1
|
Li X, Liu D, Li Z, Wang R, Li X, Zhou T. Spatiospectral dynamics of electroencephalography patterns during propofol-induced alterations of consciousness states. Neuroimage 2025; 309:121084. [PMID: 39952488 DOI: 10.1016/j.neuroimage.2025.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Altered consciousness induced by anesthetics is characterized by distinct spatial and spectral neural dynamics that are readily apparent in the human electroencephalogram. Despite considerable study, we remain uncertain which brain regions and neural oscillations are involved, as well as how they are impacted when consciousness is disrupted. The experimental data was obtained from the open-access dataset, which contains pre-processed EEG data recorded from 20 healthy participants during propofol sedation. Using unsupervised machine learning methods (i.e., non-negative matrix factorization, NMF), we investigated the spatiospectral dynamic evolution of brain activity from awake to sedation and back induced by propofol in healthy research volunteers. Our methods yielded six dynamical patterns that continuously reflect the neural activity changes in specific brain regions and frequency bands under propofol sedation. Temporal dynamic analyses showed that differences in alpha oscillation patterns were less pronounced in response group than drowsy group, with hemispheric asymmetry in posterior occipital lobe over the course of the sedation procedure. We designed an index 'hemispheric lateralization modulation of alpha [HLM(α)]' to measure asymmetry during awake state and predicting individual variability in propofol-induced alterations of consciousness states, obtaining prediction AUC of 0.8462. We present an alpha modulation index which characterizes how these patterns track the transition from awake to sedation as a function of increasing dosage. Our study reveals dynamics indices that track the evolution of neurophysiological of propofol on brain circuits. Analyzing the spatiospectral dynamics influenced by propofol provides valuable understanding of the mechanisms of these agents and strategies for monitoring and precisely controlling the level of consciousness in patients under sedation and general anesthesia.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, PR China
| | - Dezhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, PR China
| | - Zheng Li
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, PR China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, PR China
| | - Rui Wang
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, PR China
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, & Pazhou Laboratory, Guangzhou, PR China.
| | - Tianyi Zhou
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, PR China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, PR China.
| |
Collapse
|
2
|
Yao R, Shi L, Niu Y, Li H, Fan X, Wang B. Driving brain state transitions via Adaptive Local Energy Control Model. Neuroimage 2025; 306:121023. [PMID: 39800170 DOI: 10.1016/j.neuroimage.2025.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025] Open
Abstract
The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions. Existing studies have primarily focused on analyzing the energy required for brain state transitions, which are driven either by the single brain region or by all brain regions. However, they often neglect the critical question of how the whole brain responds to external control inputs that are driven by control energy from multiple brain regions, which limits their application value in guiding clinical neurostimulation. In this paper, we proposed the Adaptive Local Energy Control Model (ALECM) to explore brain state transitions, which considers the complex interactions of the whole brain along the white matter network when external control inputs are applied to multiple regions. It not only quantifies the energy required for state transitions but also predicts their outcomes based on local control. Our results indicated that patients with Schizophrenia (SZ) and Bipolar Disorder (BD) required more energy to drive the brain state transitions from the pathological state to the healthy baseline state, which is defined as Hetero-state transition. Importantly, we successfully induced Hetero-state transition in the patients' brains by using the ALECM, with subnetworks or specific brain regions serving as local control sets. Eventually, the network similarity between patients and healthy subjects reached baseline levels. These offer evidence that the ALECM can effectively quantify the cost characteristics of brain state transitions, providing a theoretical foundation for accurately predicting the efficacy of electromagnetic perturbation therapies in the future.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - HaiFang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Fan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Ge D, Han C, Liu C, Meng Z. Neural Oscillations in the Somatosensory and Motor Cortex Distinguish Dexmedetomidine-Induced Anesthesia and Sleep in Rats. CNS Neurosci Ther 2025; 31:e70262. [PMID: 39963924 PMCID: PMC11833454 DOI: 10.1111/cns.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Anesthesia is featured by behavioral and physiological characteristics such as decreased sensory and motor function, loss of consciousness, etc. Some anesthetics such as dexmedetomidine (DEX), induce electroencephalogram signatures close to non-rapid eye movement sleep. Studies have shown that sleep is primarily driven by the activation of subcortical sleep-promoting neural pathways. AIMS However, the neuronal level electrophysiology features of anesthesia and how they differ from sleep is still not fully understood. MATERIALS AND METHODS In the present study, we recorded neuronal activity simultaneously from somatosensory cortex (S1) and motor cortex (M1) during awake, sleep, and DEX-induced anesthesia in rats. RESULTS The results show that DEX increased local field potential (LFP) power across a relatively wide band (1-25 Hz) in both S1 and M1. The coherence between S1 LFP and M1 LFP increased significantly in the delta and alpha bands. Power spectrum analysis during DEX-induced anesthesia revealed relatively high power in the delta and alpha bands, but low power in the theta and beta bands. Overall, the firing rate of individual neurons decreased after DEX. Correlation analysis of firing rate and LFP power indicate that more neurons were correlated, either positively or negatively, with LFPs during DEX-induced anesthesia compared to sleep. DISCUSSION Although these results showed enhancement of cortical LFP power in both DEX-induced anesthesia and sleep, different patterns of spike-field correlation suggest that the two states may be regulated by different cortical mechanisms. CONCLUSION Distinguishing anesthesia from sleep with neural oscillations could lead to more personalized, safer, and more effective approaches to managing consciousness in medical settings, with the potential for broad applications in neuroscience and clinical practice.
Collapse
Affiliation(s)
- Dengyun Ge
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience InstituteThe Chinese University of Hong KongHong KongSARChina
| | - Chang Liu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory of Brain Connectome and ManipulationChinese Academy of SciencesShenzhenChina
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory of Brain Connectome and ManipulationChinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Wu JY, Wang W, Dai XY, He S, Song FH, Gao SJ, Zhang LQ, Li DY, Liu L, Liu DQ, Zhou YQ, Zhang P, Tian B, Mei W. Regulation of states of consciousness by supramammillary nucleus glutamatergic neurones during sevoflurane anaesthesia in mice. Br J Anaesth 2025; 134:425-440. [PMID: 39645516 DOI: 10.1016/j.bja.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/25/2024] [Accepted: 10/03/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The supramammillary nucleus (SuM), located in the caudal hypothalamus, includes wake-promoting glutamatergic neurones. Their potential role in regulating states of consciousness during general anaesthesia remains unknown. METHODS We used in vivo fibre photometry, c-Fos staining, chemogenetic and optogenetic manipulations, and electroencephalography/electromyography to explore the roles of glutamatergic SuM neurones (SuMVglut2 neurones) at different phases of sevoflurane anaesthesia. Rabies-mediated retrograde and anterograde tract tracing were used to investigate the monosynaptic glutamatergic inputs from the medial septum (MS) to SuM. Their roles in sevoflurane anaesthesia were investigated by in vivo fibre photometry and optogenetic manipulations. RESULTS The population activity of SuMVglut2 neurones decreased at loss of consciousness but increased during recovery of consciousness under sevoflurane anaesthesia. Their activity also decreased during suppression but increased during bursts in sevoflurane-induced burst-suppression oscillations. Activating SuMVglut2 neurones chemogenetically or optogenetically decreased sensitivity to sevoflurane, induced behavioural arousal and cortical activation during continuous steady-state anaesthesia, and stable burst-suppression oscillations under sevoflurane. In contrast, chemogenetic or optogenetic inhibition of SuMVglut2 neurones increased sensitivity to sevoflurane or intensified cortical inhibition during sevoflurane anaesthesia. Retrograde and anterograde tracing verified monosynaptic projections from MSVglut2 neurones to SuMVglut2 neurones. The activity of MSVglut2 SuM terminals increased during loss of consciousness but recovered during recovery of consciousness. Optogenetic activation or inhibition of MSVglut2 SuM terminals induced cortical activation or inhibition, respectively, during sevoflurane anaesthesia. CONCLUSIONS Activation of SuMVglut2 neurones or the glutamatergic septo-supramammillary circuit induces behavioural arousal and cortical activation during sevoflurane anaesthesia.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yi Dai
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Si He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan-He Song
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Shao-Jie Gao
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Long-Qing Zhang
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Dan-Yang Li
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Lin Liu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Dai-Qiang Liu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Ya-Qun Zhou
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Mei
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China.
| |
Collapse
|
5
|
Banks MI, Dappen ER, Matar E, Hayum BD, Sutherland MH, Krause BM, Kawasaki H, Sanders RD, Nourski KV. Clinical and intracranial electrophysiological signatures of post-operative and post-ictal delirium. Clin Neurophysiol 2025; 171:38-50. [PMID: 39862841 DOI: 10.1016/j.clinph.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
OBJECTIVES (1) Gain insight into the mechanisms of postoperative delirium (POD). (2) Determine mechanistic overlap with post-ictal delirium (PID). Epilepsy patients undergoing intracranial electrophysiological monitoring can experience both POD and PID, and thus are suitable subjects for these investigations. METHODS POD was assessed daily after surgery. PID was assessed following seizures. Resting state data were collected following delirium assessments, during a control period, and during sleep. Slow-wave activity (SWA: 1-4 Hz) and resting state functional connectivity were compared between different time points and according to delirium status. RESULTS POD was present in 6 of 20 participants. Post-operatively, SWA was globally elevated in all participants but highest in POD+ participants. POD+ participants exhibited altered functional connectivity compared to POD-. These differences persisted even after resolution of delirium. PID was present in 7 of 15 participants and was predicted by seizures involving prefrontal cortex. PID+ participants exhibited higher post-ictal SWA versus PID-; no differences in functional connectivity were observed. Post-operative and post-ictal SWA was comparable to sleep in some participants. CONCLUSIONS Elevated SWA may predispose patients to both post-operative and post-ictal delirium and may indicate overlapping mechanisms. SIGNIFICANCE Delirium treatments focused on SWA may be most effective for ameliorating cognitive symptoms.
Collapse
Affiliation(s)
- Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA.
| | - Emily R Dappen
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin D Hayum
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Robert D Sanders
- Department of Anaesthetics, University of Sydney, Sydney, NSW 2006, Australia
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Hung WM, Wang HC, Hsu JCN. A novel electroencephalographic evaluation of noxious stimulation during isoflurane anesthesia in dogs. Exp Anim 2025; 74:83-92. [PMID: 39111850 PMCID: PMC11742481 DOI: 10.1538/expanim.24-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/02/2024] [Indexed: 01/15/2025] Open
Abstract
In veterinary clinical medicine, evaluating the balance between nociception and antinociception presents a great challenge for anesthesiologists during canine surgeries. Heart rate (HR) and mean arterial pressure (MAP) are suitable indexes for monitoring noxious stimuli during anesthesia. Frontal electroencephalography (EEG) records, including processed parameters, are recommended for evaluating nociceptive balance in anesthetized unconscious human patients, which is unexplored in veterinary medicine. Therefore, the objective is to explore the response of processed EEG parameters to noxious stimulation and elucidate the impact of noxious stimulation on frontal cortical activity in dogs anesthetized with 1.5% isoflurane. Fourteen dogs were included and underwent frontal EEG monitoring, measuring the patient state index (PSI) and spectral edge frequency (SEF) before and after administering noxious stimulation using the towel clamp method on the tail of each 1.5% isoflurane-anesthetized dog. As the noxious stimulation was applied, there was a simultaneous increase in PSI, HR, and MAP, with PSI exhibiting a drastic response. SEF, especially on the left side, also increased with noxious stimulation. In EEG power spectral analysis, the delta band was decreased, and the alpha and beta bands showed an increase following noxious stimulation, with a more profound elevation of beta band on the left side. This study suggests that noxious stimulation brings asymmetric frontal cortical arousal, changing brain activity by suppressing delta wave and augmenting alpha and beta waves. Consequently, PSI seems to be a potential indicator for detecting stimuli in canine isoflurane anesthesia.
Collapse
Affiliation(s)
- Wei-Mao Hung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402204, Taiwan
| | - Hsien-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402204, Taiwan
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402204, Taiwan
| | - Julia Chu-Ning Hsu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402204, Taiwan
| |
Collapse
|
7
|
Zhang M, Mather RV, Chung AR, Leung CFA, Ramamurthi RJ, Purdon PL. Electroencephalogram-Guided General Anesthesia in a Pediatric Patient With Alexander's Disease: A Case Report. A A Pract 2025; 19:e01910. [PMID: 39831714 PMCID: PMC11761024 DOI: 10.1213/xaa.0000000000001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 01/22/2025]
Abstract
In this case, the electroencephalogram (EEG) was used to guide anesthesia care for a pediatric patient with Alexander's Disease undergoing serial intrathecal injections. Previous procedures using a standard maintenance propofol dose of up to 225 µg/kg/min led to postanesthetic recovery times of over 6 hours, requiring a neurology consult for noncoherence. The EEG assisted in guiding maintenance propofol dosing to 75 µg/kg/min, decreasing postanesthetic wash-off and postanesthesia care unit (PACU) recovery time by 50%. This highlights the potential impact of astrocyte dysfunction on anesthetic sensitivity and robustness of EEG as a biomarker of anesthetic effect, including for pediatric patients with rare neurodevelopmental diseases.
Collapse
Affiliation(s)
- Mae Zhang
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Rory Vu Mather
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
- Harvard/MIT MD-PhD Program, Boston, Massachusetts
- Harvard/MIT Program in Health, Sciences, and Technology, Cambridge, Massachusetts
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ashley R. Chung
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Chee Fai Andy Leung
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Radhamangalam J. Ramamurthi
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Patrick L. Purdon
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
8
|
Manohara N, Ferrari A, Greenblatt A, Berardino A, Peixoto C, Duarte F, Moyiaeri Z, Robba C, Nascimento F, Kreuzer M, Vacas S, Lobo FA. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician. J Clin Monit Comput 2024:10.1007/s10877-024-01250-2. [PMID: 39704777 DOI: 10.1007/s10877-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Perioperative anesthetic, surgical and critical careinterventions can affect brain physiology and overall brain health. The clinical utility of electroencephalogram (EEG) monitoring in anesthesia and intensive care settings is multifaceted, offering critical insights into the level of consciousness and depth of anesthesia, facilitating the titration of anesthetic doses, and enabling the detection of ischemic events and epileptic activity. Additionally, EEG monitoring can aid in predicting perioperative neurocognitive disorders, assessing the impact of systemic insults on cerebral function, and informing neuroprognostication. This review provides a comprehensive overview of the fundamental principles of electroencephalography, including the foundations of processed and quantitative electroencephalography. It further explores the characteristic EEG signatures associated wtih anesthetic drugs, the interpretation of the EEG data during anesthesia, and the broader clinical benefits and applications of EEG monitoring in both anesthetic practice and intensive care environments.
Collapse
Affiliation(s)
- Nitin Manohara
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Adam Greenblatt
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Andrea Berardino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Flávia Duarte
- Department of Anesthesiology, Hospital Garcia de Orta, Almada, Portugal
| | - Zahra Moyiaeri
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates
| | | | - Fabio Nascimento
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco A Lobo
- Division of Anesthesiology, Cleveland Clinic Abu Dhabi, Integrated Hospital Care Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Anand SA, Sogukpinar F, Monosov IE. Arousal effects on oscillatory dynamics in the non-human primate brain. Cereb Cortex 2024; 34:bhae473. [PMID: 39704245 PMCID: PMC11659775 DOI: 10.1093/cercor/bhae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated. We simultaneously recorded local field potentials in numerous cortical and subcortical regions in the primate brain and assessed oscillatory activity and inter-regional coherence associated with arousal state. In high arousal states, we found a uniquely strong and coherent gamma oscillation between the amygdala and basal forebrain. In low arousal rest-like states, a relative increase in coherence at alpha frequencies was present across sampled brain regions, with the notable exception of the medial temporal lobe. We consider how these patterns of activity may index arousal-related brain states that support the processing of incoming sensory stimuli during high arousal states and memory-related functions during rest.
Collapse
Affiliation(s)
- Shashank A Anand
- School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
| | - Fatih Sogukpinar
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
| | - Ilya E Monosov
- School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
- Department of Neuroscience, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
| |
Collapse
|
10
|
McGuigan S, Pelentritou A, Scott DA, Sleigh J. Xenon anaesthesia is associated with a reduction in frontal electroencephalogram peak alpha frequency. BJA OPEN 2024; 12:100358. [PMID: 39687274 PMCID: PMC11647626 DOI: 10.1016/j.bjao.2024.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
Background Administration of conventional anaesthetic agents is associated with changes in electroencephalogram (EEG) oscillatory dynamics, including a reduction in the peak alpha frequency. Computational models of neurones can reproduce such phenomena and are valuable tools for investigating their underlying mechanisms. We hypothesised that EEG data acquired during xenon anaesthesia in humans would show similar changes in peak alpha frequency and that computational neuronal models of recognised cellular actions of xenon would be consistent with the observed changes. Methods EEG recordings were obtained for 11 participants from a randomised controlled trial of xenon anaesthesia and for 21 participants from a volunteer study of xenon administration. The frontal peak alpha frequency was calculated for both cohorts at awake baseline and during xenon administration. In silico simulations with two computational models of neurones were performed to investigate how xenon antagonism of hyperpolarisation-activated cyclic nucleotide-gated channel 2 (HCN2) and glutamatergic excitatory neurotransmission would influence peak alpha frequency. Results Compared with awake baseline, frontal peak alpha frequency was significantly lower during xenon administration in the randomised controlled trial cohort, median (inter-quartile range) frequency 7.73 Hz (7.27-8.08 Hz) vs 8.81 Hz (8.35-9.03 Hz), P=0.012, and the volunteer cohort, 8.69 Hz (8.34-8.98 Hz) vs 9.41 Hz (9.11-9.92 Hz), P=0.001. In silico simulations with both computational models suggest that antagonism of HCN2 and glutamatergic excitatory neurotransmission are associated with a reduction in peak alpha frequency. Conclusions Xenon administration is associated with a reduction of peak alpha frequency in the frontal EEG. In silico simulations utilising two computational models of neurones suggest that these changes are consistent with antagonism of HCN2 and glutamatergic excitatory neurotransmission. Clinical trial registration The Australian New Zealand Clinical Trials Registry: ANZCTR number 12618000916246.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - Andria Pelentritou
- Department of Clinical Neurosciences, Lausanne University Hospital and the University of Lausanne, Lausanne, Switzerland
| | - David A. Scott
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Sleigh
- Department of Anaesthesia, Waikato Clinical School, Waikato Hospital, University of Auckland, New Zealand
| |
Collapse
|
11
|
Fazli Besheli B, Sha Z, Gavvala JR, Karamursel S, Quach M, Swamy CP, Ayyoubi AH, Goldman AM, Curry DJ, Sheth SA, Darrow D, Miller KJ, Francis DJ, Worrell GA, Henry TR, Ince NF. Using high-frequency oscillations from brief intraoperative neural recordings to predict the seizure onset zone. COMMUNICATIONS MEDICINE 2024; 4:243. [PMID: 39587325 PMCID: PMC11589742 DOI: 10.1038/s43856-024-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND While high-frequency oscillations (HFOs) and their stereotyped clusters (sHFOs) have emerged as potential neuro-biomarkers for the rapid localization of the seizure onset zone (SOZ) in epilepsy, their clinical application is hindered by the challenge of automated elimination of pseudo-HFOs originating from artifacts in heavily corrupted intraoperative neural recordings. This limitation has led to a reliance on semi-automated detectors, coupled with manual visual artifact rejection, impeding the translation of findings into clinical practice. METHODS In response, we have developed a computational framework that integrates sparse signal processing and ensemble learning to automatically detect genuine HFOs of intracranial EEG data. This framework is utilized during intraoperative monitoring (IOM) while implanting electrodes and postoperatively in the epilepsy monitoring unit (EMU) before the respective surgery. RESULTS Our framework demonstrates a remarkable ability to eliminate pseudo-HFOs in heavily corrupted neural data, achieving accuracy levels comparable to those obtained through expert visual inspection. It not only enhances SOZ localization accuracy of IOM to a level comparable to EMU but also successfully captures sHFO clusters within IOM recordings, exhibiting high specificity to the primary SOZ. CONCLUSIONS These findings suggest that intraoperative HFOs, when processed with computational intelligence, can be used as early feedback for SOZ tailoring surgery to guide electrode repositioning, enhancing the efficacy of the overall invasive therapy.
Collapse
Affiliation(s)
| | - Zhiyi Sha
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55401, USA
| | - Jay R Gavvala
- Department of Neurology, UT Health, Houston, TX, 77030, USA
| | - Sacit Karamursel
- Department of Physiology, School of Medicine, Koç Üniversitesi, Istanbul, Türkiye
| | - Michael Quach
- Department of Neurology, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Amir Hossein Ayyoubi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alica M Goldman
- Department of Neurology-Neurophysiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel J Curry
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55401, USA
| | - Kai J Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Francis
- Department of Psychology, University of Houston, Houston, TX, 77030, USA
| | | | - Thomas R Henry
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55401, USA
| | - Nuri F Ince
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Wang X, Yang W, Jian M, Liang Y, Yang Z, Chen Y, Ma B, Wang C, Hou Z, Deng Z, Liu H, Xie J, Han R. The characteristics of auditorial event-related potential under propofol sedation associated with preoperative cognitive performance in glioma patients. Front Neurosci 2024; 18:1431406. [PMID: 39610867 PMCID: PMC11603416 DOI: 10.3389/fnins.2024.1431406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Background Glioma patients often experience neurocognitive deficits, particularly mild cognitive impairment (MCI), which affects their perioperative safety. The use of auditory event-related potentials (AERPs) might be a promising method for reflecting perioperative cognitive function in patients, even under unresponsive sedation. In this study, we aimed to investigate the relationships between the AERP under sedation and preoperative cognitive performance in glioma patients. Methods Patients with primary supratentorial gliomas who were scheduled for elective craniotomy under general anesthesia were included in this prospective observational study. The patients were categorized into MCI and non-MCI groups based on their preoperative Montreal Cognitive Assessment (MoCA) scores. AERP characteristics, including mismatch negativity (MMN), P300, and event-related spectral perturbation (ERSP) in the theta bands, were analyzed under different propofol-induced sedation conditions. Differences in these parameters between groups and their relationships with preoperative cognitive performance were subsequently investigated. Results Twenty-nine eligible patients were included in the analysis. Compared to that in the non-MCI group, the average amplitude of the MMN component evoked by the novel stimulus significantly decreased during the recovery period in the MCI group (-3.895 ± 1.961 μV vs. -1.617 ± 1.831 μV, p = 0.003). Theta-ERSPs also differed between the two groups under standard (0.021 ± 0.658 μV2/Hz vs. 0.515 ± 0.622 μV2/Hz, p = 0.048) and novel (0.212 ± 0.584 μV2/Hz vs. 0.823 ± 0.931 μV2/Hz, p = 0.041) stimulation conditions under light sedation. After correcting for age, education level, site of lesion, WHO pathological grade and combined symptomatic epilepsy as confounders, the frontal theta-ERSP induced by standard and novel stimuli under light sedation was inversely related to the preoperative MoCA score (standard stimuli: β = -0.491, p = 0.011; novel stimuli: β = -0.594, p = 0.007), as was the average MMN amplitude induced by novel stimuli during the recovery period (β = -0.356, p = 0.035). Conclusion The AERP neural response characteristics of glioma patients during propofol sedation were associated with preoperative cognitive performance, which might be a potential neurophysiological indicator for monitoring perioperative cognitive function, especially theta-ERSP.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanning Yang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Minyu Jian
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zuocheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiwei Chen
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Ma
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengwei Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenghai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Chen X, Cramer SR, Chan DC, Han X, Zhang N. Sequential Deactivation Across the Hippocampus-Thalamus-mPFC Pathway During Loss of Consciousness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406320. [PMID: 39248326 PMCID: PMC11558098 DOI: 10.1002/advs.202406320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Indexed: 09/10/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems-level neural mechanisms underpinning LOC.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Samuel R. Cramer
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Dennis C.Y. Chan
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xu Han
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neurotechnology in Mental Health ResearchThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
14
|
Espinosa EP, Zang D, Buccellato A, Qi Z, Wu X, Abbasi S, Catal Y, Lechner S, Zilio F, Northoff G. Spectral peak analysis and intrinsic neural timescales as markers for the state of consciousness. Neuroimage Clin 2024; 44:103698. [PMID: 39509990 PMCID: PMC11574811 DOI: 10.1016/j.nicl.2024.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness in DOC individuals. Analyzing resting state EEG recordings from both healthy subjects and DOC patients, we measure INTs through autocorrelation window (ACW) and utilize peak analysis to quantify the weakening of the alpha peak. First, we replicate previous findings of prolonged ACW in DOC patients. We then identify significantly lower alpha peak measures in DOC compared to controls. Interestingly, spectral peaks shift from the alpha to the theta range in several DOC subjects while such change is absent in healthy controls. Next, our study reveals a close relationship between ACW and alpha peak in both healthy and DOC subjects, a correlation that holds for theta peaks in DOC. Further, the prolonged ACW correlates with the state of consciousness, as quantified by the Coma Recovery Scale-Revised (CRS-R), and mediates the relationship between theta peak and CRS-R. Finally, through split analyses and machine learning, we show that ACW and alpha peak measures conjointly distinguish healthy controls and DOC patients with high accuracy (95.5%). In conclusion, we demonstrate that the prolongation of ACW, together with spectral peak measures, holds promise to serve as additional EEG biomarkers for diagnosing the state of consciousness in DOC subjects.
Collapse
Affiliation(s)
- Ezequiel Pablo Espinosa
- School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1 - 20126, Milan, Italy.
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.
| | - Andrea Buccellato
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa K1Z 7K4 ON, Canada; Padua Neuroscience Center, University of Padova, 35131, Padova, Italy
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Samira Abbasi
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan 65169-13733, Iran
| | - Yasir Catal
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa K1Z 7K4 ON, Canada
| | - Stephan Lechner
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa K1Z 7K4 ON, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, 35139, Padua, Italy
| | - Georg Northoff
- University of Ottawa, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa K1Z 7K4 ON, Canada
| |
Collapse
|
15
|
Ferreira LO, Padilha da Silveira E, Paz CA, Otake Hamoy MK, Barbosa GB, Santos MF, Conceição RM, Amaral ALG, Resende KD, Favacho Lopes DC, Hamoy M. Decreasing brain activity caused by acute administration of ketamine and alcohol - A randomized, controlled, observer-blinded experimental study. Front Pharmacol 2024; 15:1456009. [PMID: 39478968 PMCID: PMC11521905 DOI: 10.3389/fphar.2024.1456009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Substance abuse is a major public health problem. In recent years, ketamine, which is a parenteral anesthetic, has been consumed increasingly as an illicit drug together with alcohol, although little is known of how this association alters brain activity. The present study investigated the influence of progressive doses of ketamine, associated with alcohol, on electrophysiological activity. Methods For this, 72 late-adolescent (8-10-week-old) male Wistar rats received either ketamine only, at low (10 mg/kg), intermediate (20 mg/kg) or high (30 mg/kg) doses via intraperitoneal injection, or alcohol (2 mL/100 g) via oral gavage followed by ketamine (at low, intermediate, and high doses). Electroencephalograms (EEG) and electromyographic recordings were obtained 5 min after the final application of the drug. Results When administered alone, ketamine resulted in an increase in delta, theta, beta, and gamma brainwaves, with a more pronounced effect being detected at the highest dose (30 mg/kg) in the case of the delta, beta, and gamma waves. The amplitude of the alpha brainwaves was reduced at all doses of ketamine, but less intensively at the highest dose. When administered alone, alcohol reduced all the brainwaves, with the reduction in the alpha waves being exacerbated by ketamine at all doses, and that of the theta and beta waves being boosted at the lowest dose. The intermediate dose of ketamine (20 mg/kg) reverted the alcohol-induced reduction in the theta and gamma waves, whereas the high dose increased delta, theta, beta, and gamma bandpower. Discussion Overall, then, while ketamine enhances the depressant effects of alcohol on the alpha brainwave at all doses, a low dose intensified this effect on the theta and beta 175 waves, whereas a high dose produces neuronal hyperexcitability in the theta and 176 gamma bandpower.
Collapse
Affiliation(s)
- Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Clarissa A. Paz
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Maria K. Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela B. Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo F. Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína M. Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anthony Lucas G. Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karina Dias Resende
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
16
|
Bradford NA, Shen A, Odegaard B, Peters MAK. Aligning consciousness science and U.S. funding agency priorities. Commun Biol 2024; 7:1315. [PMID: 39397101 PMCID: PMC11471858 DOI: 10.1038/s42003-024-07011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Nora A Bradford
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
| | - Angela Shen
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
| | - Brian Odegaard
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Megan A K Peters
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA.
- Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
17
|
Zhou DW, Conte MM, Curley WH, Spencer-Salmon CA, Chatelle C, Rosenthal ES, Bodien YG, Victor JD, Schiff ND, Brown EN, Edlow BL. Alpha coherence is a network signature of cognitive recovery from disorders of consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314953. [PMID: 39417105 PMCID: PMC11482980 DOI: 10.1101/2024.10.08.24314953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alpha (8-12 Hz) frequency band oscillations are among the most informative features in electroencephalographic (EEG) assessment of patients with disorders of consciousness (DoC). Because interareal alpha synchrony is thought to facilitate long-range communication in healthy brains, coherence measures of resting-state alpha oscillations may provide insights into a patient's capacity for higher-order cognition beyond channel-wise estimates of alpha power. In multi-channel EEG, global coherence methods may be used to augment standard spectral analysis methods by both estimating the strength and identifying the structure of coherent oscillatory networks. We performed global coherence analysis in 95 separate clinical EEG recordings (28 healthy controls and 33 patients with acute or chronic DoC, 25 of whom returned for follow-up) collected between two academic medical centers. We found that posterior alpha coherence is associated with recovery of higher-level cognition. We developed a measure of network organization, based on the distance between eigenvectors of the alpha cross-spectral matrix, that detects recovery of posterior alpha networks. In patients who have emerged from a minimally conscious state, we showed that coherence-based alpha networks are reconfigured prior to restoration of alpha power to resemble those seen in healthy controls. This alpha network measure performs well in classifying recovery from DoC (AUC = 0.78) compared to common representations of functional connectivity using the weighted phase lag index (AUC = 0.50 - 0.57). Lastly, we observed that activity within these alpha networks is suppressed during positive responses to task-based EEG command-following paradigms, supporting the potential utility of this biomarker to detect covert cognition. Our findings suggest that restored alpha networks may represent a sensitive early signature of cognitive recovery in patients with DoC. Therefore, network detection methods may augment the utility of EEG assessments for DoC.
Collapse
Affiliation(s)
- David W Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille A Spencer-Salmon
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille Chatelle
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA
- Epilepsy Service and Division of Clinical Neurophysiology, Massachusetts General Hospital, Boston, MA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
18
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585943. [PMID: 38562734 PMCID: PMC10983946 DOI: 10.1101/2024.03.20.585943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how anesthetic doses of ketamine and dexmedetomidine affected oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics caused increases in phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied. Activity in different subregions within a hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. By contrast, homologous areas across hemispheres became more in-phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
|
19
|
Egawa S, Ader J, Claassen J. Recovery of consciousness after acute brain injury: a narrative review. J Intensive Care 2024; 12:37. [PMID: 39327599 PMCID: PMC11425956 DOI: 10.1186/s40560-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DoC) are frequently encountered in both, acute and chronic brain injuries. In many countries, early withdrawal of life-sustaining treatments is common practice for these patients even though the accuracy of predicting recovery is debated and delayed recovery can be seen. In this review, we will discuss theoretical concepts of consciousness and pathophysiology, explore effective strategies for management, and discuss the accurate prediction of long-term clinical outcomes. We will also address research challenges. MAIN TEXT DoC are characterized by alterations in arousal and/or content, being classified as coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state, and confusional state. Patients with willful modulation of brain activity detectable by functional MRI or EEG but not by behavioral examination is a state also known as covert consciousness or cognitive motor dissociation. This state may be as common as every 4th or 5th patient without behavioral evidence of verbal command following and has been identified as an independent predictor of long-term functional recovery. Underlying mechanisms are uncertain but intact arousal and thalamocortical projections maybe be essential. Insights into the mechanisms underlying DoC will be of major importance as these will provide a framework to conceptualize treatment approaches, including medical, mechanical, or electoral brain stimulation. CONCLUSIONS We are beginning to gain insights into the underlying mechanisms of DoC, identifying novel advanced prognostication tools to improve the accuracy of recovery predictions, and are starting to conceptualize targeted treatments to support the recovery of DoC patients. It is essential to determine how these advancements can be implemented and benefit DoC patients across a range of clinical settings and global societal systems. The Curing Coma Campaign has highlighted major gaps knowledge and provides a roadmap to advance the field of coma science with the goal to support the recovery of patients with DoC.
Collapse
Affiliation(s)
- Satoshi Egawa
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jeremy Ader
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
20
|
Zhou P, Deng H, Zeng J, Ran H, Yu C. Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network. Front Med (Lausanne) 2024; 11:1447951. [PMID: 39359920 PMCID: PMC11445052 DOI: 10.3389/fmed.2024.1447951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5-6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haosong Ran
- College of Artificial Intelligent, Chongqing University of Technology, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
21
|
Huang Z, Mashour GA, Hudetz AG. Propofol disrupts the functional core-matrix architecture of the thalamus in humans. Nat Commun 2024; 15:7496. [PMID: 39251579 PMCID: PMC11384736 DOI: 10.1038/s41467-024-51837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. Here we show a significant shift in this geometry during deep sedation, marked by a transmodal-deficient geometry. This alteration is closely linked to the spatial variations in the matrix cell composition within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Liu Z, Si L, Shi S, Li J, Zhu J, Lee WH, Lo SL, Yan X, Chen B, Fu F, Zheng Y, Wang G. Classification of Three Anesthesia Stages Based on Near-Infrared Spectroscopy Signals. IEEE J Biomed Health Inform 2024; 28:5270-5279. [PMID: 38833406 DOI: 10.1109/jbhi.2024.3409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the feasibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.
Collapse
|
23
|
Misirocchi F, Mutti C, Hirsch LJ, Parrino L, Florindo I. Cyclic Alternating EEG Patterns: From Sleep to Encephalopathy. J Clin Neurophysiol 2024; 41:485-494. [PMID: 39186585 DOI: 10.1097/wnp.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
SUMMARY In the 2021 version of the Standardized Critical Care EEG Terminology, the American Clinical Neurophysiology Society introduced new definitions, including for the cyclic alternating pattern of encephalopathy (CAPE). CAPE refers to changes in background EEG activity, with two patterns alternating spontaneously in a regular manner. CAPE shares remarkable similarities with the cyclic alternating pattern, a natural EEG phenomenon occurring in normal non-rapid eye movement sleep, considered the main electrophysiological biomarker of sleep instability. This review explores similarities and differences between cyclic alternating pattern and CAPE and, leveraging the existing expertise on cyclic alternating pattern, aims to extend knowledge on CAPE. A standardized assessment of CAPE features is key to ascertain its prevalence and clinical significance among critically ill patients and to encompass the impact of confounding factors such as anesthetic and sedative agents. Although the preservation of non-rapid eye movement sleep-related elements has a well-known prognostic value in the critical care setting, the clinical importance of cyclic oscillating patterns and the prognostic significance of CAPE remain to be elucidated.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Liborio Parrino
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Irene Florindo
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| |
Collapse
|
24
|
Kreuzer M, García PS, Gutierrez R, Purdon PL. For EEG-Guided Anesthesia, We Have to Go Beyond the Index. Anesth Analg 2024; 139:e21-e22. [PMID: 38885144 DOI: 10.1213/ane.0000000000007098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany,
| | - Paul S García
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rodrigo Gutierrez
- Department of Anesthesia and Perioperative Medicine, University of Chile, Santiago, Chile
| | - Patrick L Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California
| |
Collapse
|
25
|
Das P, He M, Purdon PL. A dynamic generative model can extract interpretable oscillatory components from multichannel neurophysiological recordings. eLife 2024; 13:RP97107. [PMID: 39146208 PMCID: PMC11326773 DOI: 10.7554/elife.97107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.
Collapse
Affiliation(s)
- Proloy Das
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford UniversityStanfordUnited States
| | - Mingjian He
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford UniversityStanfordUnited States
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Patrick L Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
26
|
Bomatter P, Paillard J, Garces P, Hipp J, Engemann DA. Machine learning of brain-specific biomarkers from EEG. EBioMedicine 2024; 106:105259. [PMID: 39106531 DOI: 10.1016/j.ebiom.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING All authors have been working for F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Philipp Bomatter
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joseph Paillard
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
27
|
Parada FJ, Grasso-Cladera A, Rossi A, Soto-Icaza P, Arenas-Pérez M, Errázuriz MC. Applied human neuroscience: Fostering and designing inclusive environments with the 3E-Cognition perspective. Eur J Neurosci 2024; 60:4148-4168. [PMID: 39001625 DOI: 10.1111/ejn.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
The conventional medical paradigm often focuses on deficits and impairments, failing to capture the rich tapestry of experiences and abilities inherent in neurodiversity conditions. In this article, we introduce the 3E-Cognition perspective, offering a paradigm shift by emphasizing the dynamic interplay between the brain, body, and environment in shaping cognitive processes. The perspective fosters a more inclusive and supportive understanding of neurodiversity, with potential applications across various domains such as education, workplace, and healthcare. We begin by introducing the 3E-Cognition principles: embodied, environmentally scaffolded, and enactive. Then, we explore how the 3E-Cognition perspective can be applied to create inclusive environments and experiences for neurodiverse individuals. We provide examples in the realms of education, workplace, and healthcare. In all of these domains, spaces, methodologies, epistemologies, and roles that cater to diverse needs and strengths can be designed using the 3E principles. Finally, we discuss the challenges and benefits of implementing the 3E-Cognition perspective. We focus on the need for technological advancements and research in complex real-world scenarios; we suggest mobile brain/body imaging is a possible solution. We furthermore highlight the importance of recognizing and valuing the diverse manners of experiencing and interacting with the world, the promotion of diverse well-being, and the facilitation of innovation and creativity. Thus, we conclude that the 3E-Cognition perspective offers a groundbreaking approach to understanding and supporting neurodiversity: by embracing the inherent interconnectedness of the brain, body, and environment, we can create a more inclusive and supportive world.
Collapse
Affiliation(s)
- Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile, Salvador Sanfuentes 2221, Santiago, Metropolitan, Chile
| | | | - Alejandra Rossi
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Maritza Arenas-Pérez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | | |
Collapse
|
28
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
29
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Das P, He M, Purdon PL. A dynamic generative model can extract interpretable oscillatory components from multichannel neurophysiological recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550594. [PMID: 37546851 PMCID: PMC10402019 DOI: 10.1101/2023.07.26.550594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100's to 1000's. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post-hoc manner from univariate analyses, or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgement in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as Oscillation Component Analysis (OCA). These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.
Collapse
Affiliation(s)
- Proloy Das
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305
| | - Mingjian He
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305
- epartment of Psychology, Stanford University, Stanford, CA 94305
| | - Patrick L. Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
31
|
Thum JA, Malekmohammadi M, Toker D, Sparks H, Alijanpourotaghsara A, Choi JW, Hudson AE, Monti MM, Pouratian N. Globus pallidus externus drives increase in network-wide alpha power with propofol-induced loss-of-consciousness in humans. Cereb Cortex 2024; 34:bhae243. [PMID: 38850214 PMCID: PMC11161864 DOI: 10.1093/cercor/bhae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
States of consciousness are likely mediated by multiple parallel yet interacting cortico-subcortical recurrent networks. Although the mesocircuit model has implicated the pallidocortical circuit as one such network, this circuit has not been extensively evaluated to identify network-level electrophysiological changes related to loss of consciousness (LOC). We characterize changes in the mesocircuit in awake versus propofol-induced LOC in humans by directly simultaneously recording from sensorimotor cortices (S1/M1) and globus pallidus interna and externa (GPi/GPe) in 12 patients with Parkinson disease undergoing deep brain stimulator implantation. Propofol-induced LOC is associated with increases in local power up to 20 Hz in GPi, 35 Hz in GPe, and 100 Hz in S1/M1. LOC is likewise marked by increased pallidocortical alpha synchrony across all nodes, with increased alpha/low beta Granger causal (GC) flow from GPe to all other nodes. In contrast, LOC is associated with decreased network-wide beta coupling and beta GC from M1 to the rest of the network. Results implicate an important and possibly central role of GPe in mediating LOC-related increases in alpha power, supporting a significant role of the GPe in modulating cortico-subcortical circuits for consciousness. Simultaneous LOC-related suppression of beta synchrony highlights that distinct oscillatory frequencies act independently, conveying unique network activity.
Collapse
Affiliation(s)
- Jasmine A Thum
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Hiro Sparks
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Amirreza Alijanpourotaghsara
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Andrew E Hudson
- Department of Anesthesiology, University of California, Los Angeles, 747 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Martin M Monti
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| |
Collapse
|
32
|
Yi R, Cheng S, Zhong F, Luo D, You Y, Yu T, Wang H, Zhou L, Zhang Y. GABAergic neurons of anterior thalamic reticular nucleus regulate states of consciousness in propofol- and isoflurane-mediated general anesthesia. CNS Neurosci Ther 2024; 30:e14782. [PMID: 38828651 PMCID: PMC11145368 DOI: 10.1111/cns.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.
Collapse
Affiliation(s)
- Rulan Yi
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Shiyu Cheng
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Fuwang Zhong
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Dan Luo
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Ying You
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Haiying Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Liang Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Yu Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| |
Collapse
|
33
|
Yuan I, Bong CL, Chao JY. Intraoperative pediatric electroencephalography monitoring: an updated review. Korean J Anesthesiol 2024; 77:289-305. [PMID: 38228393 PMCID: PMC11150110 DOI: 10.4097/kja.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024] Open
Abstract
Intraoperative electroencephalography (EEG) monitoring under pediatric anesthesia has begun to attract increasing interest, driven by the availability of pediatric-specific EEG monitors and the realization that traditional dosing methods based on patient movement or changes in hemodynamic response often lead to imprecise dosing, especially in younger infants who may experience adverse events (e.g., hypotension) due to excess anesthesia. EEG directly measures the effects of anesthetics on the brain, which is the target end-organ responsible for inducing loss of consciousness. Over the past ten years, research on anesthesia and computational neuroscience has improved our understanding of intraoperative pediatric EEG monitoring and expanded the utility of EEG in clinical practice. We now have better insights into neurodevelopmental changes in the developing pediatric brain, functional connectivity, the use of non-proprietary EEG parameters to guide anesthetic dosing, epileptiform EEG changes during induction, EEG changes from spinal/regional anesthesia, EEG discontinuity, and the use of EEG to improve clinical outcomes. This review article summarizes the recent literature on EEG monitoring in perioperative pediatric anesthesia, highlighting several of the topics mentioned above.
Collapse
Affiliation(s)
- Ian Yuan
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Choon L. Bong
- Department of Pediatric Anesthesia, KK Women’s and Children’s Hospital, Duke-NUS Medical School, Singapore
| | - Jerry Y. Chao
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
34
|
Mintz NB, Andrews N, Pan K, Bessette E, Asaad WF, Sherif M, Rubinos C, Mahta A, Girard TD, Reznik ME. Prevalence of clinical electroencephalography findings in stroke patients with delirium. Clin Neurophysiol 2024; 162:229-234. [PMID: 38548493 PMCID: PMC11185045 DOI: 10.1016/j.clinph.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Delirium is an acute cognitive disorder associated with multiple electroencephalographic (EEG) abnormalities in non-neurological patients, though specific EEG characteristics in patients with stroke remain unclear. We aimed to compare the prevalence of EEG abnormalities in stroke patients during delirium episodes with periods that did not correspond to delirium. METHODS We retrospectively analyzed clinical EEG reports for stroke patients who received daily delirium assessments as part of a prospective study. We compared the prevalence of EEG features corresponding to patient-days with vs. without delirium, including focal and generalized slowing, and focal and generalized epileptiform abnormalities (EAs). RESULTS Among 58 patients who received EEGs, there were 192 days of both EEG and delirium monitoring (88% [n = 169] corresponding to delirium). Generalized slowing was significantly more prevalent on days with vs. without delirium (96% vs. 57%, p = 0.03), as were bilateral or generalized EAs (38% vs. 13%, p = 0.03). In contrast, focal slowing (53% vs. 74%, p = 0.11) and focal EAs were less prevalent on days with delirium (38% vs. 48%, p = 0.37), though these differences were not statistically significant. CONCLUSIONS We found a higher prevalence of generalized but not focal EEG abnormalities in stroke patients with delirium. SIGNIFICANCE These findings may reinforce the diffuse nature of delirium-associated encephalopathy, even in patients with discrete structural lesions.
Collapse
Affiliation(s)
- Noa B Mintz
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Nicholas Andrews
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Kelly Pan
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Eric Bessette
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Wael F Asaad
- Department of Neurosurgery, Brown University, Alpert Medical School, United States; Department of Neuroscience, Brown University, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Mohamed Sherif
- Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Psychiatry and Human Behavior, Brown University, Alpert Medical School, United States
| | - Clio Rubinos
- Department of Neurology, University of North Carolina School of Medicine, United States
| | - Ali Mahta
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Timothy D Girard
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States
| | - Michael E Reznik
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
35
|
Li Z, Wang P, Han L, Hao X, Mi W, Tong L, Liang Z. Age-dependent coupling characteristics of bilateral frontal EEG during desflurane anesthesia. Physiol Meas 2024; 45:055012. [PMID: 38697205 DOI: 10.1088/1361-6579/ad46e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Ziyang Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Peiqi Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Licheng Han
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Xinyu Hao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Li Tong
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
36
|
Chen X, Cramer SR, Chan DCY, Han X, Zhang N. Sequential deactivation across the thalamus-hippocampus-mPFC pathway during loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594986. [PMID: 38826282 PMCID: PMC11142108 DOI: 10.1101/2024.05.20.594986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, we conducted concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. Our results reveal that upon the loss of consciousness (LOC), as indicated by the loss of righting reflex, there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, simultaneously measured fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC might be triggered by sequential activities in the hippocampus, thalamus and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness might be a consequence, rather than a cause of LOC. Taken together, our study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering critical insight into the systems-level neural mechanisms underpinning LOC.
Collapse
|
37
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Obert DP, Killing D, Happe T, Tamas P, Altunkaya A, Dragovic SZ, Kreuzer M, Schneider G, Fenzl T. Substance specific EEG patterns in mice undergoing slow anesthesia induction. BMC Anesthesiol 2024; 24:167. [PMID: 38702608 PMCID: PMC11067159 DOI: 10.1186/s12871-024-02552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.
Collapse
Affiliation(s)
- David P Obert
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts's General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - David Killing
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Tom Happe
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Philipp Tamas
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Alp Altunkaya
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Srdjan Z Dragovic
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Matthias Kreuzer
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Gerhard Schneider
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Thomas Fenzl
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
39
|
Hight D, Ehrhardt A, Lersch F, Luedi MM, Stüber F, Kaiser HA. Lower alpha frequency of intraoperative frontal EEG is associated with postoperative delirium: A secondary propensity-matched analysis. J Clin Anesth 2024; 93:111343. [PMID: 37995609 DOI: 10.1016/j.jclinane.2023.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older patients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a higher rate of POD. METHOD Retrospective analysis of patients` data from a prospective observational study in cardiac surgical patients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site concentrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for best balance. This incorporated 18 variables, whereas patients with missing variable information or without an alpha oscillation were excluded. RESULT Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 1.3, p < 0.001). CONCLUSION Intraoperative slower frontal peak alpha frequency is independently associated with POD after cardiac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. Further studies are needed to investigate if there is a causal link between alpha frequency and POD.
Collapse
Affiliation(s)
- Darren Hight
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Alexander Ehrhardt
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland
| | - Friedrich Lersch
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Markus M Luedi
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Department for Anesthesiology, Intensive, Rescue and Pain medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Frank Stüber
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Heiko A Kaiser
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland.
| |
Collapse
|
40
|
Pollak M, Leroy S, Röhr V, Brown EN, Spies C, Koch S. Electroencephalogram Biomarkers from Anesthesia Induction to Identify Vulnerable Patients at Risk for Postoperative Delirium. Anesthesiology 2024; 140:979-989. [PMID: 38295384 DOI: 10.1097/aln.0000000000004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Postoperative delirium is a common complication in elderly patients undergoing anesthesia. Even though it is increasingly recognized as an important health issue, the early detection of patients at risk for postoperative delirium remains a challenge. This study aims to identify predictors of postoperative delirium by analyzing frontal electroencephalogram at propofol-induced loss of consciousness. METHODS This prospective, observational single-center study included patients older than 70 yr undergoing general anesthesia for a planned surgery. Frontal electroencephalogram was recorded on the day before surgery (baseline) and during anesthesia induction (1, 2, and 15 min after loss of consciousness). Postoperative patients were screened for postoperative delirium twice daily for 5 days. Spectral analysis was performed using the multitaper method. The electroencephalogram spectrum was decomposed in periodic and aperiodic (correlates to asynchronous spectrum wide activity) components. The aperiodic component is characterized by its offset (y intercept) and exponent (the slope of the curve). Computed electroencephalogram parameters were compared between patients who developed postoperative delirium and those who did not. Significant electroencephalogram parameters were included in a binary logistic regression analysis to predict vulnerability for postoperative delirium. RESULTS Of 151 patients, 50 (33%) developed postoperative delirium. At 1 min after loss of consciousness, postoperative delirium patients demonstrated decreased alpha (postoperative delirium: 0.3 μV2 [0.21 to 0.71], no postoperative delirium: 0.55 μV2 [0.36 to 0.74]; P = 0.019] and beta band power [postoperative delirium: 0.27 μV2 [0.12 to 0.38], no postoperative delirium: 0.38 μV2 [0.25 to 0.48]; P = 0.003) and lower spectral edge frequency (postoperative delirium: 10.45 Hz [5.65 to 15.04], no postoperative delirium: 14.56 Hz [9.51 to 16.65]; P = 0.01). At 15 min after loss of consciousness, postoperative delirium patients displayed a decreased aperiodic offset (postoperative delirium: 0.42 μV2 (0.11 to 0.69), no postoperative delirium: 0.62 μV2 [0.37 to 0.79]; P = 0.004). The logistic regression model predicting postoperative delirium vulnerability demonstrated an area under the curve of 0.73 (0.69 to 0.75). CONCLUSIONS The findings suggest that electroencephalogram markers obtained during loss of consciousness at anesthesia induction may serve as electroencephalogram-based biomarkers to identify at an early time patients at risk of developing postoperative delirium. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Marie Pollak
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Sophie Leroy
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Vera Röhr
- Neurotechnology Group, Technical University Berlin, Berlin, Germany
| | - Emery Neal Brown
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany; and Department of Anesthesia, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Liang Z, Tang B, Chang Y, Wang J, Li D, Li X, Wei C. State-related Electroencephalography Microstate Complexity during Propofol- and Esketamine-induced Unconsciousness. Anesthesiology 2024; 140:935-949. [PMID: 38157438 DOI: 10.1097/aln.0000000000004896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Identifying the state-related "neural correlates of consciousness" for anesthetics-induced unconsciousness is challenging. Spatiotemporal complexity is a promising tool for investigating consciousness. The authors hypothesized that spatiotemporal complexity may serve as a state-related but not drug-related electroencephalography (EEG) indicator during an unconscious state induced by different anesthetic drugs (e.g., propofol and esketamine). METHODS The authors recorded EEG from patients with unconsciousness induced by propofol (n = 10) and esketamine (n = 10). Both conventional microstate parameters and microstate complexity were analyzed. Spatiotemporal complexity was constructed by microstate sequences and complexity measures. Two different EEG microstate complexities were proposed to quantify the randomness (type I) and complexity (type II) of the EEG microstate series during the time course of the general anesthesia. RESULTS The coverage and occurrence of microstate E (prefrontal pattern) and the duration of microstate B (right frontal pattern) could distinguish the states of preinduction wakefulness, unconsciousness, and recovery under both anesthetics. Type I EEG microstate complexity based on mean information gain significantly increased from awake to unconsciousness state (propofol: from mean ± SD, 1.562 ± 0.059 to 1.672 ± 0.023, P < 0.001; esketamine: 1.599 ± 0.051 to 1.687 ± 0.013, P < 0.001), and significantly decreased from unconsciousness to recovery state (propofol: 1.672 ± 0.023 to 1.537 ± 0.058, P < 0.001; esketamine: 1.687 ± 0.013 to 1.608 ± 0.028, P < 0.001) under both anesthetics. In contrast, type II EEG microstate fluctuation complexity significantly decreased in the unconscious state under both drugs (propofol: from 2.291 ± 0.771 to 0.782 ± 0.163, P < 0.001; esketamine: from 1.645 ± 0.417 to 0.647 ± 0.252, P < 0.001), and then increased in the recovery state (propofol: 0.782 ± 0.163 to 2.446 ± 0.723, P < 0.001; esketamine: 0.647 ± 0.252 to 1.459 ± 0.264, P < 0.001). CONCLUSIONS Both type I and type II EEG microstate complexities are drug independent. Thus, the EEG microstate complexity measures that the authors proposed are promising tools for building state-related neural correlates of consciousness to quantify anesthetic-induced unconsciousness. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Bo Tang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Yu Chang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Jing Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Wang TC, Li WY, Lai JCY, Kuo TBJ, Yang CCH. Nociception Effect on Frontal Electroencephalogram Waveform and Phase-Amplitude Coupling in Laparoscopic Surgery. Anesth Analg 2024; 138:1070-1080. [PMID: 37428681 DOI: 10.1213/ane.0000000000006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
BACKGROUND Electroencephalographic pattern changes during anesthesia reflect the nociception-analgesia balance. Alpha dropout, delta arousal, and beta arousal with noxious stimulation have been described during anesthesia; however, data on the reaction of other electroencephalogram signatures toward nociception are scarce. Analyzing the effects of nociception on different electroencephalogram signatures may help us find new nociception markers in anesthesia and understand the neurophysiology of pain in the brain. This study aimed to analyze the electroencephalographic frequency pattern and phase-amplitude coupling change during laparoscopic surgeries. METHODS This study evaluated 34 patients who underwent laparoscopic surgery. The electroencephalogram frequency band power and phase-amplitude coupling of different frequencies were analyzed across 3 stages of laparoscopy: incision, insufflation, and opioid stages. Repeated-measures analysis of variance with a mixed model and the Bonferroni method for multiple comparisons were used to analyze the changes in the electroencephalogram signatures between the preincision and postincision/postinsufflation/postopioid phases. RESULTS During noxious stimulation, the frequency spectrum showed obvious decreases in the alpha power percentage after the incision (mean ± standard error of the mean [SEM], 26.27 ± 0.44 and 24.37 ± 0.66; P < .001) and insufflation stages (26.27 ± 0.44 and 24.40 ± 0.68; P = .002), which recovered after opioid administration. Further phase-amplitude analyses showed that the modulation index (MI) of the delta-alpha coupling decreased after the incision stage (1.83 ± 0.22 and 0.98 ± 0.14 [MI × 10 3 ]; P < .001), continued to be suppressed during the insufflation stage (1.83 ± 0.22 and 1.17 ± 0.15 [MI × 10 3 ]; P = .044), and recovered after opioid administration. CONCLUSIONS Alpha dropout during noxious stimulation is observed in laparoscopic surgeries under sevoflurane. In addition, the modulation index of delta-alpha coupling decreases during noxious stimulation and recovers after the administration of rescue opioids. Phase-amplitude coupling of the electroencephalogram may be a new approach for evaluating the nociception-analgesia balance during anesthesia.
Collapse
Affiliation(s)
- Tzu Chun Wang
- From the Department of Anaesthesia, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei Yi Li
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jerry Cheng-Yen Lai
- Department of Medical Research, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Tsoutun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Martin JC, Liley DTJ, Beer CFLA, Davidson AJ. Topographical Features of Pediatric Electroencephalography during High Initial Concentration Sevoflurane for Inhalational Induction of Anesthesia. Anesthesiology 2024; 140:890-905. [PMID: 38207324 DOI: 10.1097/aln.0000000000004902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness-a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings. METHODS A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8). RESULTS Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state. CONCLUSIONS High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
| | - David T J Liley
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher F L A Beer
- Swinburne University of Technology, Faculty of Science, Engineering, and Technology, Australia
| | - Andrew J Davidson
- Department of Anaesthetics, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Shang Z, Jiang Y, Fang P, Zhu W, Guo J, Li L, Liang Y, Zhang S, Ma S, Mei B, Fan Y, Xie Z, Shen Q, Liu X. The Association of Preoperative Diabetes With Postoperative Delirium in Older Patients Undergoing Major Orthopedic Surgery: A Prospective Matched Cohort Study. Anesth Analg 2024; 138:1031-1042. [PMID: 38335150 DOI: 10.1213/ane.0000000000006893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a common form of postoperative brain dysfunction, especially in the elderly. However, its risk factors remain largely to be determined. This study aimed to investigate whether (1) preoperative diabetes is associated with POD after elective orthopedic surgery and (2) intraoperative frontal alpha power is a mediator of the association between preoperative diabetes and POD. METHODS This was a prospective matched cohort study of patients aged 60 years or more, with a preoperative diabetes who underwent elective orthopedic surgery. Nondiabetic patients were matched 1:1 to diabetic patients in terms of age, sex, and type of surgery. Primary outcome was occurrence of POD, assessed using the 3-minute Diagnostic Confusion Assessment Method (3D-CAM) once daily from 6 pm to 8 pm during the postoperative days 1-7 or until discharge. Secondary outcome was the severity of POD which was assessed for all participants using the short form of the CAM-Severity. Frontal electroencephalogram (EEG) was recorded starting before induction of anesthesia and lasting until discharge from the operating room. Intraoperative alpha power was calculated using multitaper spectral analyses. Mediation analysis was used to estimate the proportion of the association between preoperative diabetes and POD that could be explained by intraoperative alpha power. RESULTS A total of 138 pairs of eligible patients successfully matched 1:1. After enrollment, 6 patients in the diabetes group and 4 patients in the nondiabetes group were excluded due to unavailability of raw EEG data. The final analysis included 132 participants with preoperative diabetes and 134 participants without preoperative diabetes, with a median age of 68 years and 72.6% of patients were female. The incidence of POD was 16.7% (22/132) in patients with preoperative diabetes vs 6.0% (8/134) in patients without preoperative diabetes. Preoperative diabetes was associated with increased odds of POD after adjustment of age, sex, body mass index, education level, hypertension, arrhythmia, coronary heart disease, and history of stroke (odds ratio, 3.2; 95% confidence interval [CI], 1.4-8.0; P = .009). The intraoperative alpha power accounted for an estimated 20% (95% CI, 2.6-60%; P = .021) of the association between diabetes and POD. CONCLUSIONS This study suggests that preoperative diabetes is associated with an increased risk of POD in older patients undergoing major orthopedic surgery, and that low intraoperative alpha power partially mediates such association.
Collapse
Affiliation(s)
- Zixiang Shang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yu Jiang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Panpan Fang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Wenjie Zhu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Jiaxin Guo
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Lili Li
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yongjie Liang
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Sichen Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Shenglan Ma
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, P.R. China
| | - Bin Mei
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, P.R. China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Qiying Shen
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Xuesheng Liu
- From the Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
45
|
Kim YS, Kim J, Park S, Kim KN, Ha Y, Yi S, Shin DA, Kuh SU, Lee CK, Koo BN, Kim SE. Differential effects of sevoflurane and desflurane on frontal intraoperative electroencephalogram dynamics associated with postoperative delirium. J Clin Anesth 2024; 93:111368. [PMID: 38157663 DOI: 10.1016/j.jclinane.2023.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
STUDY OBJECTIVE Intraoperative electroencephalogram (EEG) patterns associated with postoperative delirium (POD) development have been studied, but the differences in EEG recordings between sevoflurane- and desflurane-induced anesthesia have not been clarified. We aimed to distinguish the EEG characteristics of sevoflurane and desflurane in relation to POD development. DESIGN AND PATIENTS We collected frontal four-channel EEG data during the maintenance of anesthesia from 148 elderly patients who received sevoflurane (n = 77) or desflurane (n = 71); 30 patients were diagnosed with delirium postoperatively. The patients were divided into four subgroups based on anesthetics and delirium status: sevoflurane delirium (n = 17), sevoflurane non-delirium (n = 60), desflurane delirium (n = 13), and desflurane non-delirium (n = 58). We compared spectral power, coherence, and pairwise phase consistency (PPC) between sevoflurane and desflurane, and between non-delirium and delirium groups for each anesthetic. MAIN RESULTS In patients without POD, the sevoflurane non-delirium group exhibited higher EEG spectral power across 8.5-35 Hz (99.5% CI bootstrap analysis) and higher PPC from alpha to gamma bands (p < 0.005) compared to the desflurane non-delirium group. Conversely, in patients with POD, no significant EEG differences were observed between the sevoflurane and desflurane delirium groups. For the sevoflurane-induced patients, the sevoflurane delirium group had significantly lower power within 7.5-31.5 Hz (99.5% CI bootstrap analysis), reduced coherence over 8.9-23.8 Hz (99.5% CI bootstrap analysis), and lower PPC values in the alpha band (p < 0.005) compared with the sevoflurane non-delirium group. For the desflurane-induced patients, there were no significant differences in the EEG patterns between delirium and non-delirium groups. CONCLUSIONS In normal patients without POD, sevoflurane demonstrates a higher power spectrum and prefrontal connectivity than desflurane. Furthermore, reduced frontal alpha power, coherence, and connectivity of intraoperative EEG could be associated with an increased risk of POD. These intraoperative EEG characteristics associated with POD are more noticeable in sevoflurane-induced anesthesia than in desflurane-induced anesthesia.
Collapse
Affiliation(s)
- Yeon-Su Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sujung Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Keung Nyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seong Yi
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
46
|
Liu J, Zhang W, Hu S, Wu C, Dong K, Wei Q, Wang G, Fang J, Zhang D, Lan M, Zhang F, Sun H. Analysis of Amplitude Modulation of EEG Based on Holo-Hilbert Spectrum Analysis During General Anesthesia. IEEE Trans Biomed Eng 2024; 71:1607-1616. [PMID: 38285584 DOI: 10.1109/tbme.2023.3345942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
OBJECTIVE The study aims to investigate the relationship between amplitude modulation (AM) of EEG and anesthesia depth during general anesthesia. METHODS In this study, Holo-Hilbert spectrum analysis (HHSA) was used to decompose the multichannel EEG signals of 15 patients to obtain the spatial distribution of AM in the brain. Subsequently, HHSA was applied to the prefrontal EEG (Fp1) obtained during general anesthesia surgery in 15 and 34 patients, and the α-θ and α-δ regions of feature (ROFs) were defined in Holo-Hilbert spectrum (HHS) and three features were derived to quantify AM in ROFs. RESULTS During anesthetized phase, an anteriorization of the spatial distribution of AMs of α-carrier in brain was observed, as well as AMs of α-θ and α-δ in the EEG of Fp1. The total power ([Formula: see text]), mean carrier frequency ([Formula: see text]) and mean amplitude frequency ([Formula: see text]) of AMs changed during different anesthesia states. CONCLUSION HHSA can effectively analyze the cross-frequency coupling of EEG during anesthesia and the AM features may be applied to anesthesia monitoring. SIGNIFICANCE The study provides a new perspective for the characterization of brain states during general anesthesia, which is of great significance for exploring new features of anesthesia monitoring.
Collapse
|
47
|
Madariaga S, Devia C, Penna A, Egaña JI, Lucero V, Ramírez S, Maldonado F, Ganga M, Valls N, Villablanca N, Stamm T, Purdon PL, Gutiérrez R. Effect of Repeated Exposure to Sevoflurane on Electroencephalographic Alpha Oscillation in Pediatric Patients Undergoing Radiation Therapy: A Prospective Observational Study. J Neurosurg Anesthesiol 2024; 36:125-133. [PMID: 37965706 DOI: 10.1097/ana.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/25/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Pharmacological tolerance is defined as a decrease in the effect of a drug over time, or the need to increase the dose to achieve the same effect. It has not been established whether repeated exposure to sevoflurane induces tolerance in children. METHODS We conducted an observational study in children younger than 6 years of age scheduled for multiple radiotherapy sessions with sevoflurane anesthesia. To evaluate the development of sevoflurane tolerance, we analyzed changes in electroencephalographic spectral power at induction, across sessions. We fitted individual and group-level linear regression models to evaluate the correlation between the outcomes and sessions. In addition, a linear mixed-effect model was used to evaluate the association between radiotherapy sessions and outcomes. RESULTS Eighteen children were included and the median number of radiotherapy sessions per child was 28 (interquartile range: 10 to 33). There was no correlation between induction time and radiotherapy sessions. At the group level, the linear mixed-effect model showed, in a subgroup of patients, that alpha relative power and spectral edge frequency 95 were inversely correlated with the number of anesthesia sessions. Nonetheless, this subgroup did not differ from the other subjects in terms of age, sex, or the total number of radiotherapy sessions. CONCLUSIONS Our results suggest that children undergoing repeated anesthesia exposure for radiotherapy do not develop tolerance to sevoflurane. However, we found that a group of patients exhibited a reduction in the alpha relative power as a function of anesthetic exposure. These results may have implications that justify further studies.
Collapse
Affiliation(s)
- Samuel Madariaga
- Centro Nacional de Inteligencia Artificial (CENIA) Chile
- Department of Neuroscience
| | - Christ Devia
- Centro Nacional de Inteligencia Artificial (CENIA) Chile
- Department of Neuroscience
| | - Antonello Penna
- Centro de Investigación Clínica Avanzada (CICA), Faculty of Medicine, University of Chile
- Department of Anesthesiology and Perioperative Medicine, University of Chile
| | - José I Egaña
- Centro Nacional de Inteligencia Artificial (CENIA) Chile
- Department of Anesthesiology and Perioperative Medicine, University of Chile
| | | | | | - Felipe Maldonado
- Department of Anesthesiology and Perioperative Medicine, University of Chile
| | | | | | | | - Tomás Stamm
- Department of Anesthesia, National Cancer Institute
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rodrigo Gutiérrez
- Centro de Investigación Clínica Avanzada (CICA), Faculty of Medicine, University of Chile
- Department of Anesthesiology and Perioperative Medicine, University of Chile
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Coronel-Oliveros C, Medel V, Whitaker GA, Astudillo A, Gallagher D, Z-Rivera L, Prado P, El-Deredy W, Orio P, Weinstein A. Elevating understanding: Linking high-altitude hypoxia to brain aging through EEG functional connectivity and spectral analyses. Netw Neurosci 2024; 8:275-292. [PMID: 38562297 PMCID: PMC10927308 DOI: 10.1162/netn_a_00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from 16 healthy volunteers during acute high-altitude hypoxia (at 4,000 masl) and at sea level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration using graph theory tools. High altitude led to slower brain oscillations, that is, increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA and Trinity College Dublin, Dublin, Ireland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Neuroscience, Universidad de Chile, Santiago, Chile
| | - Grace Alma Whitaker
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Chair of Acoustics and Haptics, Technische Universität Dresden, Dresden, Germany
| | - Aland Astudillo
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - David Gallagher
- School of Psychology, Liverpool John Moores University, Liverpool, England
| | - Lucía Z-Rivera
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Wael El-Deredy
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Weinstein
- Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
49
|
Baron Shahaf D, Shahaf G. Intraoperative EEG-based monitors: are we looking under the lamppost? Curr Opin Anaesthesiol 2024; 37:177-183. [PMID: 38390951 DOI: 10.1097/aco.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW While electroencephalogram (EEG)-based depth of anesthesia monitors have been in use clinically for decades, there is still a major debate concerning their efficacy for detecting awareness under anesthesia (AUA). Further utilization of these monitors has also been discussed vividly, for example, reduction of postoperative delirium (POD).It seems that with regard to reducing AUA and POD, these monitors might be applicable, under specific anesthetic protocols. But in other settings, such monitoring might be less contributive and may have a 'built-it glass ceiling'.Recent advances in other venues of electrophysiological monitoring might have a strong theoretical rationale, and early supporting results, to offer a breakthrough out of this metaphorical glass ceiling. The purpose of this review is to present this possibility. RECENT FINDINGS Following previous findings, it might be concluded that for some anesthesia protocols, the prevailing depth of anesthesia monitors may prevent incidences of AUA and POD. However, in other settings, which may involve other anesthesia protocols, or specifically for POD - other perioperative causes, they may not. Attention-related processes measured by easy-to-use real-time electrophysiological markers are becoming feasible, also under anesthesia, and might be applicable for more comprehensive prevention of AUA, POD and possibly other perioperative complications. SUMMARY Attention-related monitoring might have a strong theoretical basis for the prevention of AUA, POD, and potentially other distressing postoperative outcomes, such as stroke and postoperative neurocognitive disorder. There seems to be already some initial supporting evidence in this regard.
Collapse
Affiliation(s)
- Dana Baron Shahaf
- Department of Anaesthesia, Rambam Healthcare Campus
- Ruth and Bruce Faculty of Medicine, Technion Israel Institute of Technology
| | - Goded Shahaf
- The Applied Neurophysiology Lab, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
50
|
Cui Y, Li Y, Li Q, Huang J, Tan X, Zhan CA. Alpha anteriorization and theta posteriorization during deep sleep. J Neurosci Res 2024; 102:e25325. [PMID: 38562056 DOI: 10.1002/jnr.25325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.
Collapse
Affiliation(s)
- Yue Cui
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiqi Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|