1
|
Cui JQ, Tian Y, Wu Z, Zhang L, Cho WC, Yao S, Lin Y. Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice. NANO LETTERS 2024; 24:14522-14530. [PMID: 39495891 DOI: 10.1021/acs.nanolett.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
Collapse
Affiliation(s)
- Johnson Q Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| | - Zhihao Wu
- The Hong Kong University of Science and Technology (Guangzhou), Function Hub Nansha, Guangzhou, Guangdong 511400, China
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon 999077, Hong Kong, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| |
Collapse
|
2
|
Rosvold JR, Zanini G, Handler C, Frank E, Li J, Vitolo MI, Martin SS, Scarcelli G. Stimulated Brillouin scattering flow cytometry. BIOMEDICAL OPTICS EXPRESS 2024; 15:6024-6035. [PMID: 39421786 PMCID: PMC11482170 DOI: 10.1364/boe.537602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
We present the use of stimulated Brillouin scattering spectroscopy to achieve rapid measurements of cell biomechanics in a flow cytometer setup. Specifically, our stimulated Brillouin scattering flow cytometry can acquire at a rate of 200 Hz, with a spectral acquisition time of 5 ms, which marks a 10x improvement compared to previous demonstrations of spontaneous Brillouin scattering flow cytometry. We experimentally validate our stimulated Brillouin scattering flow cytometer by measuring cell populations of normal breast epithelial cells and metastatic breast epithelial cancer cells.
Collapse
Affiliation(s)
- Jake R. Rosvold
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giulia Zanini
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Chenchen Handler
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eric Frank
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Jiarui Li
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Michele I. Vitolo
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart S. Martin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
3
|
Gasser E, Su E, Vaidžiulytė K, Abbade N, Cognart H, Manneville JB, Viovy JL, Piel M, Pierga JY, Terao K, Villard C. Deformation under flow and morphological recovery of cancer cells. LAB ON A CHIP 2024; 24:3930-3944. [PMID: 38993177 PMCID: PMC11302772 DOI: 10.1039/d4lc00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
The metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines - namely MCF-7, SK-BR3 and MDA-MB231 - as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.
Collapse
Affiliation(s)
- Emile Gasser
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| | - Emilie Su
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Kotryna Vaidžiulytė
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Nassiba Abbade
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Hamizah Cognart
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Jean-Louis Viovy
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Jean-Yves Pierga
- Département d'Oncologie Médicale de l'Institut Curie et Université Paris Cité, France
| | - Kyohei Terao
- Nano-Micro Structure Device Integrated Research Center, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan.
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| |
Collapse
|
4
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
6
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Antonacci G, Vanna R, Ventura M, Schiavone ML, Sobacchi C, Behrouzitabar M, Polli D, Manzoni C, Cerullo G. Birefringence-induced phase delay enables Brillouin mechanical imaging in turbid media. Nat Commun 2024; 15:5202. [PMID: 38898004 PMCID: PMC11187154 DOI: 10.1038/s41467-024-49419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Acoustic vibrations of matter convey fundamental viscoelastic information that can be optically retrieved by hyperfine spectral analysis of the inelastic Brillouin scattered light. Increasing evidence of the central role of the viscoelastic properties in biological processes has stimulated the rise of non-contact Brillouin microscopy, yet this method faces challenges in turbid samples due to overwhelming elastic background light. Here, we introduce a common-path Birefringence-Induced Phase Delay (BIPD) filter to disentangle the polarization states of the Brillouin and Rayleigh signals, enabling the rejection of the background light using a polarizer. We demonstrate a 65 dB extinction ratio in a single optical pass collecting Brillouin spectra in extremely scattering environments and across highly reflective interfaces. We further employ the BIPD filter to image bone tissues from a mouse model of osteopetrosis, highlighting altered biomechanical properties compared to the healthy control. Results herald new opportunities in mechanobiology where turbid biological samples remain poorly characterized.
Collapse
Affiliation(s)
| | - Renzo Vanna
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Ventura
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano (Milano), Italy
- CNR-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), UOS di Milano, via Fantoli 16/15, 20138, Milano, Italy
| | - Morteza Behrouzitabar
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Dario Polli
- Specto Photonics, Via Giulio e Corrado Venini 18, 20127, Milano, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Cristian Manzoni
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Giulio Cerullo
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
8
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
10
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
11
|
Storti F, Bonfadini S, Bondelli G, Vurro V, Lanzani G, Criante L. Photocell-Based Optofluidic Device for Clogging-Free Cell Transit Time Measurements. BIOSENSORS 2024; 14:154. [PMID: 38667147 PMCID: PMC11047832 DOI: 10.3390/bios14040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Measuring the transit time of a cell forced through a bottleneck is one of the most widely used techniques for the study of cell deformability in flow. It in turn provides an accessible and rapid way of obtaining crucial information regarding cell physiology. Many techniques are currently being investigated to reliably retrieve this time, but their translation to diagnostic-oriented devices is often hampered by their complexity, lack of robustness, and the bulky external equipment required. Herein, we demonstrate the benefits of coupling microfluidics with an optical method, like photocells, to measure the transit time. We exploit the femtosecond laser irradiation followed by chemical etching (FLICE) fabrication technique to build a monolithic 3D device capable of detecting cells flowing through a 3D non-deformable constriction which is fully buried in a fused silica substrate. We validated our chip by measuring the transit times of pristine breast cancer cells (MCF-7) and MCF-7 cells treated with Latrunculin A, a drug typically used to increase their deformability. A difference in transit times can be assessed without the need for complex external instrumentation and/or demanding computational efforts. The high throughput (4000-10,000 cells/min), ease of use, and clogging-free operation of our device bring this approach much closer to real scenarios.
Collapse
Affiliation(s)
- Filippo Storti
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Silvio Bonfadini
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| | - Gaia Bondelli
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vito Vurro
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| | - Guglielmo Lanzani
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luigino Criante
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| |
Collapse
|
12
|
Du R, Han X, Deng L, Wang X. Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress. BIOMICROFLUIDICS 2024; 18:024106. [PMID: 38585003 PMCID: PMC10998713 DOI: 10.1063/5.0188861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.
Collapse
Affiliation(s)
| | | | - Linhong Deng
- Authors to whom correspondence should be addressed: and
| | - Xiang Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
13
|
Pantelis P, Theocharous G, Veroutis D, Vagena IA, Polyzou A, Thanos DF, Kyrodimos E, Kotsinas A, Evangelou K, Lagopati N, Gorgoulis VG, Kotopoulos N. Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells. Int J Mol Sci 2024; 25:2473. [PMID: 38473720 DOI: 10.3390/ijms25052473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The currently available anti-cancer therapies, such as gamma-radiation and chemotherapeutic agents, induce cell death and cellular senescence not only in cancer cells but also in the adjacent normal tissue. New anti-tumor approaches focus on limiting the side effects on normal cells. In this frame, the potential anti-tumor properties of Pulsed Electromagnetic Fields (PEMFs) through the irradiation of breast cancer epithelial cells (MCF-7 and MDA-MB-231) and normal fibroblasts (FF95) were investigated. PEMFs had a frequency of 8 Hz, full-square wave type and magnetic flux density of 0.011 T and were applied twice daily for 5 days. The data collected showcase that PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts. Moreover, PEMF irradiation induces cell death and cellular senescence only in breast cancer cells without any effect in the non-cancerous cells. These findings suggest PEMF irradiation as a novel, non-invasive anti-cancer strategy that, when combined with senolytic drugs, may eliminate both cancer and the remaining senescent cells, while simultaneously avoiding the side effects of the current treatments.
Collapse
Affiliation(s)
- Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Dimitris-Foivos Thanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Efthymios Kyrodimos
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nicholas Kotopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| |
Collapse
|
14
|
Fu J, Wynne R. Microfluidic analysis of 3T3 cellular transport in a photonic crystal fiber: part I. APPLIED OPTICS 2024; 63:1272-1281. [PMID: 38437307 DOI: 10.1364/ao.506695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024]
Abstract
This microfluidic-optical fiber sensor is an experimental system designed to transport and monitor 3D cell cultures, facilitating medical research and technology. This system includes a photonic crystal fiber with a hollow core diameter of 22 µm, which functions as a bridge between two microfluidic devices. The purpose of this system was to transport 3T3 cells (of diameters from 15 µm to 23 µm) between the two devices. At low Reynold's and capillary numbers, spectroscopic analysis confirmed the presence of cellular aggregation at the interface of the fiber and microfluidic device. The transcapillary conductance, T C, is a separate analysis that models the behavior of a cellular aggregate through the hollow channel of a photonic crystal fiber. For the experimental system, conventional fluid mechanics theory is limited and requires special treatment of conditions at the microscale, such that transcapillary conductance treatment was employed. The transcapillary conductance, T C, was empirically derived to model cellular transport at the microfluidic scale and is useful for comparing transport events. For example, for a pressure differential of Δ p=1.5⋅103 c m H 2 O, the transcapillary conductance values were determined to be 10-12
Collapse
|
15
|
Wei Q, Xiong Y, Ma Y, Liu D, Lu Y, Zhang S, Wang X, Huang H, Liu Y, Dao M, Gong X. High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells. LAB ON A CHIP 2024; 24:305-316. [PMID: 38087958 PMCID: PMC10949978 DOI: 10.1039/d3lc00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The intrinsic physical and mechanical properties of red blood cells (RBCs), including their geometric and rheological characteristics, can undergo changes in various circulatory and metabolic diseases. However, clinical diagnosis using RBC biophysical phenotypes remains impractical due to the unique biconcave shape, remarkable deformability, and high heterogeneity within different subpopulations. Here, we combine the hydrodynamic mechanisms of fluid-cell interactions in micro circular tubes with a machine learning method to develop a relatively high-throughput microfluidic technology that can accurately measure the shear modulus of the membrane, viscosity, surface area, and volume of individual RBCs. The present method can detect the subtle changes of mechanical properties in various RBC components at continuum scales in response to different doses of cytoskeletal drugs. We also investigate the correlation between glycosylated hemoglobin and RBC mechanical properties. Our study develops a methodology that combines microfluidic technology and machine learning to explore the material properties of cells based on fluid-cell interactions. This approach holds promise in offering novel label-free single-cell-assay-based biophysical markers for RBCs, thereby enhancing the potential for more robust disease diagnosis.
Collapse
Affiliation(s)
- Qiaodong Wei
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ying Xiong
- Obstetrics and Gynecology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Medical School, Shanghai 200240, China
| | - Yuhang Ma
- Endocrinology Department, Shanghai General Hospital, Shanghai 200240, China
| | - Deyun Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yunshu Lu
- Department of Breast Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200433, China
| | - Shenghong Zhang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong, 519088, China
- Department of Mathematics and Statistics York University, Toronto, ON, M3J 1P3, Canada
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Keshavarz Motamed P, Abouali H, Poudineh M, Maftoon N. Experimental measurement and numerical modeling of deformation behavior of breast cancer cells passing through constricted microfluidic channels. MICROSYSTEMS & NANOENGINEERING 2024; 10:7. [PMID: 38222473 PMCID: PMC10786721 DOI: 10.1038/s41378-023-00644-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
During the multistep process of metastasis, cancer cells encounter various mechanical forces which make them deform drastically. Developing accurate in-silico models, capable of simulating the interactions between the mechanical forces and highly deformable cancer cells, can pave the way for the development of novel diagnostic and predictive methods for metastatic progression. Spring-network models of cancer cell, empowered by our recently proposed identification approach, promises a versatile numerical tool for developing experimentally validated models that can simulate complex interactions at cellular scale. Using this numerical tool, we presented spring-network models of breast cancer cells that can accurately replicate the experimental data of deformation behavior of the cells flowing in a fluidic domain and passing narrow constrictions comparable to microcapillary. First, using high-speed imaging, we experimentally studied the deformability of breast cancer cell lines with varying metastatic potential (MCF-7 (less invasive), SKBR-3 (medium-high invasive), and MDA-MB-231 (highly invasive)) in terms of their entry time to a constricted microfluidic channel. We observed that MDA-MB-231, that has the highest metastatic potential, is the most deformable cell among the three. Then, by focusing on this cell line, experimental measurements were expanded to two more constricted microchannel dimensions. The experimental deformability data in three constricted microchannel sizes for various cell sizes, enabled accurate identification of the unknown parameters of the spring-network model of the breast cancer cell line (MDA-MB-231). Our results show that the identified parameters depend on the cell size, suggesting the need for a systematic procedure for identifying the size-dependent parameters of spring-network models of cells. As the numerical results show, the presented cell models can simulate the entry process of the cell into constricted channels with very good agreements with the measured experimental data.
Collapse
Affiliation(s)
- Pouyan Keshavarz Motamed
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Hesam Abouali
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Mahla Poudineh
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
17
|
Nan J, Roychowdhury S, Randles A. Investigating the Influence of Heterogeneity Within Cell Types on Microvessel Network Transport. Cell Mol Bioeng 2023; 16:497-507. [PMID: 38099216 PMCID: PMC10716099 DOI: 10.1007/s12195-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Current research on the biophysics of circulating tumor cells often overlooks the heterogeneity of cell populations, focusing instead on average cellular properties. This study aims to address the gap by considering the diversity of cell biophysical characteristics and their implications on cancer spread. Methods We utilized computer simulations to assess the influence of variations in cell size and membrane elasticity on the behavior of cells within fluid environments. The study controlled cell and fluid properties to systematically investigate the transport of tumor cells through a simulated network of branching channels. Results The simulations revealed that even minor differences in cellular properties, such as slight changes in cell radius or shear elastic modulus, lead to significant changes in the fluid conditions that cells experience, including velocity and wall shear stress (p < 0.001). Conclusion The findings underscore the importance of considering cell heterogeneity in biophysical studies and suggest that small variations in cellular characteristics can profoundly impact the dynamics of tumor cell circulation. This has potential implications for understanding the mechanisms of cancer metastasis and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Junyu Nan
- Department of Biomedical Engineering, Duke University, Durham, USA
| | | | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, USA
| |
Collapse
|
18
|
Soteriou D, Kubánková M, Schweitzer C, López-Posadas R, Pradhan R, Thoma OM, Györfi AH, Matei AE, Waldner M, Distler JHW, Scheuermann S, Langejürgen J, Eckstein M, Schneider-Stock R, Atreya R, Neurath MF, Hartmann A, Guck J. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat Biomed Eng 2023; 7:1392-1403. [PMID: 37024677 PMCID: PMC10651479 DOI: 10.1038/s41551-023-01015-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100-1,000 cells s-1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Collapse
Affiliation(s)
- Despina Soteriou
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Rashmita Pradhan
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andrea-Hermina Györfi
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Jörg H W Distler
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | | | | | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regine Schneider-Stock
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
19
|
Zhou Z, Ni C, Zhu Z, Chen Y, Ni Z, Xiang N. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel. LAB ON A CHIP 2023; 23:4528-4539. [PMID: 37766593 DOI: 10.1039/d3lc00591g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Cell mechanical properties provide a label-free marker for indicating cell states and disease processes. Although microfluidic deformability cytometry has demonstrated great potential and successes in mechanical phenotyping in recent years, its universal applicability for characterizing multiple sizes of cells using a single device has not been realized. Herein, we propose high-throughput adjustable deformability cytometry integrated with three-dimensional (3D) elasto-inertial focusing and a virtual fluidic channel. By properly adjusting the flow ratio of the sample and sheath, the virtual fluidic channel in a wide solid channel can generate a strong shear force in the normal direction of the flow velocity and simultaneously squeeze cells from both sides to induce significant cell deformation. The combination of elasto-inertial focusing and a virtual fluidic channel provides a great hydrodynamic symmetrical force for inducing significant and homogeneous cell deformation. In addition, our deformability cytometry system not only achieves rapid and precise cell deformation, but also allows the adjustable detection of multiple sizes of cells at a high throughput of up to 3000 cells per second. The mini-bilateral segmentation network (mini-BiSeNet) was developed to identify cells and extract features quickly. The classification of different cell populations (A549, MCF-7, MDA-MB-231, and WBCs) was carried out based on the cell size and deformation. By applying deep learning to cell classification, a high accuracy reaching approximately 90% was achieved. We also revealed the potential of our deformability cytometry for characterizing pleural effusions. The flexibility of our deformability cytometry holds promise for the mechanical phenotyping and detection of various biological samples.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Chen Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhixian Zhu
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
20
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
21
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
22
|
Sampietro M, Cassina V, Salerno D, Barbaglio F, Buglione E, Marrano CA, Campanile R, Scarfò L, Biedenweg D, Fregin B, Zamai M, Díaz Torres A, Labrador Cantarero V, Ghia P, Otto O, Mantegazza F, Caiolfa VR, Scielzo C. The Nanomechanical Properties of CLL Cells Are Linked to the Actin Cytoskeleton and Are a Potential Target of BTK Inhibitors. Hemasphere 2023; 7:e931. [PMID: 37492437 PMCID: PMC10365208 DOI: 10.1097/hs9.0000000000000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.
Collapse
Affiliation(s)
- Marta Sampietro
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Federica Barbaglio
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Riccardo Campanile
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Lydia Scarfò
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr, Germany
| | - Bob Fregin
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paolo Ghia
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Oliver Otto
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Valeria R. Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
23
|
Flé G, Houten EV, Rémillard-Labrosse G, FitzHarris G, Cloutier G. Imaging the subcellular viscoelastic properties of mouse oocytes. Proc Natl Acad Sci U S A 2023; 120:e2213836120. [PMID: 37186851 PMCID: PMC10214128 DOI: 10.1073/pnas.2213836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, cellular biomechanical properties have been investigated as an alternative to morphological assessments for oocyte selection in reproductive science. Despite the high relevance of cell viscoelasticity characterization, the reconstruction of spatially distributed viscoelastic parameter images in such materials remains a major challenge. Here, a framework for mapping viscoelasticity at the subcellular scale is proposed and applied to live mouse oocytes. The strategy relies on the principles of optical microelastography for imaging in combination with the overlapping subzone nonlinear inversion technique for complex-valued shear modulus reconstruction. The three-dimensional nature of the viscoelasticity equations was accommodated by applying an oocyte geometry-based 3D mechanical motion model to the measured wave field. Five domains-nucleolus, nucleus, cytoplasm, perivitelline space, and zona pellucida-could be visually differentiated in both oocyte storage and loss modulus maps, and statistically significant differences were observed between most of these domains in either property reconstruction. The method proposed herein presents excellent potential for biomechanical-based monitoring of oocyte health and complex transformations across lifespan. It also shows appreciable latitude for generalization to cells of arbitrary shape using conventional microscopy equipment.
Collapse
Affiliation(s)
- Guillaume Flé
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, QCH2X 0A9, Canada
| | - Elijah Van Houten
- Mechanical Engineering Department, University of Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| | - Gaudeline Rémillard-Labrosse
- Oocyte and Embryo Research Laboratory, University of Montreal Hospital Research Center, Montreal, QCH2X 0A9, Canada
| | - Greg FitzHarris
- Oocyte and Embryo Research Laboratory, University of Montreal Hospital Research Center, Montreal, QCH2X 0A9, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, QCH3T 1J4, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, QCH2X 0A9, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, and Institute of Biomedical Engineering, University of Montreal, Montreal, QCH3T 1J4, Canada
| |
Collapse
|
24
|
Ly C, Ogana H, Kim HN, Hurwitz S, Deeds EJ, Kim YM, Rowat AC. Altered physical phenotypes of leukemia cells that survive chemotherapy treatment. Integr Biol (Camb) 2023; 15:7185561. [PMID: 37247849 DOI: 10.1093/intbio/zyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes. To quantify physical phenotypes of chemotherapy-treated leukemia cells, we use cells derived from B-ALL patients that are treated for 7 days with a standard multidrug chemotherapy regimen of vincristine, dexamethasone, and L-asparaginase (VDL). We conduct physical phenotyping of VDL-treated versus control cells by tracking the sequential deformations of single cells as they flow through a series of micron-scale constrictions in a microfluidic device; we call this method Quantitative Cyclical Deformability Cytometry. Using automated image analysis, we extract time-dependent features of deforming cells including cell size and transit time (TT) with single-cell resolution. Our findings show that VDL-treated B-ALL cells have faster TTs and transit velocity than control cells, indicating that VDL-treated cells are more deformable. We then test how effectively physical phenotypes can predict the presence of VDL-treated cells in mixed populations of VDL-treated and control cells using machine learning approaches. We find that TT measurements across a series of sequential constrictions can enhance the classification accuracy of VDL-treated cells in mixed populations using a variety of classifiers. Our findings suggest the predictive power of cell physical phenotyping as a complementary prognostic tool to detect the presence of cells that survive chemotherapy treatment. Ultimately such complementary physical phenotyping approaches could guide treatment strategies and therapeutic interventions. Insight box Cancer cells that survive chemotherapy treatment are major contributors to patient relapse, but the ability to predict recurrence remains a challenge. Here we investigate the physical properties of leukemia cells that survive treatment with chemotherapy drugs by deforming individual cells through a series of micron-scale constrictions in a microfluidic channel. Our findings reveal that leukemia cells that survive chemotherapy treatment are more deformable than control cells. We further show that machine learning algorithms applied to physical phenotyping data can predict the presence of cells that survive chemotherapy treatment in a mixed population. Such an integrated approach using physical phenotyping and machine learning could be valuable to guide patient treatments.
Collapse
Affiliation(s)
- Chau Ly
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha Hurwitz
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric J Deeds
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy C Rowat
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Liang M, Tang Q, Zhong J, Ai Y. Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis. Biosens Bioelectron 2023; 225:115086. [PMID: 36696849 DOI: 10.1016/j.bios.2023.115086] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Microfluidics provides a powerful platform for biological analysis by harnessing the ability to precisely manipulate fluids and microparticles with integrated microsensors. Here, we introduce an imaging and impedance cell analyzer (IM2Cell), which implements single cell level impedance analysis and hydrodynamic mechanical phenotyping simultaneously. For the first time, IM2Cell demonstrates the capability of multi-stress level mechanical phenotyping. Specifically, IM2Cell is capable of characterizing cell diameter, three deformability responses, and four electrical properties. It presents high-dimensional information to give insight into subcellular components such as cell membrane, cytoplasm, cytoskeleton, and nucleus. In this work, we first validate imaging and impedance-based cell analyses separately. Then, the two techniques are combined to obtain both imaging and impedance data analyzed by machine learning method, exhibiting an improved prediction accuracy from 83.1% to 95.4% between fixed and living MDA-MB-231 breast cancer cells. Next, IM2Cell demonstrates 91.2% classification accuracy in a mixture of unlabeled MCF-10A, MCF-7, and MDA-MB-231 cell lines. Finally, an application demonstrates the potential of IM2Cell for the deformability studies of peripheral blood mononuclear cells (PBMCs) subpopulations without cumbersome isolation or labeling steps.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qiang Tang
- Jiangsu Provincal Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
26
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
27
|
Sturgess V, Azubuike UF, Tanner K. Vascular regulation of disseminated tumor cells during metastatic spread. BIOPHYSICS REVIEWS 2023; 4:011310. [PMID: 38510161 PMCID: PMC10903479 DOI: 10.1063/5.0106675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.
Collapse
Affiliation(s)
- Victoria Sturgess
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Udochi F. Azubuike
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| |
Collapse
|
28
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
29
|
Wang Z, Lu R, Wang W, Tian FB, Feng JJ, Sui Y. A computational model for the transit of a cancer cell through a constricted microchannel. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01705-6. [PMID: 36854992 PMCID: PMC10366299 DOI: 10.1007/s10237-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
We propose a three-dimensional computational model to simulate the transient deformation of suspended cancer cells flowing through a constricted microchannel. We model the cell as a liquid droplet enclosed by a viscoelastic membrane, and its nucleus as a smaller stiffer capsule. The cell deformation and its interaction with the suspending fluid are solved through a well-tested immersed boundary lattice Boltzmann method. To identify a minimal mechanical model that can quantitatively predict the transient cell deformation in a constricted channel, we conduct extensive parametric studies of the effects of the rheology of the cell membrane, cytoplasm and nucleus and compare the results with a recent experiment conducted on human leukaemia cells. We find that excellent agreement with the experiment can be achieved by employing a viscoelastic cell membrane model with the membrane viscosity depending on its mode of deformation (shear versus elongation). The cell nucleus limits the overall deformation of the whole cell, and its effect increases with the nucleus size. The present computational model may be used to guide the design of microfluidic devices to sort cancer cells, or to inversely infer cell mechanical properties from their flow-induced deformation.
Collapse
Affiliation(s)
- Z Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - R Lu
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - W Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - F B Tian
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - J J Feng
- Departments of Mathematics and Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Y Sui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
30
|
Nawaz AA, Soteriou D, Xu CK, Goswami R, Herbig M, Guck J, Girardo S. Image-based cell sorting using focused travelling surface acoustic waves. LAB ON A CHIP 2023; 23:372-387. [PMID: 36620943 PMCID: PMC9844123 DOI: 10.1039/d2lc00636g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/21/2022] [Indexed: 05/27/2023]
Abstract
Sorting cells is an essential primary step in many biological and clinical applications such as high-throughput drug screening, cancer research and cell transplantation. Cell sorting based on their mechanical properties has long been considered as a promising label-free biomarker that could revolutionize the isolation of cells from heterogeneous populations. Recent advances in microfluidic image-based cell analysis combined with subsequent label-free sorting by on-chip actuators demonstrated the possibility of sorting cells based on their physical properties. However, the high purity of sorting is achieved at the expense of a sorting rate that lags behind the analysis throughput. Furthermore, stable and reliable system operation is an important feature in enabling the sorting of small cell fractions from a concentrated heterogeneous population. Here, we present a label-free cell sorting method, based on the use of focused travelling surface acoustic wave (FTSAW) in combination with real-time deformability cytometry (RT-DC). We demonstrate the flexibility and applicability of the method by sorting distinct blood cell types, cell lines and particles based on different physical parameters. Finally, we present a new strategy to sort cells based on their mechanical properties. Our system enables the sorting of up to 400 particles per s. Sorting is therefore possible at high cell concentrations (up to 36 million per ml) while retaining high purity (>92%) for cells with diverse sizes and mechanical properties moving in a highly viscous buffer. Sorting of small cell fraction from a heterogeneous population prepared by processing of small sample volume (10 μl) is also possible and here demonstrated by the 667-fold enrichment of white blood cells (WBCs) from raw diluted whole blood in a continuous 10-hour sorting experiment. The real-time analysis of multiple parameters together with the high sensitivity and high-throughput of our method thus enables new biological and therapeutic applications in the future.
Collapse
Affiliation(s)
- Ahmad Ahsan Nawaz
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Despina Soteriou
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Catherine K Xu
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Maik Herbig
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
31
|
Chen H, Guo J, Bian F, Zhao Y. Microfluidic technologies for cell deformability cytometry. SMART MEDICINE 2022; 1:e20220001. [PMID: 39188737 PMCID: PMC11235995 DOI: 10.1002/smmd.20220001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 08/28/2024]
Abstract
Microfluidic detection methods for cell deformability cytometry have been regarded as powerful tools for single-cell analysis of cellular mechanical phenotypes, thus having been widely applied in the fields of cell preparation, separation, clinical diagnostics and so on. Featured with traits like easy operations, low cost and high throughput, such methods have shown great potentials on investigating physiological state and pathological changes during cellular deformation. Herein, a review on the advancements of microfluidic-based cell deformation cytometry is presented. We discuss several representative microfluidic-based cell deformability cytometry methods with their frontiers in practical applications. Finally, we analyze the current status and propose the remaining challenges with future perspectives and development directions.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Jiahui Guo
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
| | - Yuanjin Zhao
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing, JiangsuChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
32
|
Comprehensive single-shot biophysical cytometry using simultaneous quantitative phase imaging and Brillouin spectroscopy. Sci Rep 2022; 12:18285. [PMID: 36316372 PMCID: PMC9622723 DOI: 10.1038/s41598-022-23049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Single-cell analysis, or cytometry, is a ubiquitous tool in the biomedical sciences. Whereas most cytometers use fluorescent probes to ascertain the presence or absence of targeted molecules, biophysical parameters such as the cell density, refractive index, and viscosity are difficult to obtain. In this work, we combine two complementary techniques-quantitative phase imaging and Brillouin spectroscopy-into a label-free image cytometry platform capable of measuring more than a dozen biophysical properties of individual cells simultaneously. Using a geometric simplification linked to freshly plated cells, we can acquire the cellular diameter, volume, refractive index, mass density, non-aqueous mass, fluid volume, dry volume, the fractional water content of cells, both by mass and by volume, the Brillouin shift, Brillouin linewidth, longitudinal modulus, longitudinal viscosity, the loss modulus, and the loss tangent, all from a single acquisition, and with no assumptions of underlying parameters. Our methods are validated across three cell populations, including a control population of CHO-K1 cells, cells exposed to tubulin-disrupting nocodazole, and cells under hypoosmotic shock. Our system will unlock new avenues of research in biophysics, cell biology, and medicine.
Collapse
|
33
|
Liang M, Zhong J, Ai Y. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches. Adv Healthc Mater 2022; 11:e2200628. [PMID: 35852381 DOI: 10.1002/adhm.202200628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Cellular mechanical properties are a class of intrinsic biophysical markers for cell state and health. Microfluidic mechanical phenotyping methods have emerged as promising tools to overcome the challenges of low throughput and high demand for manual skills in conventional approaches. In this work, two types of microfluidic cellular mechanical phenotyping methods, contactless hydro-stretching deformability cytometry (lh-DC) and contact constriction deformability cytometry (cc-DC) are comprehensively studied and compared. Polymerized hydrogel beads with defined sizes are used to characterize a strong negative correlation between size and deformability in cc-DC (r = -0.95), while lh-DC presents a weak positive correlation (r = 0.13). Young's modulus sensitivity in cc-DC is size-dependent while it is a constant in lh-DC. Moreover, the deformability assessment for human breast cell line mixture suggests the lh-DC exhibits better differentiation capability of cells with different size distributions, while cc-DC provides higher sensitivity to identify cellular mechanical changes within a single cell line. This work is the first to present a quantitative study and comparison of size correlation and Young's modulus sensitivity of contactless and contact microfluidic mechanical phenotyping methods, which provides guidance to choose the most suitable cellular mechanical phenotyping platform for specific cell analysis applications.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
34
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
35
|
Doan-Nguyen TP, Crespy D. Advanced density-based methods for the characterization of materials, binding events, and kinetics. Chem Soc Rev 2022; 51:8612-8651. [PMID: 36172819 DOI: 10.1039/d1cs00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the densities of chemicals and materials bring valuable insights into the fundamental understanding of matter and processes. Recently, advanced density-based methods have been developed with wide measurement ranges (i.e. 0-23 g cm-3), high resolutions (i.e. 10-6 g cm-3), compatibility with different types of samples and the requirement of extremely low volumes of sample (as low as a single cell). Certain methods, such as magnetic levitation, are inexpensive, portable and user-friendly. Advanced density-based methods are, therefore, beneficially used to obtain absolute density values, composition of mixtures, characteristics of binding events, and kinetics of chemical and biological processes. Herein, the principles and applications of magnetic levitation, acoustic levitation, electrodynamic balance, aqueous multiphase systems, and suspended microchannel resonators for materials science are discussed.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
36
|
Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2022; 251:123815. [DOI: 10.1016/j.talanta.2022.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
37
|
Besedina NA, Skverchinskaya EA, Shmakov SV, Ivanov AS, Mindukshev IV, Bukatin AS. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun Biol 2022; 5:659. [PMID: 35787676 PMCID: PMC9253111 DOI: 10.1038/s42003-022-03620-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is one of the key factors that leads to red blood cells (RBCs) aging, and impairs their biomechanics and oxygen delivery. It occurs during numerous pathological processes and causes anaemia, one of the most frequent side effects of cancer chemotherapy. Here, we used microfluidics to simulate the microcirculation of RBCs under oxidative stress induced by tert-Butyl hydroperoxide. Oxidative stress was expected to make RBCs more rigid, which would lead to decrease their transit velocity in microfluidic channels. However, single-cell tracking combined with cytological and AFM studies reveals cell heterogeneity, which increases with the level of oxidative stress. The data indicates that the built-in antioxidant defence system has a limit exceeding which haemoglobin oxidation, membrane, and cytoskeleton transformation occurs. It leads to cell swelling, increased stiffness and adhesion, resulting in a decrease in the transit velocity in microcapillaries. However, even at high levels of oxidative stress, there are persistent cells in the population with an undisturbed biophysical phenotype that retain the ability to move in microcapillaries. Developed microfluidic analysis can be used to determine RBCs' antioxidant capacity for the minimization of anaemia during cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Alexander S Ivanov
- Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint-Petersburg, Russia
| | - Anton S Bukatin
- Department of Physics, Alferov University, Saint-Petersburg, Russia. .,Institute for Analytical Instrumentation of the RAS, Saint-Petersburg, Russia.
| |
Collapse
|
38
|
Wang K, Lu X, Lu Y, Wang J, Lu Q, Cao X, Yang Y, Yang Z. Nanomaterials in Animal Husbandry: Research and Prospects. Front Genet 2022; 13:915911. [PMID: 35846144 PMCID: PMC9280890 DOI: 10.3389/fgene.2022.915911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-inflammatory, antiviral, and anti-cancer treatments are potential applications of nanomaterials in biology. To explore the latest discoveries in nanotechnology, we reviewed the published literature, focusing on co-assembled nanoparticles for anti-inflammatory and anti-tumor properties, and their applications in animal husbandry. The results show that nanoparticles have significant anti-inflammation and anti-tumor effects, demonstrating broad application prospects in animal breeding. Furthermore, pooled evidence suggests that the mechanism is to have a positive impact on inflammation and tumors through the specific drug loading by indirectly or directly targeting the disease sites. Because the precise regulatory mechanism remains unclear, most studies have focused on regulating particular sites or even specific genes in the nucleus by targeting functional co-assembled nanoparticles. Hence, despite the intriguing scenarios for nanotechnology in farmed animals, most results cannot yet be translated into field applications. Overall, nanomaterials outperformed similar materials in terms of anti-inflammatory and anti-tumor. Nanotechnology also has promising applications in animal husbandry and veterinary care, and its application and development in animal husbandry remain an exciting area of research.
Collapse
Affiliation(s)
- Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| |
Collapse
|
39
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
40
|
|
41
|
Green BJ, Marazzini M, Hershey B, Fardin A, Li Q, Wang Z, Giangreco G, Pisati F, Marchesi S, Disanza A, Frittoli E, Martini E, Magni S, Beznoussenko GV, Vernieri C, Lobefaro R, Parazzoli D, Maiuri P, Havas K, Labib M, Sigismund S, Fiore PPD, Gunby RH, Kelley SO, Scita G. PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106097. [PMID: 35344274 DOI: 10.1002/smll.202106097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.
Collapse
Affiliation(s)
- Brenda J Green
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Margherita Marazzini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Ben Hershey
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Amir Fardin
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
| | - Giovanni Giangreco
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Federica Pisati
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Stefano Marchesi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Andrea Disanza
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuela Frittoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuele Martini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Serena Magni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | | | - Claudio Vernieri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Riccardo Lobefaro
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Kristina Havas
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Mahmoud Labib
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Pier Paolo Di Fiore
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Rosalind H Gunby
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giorgio Scita
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| |
Collapse
|
42
|
Li B, Maslan A, Kitayama SE, Pierce C, Streets AM, Sohn LL. Mechanical phenotyping reveals unique biomechanical responses in retinoic acid-resistant acute promyelocytic leukemia. iScience 2022; 25:103772. [PMID: 35141508 PMCID: PMC8814755 DOI: 10.1016/j.isci.2022.103772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) is an essential therapy in the treatment of acute promyelocytic leukemia (APL), but nearly 20% of patients with APL are resistant to ATRA. As there are no biomarkers for ATRA resistance that yet exist, we investigated whether cell mechanics could be associated with this pathological phenotype. Using mechano-node-pore sensing, a single-cell mechanical phenotyping platform, and patient-derived APL cell lines, we discovered that ATRA-resistant APL cells are less mechanically pliable. By investigating how different subcellular components of APL cells contribute to whole-cell mechanical phenotype, we determined that nuclear mechanics strongly influence an APL cell's mechanical response. Moreover, decondensing chromatin with trichostatin A is especially effective in softening ATRA-resistant APL cells. RNA-seq allowed us to compare the transcriptomic differences between ATRA-resistant and ATRA-responsive APL cells and highlighted gene expression changes that could be associated with mechanical changes. Overall, we have demonstrated the potential of "physical" biomarkers in identifying APL resistance.
Collapse
Affiliation(s)
- Brian Li
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Annie Maslan
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Sean E. Kitayama
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Corinne Pierce
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Aaron M. Streets
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
- Center for Computational Biology, University of California, Berkeley, CA 94709, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Lydia L. Sohn
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Prasad NK, Shome R, Biswas G, Ghosh SS, Dalal A. Transport Behavior of Commercial Anticancer Drug Protein-Bound Paclitaxel (Paclicad) in a Micron-Sized Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2014-2025. [PMID: 35099972 DOI: 10.1021/acs.langmuir.1c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein-bound paclitaxel has been developed clinically as one of the most successful chemotherapy drugs for the treatment of a wide variety of cancers. However, these medications, due to their nanoscale properties, may often induce capillary blocking while migrating through minute blood vessels. Considering the detrimental impact of this restriction, we investigated the transport of protein-bound paclitaxel, Paclicad, in a 7 μm microchannel mimicking the identical mechanical confinement of the blood capillaries. The drug was reported to migrate through a constricted microchannel without obstruction at a solution flow rate of 20-50 μL/h. The onset of an agglomeration site was observed at higher flow rates of 70-90 μL/h, while complete capillary obstruction was observed at 100 μL/h. The mobility of the particles was also calculated, and the results suggested that the presence of varying cross-sections affects the mobility of the drug particles. The trajectory of the particle migration was observed to be less tortuous at the higher flow rate, but the tortuous nature appeared to increase with the presence of agglomeration sites in the flow field. The experimental results were also compared with the computational model of the drug particle. The drug particle was modeled both as Newtonian and as an FENE-P viscoelastic drop. The drop interface tracking was done by the VOF method using the open source software Basilisk. The particle displacement was better estimated by both the FENE-P and Newtonian model at a flow rate of 30 μL/h, while deviation was observed at a flow rate of 50 μL/h. The FENE-P model was observed to show higher deformation than the Newtonian model at both flow rates. The experimental results provided better insight into the agglomeration tendency of Paclicad, migrating through a constricted microchannel at higher flow rates. The numerical model could be further employed to understand the more complex intravenous transport of drugs.
Collapse
Affiliation(s)
- Niraj Kr Prasad
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Rajib Shome
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gautam Biswas
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
44
|
Zhao Y, Gu L, Sun H, Sha X, Li WJ. Physical Cytometry: Detecting Mass-Related Properties of Single Cells. ACS Sens 2022; 7:21-36. [PMID: 34978200 DOI: 10.1021/acssensors.1c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physical properties of a single cell, such as mass, volume, and density, are important indications of the cell's metabolic characteristics and homeostasis. Precise measurement of a single cell's mass has long been a challenge due to its minute size. It is only in the past 10 years that a variety of instruments for measuring living cellular mass have emerged with the development of MEMS, microfluidics, and optics technologies. In this review, we discuss the current developments of physical cytometry for quantifying mass-related physical properties of single cells, highlighting the working principle, applications, and unique merits. The review mainly covers these measurement methods: single-cell mass cytometry, levitation image cytometry, suspended microchannel resonator, phase-shifting interferometry, and opto-electrokinetics cell manipulation. Comparisons are made between these methods in terms of throughput, content, invasiveness, compatibility, and precision. Some typical applications of these methods in pathological diagnosis, drug efficacy evaluation, disease treatment, and other related fields are also discussed in this work.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Lijia Gu
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Hui Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| |
Collapse
|
45
|
Ren J, Liu Y, Huang W, Lam RHW. A Narrow Straight Microchannel Array for Analysis of Transiting Speed of Floating Cancer Cells. MICROMACHINES 2022; 13:183. [PMID: 35208307 PMCID: PMC8877651 DOI: 10.3390/mi13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Investigating floating cells along a narrow microchannel (e.g., a blood vessel) for their transiting speeds and the corresponding roles of cell physical properties can deepen our understanding of circulating tumor cells (CTCs) metastasis via blood vessels. Many existing studies focus on the cell transiting process in blood vessel-like microchannels; further analytical studies are desired to summarize behaviors of the floating cell movement under different conditions. In this work, we perform a theoretical analysis to establish a relation between the transiting speed and key cell physical properties. We also conduct computational fluid dynamics simulation and microfluidic experiments to verify the theoretical model. This work reveals key cell physical properties and the channel configurations determining the transiting speed. The reported model can be applied to other works with various dimensions of microchannels as a more general way to evaluate the cancer cell metastasis ability with microfluidics.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Wei Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
46
|
Moghimi N, Peng K, Voloshin A. Biomechanical characterization and modeling of human mesenchymal stem cells under compression. Comput Methods Biomech Biomed Engin 2022; 25:1608-1617. [PMID: 35062850 DOI: 10.1080/10255842.2022.2028777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The application of microelectromechanical systems (MEMS) in biomedical devices has expanded vastly over the last few decades, with MEMS devices being developed to measure different characteristics of cells. The study of cell mechanics offers valuable understanding of cell viability and functionality. Cell biomechanics approaches also facilitate the characterization of important cell and tissue behaviors. In particular, understanding of the biological response of cells to their biomechanical environment would enhance the knowledge of how cellular responses correlate to tissue level characteristics and how some diseases, such as cancer, grow in the body. This study focuses on viscoelastic modeling of the behavior of a single suspended human mesenchymal stem cell (hMSC). Mechanical properties of hMSC cells are particularly important in tissue engineering and research for the treatment of cardiovascular diseases. We evaluated the elastic and viscoelastic properties of hMSC cells using a miniaturized custom-made BioMEMS device. Our results were compared to the elastic and viscoelastic properties measured by other methods such as atomic force microscopy (AFM) and micropipette aspiration. Different approaches were applied to model the experimentally obtained force data, including elastic and Standard Linear Solid (SLS) constitutive models, and the corresponding constants were derived. These values were compared to the ones in literature that were based on micropipette aspiration and AFM methods. We then utilized a tensegrity approach to model major parts of the internal structure of the cell and treat the cell as a network of viscoelastic microtubules and microfilaments, as opposed to a simple spherical blob. The results predicted from the tensegrity model were similar to the recorded experimental data.
Collapse
Affiliation(s)
- Negar Moghimi
- Electrical and Computer Engineering Department, Lehigh University, Bethlehem, PA, USA
| | - Kaiyuan Peng
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Arkady Voloshin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.,Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
47
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
48
|
Sirotin MA, Romodina MN, Lyubin EV, Soboleva IV, Fedyanin AA. Single-cell all-optical coherence elastography with optical tweezers. BIOMEDICAL OPTICS EXPRESS 2022; 13:14-25. [PMID: 35154850 PMCID: PMC8803033 DOI: 10.1364/boe.444813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
The elastic properties of cells are important for many of their functions, however the development of label free noninvasive cellular elastography method is a challenging topic. We present a novel single-cell all-optical coherence elastography method that combines optical tweezers producing mechanical excitation on the cell membrane or organelle and phase-sensitive optical coherence microscopy measuring sample response and determining its mechanical properties. The method allows living cells imaging with a lateral resolution of 0.5 μm and an axial resolution up to 10 nm, making it possible to detect nanometer displacements of the cell organelles and to record the propagation of mechanical wave along the cell membrane in response to optical tweezers excitation. We also demonstrate applicability of the method on single living red blood cells, yeast and cancer cells. The all-optical nature of the method developed makes it a promising and easily applicable tool for studying cellular and subcellular mechanics in vivo.
Collapse
Affiliation(s)
- Maxim A. Sirotin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria N. Romodina
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V. Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina V. Soboleva
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey A. Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
49
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Kundu B, Caballero D, Abreu CM, Reis RL, Kundu SC. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:115-138. [DOI: 10.1007/978-3-031-04039-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|