1
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA damage response network mediates the lethality of 5-FU in colorectal cancer. Cell Rep Med 2024; 5:101778. [PMID: 39378883 PMCID: PMC11514606 DOI: 10.1016/j.xcrm.2024.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
5-fluorouracil (5-FU), a major anti-cancer therapeutic, is believed to function primarily by inhibiting thymidylate synthase, depleting deoxythymidine triphosphate (dTTP), and causing DNA damage. Here, we show that clinical combinations of 5-FU with oxaliplatin or irinotecan show no synergy in human colorectal cancer (CRC) trials and sub-additive killing in CRC cell lines. Using selective 5-FU metabolites, phospho- and ubiquitin proteomics, and primary human CRC organoids, we demonstrate that 5-FU-mediated CRC cell killing primarily involves an RNA damage response during ribosome biogenesis, causing lysosomal degradation of damaged rRNAs and proteasomal degradation of ubiquitinated ribosomal proteins. Tumor types clinically responsive to 5-FU treatment show upregulated rRNA biogenesis while 5-FU clinically non-responsive tumor types do not, instead showing greater sensitivity to 5-FU's DNA damage effects. Finally, we show that treatments upregulating ribosome biogenesis, including KDM2A inhibition, promote RNA-dependent cell killing by 5-FU, demonstrating the potential for combinatorial targeting of this ribosomal RNA damage response for improved cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A Merrick
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G Cannell
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M Hosios
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G Vander Heiden
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H Yilmaz
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Schauer SP, Cho CH, Novikova G, Roth GA, Lee J, Sharma AD, Foley AR, Ng C, Shen P, Choi M, Ma TP, Phu L, Budayeva HG, Cheung TK, Lalehzadeh G, Imperio J, Ngu H, Etxeberria A, Liang Y, Rezzonico MG, Dourado M, Huang K, Lai Z, Hokom M, Pandya NJ, Newton D, Abdel‐Haleem AM, Chan P, Lee D, Tassew NG, Sangaraju D, O'Connor D, Hötzel I, Stark KL, Chou C, Foreman O, Easton A, Wildsmith KR, Sperinde G, Rose CM, Friedman BA, Fuji RN, Weimer RM, Meilandt WJ, Sadekar S, Nugent AA, Biever A. Primate cerebrospinal fluid CHI3L1 reflects brain TREM2 agonism. Alzheimers Dement 2024; 20:5861-5888. [PMID: 39090679 PMCID: PMC11497760 DOI: 10.1002/alz.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Triggering receptor expressed on myeloid cells 2 (TREM2) agonists are being clinically evaluated as disease-modifying therapeutics for Alzheimer's disease. Clinically translatable pharmacodynamic (PD) biomarkers are needed to confirm drug activity and select the appropriate therapeutic dose in clinical trials. METHODS We conducted multi-omic analyses on paired non-human primate brain and cerebrospinal fluid (CSF), and stimulation of human induced pluripotent stem cell-derived microglia cultures after TREM2 agonist treatment, followed by validation of candidate fluid PD biomarkers using immunoassays. We immunostained microglia to characterize proliferation and clustering. RESULTS We report CSF soluble TREM2 (sTREM2) and CSF chitinase-3-like protein 1 (CHI3L1/YKL-40) as PD biomarkers for the TREM2 agonist hPara.09. The respective reduction of sTREM2 and elevation of CHI3L1 in brain and CSF after TREM2 agonist treatment correlated with transient microglia proliferation and clustering. DISCUSSION CSF CHI3L1 and sTREM2 reflect microglial TREM2 agonism and can be used as clinical PD biomarkers to monitor TREM2 activity in the brain. HIGHLIGHTS CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2) reflects brain target engagement for a novel TREM2 agonist, hPara.09. CSF chitinase-3-like protein 1 reflects microglial TREM2 agonism. Both can be used as clinical fluid biomarkers to monitor TREM2 activity in brain.
Collapse
Affiliation(s)
- Stephen P. Schauer
- Department of Translational MedicineGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Chang Hoon Cho
- Department of Human Pathobiology and OMNI Reverse TranslationGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Gloriia Novikova
- Department of BioinformaticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Gillie A. Roth
- Department of Preclinical and Translational Pharmacokinetics and PharmacodynamicsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Julie Lee
- Department of Translational MedicineGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Anup D. Sharma
- Department of Human Pathobiology and OMNI Reverse TranslationGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Alejandro R. Foley
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Carl Ng
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Philip Shen
- Department of Safety Assessment PathologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Meena Choi
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Taylur P. Ma
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Lilian Phu
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Hanna G. Budayeva
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Tommy K. Cheung
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Guita Lalehzadeh
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Jose Imperio
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Hai Ngu
- Department of Research PathologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Ainhoa Etxeberria
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Yuxin Liang
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Michelle Dourado
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Kevin Huang
- Department of Translational MedicineGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Zijuan Lai
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Martha Hokom
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Nikhil J. Pandya
- Department of Human Pathobiology and OMNI Reverse TranslationGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Dwight Newton
- Roche InformaticsHoffmann‐La Roche, Ltd.MississaugaOntarioCanada
| | | | - Pamela Chan
- Department of Biochemical and Cellular PharmacologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Donna Lee
- Department of Safety Assessment ToxicologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Nardos G. Tassew
- Department of Safety Assessment ToxicologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Dewakar Sangaraju
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deborah O'Connor
- Department of ChemistryManufacturing, and ControlsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Isidro Hötzel
- Department of Antibody EngineeringGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Kimberly L. Stark
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Carolina Chou
- Department of Safety Assessment Nonclinical OperationsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Oded Foreman
- Department of Research PathologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Amy Easton
- Department of NeuroscienceGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Kristin R. Wildsmith
- Department of Translational MedicineGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Gizette Sperinde
- Department of BioAnalytical SciencesGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Christopher M. Rose
- Department of MicrochemistryProteomics, Lipidomics, and Next Generation SequencingGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Brad A. Friedman
- Department of BioinformaticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Reina N. Fuji
- Department of Safety Assessment PathologyGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Robby M. Weimer
- Department of Translational ImagingGenentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Shraddha Sadekar
- Department of Preclinical and Translational Pharmacokinetics and PharmacodynamicsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Alicia A. Nugent
- Department of Human Pathobiology and OMNI Reverse TranslationGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Anne Biever
- Department of Translational MedicineGenentech, Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Budayeva HG, Ma TP, Wang S, Choi M, Rose CM. Increasing the Throughput and Reproducibility of Activity-Based Proteome Profiling Studies with Hyperplexing and Intelligent Data Acquisition. J Proteome Res 2024; 23:2934-2947. [PMID: 38251652 PMCID: PMC11301772 DOI: 10.1021/acs.jproteome.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Intelligent data acquisition (IDA) strategies, such as a real-time database search (RTS), have improved the depth of proteome coverage for experiments that utilize isobaric labels and gas phase purification techniques (i.e., SPS-MS3). In this work, we introduce inSeqAPI, an instrument application programing interface (iAPI) program that enables construction of novel data acquisition algorithms. First, we analyze biotinylated cysteine peptides from ABPP experiments to demonstrate that a real-time search method within inSeqAPI performs similarly to an equivalent vendor method. Then, we describe PairQuant, a method within inSeqAPI designed for the hyperplexing approach that utilizes protein-level isotopic labeling and peptide-level TMT labeling. PairQuant allows for TMT analysis of 36 conditions in a single sample and achieves ∼98% coverage of both peptide pair partners in a hyperplexed experiment as well as a 40% improvement in the number of quantified cysteine sites compared with non-RTS acquisition. We applied this method in the ABPP study of ligandable cysteine sites in the nucleus leading to an identification of additional druggable sites on protein- and DNA-interaction domains of transcription regulators and on nuclear ubiquitin ligases.
Collapse
Affiliation(s)
- Hanna G. Budayeva
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Taylur P. Ma
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Shuai Wang
- Department
of Metabolism and Pharmacokinetics, Genentech,
Inc., South San Francisco, California 94080, United States
| | - Meena Choi
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Christopher M. Rose
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
4
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
5
|
Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L, Cheung TK, Meilandt WJ, Rose CM, Hoogenraad CC. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun 2023; 14:6322. [PMID: 37813836 PMCID: PMC10562429 DOI: 10.1038/s41467-023-41891-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Microglial reactivity is a pathological hallmark in many neurodegenerative diseases. During stimulation, microglia undergo complex morphological changes, including loss of their characteristic ramified morphology, which is routinely used to detect and quantify inflammation in the brain. However, the underlying molecular mechanisms and the relation between microglial morphology and their pathophysiological function are unknown. Here, proteomic profiling of lipopolysaccharide (LPS)-reactive microglia identifies microtubule remodeling pathways as an early factor that drives the morphological change and subsequently controls cytokine responses. We find that LPS-reactive microglia reorganize their microtubules to form a stable and centrosomally-anchored array to facilitate efficient cytokine trafficking and release. We identify cyclin-dependent kinase 1 (Cdk-1) as a critical upstream regulator of microtubule remodeling and morphological change in-vitro and in-situ. Cdk-1 inhibition also rescues tau and amyloid fibril-induced morphology changes. These results demonstrate a critical role for microtubule dynamics and reorganization in microglial reactivity and modulating cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Martin Weber
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Tommy K Cheung
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
6
|
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165:115071. [PMID: 37390710 DOI: 10.1016/j.biopha.2023.115071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
SIRT5 is a mitochondrial NAD+ -dependent lysine deacylase. Downregulation of SIRT5 has been linked to several primary cancers and DNA damage. In clinical therapy for non-small cell lung cancer (NSCLC), the Feiyiliu Mixture (FYLM) is an experience and effective Chinese herb prescription. And we found that quercetin is an important ingredient in the FYLM. However, whether quercetin regulates DNA damage repair (DDR) and induces apoptosis through SIRT5 in NSCLC remains unknown. The present study revealed that quercetin directly binds to SIRT5 and inhibits the phosphorylation of PI3K/AKT through the interaction between SIRT5 and PI3K, thus inhibiting the repair process of homologous recombination (HR) and non-homologous end-joining (NHEJ) in NSCLC, which raise mitotic catastrophe and apoptosis. Our study provided a novel mechanism of action of quercetin in the treatment of NSCLC.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Ye Yang
- Qingdao Central Hospital, Qingdao 266042, China
| | - Xuemeng Pang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingjing Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Jiang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
7
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA Damage Response Network Mediates the Lethality of 5-FU in Clinically Relevant Tumor Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538590. [PMID: 37162991 PMCID: PMC10168374 DOI: 10.1101/2023.04.28.538590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
5-fluorouracil (5-FU) is a successful and broadly used anti-cancer therapeutic. A major mechanism of action of 5-FU is thought to be through thymidylate synthase (TYMS) inhibition resulting in dTTP depletion and activation of the DNA damage response. This suggests that 5-FU should synergize with other DNA damaging agents. However, we found that combinations of 5-FU and oxaliplatin or irinotecan failed to display any evidence of synergy in clinical trials, and resulted in sub-additive killing in a panel of colorectal cancer (CRC) cell lines. In seeking to understand this antagonism, we unexpectedly found that an RNA damage response during ribosome biogenesis dominates the drug's efficacy in tumor types for which 5-FU shows clinical benefit. 5-FU has an inherent bias for RNA incorporation, and blocking this greatly reduced drug-induced lethality, indicating that accumulation of damaged RNA is more deleterious than the lack of new RNA synthesis. Using 5-FU metabolites that specifically incorporate into either RNA or DNA revealed that CRC cell lines and patient-derived colorectal cancer organoids are inherently more sensitive to RNA damage. This difference held true in cell lines from other tissues in which 5-FU has shown clinical utility, whereas cell lines from tumor tissues that lack clinical 5-FU responsiveness typically showed greater sensitivity to the drug's DNA damage effects. Analysis of changes in the phosphoproteome and ubiquitinome shows RNA damage triggers the selective ubiquitination of multiple ribosomal proteins leading to autophagy-dependent rRNA catabolism and proteasome-dependent degradation of ubiquitinated ribosome proteins. Further, RNA damage response to 5-FU is selectively enhanced by compounds that promote ribosome biogenesis, such as KDM2A inhibitors. These results demonstrate the presence of a strong RNA damage response linked to apoptotic cell death, with clear utility of combinatorially targeting this response in cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A. Merrick
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D. Handly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C. Patterson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G. Cannell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M. Hosios
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Kohler D, Tsai TH, Verschueren E, Huang T, Hinkle T, Phu L, Choi M, Vitek O. MSstatsPTM: Statistical Relative Quantification of Posttranslational Modifications in Bottom-Up Mass Spectrometry-Based Proteomics. Mol Cell Proteomics 2023; 22:100477. [PMID: 36496144 PMCID: PMC9860394 DOI: 10.1016/j.mcpro.2022.100477] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Liquid chromatography coupled with bottom-up mass spectrometry (LC-MS/MS)-based proteomics is increasingly used to detect changes in posttranslational modifications (PTMs) in samples from different conditions. Analysis of data from such experiments faces numerous statistical challenges. These include the low abundance of modified proteoforms, the small number of observed peptides that span modification sites, and confounding between changes in the abundance of PTM and the overall changes in the protein abundance. Therefore, statistical approaches for detecting differential PTM abundance must integrate all the available information pertaining to a PTM site and consider all the relevant sources of confounding and variation. In this manuscript, we propose such a statistical framework, which is versatile, accurate, and leads to reproducible results. The framework requires an experimental design, which quantifies, for each sample, both peptides with PTMs and peptides from the same proteins with no modification sites. The proposed framework supports both label-free and tandem mass tag-based LC-MS/MS acquisitions. The statistical methodology separately summarizes the abundances of peptides with and without the modification sites, by fitting separate linear mixed effects models appropriate for the experimental design. Next, model-based inferences regarding the PTM and the protein-level abundances are combined to account for the confounding between these two sources. Evaluations on computer simulations, a spike-in experiment with known ground truth, and three biological experiments with different organisms, modification types, and data acquisition types demonstrate the improved fold change estimation and detection of differential PTM abundance, as compared to currently used approaches. The proposed framework is implemented in the free and open-source R/Bioconductor package MSstatsPTM.
Collapse
Affiliation(s)
- Devon Kohler
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio, USA
| | - Erik Verschueren
- ULUA BV, Antwerp, Belgium; MPL, Genentech, South San Francisco, California, USA
| | - Ting Huang
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Trent Hinkle
- MPL, Genentech, South San Francisco, California, USA
| | - Lilian Phu
- MPL, Genentech, South San Francisco, California, USA
| | - Meena Choi
- MPL, Genentech, South San Francisco, California, USA.
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Budayeva HG, Sengupta-Ghosh A, Phu L, Moffat JG, Ayalon G, Kirkpatrick DS. Phosphoproteome Profiling of the Receptor Tyrosine Kinase MuSK Identifies Tyrosine Phosphorylation of Rab GTPases. Mol Cell Proteomics 2022; 21:100221. [PMID: 35227894 PMCID: PMC8972003 DOI: 10.1016/j.mcpro.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes. Different agonists of muscle-specific kinase (MuSK) elicit similar phosphoprofiles. MuSK activation induces tyrosine phosphorylation of several Rab GTPases. MuSK inhibitors diminish receptor signaling, including phosphorylation on Rab10 Y6. Mutation of Rab10 Y6 disrupts its association with Mical adaptor proteins.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| | | | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA
| | - John G Moffat
- Biochemical and Cellular Pharmacology and Computational Drug Design, Genentech, Inc, South San Francisco, California, USA
| | - Gai Ayalon
- Neuroscience Department, Genentech, Inc, South San Francisco, California, USA
| | - Donald S Kirkpatrick
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| |
Collapse
|
10
|
Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 2021; 237:313-328. [PMID: 34515349 DOI: 10.1002/jcp.30573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Elhaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hamed Ghaffari
- Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Davies CW, Vidal SE, Phu L, Sudhamsu J, Hinkle TB, Chan Rosenberg S, Schumacher FR, Zeng YJ, Schwerdtfeger C, Peterson AS, Lill JR, Rose CM, Shaw AS, Wertz IE, Kirkpatrick DS, Koerber JT. Antibody toolkit reveals N-terminally ubiquitinated substrates of UBE2W. Nat Commun 2021; 12:4608. [PMID: 34326324 PMCID: PMC8322077 DOI: 10.1038/s41467-021-24669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin conjugating enzyme UBE2W catalyzes non-canonical ubiquitination on the N-termini of proteins, although its substrate repertoire remains unclear. To identify endogenous N-terminally-ubiquitinated substrates, we discover four monoclonal antibodies that selectively recognize tryptic peptides with an N-terminal diglycine remnant, corresponding to sites of N-terminal ubiquitination. Importantly, these antibodies do not recognize isopeptide-linked diglycine (ubiquitin) modifications on lysine. We solve the structure of one such antibody bound to a Gly-Gly-Met peptide to reveal the molecular basis for its selective recognition. We use these antibodies in conjunction with mass spectrometry proteomics to map N-terminal ubiquitination sites on endogenous substrates of UBE2W. These substrates include UCHL1 and UCHL5, where N-terminal ubiquitination distinctly alters deubiquitinase (DUB) activity. This work describes an antibody toolkit for enrichment and global profiling of endogenous N-terminal ubiquitination sites, while revealing functionally relevant substrates of UBE2W.
Collapse
Affiliation(s)
- Christopher W. Davies
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| | - Simon E. Vidal
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Lilian Phu
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Jawahar Sudhamsu
- grid.418158.10000 0004 0534 4718Department of Structural Biology, Genentech, Inc., South San Francisco, CA USA
| | - Trent B. Hinkle
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Scott Chan Rosenberg
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Frances-Rose Schumacher
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Yi Jimmy Zeng
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | | | - Andrew S. Peterson
- grid.418158.10000 0004 0534 4718Department of Molecular Biology, Genentech, Inc., South San Francisco, CA USA
| | - Jennie R. Lill
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Christopher M. Rose
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Andrey S. Shaw
- grid.418158.10000 0004 0534 4718Research Biology, Genentech, Inc., South San Francisco, CA USA
| | - Ingrid E. Wertz
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA ,grid.419971.3Present Address: Bristol Myers Squibb, 1000 Sierra Point Parkway, Brisbane, CA USA
| | - Donald S. Kirkpatrick
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA ,Present Address: Interline Therapeutics, South San Francisco, CA USA
| | - James T. Koerber
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| |
Collapse
|
12
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
13
|
Maculins T, Verschueren E, Hinkle T, Choi M, Chang P, Chalouni C, Rao S, Kwon Y, Lim J, Katakam AK, Kunz RC, Erickson BK, Huang T, Tsai TH, Vitek O, Reichelt M, Senbabaoglu Y, Mckenzie B, Rohde JR, Dikic I, Kirkpatrick DS, Murthy A. Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response. eLife 2021; 10:e62320. [PMID: 34085925 PMCID: PMC8177894 DOI: 10.7554/elife.62320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Timurs Maculins
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Meena Choi
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Patrick Chang
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Cecile Chalouni
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Shilpa Rao
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Youngsu Kwon
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - Junghyun Lim
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
| | | | | | | | - Ting Huang
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Tsung-Heng Tsai
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
- Department of Mathematical Sciences, Kent State UniversityKentUnited States
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Mike Reichelt
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Yasin Senbabaoglu
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Brent Mckenzie
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie UniversityHalifaxCanada
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Department of Infectious Diseases, GenentechSouth San FranciscoUnited States
| | | | - Aditya Murthy
- Interline TherapeuticsSouth San FranciscoUnited States
| |
Collapse
|
14
|
Ndoja A, Reja R, Lee SH, Webster JD, Ngu H, Rose CM, Kirkpatrick DS, Modrusan Z, Chen YJJ, Dugger DL, Gandham V, Xie L, Newton K, Dixit VM. Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia. Cell 2020; 182:1156-1169.e12. [PMID: 32795415 DOI: 10.1016/j.cell.2020.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPβ) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPβ in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPβ accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPβ-dependent gene expression programs in microglia.
Collapse
Affiliation(s)
- Ada Ndoja
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Rohit Reja
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Ying-Jiun Jasmine Chen
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Vineela Gandham
- Department of Biomedical Imaging, Genentech, South San Francisco, CA 94080, USA
| | - Luke Xie
- Department of Biomedical Imaging, Genentech, South San Francisco, CA 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Bensimon A, Koch JP, Francica P, Roth SM, Riedo R, Glück AA, Orlando E, Blaukat A, Aebersold DM, Zimmer Y, Aebersold R, Medová M. Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol Oncol 2020; 14:1185-1206. [PMID: 32336009 PMCID: PMC7266272 DOI: 10.1002/1878-0261.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that interference with growth factor receptor tyrosine kinase (RTK) signaling can affect DNA damage response (DDR) networks, with a consequent impact on cellular responses to DNA-damaging agents widely used in cancer treatment. In that respect, the MET RTK is deregulated in abundance and/or activity in a variety of human tumors. Using two proteomic techniques, we explored how disrupting MET signaling modulates global cellular phosphorylation response to ionizing radiation (IR). Following an immunoaffinity-based phosphoproteomic discovery survey, we selected candidate phosphorylation sites for extensive characterization by targeted proteomics focusing on phosphorylation sites in both signaling networks. Several substrates of the DDR were confirmed to be modulated by sequential MET inhibition and IR, or MET inhibition alone. Upon combined treatment, for two substrates, NUMA1 S395 and CHEK1 S345, the gain and loss of phosphorylation, respectively, were recapitulated using invivo tumor models by immunohistochemistry, with possible utility in future translational research. Overall, we have corroborated phosphorylation sites at the intersection between MET and the DDR signaling networks, and suggest that these represent a class of proteins at the interface between oncogene-driven proliferation and genomic stability.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Jonas P. Koch
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Paola Francica
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Selina M. Roth
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Rahel Riedo
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Astrid A. Glück
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Eleonora Orlando
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | | | - Daniel M. Aebersold
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Faculty of ScienceUniversity of ZürichSwitzerland
| | - Michaela Medová
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| |
Collapse
|
16
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
17
|
Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol 2020; 27:210-220. [PMID: 32015554 DOI: 10.1038/s41594-019-0370-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Collapse
|
18
|
Louie S, Heidersbach A, Blanco N, Haley B, Rose CM, Liu PS, Yim M, Tang D, Lam C, Sandoval WN, Shaw D, Snedecor B, Misaghi S. Endothelial intercellular cell adhesion molecule 1 contributes to cell aggregate formation in CHO cells cultured in serum‐free media. Biotechnol Prog 2020; 36:e2951. [DOI: 10.1002/btpr.2951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Salina Louie
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Amy Heidersbach
- Molecular Biology DepartmentGenentech, Inc. South San Francisco California
| | - Noelia Blanco
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Benjamin Haley
- Molecular Biology DepartmentGenentech, Inc. South San Francisco California
| | - Christopher M. Rose
- Microchemistry Proteomic and Lipidomic (MPL) DepartmentGenentech, Inc. South San Francisco California
| | - Peter S. Liu
- Microchemistry Proteomic and Lipidomic (MPL) DepartmentGenentech, Inc. South San Francisco California
| | - Mandy Yim
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Danming Tang
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Cynthia Lam
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Wendy N. Sandoval
- Microchemistry Proteomic and Lipidomic (MPL) DepartmentGenentech, Inc. South San Francisco California
| | - David Shaw
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Brad Snedecor
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| | - Shahram Misaghi
- Cell Culture DepartmentGenentech, Inc. South San Francisco California
| |
Collapse
|
19
|
Wall CE, Rose CM, Adrian M, Zeng YJ, Kirkpatrick DS, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep 2019; 29:3280-3292.e7. [DOI: 10.1016/j.celrep.2019.10.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
|
20
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
21
|
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, Anderson KR, Newman RJ, Roose-Girma M, Modrusan Z, Pektas H, Maltepe E, Newton K, Dixit VM. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One 2019; 14:e0214110. [PMID: 30951545 PMCID: PMC6450627 DOI: 10.1371/journal.pone.0214110] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein. Expressed in a subset of mouse endocrine organs in addition to the placenta, PEG10 was identified as a substrate of the deubiquitinating enzyme USP9X. Consistent with PEG10 having a critical role in placental development, PEG10-deficient trophoblast stem cells (TSCs) exhibited impaired differentiation into placental lineages. PEG10 expressed in wild-type, differentiating TSCs was bound to many cellular RNAs including Hbegf (Heparin-binding EGF-like growth factor), which is known to play an important role in placentation. Expression of Hbegf was reduced in PEG10-deficient TSCs suggesting that PEG10 might bind to and stabilize RNAs that are critical for normal placental development.
Collapse
Affiliation(s)
- Mona Abed
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Hanna Budayeva
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Peter Liu
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Donald S. Kirkpatrick
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Rohit Reja
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah K. Kummerfeld
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Joshua D. Webster
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Keith R. Anderson
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Robert J. Newman
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Merone Roose-Girma
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Zora Modrusan
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Hazal Pektas
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Emin Maltepe
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Vishva M. Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nguyen Dang A, Mun M, Rose CM, Ahyow P, Meier A, Sandoval W, Yuk IH. Interaction of cell culture process parameters for modulating mAb afucosylation. Biotechnol Bioeng 2019; 116:831-845. [DOI: 10.1002/bit.26908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/08/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Melissa Mun
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Christopher M. Rose
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Patrick Ahyow
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Angela Meier
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Wendy Sandoval
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Inn H. Yuk
- Cell Culture, PTD, GenentechSouth San Francisco California
| |
Collapse
|
23
|
Abstract
The mitogen-activated protein kinase cascade (MAPK/ERK pathway) is a signaling pathway activated as a cellular response to various stimuli and for regulating the proliferation and survival of several types of eukaryotic cells, among others a wide variety of tumor cells. Mutations of the proteins involved in this pathway have been discovered in several tumor entities, indicating their inhibition as a potential therapeutic target. BRAF inhibitors have been in the clinical use since 2011. Several MEK inhibitors have been studied for metastatic cancer treatment in the recent past. After trametinib, cobimetinib is another potent, selective oral MEK1/2 inhibitor that was approved by European Medicine Agency (EMA) and Food and Drug Administration (FDA) in 2015 for treatment of malignant melanoma in a combination with the BRAF inhibitor vemurafenib.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 7, 79104, Freiburg, Germany
| |
Collapse
|
24
|
Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron 2018; 100:1322-1336.e7. [PMID: 30392797 DOI: 10.1016/j.neuron.2018.10.014] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.
Collapse
|
25
|
Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, Kwon Y, Senbabaoglu Y, Hackney JA, Keir M, Mckenzie B, Kirkpatrick DS, van Lookeren Campagne M, Murthy A. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol 2018; 19:246-254. [PMID: 29358708 DOI: 10.1038/s41590-017-0042-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-β and IL-1β. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-β and IL-1β. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Joshua M Baughman
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Yasin Senbabaoglu
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jason A Hackney
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Mary Keir
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA, USA
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | | | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
26
|
van der Hiel B, Haanen JB, Stokkel MP, Peeper DS, Jimenez CR, Beijnen JH, van de Wiel BA, Boellaard R, van den Eertwegh AJ. Vemurafenib plus cobimetinib in unresectable stage IIIc or stage IV melanoma: response monitoring and resistance prediction with positron emission tomography and tumor characteristics (REPOSIT): study protocol of a phase II, open-label, multicenter study. BMC Cancer 2017; 17:649. [PMID: 28915798 PMCID: PMC5603097 DOI: 10.1186/s12885-017-3626-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In patients with BRAFV600 mutated unresectable stage IIIc or metastatic melanoma, molecular targeted therapy with combined BRAF/MEK-inhibitor vemurafenib plus cobimetinib has shown a significantly improved progression-free survival and overall survival compared to treatment with vemurafenib alone. Nevertheless, the majority of BRAFV600 mutation-positive melanoma patients will eventually develop resistance to treatment. Molecular imaging with 18F-Fluorodeoxyglucose (18F-FDG) PET has been used to monitor response to vemurafenib in some BRAFV600 mutated metastatic melanoma patients, showing a rapid decline of 18F-FDG uptake within 2 weeks following treatment. Furthermore, preliminary results suggest that metabolic alterations might predict the development of resistance to treatment. 18F-Fluoro-3'-deoxy-3'L-fluorothymidine (18F-FLT), a PET-tracer visualizing proliferation, might be more suitable to predict response or resistance to therapy than 18F-FDG. METHODS This phase II, open-label, multicenter study evaluates whether metabolic response to treatment with vemurafenib plus cobimetinib in the first 7 weeks as assessed by 18F-FDG/18F-FLT PET can predict progression-free survival and whether early changes in 18F-FDG/18F-FLT can be used for early detection of treatment response compared to standard response assessment with RECISTv1.1 ceCT at 7 weeks. Ninety patients with BRAFV600E/K mutated unresectable stage IIIc/IV melanoma will be included. Prior to and during treatment all patients will undergo 18F-FDG PET/CT and in 25 patients additional 18F-FLT PET/CT is performed. Histopathological tumor characterization is assessed in a subset of 40 patients to unravel mechanisms of resistance. Furthermore, in all patients, blood samples are taken for pharmacokinetic analysis of vemurafenib/cobimetinib. Outcomes are correlated with PET/CT-imaging and therapy response. DISCUSSION The results of this study will help in linking PET measured metabolic alterations induced by targeted therapy of BRAFV600 mutated melanoma to molecular changes within the tumor. We will be able to correlate both 18F-FDG and 18F-FLT PET to outcome and decide on the best modality to predict long-term remissions to combined BRAF/MEK-inhibitors. Results coming from this study may help in identifying responders from non-responders early after the initiation of therapy and reveal early development of resistance to vemurafenib/cobimetinib. Furthermore, we believe that the results can be fundamental for further optimizing individual patient treatment. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02414750. Registered 10 April 2015, retrospectively registered.
Collapse
Affiliation(s)
- Bernies van der Hiel
- Department of Nuclear Medicine, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, PO Box 90203, 1006 BE Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Marcel P.M. Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, PO Box 90203, 1006 BE Amsterdam, The Netherlands
| | - Daniel S. Peeper
- Department of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Connie R. Jimenez
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Bart A. van de Wiel
- Department of Pathology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | - REPOSIT study group
- Department of Nuclear Medicine, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, PO Box 90203, 1006 BE Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Dogan T, Gnad F, Chan J, Phu L, Young A, Chen MJ, Doll S, Stokes MP, Belvin M, Friedman LS, Kirkpatrick DS, Hoeflich KP, Hatzivassiliou G. Role of the E3 ubiquitin ligase RNF157 as a novel downstream effector linking PI3K and MAPK signaling pathways to the cell cycle. J Biol Chem 2017; 292:14311-14324. [PMID: 28655764 PMCID: PMC5582827 DOI: 10.1074/jbc.m117.792754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/23/2022] Open
Abstract
The interconnected PI3K and MAPK signaling pathways are commonly perturbed in cancer. Dual inhibition of these pathways by the small-molecule PI3K inhibitor pictilisib (GDC-0941) and the MEK inhibitor cobimetinib (GDC-0973) suppresses cell proliferation and induces cell death better than either single agent in several preclinical models. Using mass spectrometry-based phosphoproteomics, we have identified the RING finger E3 ubiquitin ligase RNF157 as a target at the intersection of PI3K and MAPK signaling. We demonstrate that RNF157 phosphorylation downstream of the PI3K and MAPK pathways influences the ubiquitination and stability of RNF157 during the cell cycle in an anaphase-promoting complex/cyclosome–CDH1-dependent manner. Deletion of these phosphorylation-targeted residues on RNF157 disrupts binding to CDH1 and protects RNF157 from ubiquitination and degradation. Expression of the cyclin-dependent kinase 2 (CDK2), itself a downstream target of PI3K/MAPK signaling, leads to increased phosphorylation of RNF157 on the same residues modulated by PI3K and MAPK signaling. Inhibition of PI3K and MEK in combination or of CDK2 by their respective small-molecule inhibitors reduces RNF157 phosphorylation at these residues and attenuates RNF157 interaction with CDH1 and its subsequent degradation. Knockdown of endogenous RNF157 in melanoma cells leads to late S phase and G2/M arrest and induces apoptosis, the latter further potentiated by concurrent PI3K/MEK inhibition, consistent with a role for RNF157 in the cell cycle. We propose that RNF157 serves as a novel node integrating oncogenic signaling pathways with the cell cycle machinery and promoting optimal cell cycle progression in transformed cells.
Collapse
Affiliation(s)
- Taner Dogan
- From the Departments of Translational Oncology
| | | | | | - Lilian Phu
- Microchemistry Proteomics and Lipidomics, and
| | - Amy Young
- From the Departments of Translational Oncology
| | | | - Sophia Doll
- Microchemistry Proteomics and Lipidomics, and
| | | | - Marcia Belvin
- From the Departments of Translational Oncology.,Cancer Immunology, Genentech, Inc., South San Francisco, California 94080 and
| | | | | | | | | |
Collapse
|
28
|
Rebechi MT, Pratz KW. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278729 DOI: 10.1080/10428194.2017.1283031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute Myeloid Leukemia with FLT3 ITD mutations are associated with a poor prognosis characterized by a higher relapse rate, shorter relapse free survival, and decreased likelihood of response to therapy at relapse. FLT3 ITD signaling drives cell proliferation and survival. FLT3 ITD AML disease progression is associated with cytogenetic evolution and acquired tyrosine kinase inhibitor (TKI) resistance suggesting a potential role of genomic instability. There is growing evidence demonstrating a relationship between FLT3 signaling and increased DNA damage, specifically through increased reactive oxygen species (ROS) resulting in double-strand breaks (DSB), as well as impaired DNA repair, involving deficiencies in the non-homologous end joining (NHEJ), alternative non-homologous end joining (ALT NHEJ) and homologous recombination (HR) pathways. The role of genomic instability in the pathogenesis of FLT3 ITD AML warrants further examination as it offers potential therapeutic targets.
Collapse
Affiliation(s)
- Melanie T Rebechi
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| | - Keith W Pratz
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
29
|
Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, Chawla-Sarkar M. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol 2016; 19. [PMID: 27665089 DOI: 10.1111/cmi.12670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022]
Abstract
Phosphoproteomics-based platforms have been widely used to identify post translational dynamics of cellular proteins in response to viral infection. The present study was undertaken to assess differential tyrosine phosphorylation during early hours of rotavirus (RV) SA11 infection. Heat shock proteins (Hsp60) were found to be enriched in the data set of RV-SA11 induced differentially tyrosine-phosphorylated proteins at 2 hr post infection (hpi). Hsp60 was further found to be phosphorylated by an activated form of Src kinase on 227th tyrosine residue, and tyrosine phosphorylation of mitochondrial chaperonin Hsp60 correlated with its proteasomal degradation at 2-2.5hpi. Interestingly, mitochondrial Hsp60 positively influenced translocation of the rotaviral nonstructural protein 4 to mitochondria during RV infections. Phosphorylation and subsequent transient degradation of mitochondrial Hsp60 during early hours of RV-SA11 infection resulted in inhibition of premature import of nonstructural protein 4 into mitochondria, thereby delaying early apoptosis. Overall, the study highlighted one of the many strategies rotavirus undertakes to prevent early apoptosis and subsequent reduced viral progeny yield.
Collapse
Affiliation(s)
- Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road SchemeP- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
30
|
Hong X, Liu W, Song R, Shah JJ, Feng X, Tsang CK, Morgan KM, Bunting SF, Inuzuka H, Zheng XFS, Shen Z, Sabaawy HE, Liu L, Pine SR. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res 2016; 44:8855-8869. [PMID: 27566146 PMCID: PMC5062998 DOI: 10.1093/nar/gkw748] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance.
Collapse
Affiliation(s)
- Xuehui Hong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenyu Liu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Ruipeng Song
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jamie J Shah
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Xing Feng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Chi Kwan Tsang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katherine M Morgan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Samuel F Bunting
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Biochemistry and Molecular Biology, Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903-0019, USA
| | - LianXin Liu
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903-0019, USA
| |
Collapse
|
31
|
de Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, Wu X, Lee WP, Murray J, Webster JD, Yu K, Kirkpatrick DS, Newton K, Vucic D. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ 2016; 24:26-37. [PMID: 27518435 PMCID: PMC5260504 DOI: 10.1038/cdd.2016.78] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
Proper regulation of cell death signaling is crucial for the maintenance of homeostasis and prevention of disease. A caspase-independent regulated form of cell death called necroptosis is rapidly emerging as an important mediator of a number of human pathologies including inflammatory bowel disease and ischemia–reperfusion organ injury. Activation of necroptotic signaling through TNF signaling or organ injury leads to the activation of kinases receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) and culminates in inflammatory cell death. We found that, in addition to phosphorylation, necroptotic cell death is regulated by ubiquitination of RIP1 in the necrosome. Necroptotic RIP1 ubiquitination requires RIP1 kinase activity, but not necroptotic mediators RIP3 and MLKL (mixed lineage kinase-like). Using immunoaffinity enrichment and mass spectrometry, we profiled numerous ubiquitination events on RIP1 that are triggered during necroptotic signaling. Mutation of a necroptosis-related ubiquitination site on RIP1 reduced necroptotic cell death and RIP1 ubiquitination and phosphorylation, and disrupted the assembly of RIP1 and RIP3 in the necrosome, suggesting that necroptotic RIP1 ubiquitination is important for maintaining RIP1 kinase activity in the necrosome complex. We also observed RIP1 ubiquitination in injured kidneys consistent with a physiological role of RIP1 ubiquitination in ischemia–reperfusion disease. Taken together, these data reveal that coordinated and interdependent RIP1 phosphorylation and ubiquitination within the necroptotic complex regulate necroptotic signaling and cell death.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefanie Duttler
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeremy Murray
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kim Newton
- Departments of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
32
|
Gnad F, Doll S, Song K, Stokes MP, Moffat J, Liu B, Arnott D, Wallin J, Friedman LS, Hatzivassiliou G, Belvin M. Phosphoproteome analysis of the MAPK pathway reveals previously undetected feedback mechanisms. Proteomics 2016; 16:1998-2004. [DOI: 10.1002/pmic.201600119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Florian Gnad
- Department of Bioinformatics and Computational Biology; Genentech Inc; South San Francisco CA USA
| | - Sophia Doll
- Department of Protein Chemistry; Genentech Inc; South San Francisco CA USA
| | - Kyung Song
- Department of Translational Oncology; Genentech Inc; South San Francisco CA USA
| | | | - John Moffat
- Department of Biochemical Pharmacology; Genentech Inc; South San Francisco CA USA
| | - Bonnie Liu
- Department of Translational Oncology; Genentech Inc; South San Francisco CA USA
| | - David Arnott
- Department of Protein Chemistry; Genentech Inc; South San Francisco CA USA
| | - Jeffrey Wallin
- Department of Translational Oncology; Genentech Inc; South San Francisco CA USA
| | - Lori S. Friedman
- Department of Translational Oncology; Genentech Inc; South San Francisco CA USA
| | | | - Marcia Belvin
- Department of Translational Oncology; Genentech Inc; South San Francisco CA USA
| |
Collapse
|
33
|
Yang P, Patrick E, Humphrey SJ, Ghazanfar S, James DE, Jothi R, Yang JYH. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis. Proteomics 2016; 16:1868-71. [PMID: 27145998 DOI: 10.1002/pmic.201600068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/27/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org).
Collapse
Affiliation(s)
- Pengyi Yang
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Molecular Biosciences, University of Sydney, Sydney, NSW, Australia.,Systems Biology Section, Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental, Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ellis Patrick
- Brigham and Women's Hospital, Harvard Medical School, Broad Institute, Boston, MA, USA
| | - Sean J Humphrey
- Charles Perkins Centre, School of Molecular Biosciences, University of Sydney, Sydney, NSW, Australia.,Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Shila Ghazanfar
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Molecular Biosciences, University of Sydney, Sydney, NSW, Australia
| | - Raja Jothi
- Systems Biology Section, Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental, Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Xia Y, Chen J, Gong C, Chen H, Sun J. α-Mangostin, a Natural Agent, Enhances the Response of NRAS Mutant Melanoma to Retinoic Acid. Med Sci Monit 2016; 22:1360-7. [PMID: 27104669 PMCID: PMC4844330 DOI: 10.12659/msm.898204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The identification and use of novel compounds alone or in combination hold promise for the fight against NRAS mutant melanoma. MATERIAL AND METHODS We screened a kinase-specific inhibitor library through combining it with α-Mangostin in NRAS mutant melanoma cell line, and verified the enhancing effect of α-Mangostin through inhibition of the tumorigenesis pathway. RESULTS Within the kinase inhibitors, retinoic acid showed a significant synergistic effect with α-Mangostin. α-Mangostin also can reverse the drug resistance of retinoic acid in RARa siRNA-transduced sk-mel-2 cells. Colony assay, TUNEL staining, and the expressions of several apoptosis-related genes revealed that a-Mangostin enhanced the effect of retinoic acid-induced apoptosis. The combination treatment resulted in marked induction of ROS generation and inhibition of the AKT/S6 pathway. CONCLUSIONS These results indicate that the combination of these novel natural agents with retinoid acid may be clinically effective in NRAS mutant melanoma.
Collapse
Affiliation(s)
- Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing Chen
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chongwen Gong
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
35
|
Bakalarski CE, Kirkpatrick DS. A Biologist's Field Guide to Multiplexed Quantitative Proteomics. Mol Cell Proteomics 2016; 15:1489-97. [PMID: 26873251 DOI: 10.1074/mcp.o115.056986] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/22/2022] Open
Abstract
High-throughput genomic and proteomic studies have generated near-comprehensive catalogs of biological constituents within many model systems. Nevertheless, static catalogs are often insufficient to fully describe the dynamic processes that drive biology. Quantitative proteomic techniques address this need by providing insight into closely related biological states such as the stages of a therapeutic response or cellular differentiation. The maturation of quantitative proteomics in recent years has brought about a variety of technologies, each with their own strengths and weaknesses. It can be difficult for those unfamiliar with this evolving landscape to match the experiment at hand with the best tool for the job. Here, we outline quantitative methods for proteomic mass spectrometry and discuss their benefits and weaknesses from the perspective of the biologist aiming to generate meaningful data and address mechanistic questions.
Collapse
Affiliation(s)
- Corey E Bakalarski
- From the Departments of ‡Protein Chemistry and §Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California 94080
| | | |
Collapse
|
36
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Mischnik M, Sacco F, Cox J, Schneider HC, Schäfer M, Hendlich M, Crowther D, Mann M, Klabunde T. IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data. Bioinformatics 2015; 32:424-31. [PMID: 26628587 DOI: 10.1093/bioinformatics/btv699] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Phosphoproteomics measurements are widely applied in cellular biology to detect changes in signalling dynamics. However, due to the inherent complexity of phosphorylation patterns and the lack of knowledge on how phosphorylations are related to functions, it is often not possible to directly deduce protein activities from those measurements. Here, we present a heuristic machine learning algorithm that infers the activities of kinases from Phosphoproteomics data using kinase-target information from the PhosphoSitePlus database. By comparing the estimated kinase activity profiles to the measured phosphosite profiles, it is furthermore possible to derive the kinases that are most likely to phosphorylate the respective phosphosite. RESULTS We apply our approach to published datasets of the human cell cycle generated from HeLaS3 cells, and insulin signalling dynamics in mouse hepatocytes. In the first case, we estimate the activities of 118 at six cell cycle stages and derive 94 new kinase-phosphosite links that can be validated through either database or motif information. In the second case, the activities of 143 kinases at eight time points are estimated and 49 new kinase-target links are derived. AVAILABILITY AND IMPLEMENTATION The algorithm is implemented in Matlab and be downloaded from github. It makes use of the Optimization and Statistics toolboxes. https://github.com/marcel-mischnik/IKAP.git. CONTACT marcel.mischnik@gmail.com SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Francesca Sacco
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | | |
Collapse
|
38
|
Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget 2015; 5:7328-41. [PMID: 25193862 PMCID: PMC4202126 DOI: 10.18632/oncotarget.2397] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, “EGFR-addicted” cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT.
Collapse
|
39
|
Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances. J Drug Target 2015. [DOI: 10.3109/1061186x.2015.1068319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden and
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
40
|
Yu K, Phu L, Varfolomeev E, Bustos D, Vucic D, Kirkpatrick DS. Immunoaffinity enrichment coupled to quantitative mass spectrometry reveals ubiquitin-mediated signaling events. J Mol Biol 2015; 427:2121-34. [PMID: 25861760 DOI: 10.1016/j.jmb.2015.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
Abstract
Ubiquitination is one of the most prevalent posttranslational modifications in eukaryotic cells, with functional importance in protein degradation, subcellular localization and signal transduction pathways. Immunoaffinity enrichment coupled with quantitative mass spectrometry enables the in-depth characterization of protein ubiquitination events at the site-specific level. We have applied this strategy to investigate cellular response triggered by two distinct type agents: small molecule inhibitors of the tumor-associated kinases MEK and PI3K or the pro-inflammatory cytokine IL-17. Temporal profiling of protein ubiquitination events across a series of time points covering the biological response permits interrogation of signaling through thousands of quantified proteins, of which only a subset display significant and physiologically meaningful regulation. Distinctive clusters of residues within proteins can display distinct temporal patterns attributable to diverse molecular functions, although the majority of differential ubiquitination appears as a coordinated response across the modifiable residues present within an individual substrate. In cells treated with a combination of MEK and PI3K inhibitors, we found differential ubiquitination of MEK within the first hour after treatment and a series of mitochondria proteins at later time points. In the IL-17 signaling pathway, ubiquitination events on several signaling proteins including HOIL-1 and Tollip were observed. The functional relevance of these putative IL-17 mediators was subsequently validated by knockdown of HOIL-1, HOIP and TOLIP, each of which decreased IL-17-stimulated cytokine production. Together, these data validate proteomic profiling of protein ubiquitination as a viable approach for identifying dynamic signaling components in response to intracellular and extracellular perturbations.
Collapse
Affiliation(s)
- Kebing Yu
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lilian Phu
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daisy Bustos
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
Ubiquitination profiling identifies sensitivity factors for IAP antagonist treatment. Biochem J 2015; 466:45-54. [DOI: 10.1042/bj20141195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using immunoaffinity enrichment methods coupled to MS, we identified IAP (inhibitor of apoptosis) antagonist-specific ubiquitination profile. Our study reveals that RIP1 (receptor-interacting protein 1) ubiquitination could serve as a prognostic biomarker for IAP antagonist treatment to enhance the efficacy of this therapeutic anti-tumour strategy.
Collapse
|
42
|
Fedorenko IV, Fang B, Munko AC, Gibney GT, Koomen JM, Smalley KSM. Phosphoproteomic analysis of basal and therapy-induced adaptive signaling networks in BRAF and NRAS mutant melanoma. Proteomics 2014; 15:327-39. [PMID: 25339196 DOI: 10.1002/pmic.201400200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/11/2014] [Accepted: 10/14/2014] [Indexed: 12/30/2022]
Abstract
Basal and kinase inhibitor driven adaptive signaling has been examined in a panel of melanoma cell lines using phosphoproteomics in conjunction with pathway analysis. A considerable divergence in the spectrum of tyrosine-phosphorylated peptides was noted at the cell line level. The unification of genotype-specific cell line data revealed the enrichment for the tyrosine-phosphorylated cytoskeletal proteins to be associated with the presence of a BRAF mutation and oncogenic NRAS to be associated with increased receptor tyrosine kinase phosphorylation. A number of proteins including cell cycle regulators (cyclin dependent kinase 1, cyclin dependent kinase 2, and cyclin dependent kinase 3), MAPK pathway components (Extracellular signal regulated kinase 1 and Extracellular signal regulated kinase 2), interferon regulators (tyrosine kinase-2), GTPase regulators (Ras-Rasb interactor 1), and controllers of protein tyrosine phosphorylation (dual specificity tyrosine (Y) phosphorylation regulated kinase 1A and protein tyrosine phosphatase receptor type A) were common to all genotypes. Treatment of a BRAF-mutant/phosphatase and tensin homologue (PTEN) null melanoma cell line with vemurafenib led to decreased phosphorylation of ERK, phospholipase C1, and β-catenin with increases in receptor tyrosine kinase phosphorylation, signal transduction and activator of signaling 3, and glycogen synthase kinase 3α noted. In NRAS-mutant melanoma, MEK inhibition led to increased phosphorylation of epidermal growth factor receptor signaling pathway components, Src family kinases, and protein kinase Cδ with decreased phosphorylation seen in STAT3 and ERK1/2. Together these data present the first systems level view of adaptive and basal phosphotyrosine signaling in BRAF- and NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Inna V Fedorenko
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, Wang X, Lesch J, Lu R, Newton K, Huang OW, Cochran AG, Vasser M, Fauber BP, DeVoss J, Webster J, Diehl L, Modrusan Z, Kirkpatrick DS, Lill JR, Ouyang W, Dixit VM. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 2014; 518:417-21. [PMID: 25470037 DOI: 10.1038/nature13979] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORγt, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORγt in response to TGF-β signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Qui T Phung
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Celine Eidenschenk
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Rajkumar Noubade
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Rongze Lu
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Oscar W Huang
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Andrea G Cochran
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Mark Vasser
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Benjamin P Fauber
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Joshua Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Lauri Diehl
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jennie R Lill
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
44
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
45
|
Parker R, Clifton-Bligh R, Molloy MP. Phosphoproteomics of MAPK Inhibition in BRAF-Mutated Cells and a Role for the Lethal Synergism of Dual BRAF and CK2 Inhibition. Mol Cancer Ther 2014; 13:1894-906. [DOI: 10.1158/1535-7163.mct-13-0938] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE. Pathways and therapeutic targets in melanoma. Oncotarget 2014; 5:1701-52. [PMID: 24743024 PMCID: PMC4039128 DOI: 10.18632/oncotarget.1892] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other "omics") scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy.
Collapse
Affiliation(s)
| | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Yang
- National Cancer Institute, NIH, Washington DC, USA
| | - Michal Lotem
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Moshe Oren
- The Weizmann Institute of Science, Rehovot, Israel
| | | | - David E. Fisher
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
47
|
Anania VG, Pham VC, Huang X, Masselot A, Lill JR, Kirkpatrick DS. Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins. Mol Cell Proteomics 2013; 13:145-56. [PMID: 24142993 PMCID: PMC3879610 DOI: 10.1074/mcp.m113.031062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitination is a process that involves the covalent attachment of the 76-residue ubiquitin protein through its C-terminal di-glycine (GG) to lysine (K) residues on substrate proteins. This post-translational modification elicits a wide range of functional consequences including targeting proteins for proteasomal degradation, altering subcellular trafficking events, and facilitating protein-protein interactions. A number of methods exist for identifying the sites of ubiquitination on proteins of interest, including site-directed mutagenesis and affinity-purification mass spectrometry (AP-MS). Recent publications have also highlighted the use of peptide-level immunoaffinity enrichment of K-GG modified peptides from whole cell lysates for global characterization of ubiquitination sites. Here we investigated the utility of this technique for focused mapping of ubiquitination sites on individual proteins. For a series of membrane-associated and cytoplasmic substrates including erbB-2 (HER2), Dishevelled-2 (DVL2), and T cell receptor α (TCRα), we observed that K-GG peptide immunoaffinity enrichment consistently yielded additional ubiquitination sites beyond those identified in protein level AP-MS experiments. To assess this quantitatively, SILAC-labeled lysates were prepared and used to compare the abundances of individual K-GG peptides from samples prepared in parallel. Consistently, K-GG peptide immunoaffinity enrichment yielded greater than fourfold higher levels of modified peptides than AP-MS approaches. Using this approach, we went on to characterize inducible ubiquitination on multiple members of the T-cell receptor complex that are functionally affected by endoplasmic reticulum (ER) stress. Together, these data demonstrate the utility of immunoaffinity peptide enrichment for single protein ubiquitination site analysis and provide insights into the ubiquitination of HER2, DVL2, and proteins in the T-cell receptor complex.
Collapse
|