proresolution Phenotype through GPR32. THE JOURNAL OF IMMUNOLOGY 2016; 196:3429-37. [PMID: 26969756 DOI: 10.4049/jimmunol.1501701] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
Resolvin D1 (RvD1) was shown to be a potent anti-inflammatory and proresolution lipid mediator in several animal models of inflammation, but its mechanism of action in humans is not clear. We show that the RvD1 receptor GPR32 is present on resting, proinflammatory M(LPS) and alternatively activated primary human M(IL-4) macrophages, whereas TGF-β and IL-6 reduce its membrane expression. Accordingly, stimulation of resting primary human macrophages with 10 nM RvD1 for 48 h maximally reduced the secretion of the proinflammatory cytokines IL-1β and IL-8; abolished chemotaxis to several chemoattractants like chemerin, fMLF, and MCP-1; and doubled the phagocytic activity of these macrophages toward microbial particles. In contrast, these functional changes were not accompanied by surface expression of markers specific for alternatively activated M(IL-4) macrophages. Similar proresolution effects of RvD1 were observed when proinflammatory M(LPS) macrophages were treated with RvD1. In addition, we show that these RvD1-mediated effects are GPR32 dependent because reduction of GPR32 expression by small interfering RNA, TGF-β, and IL-6 treatment ablated these proresolution effects in primary human macrophages. Taken together, our results indicate that in humans RvD1 triggers GPR32 to polarize and repolarize macrophages toward a proresolution phenotype, supporting the role of this mediator in the resolution of inflammation in humans.
Collapse
Affiliation(s)
- Mattia Schmid
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; and Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Claudio Gemperle
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; and Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Nicole Rimann
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; and Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland; and Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
46
|
Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 2016; 100:241-7. [PMID: 26819316 DOI: 10.1189/jlb.5ta0715-310rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023] Open
Abstract
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anh N Hoang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Dimisko
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshitaka Inoue
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
47
|
Ghallab YH, Abd El-Hamid H, Ismail Y. Lab on a Chip Based on CMOS Technology: System Architectures, Microfluidic Packaging, and Challenges. IEEE DESIGN & TEST 2015; 32:20-31. [DOI: 10.1109/mdat.2015.2491785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Hamza B, Irimia D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. LAB ON A CHIP 2015; 15:2625-33. [PMID: 25987163 PMCID: PMC4457540 DOI: 10.1039/c5lc00245a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Appropriate inflammatory responses to wounds and infections require adequate numbers of neutrophils arriving at injury sites. Both insufficient and excessive neutrophil recruitment can be detrimental, favouring systemic spread of microbes or triggering severe tissue damage. Despite its importance in health and disease, the trafficking of neutrophils through tissues remains difficult to control and the mechanisms regulating it are insufficiently understood. These mechanisms are also complex and difficult to isolate using traditional in vivo models. Here we designed a microfluidic model of tissue infection/inflammation, in which human neutrophils emerge from a droplet-size samples of whole blood and display bi-directional traffic between this and micro-chambers containing chemoattractant and microbe-like particles. Two geometrical barriers restrict the entrance of red blood cells from the blood to the micro-chambers and simulate the mechanical function of the endothelial barrier separating the cells in blood from cells in tissues. We found that in the presence of chemoattractant, the number of neutrophils departing the chambers by retrotaxis is in dynamic equilibrium with the neutrophils recruited by chemotaxis. We also found that in the presence of microbe-like particles, the number of neutrophils trapped in the chambers is proportional to the number of particles. Together, the dynamic equilibrium between migration, reversed-migration and trapping processes determine the optimal number of neutrophils at a site. These neutrophils are continuously refreshed and responsive to the number of microbes. Further studies using this infection-inflammation-on-a-chip-model could help study the processes of inflammation resolution. The new in vitro experimental tools may also eventually help testing new therapeutic strategies to limit neutrophil accumulation in tissues during chronic inflammation, without increasing the risk for infections.
Collapse
Affiliation(s)
- Bashar Hamza
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
- Current affiliation: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
49
|
Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol 2015; 27:200-15. [PMID: 25857211 DOI: 10.1016/j.smim.2015.03.004] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
Studies into the mechanisms in resolution of self-limited inflammation and acute reperfusion injury have uncovered a new genus of pro-resolving lipid mediators coined specialized pro-resolving mediators (SPM) including lipoxins, resolvins, protectins and maresins that are each temporally produced by resolving-exudates with distinct actions for return to homeostasis. SPM evoke potent anti-inflammatory and novel pro-resolving mechanisms as well as enhance microbial clearance. While born in inflammation-resolution, SPM are conserved structures with functions discovered in microbial defense, pain, organ protection and tissue regeneration, wound healing, cancer, reproduction, and neurobiology-cognition. This review covers these SPM mechanisms and other new omega-3 PUFA pathways that open their path for functions in resolution physiology.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
50
|
Van Dyke TE, Hasturk H, Kantarci A, Freire MO, Nguyen D, Dalli J, Serhan CN. Proresolving nanomedicines activate bone regeneration in periodontitis. J Dent Res 2015; 94:148-56. [PMID: 25389003 PMCID: PMC4270812 DOI: 10.1177/0022034514557331] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Therapies to reverse tissue damage from osteolytic inflammatory diseases are limited by the inability of current tissue-engineering procedures to restore lost hard and soft tissues. There is a critical need for new therapeutics in regeneration. In addition to scaffolds, cells, and soluble mediators necessary for tissue engineering, control of endogenous inflammation is an absolute requirement for success. Although significant progress has been made in understanding natural resolution of inflammation pathways to limit uncontrolled inflammation in disease, harnessing the biomimetic properties of proresolving lipid mediators has not been demonstrated. Here, we report the use of nano-proresolving medicines (NPRM) containing a novel lipoxin analog (benzo-lipoxin A4, bLXA4) to promote regeneration of hard and soft tissues irreversibly lost to periodontitis in the Hanford miniature pig. In this proof-of-principle experiment, NPRM-bLXA4 dramatically reduced inflammatory cell infiltrate into chronic periodontal disease sites treated surgically and dramatically increased new bone formation and regeneration of the periodontal organ. These findings indicate that NPRM-bLXA4 is a mimetic of endogenous resolving mechanisms with potent bioactions that offers a new therapeutic tissue-engineering approach for the treatment of chronic osteolytic inflammatory diseases.
Collapse
Affiliation(s)
- T E Van Dyke
- Center for Periodontology, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - H Hasturk
- Center for Periodontology, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - A Kantarci
- Center for Periodontology, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - M O Freire
- Center for Periodontology, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - D Nguyen
- Center for Periodontology, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - J Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|